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Abstract

B Reinforcement learning and working memory are two core
processes of human cognition and are often considered cogni-
tively, neuroscientifically, and algorithmically distinct. Here, we
show that the brain networks that support them actually over-
lap significantly and that they are less distinct cognitive pro-
cesses than often assumed. We review literature demonstrating
the benefits of considering each process to explain properties
of the other and highlight recent work investigating their more
complex interactions. We discuss how future research in both

INTRODUCTION

Reinforcement learning (RL) and working memory (WM)
are two core processes of human cognition. RL broadly
refers to a set of behavioral, neuroscientific, and computa-
tional processes in which an agent learns through trial and
error, with the goal of maximizing reward (Eckstein,
Wilbrecht, & Collins, 2021; Sutton & Barto, 1998). WM
refers to an information-limited process used to hold rep-
resentations in the mind temporarily for use in thought
and action (Oberauer et al., 2018; Cowan, 2017). They
are essential in a range of daily activities that require intel-
ligent, flexible behavior. Deficits in RL and WM are related
to cognitive decline and often observed in mental disor-
ders such as schizophrenia and depression. Although
there is a rich body of literature investigating each process
separately, the aim of this review is to discuss the relation-
ship between them. Specifically, we review literature
explaining the neural, behavioral, and computational
interplay between the two systems and discuss the impor-
tance of paying attention to one process when investigat-
ing the other.

In the first section, “Defining RL and WM,” we will
describe each process independently, in terms of the
behaviors they support, the neural representations under-
lying them, and the computational models developed to
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computational and cognitive sciences can benefit from one
another, suggesting that a key missing piece for artificial agents
to learn to behave with more human-like efficiency is taking
working memory’s role in learning seriously. This review high-
lights the risks of neglecting the interplay between different
processes when studying human behavior (in particular when
considering individual differences). We emphasize the impor-
tance of investigating these dynamics to build a comprehensive
understanding of human cognition. [l

characterize them. In the second section, “The Interplay
of RL and WM,” we will show that these two processes are
related neurally and behaviorally and that both processes
can be better understood when considering how the other
affects it. In the third section, “The Importance of Investi-
gating Interprocess Dynamics,” we discuss how only con-
sidering one process can misrepresent data and thus lead
to incorrect conclusions. Finally, we will discuss their inter-
actions with other processes (in “Interactions with Other
Processes”) and the insights about cognition and neurosci-
ence that can be gained by investigating recent efforts in the
field of artificial intelligence (AI) to make agents’ behavior
better match humans’ ability to learn, generalize, and make
flexible decisions (in “Computational Insights”). The goal of
this article is to review the research investigating the rela-
tionship between two seminal processes and highlight
how investigating the richness of their interplay is impor-
tant to developing veridical computational and neural
understandings of behavior across a variety of contexts.

DEFINING RL AND WM

Before discussing the relationship between these two pro-
cesses, we review each in isolation. We find it of particular
importance to discuss how three overlapping, but distinct,
subfields define each process: psychology and cognitive
sciences, focusing on behavior; neuroscience, focusing
on brain networks; and computational fields such as Al,
focusing on algorithms (Eckstein et al., 2021). We attempt
to highlight the risks that come from multiple subfields
using the same term (e.g., RL) with subtly different
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meanings and to remove this ambiguity. For example, an
RL behavioral task may not be best explained by an RL
algorithm alone and may not only rely on the brain’s RL
network. More examples of these will be expanded in
the next section (“The Interplay of RL and WM”).

RL Behavior, RL Brain, RL Algorithms

RL in psychology describes animals’ ability to learn to
make choices to seek rewards and avoid punishments
and has a long history rooted in behaviorism (e.g., Rescorla
& Wagner, 1972) that has since been largely expanded to
more complex cognitive processes. RL describes the pro-
cess that allows agents to gradually integrate a past history
of reward outcomes into a robust choice policy that sup-
ports good decisions.

We define “RL behavior” as learning behavior in sequen-
tial decision-making tasks that involve appetitive or aver-
sive outcomes. Behavioral RL tasks range in complexity
and structure but always involve the participant learning
the value (or a proxy) of an action, state, or series of
actions and states through trial and error, using a form
of reward or punishment as a teaching signal (e.g., food,
points, money, and pain). Some common RL tasks are
learning which key press results in a reward for a particular
stimulus (stimulus—action association), navigating to a
goal state in a grid world or maze, or discovering which
of several options results in the highest expected reward
(bandit tasks; Figure 1A). All of these tasks are alike in that
the goal is to maximize rewards, which are learned incre-
mentally from valenced feedback.

Neurally, RL is widely thought to be supported by dopa-
minergic signaling in the basal ganglia, particularly in the
striatum (e.g., Joel, Niv, & Ruppin, 2002; Suri, Bargas, &
Arbib, 2001; Sutton & Barto, 1998; Schultz, Dayan, &
Montague, 1997; Houk, 1995; Schultz et al., 1995). A dom-
inant theory of RL in the brain is the reward prediction
error (RPE) theory of dopamine (e.g., Maes et al., 2020;
Daw & Tobler, 2014; Niv, 2009; Bayer & Glimcher, 2005;
Satoh, Nakai, Sato, & Kimura, 2003; Schultz, 2002; Schultz
et al., 1997; Montague, Dayan, & Sejnowski, 1996). In this
theory, supported by a broad range of findings, phasic
dopaminergic activity encodes the temporal difference
RPE (a difference between future outcome expectations
at different time points; Figure 1B, top inset). In other
words, the spiking of dopaminergic neurons in basal gan-
glia is increased when a reward is larger than expected (a
positive RPE) and decreased when a reward is smaller than
expected (a negative RPE). This RPE encoding signal facil-
itates cortico-basal ganglial plasticity (Wickens, 2009) and
allows striatal neurons to learn to encode choice values
(Samejima, Ueda, Doya, & Kimura, 2005), supporting a
choice strategy that favors choices that usually lead to
better outcomes.

RL s also a broad area of machine learning and AI. RL Al
represents a family of learning algorithms primarily used in
sequential/multistep problems (called Markov Decision
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Processes [MDPs)), where the current state of the world
is fully informative of which action an agent should take
(Sutton & Barto, 1998). RL artificial agents share the prop-
erty that they rely on algorithms whose objective is to learn
to make choices that maximize future cumulative rewards.
This can be achieved with broadly different algorithms, for
example, by trying to estimate the value of choices by
incrementally updating it when rewards are observed, in
proportion to the RPE, or by using information about
the environment to effortfully compute the expected
future value of a choice (Figure 1C illustrates updating
the expected value of a certain action and state, referred
to as the Q value, based on the reward received). A lot of
RL research in machine learning has no bearing to cogni-
tive psychology and neuroscience (e.g., autonomous nav-
igation of stratospheric balloons; Bellemare et al., 2020);
however, an important subset of RL algorithms have been
extremely successful at describing both RL behavior and
RLin the brain (Schultz et al., 1997; Montague et al., 1996).

WM Behavior, WM Brain, WM Algorithms

Similar to the RL process, the WM process should be
explicitly defined in different subfields. WM broadly refers
to an information-limited process used to hold a small
amount of information in mind for a small amount of time,
when that information is no longer perceptually available,
for use in thought and action (a classic example is the
memorization of a phone number). When we refer to
WM, we refer to the process that allows agents to both
store and manipulate information, which supports
abstract, goal-directed behavior. Thus, we do not only con-
sider WM as a passive storage unit but also closely related
to executive function.

WM behavioral tasks (e.g., Figure 1D) all involve partici-
pants holding some number of representations in mind
over a delay; participants are later tested on their retention
either directly (enter the phone number) or via a manipu-
lation (enter the phone number backward). One canonical
effect in the WM literature regardless of modality is the
decreased accuracy and increased response with increasing
number of memoranda (i.e., the set size effect; e.g., Luck &
Vogel, 1997; Sternberg, 1966). This effect demonstrates one
of the defining features of WM: its information-limited
capacity. Despite its limited capacity, people are able to
selectively maintain information more behaviorally relevant
(Bays & Husain, 2008; Braver & Cohen, 2000), demonstrat-
ing the ability of WM to only “gate in” desired information.
Another canonical effect is the decreased accuracy with
increasing WM delay times and/or distractors, demonstrat-
ing the fragility of WM representations (e.g., Peterson &
Peterson, 1959; Brown, 1958). These behavioral character-
istics of WM are in contrast to those of other, longer-term
memory mechanisms, which are not capacity limited
and do not require active maintenance to later recall infor-
mation. We recommend the review article by Oberauer
et al. (2018) for a comprehensive overview of different

Volume 34, Number 4

(/18¥99661/1GG/v/7€/4pd-aj01uE/UOOlNPa )W j0a.IP//:dRY Wol) papeojumoq

) e uoO|

2202 YoIelN 80 U0 ITLSOd AT 1AV ‘UOSIPEI ‘UISUODSIA JO Alsianiun Aq 4pd-gogLo



Cognition/Behavior

Brain

Algorithm

A

reward probabilites are
unknown and are learned
from experience

RL

WM

dopamine in BG

before training: Ll ..J.L..n...ﬂu
after training: Mk ia

Schultz, Montague, & Dayan 1997

®
neurons in PFC T
@
N

delay period

Funahashi, 1989

C

{—positive RPE

{-no RPE

reward

| 27T

state action

reward (J
N o)

forget input output

)
|

3

—
% 4
J Uit

)

v

-
%)
4

-0-0->

Figure 1. RL (top) and WM (bottom) processes are associated with a broad range of behavioral paradigms (left; A, D), brain areas (middle; B), and
algorithms (right; C, E). (A) A schematic of a multiarmed bandit problem. The participant must iteratively learn from feedback which option has the
highest expected reward. (B) RL and WM rely on overlapping brain networks, both modulated by dopamine (DA), although WM is largely described
to be a pFC-associated area and RL is described as a basal ganglia (BG)-associated area (black arrows). Top inset: dopaminergic activity reflects RPE.
Bottom inset: elevated delay-period activity in pFC while maintaining information in WM. (C) A schematic of a general RL agent that learns the value
of different state action pairs (the Q value) iteratively using RPE. (D) A schematic of the 1-2-AX task, in which the participant must selectively maintain
letters based on context (numbers). (E) A schematic of the LSTM model, in which WM representations can be independently forgotten, inputted, and

outputted.

behavioral benchmarks of WM, across modalities and
experimental paradigms.

Although “WM brain” is canonically characterized as ele-
vated, persistent neural activity in the pFC (Funahashi,
Bruce, & Goldman-Rakic, 1989; Baddeley & Hitch, 1974;
Fuster & Alexander, 1971; Figure 1B, bottom inset), recent
neuroimaging studies have demonstrated that WM may be
represented without elevated, persistent activity (e.g.,
Murray et al., 2017; Stokes, 2015; Christophel, Hebart, &
Haynes, 2012; Riggall & Postle, 2012; Harrison & Tong,
2009; Serences, Ester, Vogel, & Awh, 2009; although this
remains debated, see reviews of Constantinidis et al.,
2018; Lundqvist, Herman, & Miller, 2018) and in other
task-relevant regions (e.g., visual and parietal cortex
in visual WM tasks; Rahmati, Saber, & Curtis, 2018;
Christophel et al., 2012; Jerde, Merriam, Riggall, Hedges,
& Curtis, 2012; Riggall & Postle, 2012; Harrison & Tong,
2009; Serences et al., 2009; reviewed in Christophel, Klink,
Spitzer, Roelfsema, & Haynes, 2017). Though the exact
characterization of WM in the brain is not agreed on, most
researchers agree that it is fundamentally different from
other longer-term memory processes, in that it requires
active maintenance and is thus more fleeting, subject to
decay, and more energy consuming.

Computational models of WM usually focus on either
behavior or brain. For example, some models of WM

behavior attempt to quantitatively characterize the nature
of WM’s limitations and what this can teach us about the
format of WM representations (e.g., Nassar, Helmers, &
Frank, 2018; van den Berg, Awh, & Ma, 2014; Fougnie,
Suchow, & Alvarez, 2012; van den Berg, Shin, Chou,
George, & Ma, 2012; Bays & Husain, 2008; Zhang & Luck,
2008; Luck & Vogel, 1997). Models of the brain’s WM sig-
nals attempt to characterize how stable but flexible repre-
sentations can occur in biologically neural networks; they
show that highly interconnected neural networks (e.g.,
some forms of recurrent neural networks [RNNs]) can
lead to stable attractor states that resemble the brain’s
neural activity during WM maintenance and account for
behavior (Masse, Yang, Song, Wang, & Freedman, 2019;
Compte, Brunel, Goldman-Rakic, & Wang, 2000; Moody,
Wise, di Pellegrino, & Zipser, 1998; Zipser, 1991). Despite
these computational efforts and in contrast to RL, there is a
less direct match of WM to a subfield of Al. Some Al algo-
rithms do include memory mechanisms to solve problems
that cannot be solved by classic RL, because they require
past information to be maintained to make appropriate
choices (called partially observable Markov decision pro-
cesses [POMDPs]). These algorithms can share properties
with biological WM, such as storing information in persis-
tent activity rather than in network weights (e.g., RNNs),
or maintain information over short periods of time in a
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controlled way where the agent can learn to gate the flow
of information (e.g., long short-term memory networks
[LSTMs]; Hochreiter & Schmidhuber, 1997; Figure 1E).
We will discuss the limitations of this similarity in the
“Computational Insights” section.

THE INTERPLAY OF RL AND WM

The behavioral, neural, and computational instantiations
within each process are overlapping but distinct (see
Eckstein et al., 2021, for a more in depth discussion on
the distinctions in RL). For example, one can use “RL algo-
rithms” to describe “RL behavior” (in cognitive modeling)
and “RL algorithms” to explain “RL brain” (e.g., temporal
difference learning well describes the striatal dopami-
nergic system in the brain). Similarly, “WM brain” is used
for “WM behavior” (i.e., persistent activity in cortex
might represent WM information that will be used to
guide behavior).

However, these subfields can also be disjointed within
one process or can interact with the subfields of another
process. For example, RL brain and WM brain can both
recruit the same cortico-basal ganglial loop in the brain,
suggesting there is less of a difference between “RL brain”
and “WM brain” (expanded in “‘RL and WM’ brain”). Addi-
tionally, RL can help explain WM brain characteristics and
how WM can selectively prioritize more behaviorally rele-
vant information (expanded in “RL — WM”), and cognitive
and neural WM processes can help describe RL behavior
(expanded in “WM — RL”). These interactions across pro-
cesses are important for understanding each process
alone as well as behavior and the brain as a whole.

“RL and WM” Brain

RL and WM are often studied in isolation and are often
assumed to rely on predominantly different brain areas
at a first approximation. However, a closer examination
shows that these processes are neurally and behaviorally
tightly intertwined (Figure 1C). Frontal cortex (the “WM
brain” area) and basal ganglia (the “RL brain” area) are con-
nected to one another through multiple parallel loops
(Haber, 2011; Alexander, DeLong, & Strick, 1986). In addi-
tion to the frontal cortex and thalamus directly projecting
onto one another, many parts of the cerebral cortex pro-
ject onto the striatum, which then projects to the globus
pallidus or substantia nigra pars reticulata, then to the thal-
amus, and back to the frontal cortex. These cortico-basal
ganglia networks, traditionally studied in the motor con-
trol literature, have been demonstrated to be involved in
both RL and WM tasks.

pFC has been implicated in many goal-directed RL
tasks (Zhao, Zeng, Wang, Bai, & Xu, 2018; Doll, Bath,
Daw, & Frank, 2016; Daw, Gershman, Seymour, Dayan,
& Dolan, 2011; Frank, Moustafa, Haughey, Curran, &
Hutchison, 2007; Daw, Niv, & Dayan, 2005), and activity
in it has been shown to reflect RPE (Javadi, Schmidt, &
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Smolka, 2014). Additionally, levels of dopamine in pFC
relate to WM performance (e.g., Bayram et al., 2021; Fang,
Tan, Tu, Liu, & Yu, 2019; Fallon et al., 2015). Damage to the
basal ganglia can produce similar cognitive impairments as
damage to the frontal cortex (e.g., Middleton & Strick,
2000; Brown, Schneider, & Lidsky, 1997; Brown &
Marsden, 1990). People with greater WM capacity/more
WM resources are associated with better performance
on serial RT tasks (de Kleijn, Kachergis, & Hommel,
2018), lower stress-induced detriments in instrumental
behavioral tasks (Quaedflieg, Stoffregen, Sebalo, &
Smeets, 2019), learning acquisition (Segers et al., 2018),
and lower biases in learning (Sidarta, van Vugt, & Ostry,
2018). Age-related RL decline may be due to not only
decreased RPE signalizing but also WM decline (van de
Vijver & Ligneul, 2019).

The above only provides weak evidence in support of a
possible overlap in WM and RL processes. Indeed, repre-
sentations of information are distributed across the brain,
and we often discuss brain specification for convenience,
not because we believe one area to be necessary and suf-
ficient for a type of task. Thus, the existence of overlapping
neural and behavioral correlates of RL and WM is unsur-
prising and not a strong indicator of their interplay. In
the remainder of this section, we provide more compel-
ling and direct evidence of their interplay. Some success-
ful, biologically realistic models of cortico-basal ganglial
loops are able to account for WM prioritization and WM
gating, where information is selectively allowed or “gated”
into WM (Chatham & Badre, 2015; Chatham, Frank, &
Badre, 2014; Hazy, Frank, & O’Reilly, 2007; O’Reilly &
Frank, 2006; expanded in “RL — WM”). Depending on
context, WM can contribute or interfere with RL processes
in learning tasks (expanded in “WM — RL”).

RL — WM

WM is the active maintenance of information in mind for
later use. For example, when we are deciding what to wear
in the morning, we may check our weather app, look out
of the window to see the current weather, and remember
the past days’ weather (illustrated in Figure 2). When
going to our closet to change, we must maintain these dif-
ferent sources of information in WM, weighting them
based on their reliability for predicting today’s weather.
On one day, we may trust the current weather outside
the most, dress inappropriately, and learn to rely on the
weather app more in the future. In the future, we have
learned to selectively maintain information from the
weather app when getting dressed. How is information
maintained in the brain over a WM delay? How does the
brain learn what information is important to remember?
Here, we show that RL processes can contribute some
answers to those questions. We will broadly discuss two
families of models, the first concerning how information
is maintained by the brain over a WM delay (which we
will call “storage models”) and the second about how
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weatherapp current weather past weather

Blarb has to decide how to dress appropriately
based on different weather information.

Blarb believes the current weather to be the most
informative and maintains this information in
WM when getting dressed.

Blarb dressed incorrectly for the weather and must
iteratively update the importance of different
weather information based on this feedback.

weatherapp  current weather  past weather

On a later date, Blarb must again decide how
to dress for the weather.

Blarb has learned to prioritize information from
the weather app more than other information
and maintains it in WM when dressing.

—
Blarb has learned how to prioritize weather
information to maximize their comfort!

Figure 2. An illustrative example of how the RL process can be useful when learning what information to maintain in WM. When looking through our
closet, we must maintain information relevant to today’s weather in WM. RL provides an explanation of how we learn iteratively over time what

information is relevant to maintain in WM for later decisions.

information is selectively maintained for goal-relevant
behavior (which we will call “action models™).

Storage Models

In storage tasks, participants remember some number of
stimuli over a delay and then make a simple decision based
on it. For example, participants may view a cluster of mov-
ing dots, maintain the dots’ direction of motion over a
delay, see another cluster of dots, and make a decision
whether the motion is the same as before the delay.

RL algorithms for WM brain. RL models of WM storage
tasks are mainly concerned with how neural signatures of
WM may be reproduced. Zipser (1991) demonstrated that
arecurrent learning-based neural network was able to cap-
ture the canonical elevated neural activity during the WM
delay period, although using a biologically implausible
backpropagation-through-time algorithm.

RL brain for WM bebavior. If RL is involved in learning
to use WM, can we see evidence of a role of dopamine in

WM? Although dopamine does not exclusively represent
RL in the brain (Lerner, Holloway, & Seiler, 2021), it is
strongly associated with RL processes and is thus a
reasonable heuristic for RL in the brain. The effects of
dopamine levels on performance in WM tasks, though
complex, are well characterized. For example, the role
of dopamine in WM depends on task context (Furman
et al., 2020), such as whether the task is spatial in nature
(Gruszka, Bor, Barker, Necka, & Owen, 2016; Luciana &
Collins, 1997). It is debated whether it affects specifically
interference/WM gating (Fallon, Mattiesing, Muhammed,
Manohar, & Husain, 2017; Chatham & Badre, 2015;
Chatham et al., 2014; Fallon & Cools, 2014; Hazy et al.,
2007; O’Reilly & Frank, 20006) or the precision with which
one remembers items (Fallon, Zokaei, Norbury, Manohar,
& Husain, 2017; Luciana, Depue, Arbisi, & Leon, 1992).
These differences could potentially be teased apart based
on which dopaminergic system is being affected (striatal
vs. frontal, antagonist vs. agonist), the participant popula-
tion (or more specifically, the baseline dopamine levels),
and task design (some effects reviewed in Cools &
D’Esposito, 2011).
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Action Models

Although storage models solve the simplest types of WM
problems, where one or two stimuli need to be maintained
across a WM delay, action models consider more realistic
behavioral contexts, in which people are constantly pre-
sented with irrelevant information and WM must selec-
tively process and store information. How does one learn
what information is important to store in WM? In our real-
life example (Figure 2), how does one learn to selectively
maintain information from the weather app when getting
dressed?

This WM gating process, the ability to selectively main-
tain a subset of incoming information, can be studied
experimentally through dynamic choice tasks, such as
the “1-2-AX task” (Frank, Loughry, & O’Reilly, 2001;
Figure 1D). In a simpler version of this task, the AX task,
participants view a series of numbers and letters presented
in time sequentially and are instructed to respond with
one key anytime A is directly followed by X or when B is
directly followed by Y. In the sequence 1,Y, A, X, 2, A, X, B,
Y, the participant should respond on the fourth, seventh,
and last trial. In the 1-2-AX task, there is an additional level
of complexity, such that AX sequences should only be
responded to when the most recent number was a 1 and
BY sequences should only be responded to when the most
recent number was a 2. In the above sequence, the partic-
ipant should respond on only the fourth and last trial.

This task has several, nontrivial WM demands to optimize
behavior. The participant must simultaneously evaluate
incoming information (on a trial-to-trial level), selectively
maintain information (e.g., the most recent context 1, then
As and Xs), and rapidly update goals (e.g., a 2 is presented,
then Bs and Ys must be maintained selectively). People are
able to do this successfully, but how does WM learn what
information to remember and what not to remember?
“Who” decides what information is selectively gated into
WM? RL provides an explanation of how WM learns what
information is important and thus when to gate.

RL algorithm and brain for WM brain and bebavior.
Two examples of learning models of WM that include
the ability for a WM process to maintain and update mul-
tiple items independently are the LSTM (Hochreiter &
Schmidhuber, 1997) and pFC-basal ganglia working mem-
ory (PBWM; Hazy et al., 2007; O’Reilly & Frank, 20006)
models. LSTM models were a computational innovation
for neural network models. In addition to storing informa-
tion in learned weights between neuron units, they also
keep past information integrated into the network activity
by feeding back past activity as an input to the current activ-
ity of neuron units. Their architecture utilized “memory
blocks” with input, output, and forget gates (illustrated in
Figure 1C) that allowed the network to independently and
selectively maintain a number of stimuli and maintain this
information for much longer time periods than standard
RNNs were able to do. The PBWM model was inspired by

556 Journal of Cognitive Neuroscience

the connections between pFC and basal ganglia and offered
a more biologically realistic model of how goal-relevant WM
maintenance is learned. In this model, the basal ganglia
learns through RL what is task relevant and sends a teaching
signal to pFC, which gates information in and out of mem-
ory. This model provided a critical extension from previous
models (which include teaching signals from the basal gan-
glia to the pFC; Braver & Cohen, 2000; Hochreiter &
Schmidhuber, 1997) by articulating how the basal ganglia
“knows” what is task relevant and has been empirically sup-
ported (Rac-Lubashevsky & Frank, 2021). Both of these
models are able to solve POMDPs, such as 1-2-AX by selec-
tively storing the required information in memory.

These models have served as an inspiration for later
models that either trade complexity for interpretability
or adjust internal representations for improved task gener-
alizability. For example, Todd, Niv, and Cohen (2009)
replaced the biologically realistic neural network combina-
tion of RL, supervised learning, and unsupervised learning
methods in PBWM with a simpler, tabular version of an RL
algorithm, demonstrating the core functionality of the gat-
ing component within PBWM, without the complexity
(but losing most of the biological realism). Another nota-
ble model, Working Memory Through Attentional Tagging
(WorkMATe; Kruijne, Bohte, Roelfsema, & Olivers, 2021),
combines the simple, biologically plausible learning
algorithm as the AuGMEnT model (Rombouts, Bohte, &
Roelfsema, 2015; Rombouts, Roelfsema, & Bohte, 2012),
the gating structures in LSTM and PBWM models, and
abstract stimulus representations. Although WorkMATe
takes longer to train initially on tasks compared with other
models, it is ultimately able to complete a broader range of
tasks (including the 1-2-AX task) with more flexibility; fur-
thermore, it generalizes better across previously unob-
served stimuli and task modifications compared with Todd
et al.’s altered PBWM model.

Although these studies capture certain aspects of RLand
WM, in a biologically realistic way, they fail to capture all
aspects. First, they fail to capture RL in a realistic way; these
efforts typically use RL over very long timescales to train a
network to do WM tasks and in that sense do not relate to
human RL (which is on a shorter timescale). Similarly,
these models do not incorporate the limited capacity of
WM. How would these biologically realistic models behave
in scenarios when the amount of information exceeds the
storage capacity of the WM process? (Todd et al.’s model
does test this, and the model fails in a human-like way in an
artificial grammar task.) Studying experimental scenarios
in which information exceeds WM capacity allows us to
truly study how WM can dynamically change according
to behavioral demands. In humans, individual items main-
tained in WM are not maintained in an all-or-none fashion,
but with variable precision (Fougnie et al., 2012; van den
Berg etal., 2012), and this precision tracks with behavioral
relevance (Yoo, Klyszejko, Curtis, & Ma, 2018; Emrich,
Lockhart, & Al-Aidroos, 2017; Bays, 2014; Klyszejko, Rahmati,
& Curtis, 2014). With these imperfectly remembered
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representations, additional questions arise like whether
or not agents know how imprecise their memory is (in
humans, they seem to, since confidence scales with accu-
racy; Li, Sprague, Yoo, Ma, & Curtis, 2021; Honig, Ma, &
Fougnie, 2020; Yoo et al., 2018; Samaha & Postle, 2017,
Suchow, Fougnie, & Alvarez, 2017; Vandenbroucke et al.,
2014; Fougnie et al., 2012; Rademaker, Tredway, & Tong,
2012), and if so, they can use that knowledge for
performance-relevant behavior (humans and monkeys seem
to be able to; Yoo, Acerbi, & Ma, 2021; Honig et al., 2020; Yoo
et al., 2018; Devkar, Wright, & Ma, 2017). Neural networks
that can represent uncertainty (Swan & Wyble, 2014) or
probability distributions over representations (Soltani &
Wang, 2010) seem like promising routes to investigate these
questions and can help us further understand how behav-
ioral relevance, interference, and decay all contribute to
our WM representations.

WM — RL

As discussed earlier, RL can refer to a set of behaviors, a
family of computational problems and algorithms, ora net-
work in the brain. In this section, we discuss how WM pro-
cesses are essential to explaining RL behavior. We focus on
two situations: those where WM supports RL and those
where WM offers a “redundant” learning mechanism.

WM Provides Inputs to RL Processes

One example of the necessity of WM in some behavioral RL
paradigms are scenarios in which some source of STM is
required to represent all information needed to make
good decisions (POMDPs). For example, in an experiment
where the correct response depends on the current and
past trial’s stimuli (such as 1-2-AX or the task in da Silva,
Yao, & Hare, 2017), participants must maintain the previ-
ous trials’ stimuli in WM to learn the task correctly.

In various situations, WM may play a supporting role to
RL’s computations, such as providing input to RL compu-
tations by providing other information. In POMDPs, WM
maintains stimulus information to correctly infer the

current state. WM, however, may hold more than just stim-
ulus information. For example, WM may maintain reward
information itself (deviating from traditional theories in
which reward information is only stored by RL processes):
In the pFC-basal ganglia model developed by Zhao et al.
(2018), dopaminergic signals update both basal ganglia
and pFC, where reward information is encoded and
updated in WM. Similarly, recent imaging work shows that
WM helps transform novel goal stimuli into a signal the
brain interprets as rewards for learning (McDougle,
Ballard, Baribault, Bishop, & Collins, 2021). WM may assist
RL by representing more abstract task-relevant informa-
tion to allow for generalization across tasks (Williams &
Phillips, 2020) or by effectively lowering the set of states
or actions RL operates over by filtering out irrelevant state
spaces (Rmus, McDougle, & Collins, 2021). It would be an
interesting direction of future study to investigate whether
WM filters state spaces through attentional processes (e.g.,
Radulescu, Niv, & Ballard, 2019; Niv, 2019) and/or indi-
rectly through its storage constraints.

WM as a Parallel Learning Process

Although WM supports RL, in particular in environments
where a memory of past information is necessary, it may
also be useful in cases where the state is sufficient to deter-
mine the correct choice (MDPs). For example, learning
how to make dumplings (raviolis, samosas, and/or other
dishes that involve surrounding ingredients with a rela-
tively small amount of dough) involves learning the proper
amount of stuffing to use (illustrated in Figure 3). If using
purely an RL process to learn the optimal amount of stuff-
ing, you may try some amount, realize you put too much,
experience a negative RPE, and iteratively use less stuffing
until you find the optimal amount; you will eventually
learn the correct amount of stuffing, but it may be a slow
and iterative experience. With WM, you could simply
remember how much stuffing you used in the last dump-
ling, remove the appropriate amount, and immediately
learn the correct amount. Thus, although WM is not nec-
essary to complete this task, it allows you to learn much
more efficiently and quickly.

WM, t+1

RL, t+n

THCRE 1S TOO Much

UNGg!
M R EING DUMPLINGS! STUFFR!

VSE LESS STUFF

Y AT TS crosing',

YAy

Figure 3. An illustrative example of how WM can be useful when learning. When learning how to make dumplings, one must learn the optimal

amount of stuffing to put into the wrapper. If they put too much stuffing in for dumpling ¢, they can iteratively learn the correct amount of stuffing
with an RL process (learning the correct amount in 72 > 1 trials) or immediately learn the correct amount using WM (on trial # + 1). While using WM
to maintain and manipulate information to calculate the correct amount of stuffing may be more effortful at first (from the second to the third panel),

it becomes effortless as the process is repeated.
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This type of contribution of WM to RL behavior has been
directly demonstrated in the stimulus association task
developed by Collins and Frank (2012). Within one block
participants learned, through trial and error, the correct
response to two to six different visual stimuli. Results
showed that there was a classic WM set size effect on
learning performance: Participants were slower to learn
on blocks where they had to learn the correct response
of more stimuli in parallel. With two stimuli, they appeared
to make perfect use of memory by showing near optimal
learning; with more stimuli, learning became increasingly
more incremental. Although purely RL models could not
account for the results, even when improved with decay
or interference mechanisms, they were well captured by
a computational model where an RL and a capacity-limited
WM component both contributed to choices, trading off
depending on WM load. These results have been well
replicated in the literature (McDougle & Collins, 2020;
Jafarpour, Buffalo, Knight, & Collins, 2019; Collins, 2018;
Collins, Albrecht, Waltz, Gold, & Frank, 2017; Viejo,
Khamassi, Brovelli, & Girard, 2015; Collins, Brown, Gold,
Waltz, & Frank, 2014). In the RLWM model, the classic RL
component learns iteratively the correct response associ-
ated with each stimulus from RPEs. The WM component is
implemented through an immediate-learning but decay-
ing and capacity-limited process. This model has been
modified by others. Viejo et al. (2015) modeled WM with
aBayesian WM framework, such that previous trials’ states,
actions, and rewards are sampled to lower entropy until to
some threshold (Viejo et al., 2015). This model as well as
an extension of the RLWM model are able to capture RTs
across a range of phenomena (McDougle & Collins, 2020).
In these models, WM and RL are essentially redundant;
they both learn to represent state—action pairs (and suc-
ceed to varying degrees in different contexts); they are
only identifiable in that they follow different dynamics
(WM learns fast and forgets fast; RL learns slower but
retains better).

Such RL + WM models have mostly treated them as
independent processes that trade-off for choice. However,
there is increasing evidence that this is an oversimplifica-
tion, as the two processes appear to feed each other infor-
mation. Although RL and WM appear to cooperate during
learning, this can lead to surprising competitive interfer-
ence in the long-term retention of stimulus—response asso-
ciations (Collins, Albrecht, et al., 2017; Collins, Ciullo,
Frank, & Badre, 2017). Responses that were learned on
blocks with lower set sizes, where WM would be sufficiently
able to maintain all the necessary information, resulted in a
higher detriment in performance during a later test phase
compared with responses that were learned on blocks with
higher set sizes, blocks in which WM alone would not have
maintained all learned information (Collins, 2018). This
“tortoise-and-hare” effect could also be seen in experimen-
tal paradigms manipulating study intervals (temporally
massed items vs. spaced led to better relative performance
during learning phase, but worse during later testing;
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Wimmer & Poldrack, 2020) and training context (blocked
context vs. interleaved led to better relative performance
during learning phase, but worse during later testing;
Shea & Morgan, 1979). This finding could be explained by
an interaction of WM on the brain’s RL mechanism, whereby
WM fed reward expectations to the RL system, thus
weakening the RPE and subsequent learning; an EEG study
supported this theory by showing weaker RL encoding
neural signals in lower set sizes (Collins & Frank, 2018).

THE IMPORTANCE OF INVESTIGATING
INTERPROCESS DYNAMICS

Considering how RL processes could affect participant per-
formance in WM tasks is important when designing WM
experiments and interpreting their results. For example,
some WM studies investigate whether people “naturally”
behave in a way that is consistent with an optimal Bayesian
observer, showing that they already know how to use
information (e.g., memory uncertainty; Yoo et al., 2021;
Keshvari, van den Berg, & Ma, 2012) to maximize perfor-
mance and consequently do not have to learn it within
the task. Because the RL literature has established that
people can learn to behave optimally in relatively complex
arbitrary tasks just from reinforcing feedback, it is important
to either (1) withhold trial-to-trial feedback from the partic-
ipants in these WM studies or (2) check for learning effects
and interpret results accordingly (as reward is often used to
motivate performance). Papers that implicitly argue that
people behave optimally “naturally” but do not withhold
correctness feedback (e.g., Honig et al., 2020; Yoo et al.,
2018; Devkar et al., 2017) and could be misleading; people
may be learning optimal behavior over the course of the
experiment with an RL process.

Considering how WM contributes to behavior in RL
tasks is equally important for making justified theoretical
conclusions. For example, people with schizophrenia
demonstrate deficits across a wide range of learning
(Kim, Lee, Shin, & Chey, 2007; Paulus, Frank, Brown,
& Braff, 2003) and RL tasks (Deserno, Boehme, Heinz, &
Schlagenhauf, 2013; Gold, Waltz, Prentice, Morris, &
Heerey, 2008), such as the Iowa Gambling Task (Shurman,
Horan, & Nuechterlein, 2005), probabilistic reinforce-
ment, and reversal learning (Schlagenhauf et al., 2014;
Waltz, Frank, Wiecki, & Gold, 2011; Waltz, Frank,
Robinson, & Gold, 2007; Waltz & Gold, 2007), but not in
all learning tasks (Deserno et al., 2013). Deficits in WM
tasks (Barch & Ceaser, 2012), such as the Wisconsin Card
Sorting Test (Prentice, Gold, & Buchanan, 2008) and
change detection (Gold, Wilk, McMahon, Buchanan, &
Luck, 2003), are observed even more consistently. Study-
ing either process in isolation may imply that schizophre-
nia affects both RL and WM processes. However, Collins
et al. (2014) demonstrated that behavioral deficits in RL
tasks in medicated people with schizophrenia could be
entirely accounted for by WM’s contribution to RL tasks.
Indeed, once factoring out WM contributions, they
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observed no learning deficit (Collins, Albrecht, et al.,
2017). This result could explain why some but not other
RL tasks lead to impairments, as they might have recruited
WM differently. RLWM models can also account for age-
related differences in behavior; the tortoise-and-hare
effect changes with age because of WM decline (van de
Vijver & Ligneul, 2019; van de Vijver, Ridderinkhof, & de
Wit, 2015). These examples illustrate the risk of misattri-
buting individual differences to the RL process when not
accounting for potential other processes, such as WM.

There may be some hesitation to accept that there are
two dissociable processes that are redundant (albeit com-
putationally distinct). However, this redundancy is not
unusual in other systems (e.g., multiple retinotopic maps
spanning low-level visual to prefrontal brain areas) or even
within RL. For example, there are separate dopaminergic
systems in pFC and striatum and three different dopamine
genes (two indexing striatal function and one pFC func-
tion) have been behaviorally dissociated, such that slower
reinforcement and avoidance behavior are related to the
striatal genes and a quicker recency related behavior asso-
ciated with prefrontal gene (Frank et al., 2007). More
recently, the RL field has widely focused on differently
defined RL computations: a model-free RL, which simply
integrates value from past RPEs, and a model-based RL,
which uses more knowledge about the environment to
make more forward-looking decisions (Daw & O’Doherty,
2014; Dolan & Dayan, 2013; Daw et al., 2005, 2011). This
dissociation has also been mapped onto individual differ-
ences in dopaminergic genetic polymorphisms, where
model-free RL related more to striatal and model-based
RL related more to prefrontal function (Doll et al., 2016).
Although these dichotomies all have limitations (Collins &
Cockburn, 2020), they illustrate the prevalence of partially
redundant systems. Exactly identifying these processes
(e.g., how WM relates to model-based RL) is an important
question for future research.

Considering the trade-off between RL and WM pro-
cesses in different environments may help us understand
other behavior. For example, RL learning rates, as inferred
from participants’ behavior, increase in environments with
more volatile reward structures (Iglesias et al., 2013;
Behrens, Woolrich, Walton, & Rushworth, 2007). This
behavior has been justified under a Bayesian framework,
such that learning rates should increase with increasing
uncertainty, which should increase with increasing
environmental volatility (Piray & Daw, 2020; Mathys,
Daunizeau, Friston, & Stephan, 2011; Courville, Daw, &
Touretzky, 2006). A computational model that only con-
siders a single RL process may find that the learning rate
changes across contexts, but an RL + WM model may pro-
vide an alternative explanation for these results. Volatile
environments may not result in an increase in the learning
rate of the RL process but lower the contribution of the
temporally slow RL process compared with the quick
learning WM process. This interpretation is consistent
with RL theories that suggest that a “model-based” process

would be used more than a “model-free” process in
higher-uncertainty situations (e.g., Pezzulo, Rigoli, &
Chersi, 2013; Daw et al., 2005).

INTERACTIONS WITH OTHER PROCESSES

Although the purpose of this review is to specifically dis-
cuss the relationship between RL and WM processes and
the importance of studying them together, we would be
remiss if we did not spend any time also discussing how
RL and WM are affected by other processes like attention,
episodic memory, and semantic memory (although we do
not discuss it here, we acknowledge that other processes
are themselves influenced by WM and RL; attention:
Wilson & Niv, 2012; Olivers, Meijer, & Theeuwes, 2006;
Soto, Heinke, Humphreys, & Blanco, 2005; Downing,
2000; long-term memory: Shohamy & Adcock, 2010;
Ranganath, Cohen, & Brozinsky, 2005; motor action
choice: Codol, Holland, & Galea, 2018; Holland, Codol,
& Galea, 2018).

Attention has an immense effect on WM and RL, allow-
ing us to filter information before storing it in WM (Souza,
Thalmann, & Oberauer, 2018) or learning from it (Farashahi,
Rowe, Aslami, Lee, & Soltani, 2017; Leong, Radulescu,
Daniel, DeWoskin, & Niv, 2017; Niv et al., 2015; Chun,
Golomb, & Turk-Browne, 2011). Brain areas associated
with attentional control are similar to that of WM and RL
(Leber, Turk-Browne, & Chun, 2008; Braver, Reynolds, &
Donaldson, 2003; Dove, Pollmann, Schubert, Wiggins, &
von Cramon, 2000). Some computational models of RL
and WM explicitly include attention into the model. For
example, in a modification of the ACT-R model (a cogni-
tive architecture that can be used to model human behav-
ior through various cognitive processes; Anderson, 2007),
attentional allocation is learned through RL, which informs
what information should be held in WM (Stocco, 2017).
This model is inspired by the cortico-basal ganglial
loops, finding a relationship between behavioral measures
of the indirect pathway in the basal ganglia and attention.
Womelsdorf, Watson, and Tiesinga (2020) created a model
with RL and WM components in addition to a selective
suppression of nonchosen feature values and meta-
learning mechanism adjusting exploration rates based
on memory trace of recent errors. These add-ons are
important to capture data in high-attentional load experi-
mental conditions.

In addition to attention, other longer-term forms of
memory like episodic and semantic memory affect WM
and RL tasks. For example, episodic memories can disrupt
WM representations (Hoskin, Bornstein, Norman, &
Cohen, 2019). Recent trial information or goals (Destefano,
Vul, & Brady, 2020; Kong, Meehan, & Fougnie, 2020) and
global prior information (Destefano et al., 2020; Honig
et al., 2020) also affect behavior on WM tasks. Episodic
memory of previous choices on stimulus affects current
choice in a learning task (Bornstein & Norman, 2017).
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Counterfactual learning of items chosen against one
another is modulated by the strength of the episodic
memory for them (Biderman & Shohamy, 2021). In some
people, memory strength and RL learning rate seem to
trade-off, depending on experimental learning context
(Yifrah, Ramaty, Morris, & Mendelsohn, 2021).

This relationship between long-term memory and RL is
not particularly surprising, considering the importance a
long-term storage would have on more realistic environ-
ments, which have high-dimensional, continuous, and
partially observable state spaces. In these scenarios, some
other form of knowledge is required to approximate value
functions over states that have not been observed before
and over time lengths between action and rewards that are
not realistic with an RL process alone. There has been an
increasing effort to incorporate methods like “episodic
learning” (RL augmented with episodic memory; reviewed
in Gershman & Daw, 2017) and “experience replay”
(computationally inspired from hippocampal replay,
e.g., Foster & Wilson, 2006, using long-term memories
of experiences to augment learning; e.g., Mnih et al,,
2015; Lin, 1993) to achieve learning in more complex, real-
istic scenarios (e.g., Liu, Mattar, Behrens, Daw, & Dolan,
2021).

Computational models, such as the one developed by
Balkenius, Tjgstheim, Johansson, Wallin, and Girdenfors
(2020), investigate how attention, semantic memory,
and episodic memory jointly affect decisions in addition
to RL and WM. An example they provide is deciding
between two pasta brands at the grocery store; there are
a number of current features you can use to decide (price,
packaging, ingredients), but information not currently
observable (e.g., your memory of using a similar product,
your knowledge that one is associated with a fancy restau-
rant) also affects your decision when choosing. This model
seems to be fairly flexible and can account for a variety of
choices and RTs; empirical studies are necessary to inves-
tigate the ability of this model to account for real data. The
importance of many interacting processes is represented
in other models: Attentional allocation informs which
long-term memory representations should enter WM
(Stocco, 2017); attention provides a solution to long-term
credit assignment problems (Kruijne et al., 2021); and
perception, WM, and long-term memory contribute to
rational decision-making (Momennejad et al., 2021).
Additionally, models like Todd et al.’s are considered
WM like but are arguably closer to a form of long-term
memory (Todd et al., 2009). Clearly, both long-term
memory and WM are important in ecological decision-
making tasks, and stating the presence of such processes
is important.

Just like how considering RL and WM in a vacuum
neglects their complex interplay, considering these two
processes alone also ignores their relationships with other
processes. We believe investigating interactions between
different complex processes is a difficult but necessary
challenge to understand the complexity of human behavior.
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COMPUTATIONAL INSIGHTS

RL has long bridged cognition and computation, repre-
senting important parts of both modern Al research and
psychology of learning and decision-making and showing
how the two fields can be profitable sources of inspiration to
each other. By contrast, WM is acknowledged as an impor-
tant aspect of human intelligence (Harrison, Shipstead, &
Engle, 2015; Bull, Espy, & Wiebe, 2008; Conway, Kane, &
Engle, 2003; Siif3, Oberauer, Wittmann, Wilhelm, & Schulze,
2002; Daneman & Carpenter, 1980) but is a much less stud-
ied part of modern Al. Here, we explore Al’s efforts to incor-
porate WM-like processes into learning agents and discuss
whether any computational insights could be gained by
more cross-talk between cognition and Al in this domain.

Augmenting artificial agents with memory has long been
recognized as necessary in some environments (Peshkin,
Meuleau, & Kaelbling, 2001). In non-Markovian environ-
ments (e.g., POMDPs), the observable state is insufficient
to determine an agent’s policy, and keeping memory of
past information allows the agent to create a new, more
complex “latent state” that fully characterizes what choice
should be taken. Originally, this form of memory has been
set up as a lookup table of discrete events (Todd et al.,
2009; Peshkin et al., 2001), being able to store an arbitrary
amount of information over arbitrary periods of time and,
for this reason, is often considered more related to epi-
sodic memory. Recent research in deep learning has suc-
cessfully incorporated such additional memory processing
to deep RL agents (Botvinick et al., 2019; Nagabandi et al.,
2019; Duan et al., 2017; Graves, Wayne, & Danihelka, 2014),
further augmenting their capabilities and making them
more flexible, for example, enabling few-shot learning and
imitation learning.

However, such memory mechanisms are not WM like in
multiple ways—they are potentially illimited and rely on
weight-like storage, rather than activity-based maintenance
of information. There has been a recent push toward devel-
oping algorithms that have a human WM-like flexibility/
generalizability across tasks, without focusing on biologi-
cal realism. A promising avenue, called meta-RL or RL?
(Botvinick et al., 2019; Wang et al., 2018; Duan et al.,
2016), takes inspiration from meta-learning and uses slow
RL algorithms to train deep neural networks with recur-
rent units to store information in such a way that the net-
work’s behavior (once its weights are fully trained and
weights are frozen) mimics RL behavior at a fast, animal-
like learning scale (i.e., uses recent reward information
to make subsequent choices). This practice allows for neu-
ral networks to learn not only how to behave in one task
(e.g., how to get the highest reward in a two-arm bandit
task) but also how to generalize its learning across similar
tasks (e.g., all bandit tasks). These networks, however,
also suffer from an initial training that is very slow and bio-
logically implausible, which diminishes the viability of
these models to explain human or animal learning. How-
ever, earlier efforts in simpler architectures have faster RL
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training times (Stocco, 2017; Lloyd, Becker, Jones, &
Bogacz, 2012) and show the potential fruitfulness of such
approaches as models of human and animal learning in a
more interpretable and biologically realistic way.

WM-like mechanisms in Al and theoretical neuroscience
still diverge from what we know about how WM is used
and implemented in humans in one very important way:
Biological WM is fundamentally resource limited. When
optimizing just for precision of WM representations, hav-
ing a limited WM capacity may seem like a bug. However, a
capacity-limited WM is a feature when considering the
metabolic costs for a biological agent (Musslick & Cohen,
2021; van den Berg & Ma, 2018). It can also be considered
a feature because it forces humans’ cognition to find the
best compressed representations of their environment.
For example, higher-order statistics (Brady & Tenenbaum,
2013; Brady & Alvarez, 2011; Brady, Konkle, & Alvarez,
2009) and similarities across stimuli (Nassar et al., 2018)
are used to compress WM representations such that we
(introduce some biases in representations but ultimately)
can remember “more.” A capacity-limited WM allows for
local, dynamic, efficient computation, with minimal prac-
tical effects on behavioral performance. Similarly, training
artificial agents can come at a considerable environmental,
computational, and financial cost (Hao, 2019; Strubell,
Ganesh, & McCallum, 2019), and it may be beneficial to
implement a limited-capacity WM process that can flexibly
and dynamically allocate resources where behaviorally
relevant.

In summary, although the Al field has usefully incorpo-
rated memory processes that share features with biological
WM, none really captures the core of WM. Furthermore,
those models that incorporate both RL and memory usually
do not use RL at a timescale that can be considered realistic
in comparison to either RL brain or RLbehavior. We hypoth-
esize that Al might benefit from considering a human-like
working mechanism, augmenting other learning and
memory processes, to capture more human-like flexible
learning and decision-making in dynamic environments.

CONCLUSION

We aimed to review critical literature demonstrating the
importance and interconnectedness of the RL and WM
processes. The goal of this review is not to diminish the
extremely important work done by those in both fields
of RL and WM but emphasize the importance of collaborat-
ing and considering how different processes affect one
another. We believe it is of particular importance for the
RL field to consider WM in their experiments, because
even the simplest of learning tasks, usually thought to tar-
get only RL, have been shown to rely on WM processes
(Rmus et al., 2021; McDougle & Collins, 2020; Collins &
Frank, 2012; Frank et al., 2007). The continued study of
RL and WM processes together will help us better under-
stand the dynamics between them, the role of either in iso-
lation, and the behavior and the brain as a whole.
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Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience (JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115, and
W/W = .159, the comparable proportions for the articles
that these authorship teams cited were M/M = .549,
WM = .257, M/W = .109, and W/W = .085 (Postle and
Fulvio, JoCN, 34:1, pp. 1-3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly
when selecting which articles to cite and gives them
the opportunity to report their article’s gender citation
balance. The authors of this article report its proportions
of citations by gender category to be as follows: M/M =
.632; W/M = .229; M/W = .042; W/W = .097.
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