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Summary

Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much
attention recently. The coefficient has the unusual appeal that it not only estimates a population
quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random
variables is independent, but also is asymptotically normal under independence. This paper com-
pares Chatterjee’s new correlation coefficient with three established rank correlations that also
facilitate consistent tests of independence, namely Hoeffding’s D, Blum–Kiefer–Rosenblatt’s R,
and Bergsma–Dassios–Yanagimoto’s τ ∗. We compare the computational efficiency of these rank
correlation coefficients in light of recent advances, and investigate their power against local rota-
tion and mixture alternatives. Our main results show that Chatterjee’s coefficient is unfortunately
rate-suboptimal compared to D, R and τ ∗. The situation is more subtle for a related earlier esti-
mator of Dette et al. (2013). These results favour D, R and τ ∗ over Chatterjee’s new correlation
coefficient for the purpose of testing independence.

Some key words: Dependence measure; Independence test; Le Cam’s third lemma; Rank correlation; Rate-optimality.

1. Introduction

Let X (1) and X (2) be two real-valued random variables defined on a common probability space.
We are concerned with testing the null hypothesis

H0 : X (1) and X (2) are independent,

based on a sample from the joint distribution of (X (1), X (2)). This classical problem has seen
revived interest in recent years as independence tests constitute a key component in modern
statistical methodology such as methods for causal discovery (e.g. Maathuis et al., 2019, § 18.6.3).
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318 H. Shi, M. Drton AND F. Han

The problem of testing independence has been examined from a number of different perspec-
tives; see, for example, the work of Kim et al. (2020), Albert et al. (2021) and Berrett et al.
(2021) and and the references therein. In this paper, our focus will be on testing H0 via rank
correlations that measure ordinal association. Rank correlations are particularly attractive for
continuous distributions for which they are distribution-free under H0. Early proposals of rank
correlations include the widely used ρ of Spearman (1904) and τ of Kendall (1938), as well as the
footrule of Spearman (1906), the γ of Gini (1914) and the β of Blomqvist (1950). Unfortunately,
all five of these rank correlations fail to give a consistent test of independence. Indeed, each cor-
relation coefficient consistently estimates a population correlation measure that takes the same
value under H0 and certain fixed alternatives to H0. This behaviour leads to trivial power at such
alternatives.

In order to arrive at a consistent test of independence, Hoeffding (1948) proposed a corre-
lation measure that, for absolutely continuous bivariate distributions, vanishes if and only if
H0 holds. Blum et al. (1961) considered a modification that is consistent against all dependent
bivariate alternatives (cf. Hoeffding, 1940). Bergsma & Dassios (2014) proposed a new test of
independence and showed its consistency for bivariate distributions that are discrete, absolutely
continuous, or a mixture of the two types. As pointed out by Drton et al. (2020), mere continuity
of the marginal distribution functions is sufficient for consistency of their test. This follows from a
relation discovered byYanagimoto (1970), who implicitly considered the correlation of Bergsma
& Dassios (2014) when proving a conjecture of Hoeffding (1948).

All three aforementioned correlation measures admit natural efficient estimators in the form
of U-statistics that depend only on ranks. However, in each case, the U-statistic is degenerate
and has a nonnormal asymptotic distribution under H0. In light of this fact, it is interesting that
Dette et al. (2013) were able to construct a consistent correlation measure ξ which can also detect
perfect functional dependence (see also Gamboa et al., 2018); and in a recent paper that has
received much attention, Chatterjee (2021) introduced a very simple rank correlation, with no
tuning parameter involved, that surprisingly estimates ξ and has an asymptotically normal null
distribution.

In this paper we compare Chatterjee’s and Dette–Siburg–Stoimenov’s rank correlation coef-
ficients with three obvious competitors: the D of Hoeffding (1948), the R of Blum et al. (1961)
and the τ ∗ of Bergsma & Dassios (2014). Our comparison considers three criteria:

(i) Statistical consistency of the independence test. A correlation measure μ assigns to each
joint distribution of (X (1), X (2)) a real number μ(X (1), X (2)). Such a correlation measure
is consistent within a family of distributions F if for all pairs (X (1), X (2)) with joint dis-
tribution in F , μ(X (1), X (2)) = 0 if and only if X (1) is independent of X (2). Correlation
measures that are consistent within a large nonparametric family are able to detect nonlinear,
nonmonotone relationships and facilitate consistent tests of independence. If a correlation
measureμ is consistent, then the consistency of tests of independence based on an estimator
μn of μ is guaranteed by the consistency of that estimator.

(ii) Computational efficiency. Computation of ranks requires O(n log n) time. With a view
towards large-scale applications, we prioritize rank correlation coefficients that are com-
putable without much additional effort, that is, also in O(n log n) time. This is easily seen
to be the case for Chatterjee’s coefficient, but, as we shall survey in § 2, recent advances
have clarified that D, R and τ ∗ can be computed with a similar level of efficiency.

(iii) Statistical efficiency of the independence test. Our final criterion is optimal efficiency in
the statistical sense (Nikitin, 1995, § 5.4). To assess this, we use different local alternatives
inspired by the work of Konijn (1956) and Farlie (1960, 1961); the latter type of alternatives
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Chatterjee’s rank correlation 319

was further developed in Dhar et al. (2016). We then refer to an independence test as rate-
optimal or rate-suboptimal against a family of local alternatives according to whether or
not the test achieves the detection boundary within this family.

The main contribution of this paper pertains to statistical efficiency. Chatterjee’s derivation of
asymptotic normality for his rank correlation coefficient relies on a reformulation of his statistic
and the use of a type of permutation central limit theorem that was established in Chao et al.
(1993). We have found that a direct use of this technique to analyse the local power is hard.
In recent related work we have been able to overcome a similar issue in a related multivariate
setting (Deb & Sen, 2019; Shi et al., 2021) by developing a suitable Hájek representation theory
(Shi et al., 2020). Following the same philosophy here, we construct a particular form of the
projected statistic introduced in Angus (1995) to provide an alternative proof of Theorem 2.1 in
Chatterjee (2021) that gives an asymptotic representation. Integrating the representation into Le
Cam’s third lemma and employing further a version of the conditional multiplier central limit
theorem (cf. van der Vaart & Wellner, 1996, § 2.9), we can then show that the test based on
Chatterjee’s rank correlation coefficient is in fact rate-suboptimal against the two local alterna-
tive families under consideration; recall point (iii) above. Our theoretical analysis thus echos
Chatterjee’s empirical observation that his test of independence can suffer from low power;
see Remark 7 below. In contrast, the tests based on the more established coefficients D, R
and τ ∗ are all rate-optimal for all local alternative families considered. We therefore regard
the latter as being more suitable for testing independence than Chatterjee’s test. On the other
hand, the test based on Dette–Siburg–Stoimenov’s coefficient is empirically observed to have
nontrivial power against certain alternatives in finite-sample simulations. A theoretical study of
this phenomenon, however, has to be left to future work because of the technical difficulties
involved. The proofs of our theoretical results, including the details of examples, are given in
the Supplementary Material.

As we were completing this study, we became aware of independent work by Cao & Bickel
(2020), who conducted a similar local power analysis for Chatterjee’s correlation coefficient and
presented a result that is similar to our Theorem 1, claim (12). The local alternatives considered
in their paper are, however, different from ours. In addition, the two papers differ in their focus.
The work of Cao & Bickel concentrates on correlation measures that are 1 if and only if one
variable is a shape-restricted function of the other variable, whereas our interest is in comparing
consistent tests of independence.

2. Rank correlations and independence tests

2.1. The rank correlations considered and their computation

When considering correlations, we will use the term correlation measure to refer to popu-
lation quantities, which we write using Greek or Latin letters. The term correlation coeffi-
cient is reserved for sample quantities, which are written with an added subscript n. The
symbol F denotes a joint bivariate distribution function for the pair of random variables
(X (1), X (2)) under consideration, and F1 and F2 are the respective marginal distribution func-
tions. Throughout, (X (1)

1 , X (2)
1 ), . . . , (X (1)

n , X (2)
n ) is a sample consisting of n independent copies

of (X (1), X (2)).
We now introduce in precise terms the five types of rank correlation considered in this paper.

We begin by specifying the correlation measure and coefficients from Chatterjee (2021) and Dette
et al. (2013). To this end, let (X (1)

[1] , X (2)
[1] ), . . . , (X

(1)
[n] , X (2)

[n] ) be a rearrangement of the sample such
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that X (1)
[1] � · · · � X (1)

[n] , with ties, if they exist, broken at random. Define

r[i] =
n∑

j=1

I
(
X (2)

[j] � X (2)
[i]

)
, (1)

where I (·) represents the indicator function, and �[i] = ∑n
j=1 I (X (2)

[j] � X (2)
[i] ). We emphasize that

if F2 is continuous, then there are almost surely no ties among X (2)
1 , . . . , X (2)

n , in which case r[i]
is simply the rank of X (2)

[i] among X (2)
[1] , . . . , X (2)

[n] .

Definition 1. The correlation coefficient of Chatterjee (2021) is

ξn = 1 − n
∑n−1

i=1 |r[i+1] − r[i]|
2

∑n
i=1 �[i](n − �[i])

. (2)

If there are no ties among X (2)
1 , . . . , X (2)

n , then

ξn = 1 − 3
∑n−1

i=1 |r[i+1] − r[i]|
n2 − 1

.

Chatterjee (2021) proved that ξn estimates the correlation measure

ξ =
∫

var[E{I (X (2) � x) | X (1)}] dF2(x)∫
var{I (X (2) � x)} dF2(x)

.

This measure was in fact first proposed by Dette et al. (2013); cf. r(X , Y ) in their Theorem 2. We
therefore refer to ξ as Dette–Siburg–Stoimenov’s rank correlation measure.

We remark that ξ was also considered by Gamboa et al. (2018); see the Cramér–von Mises
index Sv

2,CVM before their Properties 3.2. For estimation of ξ , Dette et al. (2013) proposed the
following coefficient, denoted by r̂n, in their equation (15).

Definition 2. Let K be a symmetric and twice continuously differentiable kernel with compact
support, and let K̄(x) = ∫ x

−∞ K(t) dt. Let h1, h2 > 0 be bandwidths chosen such that they tend
to zero with nh3

1 → ∞, nh4
1 → 0, nh4

2 → 0, nh1h2 → ∞ as n → ∞. Define

ζn
(
u(1), u(2)

) = 1

nh1

n∑
i=1

K

(
u(1) − i/n

h1

)
K̄

(
u(2) − r[i]/n

h2

)

with r[i] as in (1). Then Dette–Siburg–Stoimenov’s correlation coefficient is

ξ∗
n = 6

∫ 1

0

∫ 1

0

{
ζn

(
u(1), u(2)

)}2 du(1) du(2) − 2.

Next we introduce two classical rank correlations, those of Hoeffding (1948) and Blum et al.
(1961), which both assess dependence in a very intuitive way by integrating squared deviations
between the joint distribution function and the product of the marginal distribution functions.
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Chatterjee’s rank correlation 321

Definition 3. Hoeffding’s correlation measure is defined as

D =
∫ {

F
(
x(1), x(2)

) − F1
(
x(1)

)
F2

(
x(2)

)}2
dF

(
x(1), x(2)

)
.

It is unbiasedly estimated by the correlation coefficient

Dn = 1

n(n − 1) · · · (n − 4)

×
∑

i1 |=... |=i5

1

4

[{
I
(
X (1)

i1 � X (1)
i5

) − I
(
X (1)

i2 � X (1)
i5

)}{
I
(
X (1)

i3 � X (1)
i5

) − I
(
X (1)

i4 � X (1)
i5

)}]
× [{

I
(
X (2)

i1 � X (2)
i5

) − I
(
X (2)

i2 � X (2)
i5

)}{
I
(
X (2)

i3 � X (2)
i5

) − I
(
X (2)

i4 � X (2)
i5

)}]
, (3)

which is a rank-based U-statistic of order 5.

Definition 4. Blum–Kiefer–Rosenblatt’s correlation measure is defined as

R =
∫ {

F
(
x(1), x(2)

) − F1
(
x(1)

)
F2

(
x(2)

)}2
dF1

(
x(1)

)
dF2

(
x(2)

)
.

It is unbiasedly estimated by Blum–Kiefer–Rosenblatt’s correlation coefficient

Rn = 1

n(n − 1) · · · (n − 5)

×
∑

i1 |=... |=i6

1

4

[{
I
(
X (1)

i1 � X (1)
i5

) − I
(
X (1)

i2 � X (1)
i5

)}{
I
(
X (1)

i3 � X (1)
i5

) − I
(
X (1)

i4 � X (1)
i5

)}]
× [{

I
(
X (2)

i1 � X (2)
i6

) − I
(
X (2)

i2 � X (2)
i6

)}{
I
(
X (2)

i3 � X (2)
i6

) − I
(
X (2)

i4 � X (2)
i6

)}]
, (4)

which is a rank-based U-statistic of order 6.

More recently, Bergsma & Dassios (2014) introduced the following rank correlation, which is
connected to work byYanagimoto (1970). We refer the reader to Bergsma & Dassios (2014) for a
motivation via the concordance/discordance of four-point patterns and connections to Kendall’s
tau.

Definition 5. Write I (x1, x2 < x3, x4) = I (max{x1, x2} < min{x3, x4}). Define Bergsma–
Dassios–Yanagimoto’s correlation measure by

τ ∗ = 4 pr
(
X (1)

1 , X (1)
3 < X (1)

2 , X (1)
4 , X (2)

1 , X (2)
3 < X (2)

2 , X (2)
4

)
+ 4 pr

(
X (1)

1 , X (1)
3 < X (1)

2 , X (1)
4 , X (2)

2 , X (2)
4 < X (2)

1 , X (2)
3

)
− 8 pr

(
X (1)

1 , X (1)
3 < X (1)

2 , X (1)
4 , X (2)

1 , X (2)
4 < X (2)

2 , X (2)
3

)
.
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It is unbiasedly estimated by a U-statistic of order 4, namely Bergsma–Dassios–Yanagimoto’s
correlation coefficient

τ ∗
n = 1

n(n − 1)(n − 2)(n − 3)

×
∑

i1 |=... |=i4

{
I
(
X (1)

i1 , X (1)
i3 < X (1)

i2 , X (1)
i4

) + I
(
X (1)

i2 , X (1)
i4 < X (1)

i1 , X (1)
i3

)
− I

(
X (1)

i1 , X (1)
i4 < X (1)

i2 , X (1)
i3

) − I
(
X (1)

i2 , X (1)
i3 < X (1)

i1 , X (1)
i4

)}
× {

I
(
X (2)

i1 , X (2)
i3 < X (2)

i2 , X (2)
i4

) + I
(
X (2)

i2 , X (2)
i4 < X (2)

i1 , X (2)
i3

)
− I

(
X (2)

i1 , X (2)
i4 < X (2)

i2 , X (2)
i3

) − I
(
X (2)

i2 , X (2)
i3 < X (2)

i1 , X (2)
i4

)}
. (5)

Remark 1 (Relation between Dn, Rn and τ ∗
n ). As conveyed by equation (6.1) in Drton et al.

(2020), as long as n � 6 and there are no ties in the data, one has 12Dn+24Rn = τ ∗
n . Consequently,

12D + 24R = τ ∗ given continuity, but not necessarily absolute continuity, of F ; cf. Yanagimoto
(1970, p. 62).

At first sight the computation of the different correlation coefficients appears to be of very
different complexity. However, this is not the case owing to recent developments, which yield
nearly linear computation time for all coefficients except ξ∗

n .

Proposition 1 (Computational efficiency). If the data contain no ties, then ξn, Dn, Rn and
τ ∗

n can all be computed in O(n log n) time.

Proof. From its simple form it is evident that ξn can be computed in O(n log n) time (Chatterjee,
2021, Remark 4). The result about Dn is due to Hoeffding (1948, § 5); see also Weihs et al. (2018,
p. 557). The claim about τ ∗

n is based on recent new methods due to Even-Zohar & Leng (2021,
Corollary 4) and Even-Zohar (2020b, Theorem 6.1); for an implementation see Even-Zohar
(2020a). The claim about Rn then follows from the relation given in Remark 1. �

Remark 2 (Computation of ξ∗
n ). The definition of ξ∗

n involves an integral over the unit square
[0, 1]2. How quickly the integral can be computed depends on smoothness properties of the kernel
considered and the choice of bandwidth. Chatterjee (2021, Remark 5) suggests a time complexity
of O(n5/3). Indeed, for a symmetric and four-times continuously differentiable kernel K with
compact support, there is a choice of bandwidths h1 and h2 that satisfies the requirements of
Definition 2 and for which ξ∗

n can be approximated with an absolute error of order o(n−1/2) in
O(n5/3) time.

To accomplish this we may choose h1 = h2 = n−1/4−ε for small ε > 0 and apply Simp-
son’s rule to the two-dimensional integral in the definition of ξ∗

n . By the assumptions on K , the
function ζ 2

n has continuous and compactly supported fourth partial derivatives that are bounded
by a constant multiple of h−5

1 . The error of Simpson’s rule applied with a grid of M 2 points in

[0, 1]2 is then O(h−5
1 /M 4). With M 2 = O(h−5/2

1 n1/4+ε/2) = O(n7/8+3ε), this error becomes
O(n−1/2−ε) = o(n−1/2). Because of the compact support of K , one evaluation of ζn requires
O(nh1) operations. The overall computational time is thus O(nh1M 2) = O(n13/8+2ε), which is
O(n5/3) as long as ε � 1/48.

Remark 3 (Computation with ties). When the data can be treated as being generated from
a continuous distribution, but featuring a small number of ties due to rounding, then ad-hoc
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breaking of ties poses little problem. In contrast, if ties arise from some discontinuity of the
data-generating distribution, then the situation is more subtle. In this case, Chatterjee’s ξn is to
be computed in the form (2), but the computational time clearly remains O(n log n). In contrast,
ξ∗

n is no longer a suitable estimator of ξ . Hoeffding’s formulas for Dn continue to apply with
ties, keeping the computation at O(n log n); however, as we shall emphasize in § 4, the estimated
D may lose some of its appeal. Bergsma–Dassios–Yanagimoto’s τ ∗

n is suitable also for discrete
data, but the available implementations that explicitly account for data with ties (Weihs, 2019)
are based on the O(n2 log n) algorithm of Weihs et al. (2016, § 3) or the slightly more memory-
intensive, but faster O(n2) algorithm of Heller & Heller (2016, § 2.2). Computation of Rn with
ties is also O(n2) (Weihs et al., 2018; Weihs, 2019).

2.2. Consistency

In the rest of this section as well as in § 3, we will always assume that the joint distribution
function F is continuous, though not necessarily jointly absolutely continuous, with respect to
the Lebesgue measure. Accordingly, both X (1)

1 , . . . , X (1)
n and X (2)

1 , . . . , X (2)
n are free of ties with

probability 1. To clearly state the following results, we introduce three families of bivariate
distributions specified via their joint distribution function F :

F c = {
F : F is continuous as a bivariate function

}
,

F ac = {
F : F is absolutely continuous with respect to the Lebesgue measure

}
,

FDSS = {
F ∈ F c : F has a copula C(u(1), u(2)) that is three- and two-times continuously

differentiable with respect to the arguments u(1) and u(2), respectively
}
. (6)

Recall that the copula of F satisfies F(x(1), x(2)) = C{F1(x(1)), F2(x(2))}.
We first discuss the large-sample consistency of the correlation coefficients as estimators of

the corresponding correlation measures. Convergence in probability is denoted by →p.

Proposition 2 (Consistency of estimators). For any F ∈ F c, as n → ∞ we have

ξn →p ξ , Dn →p D, Rn →p R, τ ∗
n →p τ

∗.

If in addition F ∈ FDSS and K, h1 and h2 satisfy all the assumptions stated in Definition 2, then
also ξ∗

n →p ξ .

Proof. The claim about ξn is Theorem 1.1 in Chatterjee (2021), and the one about ξ∗
n is proved

in the Supplementary Material based on a revised version of Theorem 3 in Dette et al. (2013).
The remaining claims are immediate from the theory of U-statistics (e.g., Proposition 1 in Weihs
et al., 2018, or Theorem 5.4.A in Serfling, 1980). �

Next, we turn to the correlation measures themselves. It is clear that ξ , D and R are always
nonnegative, and that the same is true for τ ∗ when applied to F ∈ F c; this follows from Remark 1.
The consistency properties for continuous observations can be summarized as follows.

Proposition 3 (Consistency of correlation measures). Each of the correlation measures
ξ , R and τ ∗ is consistent for the entire class F c; that is, if F ∈ F c, then ξ = 0, or R = 0 or
τ ∗ = 0, if and only if the pair (X (1), X (2)) is independent. Hoeffding’s D is consistent for F ac,
but not for F c.
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Proof. The consistency of ξ is Theorem 2 of Dette et al. (2013) and Theorem 1.1 of Chatterjee
(2021). The consistency of R is shown in detail in Theorem 2 of Weihs et al. (2018); see also
Blum et al. (1961, p. 490). The consistency of τ ∗ was established for F ac in Theorem 1 of
Bergsma & Dassios (2014), and that for F c can be shown via Remark 1; cf. Theorem 6.1 of
Drton et al. (2020). Finally, the claim about D follows from Theorem 3.1 of Hoeffding (1948)
and its generalization in Proposition 3 of Yanagimoto (1970). �

2.3. Independence tests

For large samples, computationally efficient independence tests may be implemented using
the asymptotic null distributions of the correlation coefficients, which are summarized below.

Proposition 4 (Limiting null distributions). Suppose that F ∈ F c has X (1) and X (2)

independent. As n → ∞, the following properties hold:

(i) for Chatterjee’s correlation coefficient ξn, n1/2ξn → N (0, 2/5) in distribution (Chatterjee,
2021, Theorem 2.1);

(ii) for Dette–Siburg–Stoimenov’s correlation coefficient ξ∗
n , n1/2ξ∗

n → 0 in probability assum-
ing that F ∈ FDSS and that K, h1 and h2 satisfy all the assumptions in Definition 2 (revised
version of Theorem 3 in Dette et al., 2013; see the Supplementary Material);

(iii) for μ ∈ {D, R, τ ∗},

nμn →
∞∑

v1,v2=1

λμv1,v2

(
ξ2

v1,v2
− 1

)

in distribution, where

λμv1,v2
=

{
1/(π4v2

1v2
2), μ = D, R,

36/(π4v2
1v2

2), μ = τ ∗

for v1, v2 = 1, 2, . . . and {ξv1,v2} are independent standard normal random variables (Weihs
et al., 2018, Proposition 7; Drton et al., 2020, Proposition 3.1).

For a given significance level α ∈ (0, 1), let z1−α/2 be the (1 − α/2)-quantile of the standard
normal distribution. Then the asymptotic test based on Chatterjee’s ξn is

T ξn
α = I

{
n1/2|ξn| > (2/5)1/2z1−α/2

}
.

The tests based on μn with μ ∈ {D, R, τ ∗} take the form

Tμn
α = I

(
nμn > qμ1−α

)
, qμ1−α = inf

[
x : pr

{ ∞∑
v1,v2=1

λμv1,v2

(
ξ2

v1,v2
− 1

)
� x

}
� 1 − α

]
,

where λμv1,v2 and ξv1,v2 for v1, v2 = 1, . . . , n, . . . were presented in Proposition 4. Weihs (2019)
provides a routine to compute the needed quantiles. It is unclear how to implement the test
based on Dette–Siburg–Stoimenov’s ξ∗

n without the need for simulation or permutation, as a
nondegenerate limiting null distribution is currently unknown.
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Given the distribution-free property of ranks for the class F c, Proposition 4 yields uniform
asymptotic validity of the tests just defined. Moreover, Propositions 2 and 3 yield consistency at
fixed alternatives. We summarize these facts below.

Proposition 5 (Uniform validity and consistency of tests). The tests based on the
correlation coefficients μn ∈ {ξn, Dn, Rn, τ ∗

n } are uniformly valid in the sense that

lim
n→∞ sup

F∈F c
pr(Tμn

α = 1 | H0) = α.

Moreover, these tests are consistent; that is, for fixed F ∈ F c such that X (1) and X (2) are
dependent and μn ∈ {ξn, Rn, τ ∗

n },
lim

n→∞ pr(Tμn
α = 1 | H1) = 1. (7)

The conclusion (7) holds for μn = Dn if it is further assumed that F ∈ F ac.

3. Local power analysis

In this section we investigate the local power of the four rank correlation-based tests of H0
introduced in § 2.3. To this end, we consider two classical and well-used families of alternatives to
the null hypothesis of independence: rotation alternatives, or Konijn alternatives (Konijn, 1956),
and mixture alternatives, or Farlie-type alternatives (Farlie, 1960, 1961; see also Dhar et al.,
2016).

First we consider rotation alternatives. Let Y (1) and Y (2) be two real-valued independent
random variables that have mean zero and are absolutely continuous with Lebesgue densities f1
and f2, respectively. For 
 ∈ (−1, 1), consider

X =
(

X (1)

X (2)

)
=

(
1 



 1

)(
Y (1)

Y (2)

)
= A


(
Y (1)

Y (2)

)
= A
Y . (8)

For all
 ∈ (−1, 1), the matrix A
 is clearly of full rank and invertible. For any
 ∈ (−1, 1), let
fX (x;
) denote the density of X = A
Y . We then make the following assumptions on Y (1) and
Y (2).

Assumption 1. The following properties hold:

(i) the distributions of X have a common support for all 
 ∈ (−1, 1), so that without loss of
generality X = {x : fX (x;
) > 0} is independent of 
;

(ii) the density fk is absolutely continuous with nonconstant logarithmic derivative ρk = f ′
k/fk

for k = 1, 2;
(iii) the Fisher information of X relative to
 at the point 0, denoted by IX (0), is strictly positive,

and E{(Y (k))2} < ∞ and E[{ρk(Y (k))}2] < ∞ for k = 1, 2.

Remark 4. Assumption 1(ii) and (iii) imply that E{ρk(Y (k))} = 0 and IX (0) < ∞.

Example 1. Suppose fk(z), for k = 1, 2, is absolutely continuous and positive for all real
numbers z. If

E
(
Y (k)

) = 0, E
{(

Y (k)
)2}

< ∞, E
[{
ρk

(
Y (k)

)}2]
< ∞ (k = 1, 2), (9)
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then Assumption 1 holds. As a special case, Assumption 1 holds if Y (1) and Y (2) are centred
and follow normal distributions or t-distributions with not necessarily integer-valued degrees of
freedom greater than 2.

Second, we consider the following mixture alternatives that were used in Dhar et al. (2016,
§ 3). Let F1 and F2 be fixed univariate distribution functions that are absolutely continuous
with Lebesgue density functions f1 and f2, respectively. Let F0(x(1), x(2)) = F1(x(1))F2(x(2)) be
the product distribution function yielding independence, and let G |= F0 be a fixed bivariate
distribution function which is absolutely continuous and such that (X (1), X (2)) are dependent
under G. Let the density functions of F0 and G, denoted by f0 and g, respectively, be continuous
and have compact supports. Then define the following alternative model for the distribution of
X = (X (1), X (2)):

FX = (1 −
)F0 +
G, (10)

with 0 � 
 � 1.
We make the following additional assumptions on F0 and G.

Assumption 2. The following properties hold:

(i) the distribution G is absolutely continuous with respect to F0 and s(x) = g(x)/f0(x)− 1 is
continuous;

(ii) the conditional expectation E{s(Y ) | Y (1)} = 0 almost surely for Y = (Y (1), Y (2)) ∼ F0;
(iii) the function s is not additively separable, i.e., there do not exist univariate functions h1 and

h2 such that s(x) = h1(x(1))+ h2(x(2));
(iv) the Fisher information IX (0) > 0.

Remark 5. In this model, g(x)/f0(x) is continuous and has compact support, which guarantees
that IX (0) < ∞.

Example 2 (Farlie alternatives). Let G in (10) be given as

G
(
x(1), x(2)

) = F1
(
x(1)

)
F2

(
x(2)

)[
1 + {

1 − F1
(
x(1)

)}{
1 − F2

(
x(2)

)}]
.

Then Assumption 2 is satisfied (Morgenstern, 1956; Gumbel, 1958; Farlie, 1960). Notice also
that E{s(Y ) | Y (2)} = 0 almost surely for Y = (Y (1), Y (2)) ∼ F0.

Example 3. Let the density f2 be symmetric around 0, and consider two univariate functions
h1 and h2 that are both nonconstant and bounded by 1 in magnitude, with h2 additionally being an
odd function. Let f1 be a density such that

∫
f1(x(1))h1(x(1)) dx(1) |= 0. Then the bivariate density

g can be chosen such that s(x) = h1(x(1))h2(x(2)), and so Assumption 2 holds. For example, we
can take f1(t) = f2(t) = 1/2 × I (−1 � t � 1), h1(t) = |1 − 2�(t)| and h2(t) = 1 − 2�(t),
where � denotes the distribution function of the uniform distribution on [−1, 1]. In this case,
E{s(Y ) | Y (2)} is not almost surely zero for Y = (Y (1), Y (2)) ∼ F0.

For a local power analysis in either of the two alternative families under consideration, we
examine the asymptotic power along a respective sequence of alternatives obtained as

H1,n(
0) : 
 = 
n, 
n = n−1/2
0, (11)

with some constant 
0 > 0. We obtain the following results on the discussed tests.
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Theorem 1 (Power analysis). Suppose that the sequences of local alternatives considered
are formed such that Assumption 1 or 2 holds when considering a family of rotation or mixture
alternatives, respectively. Then concerning any sequence of alternatives given in (11):

(i) for either of the two types of alternatives (A) and (B) and for any fixed constant 
0 > 0,

lim
n→∞ pr{T ξn

α = 1 | H1,n(
0)} = α; (12)

(ii) for any local alternative family and any number β > 0, there exists a sufficiently large
constant Cβ > 0, depending only on β, such that as long as 
0 > Cβ ,

lim
n→∞ pr{Tμn

α = 1 | H1,n(
0)} � 1 − β, (13)

where μn ∈ {Dn, Rn, τ ∗
n }.

In contrast to Theorem 1, Proposition 6 below shows that the power of any size-α test can be
arbitrarily close to α when
0 is sufficiently small in the local alternative model H1, n(
0). This
result, combined with (12) and (13), entails that the size-α tests based on one of Dn, Rn and τ ∗

n are
rate-optimal against the local alternatives considered, while the size-α test based on Chatterjee’s
correlation coefficient, with only trivial power against the local alternative model H1, n(
0) for
any fixed 
0, is rate-suboptimal.

Proposition 6 (Rate-optimality). Concerning either of the two local alternative families
and any sequence of alternatives given in (11), as long as the corresponding Assumption 1 or 2
holds, we have that for any number β > 0 satisfying α + β < 1 there exists a constant cβ > 0,
depending only on β, such that

inf
T̄α∈Tα

pr{T̄α = 0 | H1,n(cβ)} � 1 − α − β

for all sufficiently large n. Here the infimum is taken over all size-α tests.

Remark 6. Assumptions 1 and 2 are technical conditions imposed to ensure that (i) the two
sequences of alternatives considered are all locally asymptotically normal (van der Vaart, 1998,
Ch. 7), i.e., the loglikelihood ratio processes admit a quadratic expansion; (ii) the conditional
expectation of the score function given the first margin is almost surely zero. Here the second
requirement was invoked to allow use of the conditional multiplier central limit theorem (cf.
van der Vaart & Wellner, 1996, § 2.9), which appears to be the key to analysing the power of
Chatterjee’s correlation coefficient. In addition to their generality, we would like to emphasize
that these technical assumptions are indeed satisfied by important models such as Gaussian
rotation and Farlie alternatives, which are commonly used to investigate the local power of
independence tests.

Remark 7. The linear, step-function, W-shaped, sinusoid, and circular alternatives considered
in Chatterjee (2021, § 4.3) can all be viewed as generalized rotation alternatives. The proof
techniques used in this paper are therefore directly applicable to these five alternatives by means
of a reparameterization. To illustrate this point, consider, for example, the following alternative
motivated by Chatterjee (2021, § 4.3):

X (1) = Y (1), X (2) = 
g(Y (1))+ Y (2), (14)
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where Y (1) and Y (2) are independent and absolutely continuous with respective densities f1 and
f2. Model (14) and the one used in Chatterjee (2021, § 4.3) are equivalent for rank-based tests as
ranks are scale-invariant. Assume then that

(i) the distributions of X = (X (1), X (2)) have a common support for all 
 ∈ (−1, 1);
(ii) the density f2 is absolutely continuous with nonconstant logarithmic derivative ρ2 = f ′

2/f2
such that 0 < E[{ρ2(Y (2))}2] < ∞;

(iii) the function g is nonconstant and measurable such that 0 < E[{g(Y (1))}2] < ∞.

Claims (12) and (13) will then hold for the alternatives (14) in view of arguments similar to those
in the proof of Theorem 1 for the rotation alternatives.

Remark 8. Cao & Bickel (2020, § 4.4) performed a local power analysis for Chatterjee’s ξn
under a set of assumptions different from ours. The goal of our local power analysis was to exhibit
explicitly the, at times surprising, differences in power of the independence tests given by the
four rank correlation coefficients from Definitions 1 and 3–5. We have focused on rotation and
mixture alternatives from the literature. However, from the proof techniques in the Supplementary
Material, it is evident that (12) and (13) hold for other types of local alternative families. For the
former claim, which concerns the lack of power of Chatterjee’s ξn, this point has been pursued
in Cao & Bickel (2020, § 4.4).

4. Rank correlations for discontinuous distributions

In this section, we drop the continuity assumption on F made in § 2 and § 3, and allow ties
to exist with nonzero probability. Among the five correlation coefficients, ξ∗

n is no longer an
appropriate estimator when F is not continuous. We will discuss the properties of only the other
four estimators, ξn, Dn, Rn and τ ∗

n .
Recall that the computational issue has been addressed in Remark 3. Our first result in this

section focuses on approximation consistency of the correlation coefficients ξn, Dn, Rn and τ ∗
n

with respect to their population quantities. To this end, we define the families of distributions to
be more general than the ones considered so far:

F = {
F : F is a bivariate distribution function

}
,

F∗ = {
F : Fk is not degenerate, i.e., Fk(x) |= I (x � x0) (k = 1, 2) for any real number x0

}
,

Fτ∗ = {
F : F is discrete, continuous, or a mixture of discrete and jointly absolutely

continuous distribution functions
}
. (15)

For the estimators ξn, Dn, Rn and τ ∗
n , we have the following result on consistency.

Proposition 7 (Consistency of estimators). As n → ∞, the following hold:

(i) for F ∈ F∗, ξn converges in probability to ξ (Chatterjee, 2021, Theorem 1.1);
(ii) for F ∈ F , μn converges in probability to μ for μ ∈ {D, R, τ ∗} (Weihs et al., 2018,

Proposition 1; Serfling, 1980, Theorem 5.4.A).

The following proposition is a generalization of Proposition 3.

Proposition 8 (Consistency of correlation measures). The following are true:
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(i) for F ∈ F∗, ξ � 0 with equality if and only if the pair is independent (Chatterjee, 2021,
Theorem 1.1);

(ii) for F ∈ F we have D � 0, and for F ∈ F ac we have D = 0 if and only if the pair is
independent (Hoeffding, 1948, Theorem 3.1; Yanagimoto, 1970, Proposition 3);

(iii) for F ∈ F , R � 0 with equality if and only if the pair is independent (Blum et al., 1961,
p. 490);

(iv) for F ∈ Fτ∗
, τ ∗ � 0 with equality if and only if the variables are independent (Bergsma

& Dassios, 2014, Theorem 1; Drton et al., 2020, Theorem 6.1).

The asymptotic distribution theory from § 2.3 can also be extended. As the continuity require-
ment is dropped, the central limit theorem for Chatterjee’s ξn still holds. However, the asymptotic
variance now has a more complicated form and is not necessarily constant across the null hypoth-
esis of independence (Chatterjee, 2021, Theorem 2.2). A similar phenomenon arises for the
limiting null distributions of Dn, Rn and τ ∗

n when one or two marginals are not continuous; see
Nandy et al. (2016, Theorem 4.5 and Corollary 4.1) for further discussion.As a result, permutation
analysis, which is unfortunately computationally much more intensive, is typically employed to
implement a test outside the realm of continuous distributions.

5. Simulation results

To further examine the power of the tests, we simulate data as a sample consisting of n
independent copies of (X (1), X (2)), for which we consider a suite of different specifications
based on mixture, rotation and generalized rotation alternatives.

Example 4. For the distribution of (X (1), X (2)) we choose six alternatives. In their specifica-
tion, Y (1) and Y (2) are always independent random variables and 
 = n−1/2
0.

(a) The pair (X (1), X (2)) is given by the rotation alternative (8), where Y (1) and Y (2) are both
standard Gaussian and 
0 = 2. This is an instance of our Example 1.

(b) The pair (X (1), X (2)) is given by the mixture alternative (10), where

F0
(
x(1), x(2)

) = �
(
x(1)

)
�

(
x(2)

)
,

G
(
x(1), x(2)

) = �
(
x(1)

)
�

(
x(2)

)[
1 + {

1 −�
(
x(1)

)}{
1 −�

(
x(2)

)}]
,

with �(·) denoting the distribution function of the uniform distribution on [−1, 1], and

0 = 10. This is in accordance with our Example 2.

(c) The pair (X (1), X (2)) is given by the mixture alternative (10), where the density functions
of F and G, denoted by f0 and g, are

f0
(
x(1), x(2)

) = ψ
(
x(1)

)
ψ

(
x(2)

)
,

g
(
x(1), x(2)

) = ψ
(
x(1)

)
ψ

(
x(2)

)[
1 + ∣∣1 − 2�

(
x(1)

)∣∣{1 − 2�
(
x(2)

)}]
,

with ψ(t) = 1/2 × I (−1 � t � 1), and 
0 = 20. This is an instance of our Example 3.
(d) The pair (X (1), X (2)) is given by the generalized rotation alternative (14), where Y (1)

is uniformly distributed on [−1, 1], Y (2) is standard Gaussian, g takes values −3, 2,
−4 and −3 in the intervals [−1, −0.5), [−0.5, 0), [0, 0.5) and [0.5, 1], respectively,
and 
0 = 3.
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Table 1. Comparison of the computation time, measured as the total time in seconds of
1000 replicates, for all five correlation statistics

n ξn ξ ∗
n Dn Rn τ ∗

n

500 0.157 12.57 0.158 0.263 0.253
1000 0.239 33.75 0.267 0.505 0.468
5000 1.655 401.4 1.823 3.601 3.087

10000 3.089 1152.6 3.315 7.607 7.132

(e) The pair (X (1), X (2)) is given by (14), where Y (1) is uniformly distributed on [−1, 1], Y (2)

is standard Gaussian, g(t) = |t + 0.5|I (t < 0)+ |t − 0.5|I (t � 0), and 
0 = 60.
(f) The pair (X (1), X (2)) is given by (14), where Y (1) is uniformly distributed on [−1, 1], Y (2)

is standard Gaussian, g(t) = cos(2π t), and 
0 = 12.

As indicated, the first three simulation settings are taken from Examples 1–3. The latter three
are motivated by step-function, W-shaped and sinusoid settings in which Chatterjee’s correlation
coefficient performs well; see Chatterjee (2021, § 4.3).

Our focus is on comparing the empirical performance of the five tests T ξn
α , T

ξ∗
n
α , T Dn

α , T Rn
α and

T
τ∗

n
α . The first four tests are conducted using the asymptotics from Proposition 4. The last test is

implemented with bandwidths chosen as h1 = h2 = n−3/10 following the suggestion in Dette
et al. (2013, § 6.1) and using a finite-sample critical value, which we approximate via 1000 Monte
Carlo simulations. The nominal significance level is set to 0.05, and the sample size is chosen
as n ∈ {500, 1000, 5000, 10 000}. For each of the six settings and four sample sizes, we conduct
1000 simulations.

Before examining the statistical properties, we compare the computation times for calcu-
lating the five rank correlation coefficients considered. Table 1 shows times in the rotation
setting (a); the results for other settings are essentially the same. The calculations of ξn and
ξ∗

n are by our own implementation, while those of Dn, Rn and τ ∗
n are done using the functions

.calc.hoeffding(), .calc.refined() and .calc.taustar(), respectively, from
the R (R Development Core Team, 2022) package independence (Even-Zohar, 2020a). All
experiments are conducted on a laptop with a 2.6 GHz Intel Core i5 processor and 8 GB of
memory. One can observe the clear computational advantages of ξn, Dn, Rn and τ ∗

n over Dette
et al.’s estimator ξ∗

n . The difference in computation time between Chatterjee’s coefficient ξn and
Hoeffding’s Dn is insignificant. Both ξn and Dn are slightly faster to compute than Blum–Kiefer–
Rosenblatt’s Rn and Bergsma–Dassios–Yanagimoto’s τ ∗

n ; computation times differ by a factor
less than 2.5.

Table 2 shows the empirical powers of the five tests. The results confirm our earlier theoretical
claims about the powers of the different tests in the different models; that is, Hoeffding’s D,
Blum–Kiefer–Rosenblatt’s R, and Bergsma–Dassios–Yanagimoto’s τ ∗ outperform Chatterjee’s
correlation coefficient in all the settings considered. Interestingly, the simulation results suggest
that the test based on ξ∗

n may have nontrivial power against certain alternatives; see the results
for Example 4(e) and (f) in Table 2.

6. Conclusion

The main new contribution of this work is a local power analysis for continuous distributions
that reveals interesting differences in the powers of the tests. The take-away message is that ξn is
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Table 2. Empirical powers, based on 1000 replicates, of the five competing tests in Example 4
n ξn ξ ∗

n Dn Rn τ ∗
n ξn ξ ∗

n Dn Rn τ ∗
n

Results for Example 4(a) Results for Example 4(d)
500 0.103 0.178 0.954 0.955 0.957 0.443 0.122 0.913 0.921 0.919

1000 0.067 0.106 0.956 0.956 0.956 0.285 0.111 0.923 0.928 0.927
5000 0.043 0.078 0.953 0.952 0.952 0.081 0.083 0.936 0.936 0.937

10000 0.045 0.058 0.951 0.952 0.952 0.081 0.052 0.955 0.954 0.955

Results for Example 4(b) Results for Example 4(e)
500 0.087 0.138 0.898 0.896 0.897 0.719 1.000 0.654 0.635 0.643

1000 0.067 0.089 0.900 0.900 0.899 0.486 1.000 0.700 0.682 0.692
5000 0.059 0.082 0.891 0.890 0.891 0.146 1.000 0.735 0.735 0.736

10000 0.052 0.045 0.911 0.914 0.915 0.105 0.997 0.754 0.752 0.752

Results for Example 4(c) Results for Example 4(f)
500 0.088 0.559 0.412 0.404 0.410 0.688 1.000 0.635 0.603 0.611

1000 0.066 0.408 0.390 0.391 0.396 0.459 1.000 0.669 0.655 0.660
5000 0.060 0.327 0.363 0.364 0.364 0.141 1.000 0.717 0.712 0.713

10000 0.048 0.248 0.392 0.395 0.396 0.100 0.994 0.726 0.730 0.728

Table 3. Properties of the five rank correlation coefficients in Definitions 1–5; the bivariate
distribution families are defined in (6) and (15)

μn ξn ξ ∗
n Dn Rn τ ∗

n

(i) Computational F ∈ F c O(n log n) O(n5/3) O(n log n) O(n log n) O(n log n)
efficiency F ∈ F O(n log n) — O(n log n) O(n2) O(n2)

(ii) Consistency of correlation measures F ∈ F∗ F ∈ F∗ F ∈ F ac F ∈ F F ∈ F τ∗

(ii′) Consistency of independence tests F ∈ F c F ∈ FDSS F ∈ F ac F ∈ F c F ∈ F c

(iii) Statistical rotation rate-suboptimal — rate-optimal rate-optimal rate-optimal
efficiency mixture rate-suboptimal — rate-optimal rate-optimal rate-optimal

suboptimal for testing independence, whereas the more classical Dn, Rn and τ ∗
n are rate-optimal

in the set-up considered. This said, ξn and ξ∗
n have very appealing properties that pertain not to

independence, but rather to detection of perfect functional dependence. We refer the reader to
Dette et al. (2013) and Chatterjee (2021), as well as Cao & Bickel (2020).

We summarize the properties discussed here in Table 3. When referring to independence tests
in this table we assume continuous observations, i.e., F ∈ Fc. Moreover, when discussing ξ∗

n , we
assume additionally that the kernel K and bandwidths h1 and h2 satisfy all assumptions stated in
Definition 2. The table features two rows for computation, where the first pertains to continuous
observations free of ties and the second pertains to arbitrary observations. The third row of the
table concerns consistency of correlation measures; refer to (6) and (15) for the definitions of
table entries. The fourth row concerns consistency of independence tests assuming F ∈ Fc.
Finally, we summarize the rate-optimality and rate-suboptimality of the five independence tests
under two local alternatives, rotation and mixture considered in § 3.
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