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Abstract

We study the ratio of `1 and `2 norms (`1/`2) as a sparsity-promoting objective in
compressed sensing. We first propose a novel criterion that guarantees that an s-sparse
signal is the local minimizer of the `1/`2 objective; our criterion is interpretable and useful in
practice. We also give the first uniform recovery condition using a geometric characterization
of the null space of the measurement matrix, and show that this condition is easily satisfied
for a class of random matrices. We also present analysis on the robustness of the procedure
when noise pollutes data. Numerical experiments are provided that compare `1/`2 with
some other popular non-convex methods in compressed sensing. Finally, we propose a novel
initialization approach to accelerate the numerical optimization procedure. We call this
initialization approach support selection, and we demonstrate that it empirically improves
the performance of existing `1/`2 algorithms.

Keywords: Compressed sensing, High-dimensional geometry, Random matrices, Non-convex
optimization

1 Introduction
The goal of compressed sensing (CS) problem is to seek the sparsest solution of an underde-

termined linear system:

min ‖x‖0 subject to Ax = b, (1.1)

where x ∈ Rn,b ∈ Rm and A ∈ Rm×n with m� n. The quasinorm ‖x‖0 measures the number
of nonzero components in x. In CS applications, one typically considers x as the frame/basis co-
ordinates of an unknown signal, and it is typically assumed that the coordinate representation is
sparse, i.e., that ‖x‖0 is “small”. A is the measurement matrix that encodes linear measurements
of the signal x, and b contains the corresponding measured values. In the language of signal
processing, (1.1) is equivalent to applying the sparsity decoder to reconstruct a signal from the
undersampled measurement pair (A, b). A naive, empirical counting argument suggests that if
m� n measurements b of an unknown signal x are available, then we can perhaps compute the
original signal coordinates x, assuming x is approximately m-sparse. The optimization (1.1) is
the quantitative manifestation of this argument.

It was established in [11] that under mild conditions, (1.1) has a unique minimizer. In the
rest of the paper we assume that the minimizer is unique and denote it by x0. One of the central
problems in compressed sensing is to design an effective algorithm to find x0: Directly solving
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(1.1) via combinatorial search is NP-hard [26]. A more practical approach, which was proposed
in the seminal work [12], is to relax the sparsity measure ‖ · ‖0 to the convex `1 norm ‖ · ‖1:

min ‖x‖1 subject to Ax = b. (1.2)

The convexity of the problem (1.2) ensures that efficient algorithms can be leveraged to
compute solutions. Many pioneering works in compressed sensing have focused on understanding
the equivalence between (1.1) and (1.2), see [12, 6, 13]. A major theoretical cornerstone of such
equivalence results is the Null Space Property (NSP), which was first introduced in [9] and plays
a crucial role in establishing sufficient and necessary conditions for the equivalence between (1.1)
and (1.2). A sufficient condition for such an equivalence is called an exact recovery condition.
A closely related but stronger condition is the Restricted Isometry Property (RIP), see [6]. The
RIP is more flexible than the NSP for practical usage, yet conditions given by both the NSP and
RIP are hard to verify in the case when measurements (i.e., the matrix A) are deterministically
sampled. An alternative approach based on analyzing the mutual coherence of A produces a
practically computable but suboptimal condition, see [11]. We will use a slightly more general
definition of the NSP that was introduced in [15]:

Definition 1.1 (Null Space Property). Given s ∈ N and c > 0, a matrix A ∈ Rm×n satisfies
the (s, c)-NSP in the quasi-norm `q (0 < q ≤ 1) if for all h ∈ ker(A) and T ∈ [n]s, we have

‖hT ‖qq < c‖hT{‖qq. (1.3)

Here, [n]s is the collection of all subsets of {1, . . . n} with cardinality at most s,

[n]s :=
{
T ⊂ [n]

∣∣ |T | ≤ s} , [n] := {1, . . . , n},

hT is the restriction of h to the index set T , and T { := [n]\T .

Nearly all exact recovery conditions based on the RIP are probabilistic in nature. This means
that such analysis typically is split into two major thrusts: (i) the first one establishes that (1.1)
and (1.2) are equivalent for a class of sparse signals if A satisfies an RIP condition, and (ii) the
second one proves that the RIP condition for a suitable random matrix A is achievable with high
probability. Such random arguments appear to be necessary in practice for the RIP analysis in
order to mitigate pathological measurement configurations.

Under proper randomness assumptions, an alternative approach that circumvents the RIP
also yields fruitful results in the study of (1.2), see [47, 39]. This approach is more reliant
on a geometric characterization of the nullspace of the measurements, and therefore could be
potentially adapted to analyzing non-convex objectives with similar geometric interpretations.
We take this approach for analysis in this paper.

Although (1.2) has attracted a lot of interest in the past decades, the community realized
that `1 minimization is not as robust for computing sparsity-promoting solutions compared to
other objective functions, in particular compared to other non-convex objectives. This motivates
the study of non-convex relaxation methods (use non-convex objectives to approximate ‖ · ‖0),
which are believed to be more sparsity-aware. Many non-convex objective functions, such as `q
(0 < q < 1) [18, 8, 15]), reweighted `1 [7], CoSaMP [27], IHT [2], `1 − `2 [44, 45], and `1/`2
[20, 21, 44, 30], are empirically shown to outperform `1 in certain contexts. However, relatively
few such approaches have been successfully analyzed for theoretical recovery. In fact, obtaining
exact recovery conditions and robustness analysis for general non-convex optimization problems
is difficult, unless the objective possesses certain exploitable structure, see [25, 37].

We aim to investigate exact recovery conditions as well as the robustness for the objective
`1/`2 in this paper. We are interested in providing conditions under which (1.1) is equivalent to
the following problem:

min
‖x‖1
‖x‖2

subject to Ax = b. (1.4)

To our knowledge, `1/`2 does not belong to any particular class of non-convex functions that has
a systematic theory behind it. This is mainly because `1/`2 is neither convex nor concave, and is
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not even globally continuous. However, there are a few observations that make this non-convex
objective worth investigating. First, in [28] it was shown numerically that the `1/`2 outper-
forms `1 by a notable margin in jointly sparse recovery problems (in the sense that many fewer
measurements are required to achieve the same recovery rate); particularly, `1/`2 admits a high-
dimensional generalization called orthogonal factor and the corresponding minimization problem
can be effectively solved using modern methods of manifold optimization. Understanding `1/`2
in one dimension would offer a baseline for its higher-dimensional counterparts. Secondly, in the
matrix completion problem [5], one desires a matrix with minimal rank under the component
constraints. Note that the rank of a matrix is the `0 measure of its singular value vector. A
natural relaxation of rank to a more regular objectives include the so-called numerical intrinsic
rank, which is defined by the ratio `1/`∞ of the singular value vector, and the numerical/stable
rank, which is defined by the ratio `2/`∞ of the singular value vector. This suggests that the
ratio between different norms might be a useful function to measure sparsity (complexity) of an
object, and therefore leads us to study the objective `1/`2 in compressed sensing.

A few attempts have been made recently to reveal both the theory and applications behind
the `1/`2 problem [23, 14, 44, 30, 42]. However, the existing analysis is either applicable only for
non-negative signals, or yields a local optimality condition which is often too strict in practice.
The investigation of efficient algorithms for solving the `1/`2 minimization is also an active area
of research [30, 43, 3, 46, 35, 41].

Our contributions in this paper are two-fold. First we propose a new local optimality criteria
which provides evidence that a large “dynamic range” may lead to better performance of an
`1/`2 procedure, as was observed in [43]. We also conduct a first attempt at analyzing the exact
recovery condition (global optimality) of `1/`2; a sufficient condition for uniform recoverability
as well as some analysis of the robustness to noise are also given. We also provide numerical
demonstrations, in which a novel initialization step for the optimization is proposed and explored
to improve the performance of existing algorithms. We remark that since this problem is non-
convex, none of the results in this paper are tight; they only serve as the initial insight into
certain aspects of the method that have been observed in practice.

The rest of the paper is organized as follows. In Section 2 we briefly introduce the results
in [47] and [39] obtained by a high-dimensional geometry approach, which are relevant to our
analysis. In Section 3, we give a new local optimality condition ensuring that an s-sparse
vector is the local minimizer of the `1/`2 problem. In Section 4 we investigate the uniform
recoverability of `1/`2 and propose a new sufficient condition for this recoverability. We also
show that this condition is easily satisfied for a large class of random matrices. In Section 5,
we give some elementary analysis on how the solution to `1/`2 minimization problem is affected
in the presence of noise. In Section 6, we provide some numerical experiments to support our
findings and propose a novel initialization technique that further improves an existing `1/`2
algorithm from [43]. In Section 7, we summarize our findings as well as point out some possible
directions for future investigation.

2 A geometric perspective on `1 minimization
Geometric interpretation of compressed sensing first appeared in an abstract formulation of

the problem in Donoho’s original work [12]. In this section, we will take a selection of geometric
views on `1 minimization based on the discussions in [39] and [47], which do not hinge on RIP
analysis. We will see that they provide valuable insight for our analysis of (1.1) in the case of
non-convex relaxation.

To interpret (1.2) geometrically, we assume that entries of A are iid standard normal, i.e.,
(A)i,j ∼ N (0, 1). In this case, an x solving (1.2) belongs to the translate of a subspace that is
uniformly drawn from the Grassmanian Gn−m,n, where,

Gr,n =
{
A ⊂ Rn

∣∣ A is an r dimensional subspace
}
.

The objective function, on the other hand, can be considered as an origin-centered symmetric
convex body, i.e., a scaled `1 ball in Rn. Therefore, (1.2) is associated to a problem of under-

3



standing the random section of a convex set in Rn. We thus seek to understand random sections
of convex sets.

We began by introducing the approach in [39]. Visualization of convex sets in high dimensions
often depends on two parts: the bulk and the outliers. The bulk is the largest inscribed part
of a convex set that resembles an ellipsoid, and the outliers are those points outside the bulk
contributing to the diameter of the set. As the name outliers suggests, a random low-dimensional
section of a convex set tends to avoid outliers, and the resulting shape is close to the section
of the bulk, i.e., an ellipsoid. As the dimension increases, the random section is more likely to
capture the outliers, and the diameter of the intersected region will grow in a manner determined
by the geometry of the convex set. This is made precise by the following theorems:

Theorem 2.1. [39, Theorem 3.3, Dvoretzky] Let 0 < ε, δ < 1 be two fixed numbers and d ∈ N.
Let K be an origin-centered symmetric convex body in Rn such that the largest ellipsoid inscribed
in it is the unit Euclidean ball. Let E be a random subspace drawn uniformly from Gd,n. There
exists R > 0 which only depends on K such that with probability at least 1− δ,

(1− ε)B(R) ⊂ K ∩ E ⊂ (1 + ε)B(R), (2.1)

provided that d ≤ C(ε, δ) log n, where B(R) is the Euclidean ball of radius R in E and C(ε, δ)
is a constant depending only on ε and δ. The condition on d can be improved to d ≤ C(ε, δ)n
when K is the `1 ball with radius

√
n and R = 1.

Theorem 2.2. [39, Theorem 5.1, M∗ bound] Let K be a bounded subset of Rn. Let E be a
random subspace drawn uniformly from Gn−m,n. Then,

E sup
u∈K∩E

‖u‖2 ≤
√

8π

m
· E sup

u∈K
|〈g,u〉|, (2.2)

where g ∼ N (0, In).

Theorem 2.1 and 2.2 describe the low-dimensional and high-dimensional section of an origin-
centered symmetric convex body, respectively. Their proofs can be found in [40], and the idea
of the latter is crucial for the practicality part of our result. The quantity E supu∈K |〈g,u〉|
on the right-hand side of (2.2) is closely related to the concept of Gaussian width or Gaussian
complexity of a set K:

Definition 2.3 (Gaussian complexity). Let K be a bounded set in Rn. The Gaussian width of
K is defined by w(K) = E supx∈K〈g,x〉, where g ∼ N (0, In). The Gaussian complexity of K is
defined as w′(K) = w(K −K), where K −K is the Minkowski difference between K and itself.

It is easy to check that the Gaussian width of a set remains unchanged after taking the
convex hull, i.e., w(K) = w(conv(K)), implying an immediate upper bound for the Gaussian
width of the unit `1 ball Bn1 in Rn (Bn1 is the convex hull of the set {±ei, i ≤ n}, where ei is the
i-th unit vector in Rn):

w(Bn1 ) = Emax
i≤n
|(g)i| ≤

√
8 log n, (2.3)

where g ∼ N (0, In).
Indeed, when K is a symmetric convex body centered at origin, then K −K = 2K, so that

(2.2) implies

Ediam(K ∩ E) = 2E sup
u∈K∩E

‖u‖2 ≤
√

8π

m
· 2E sup

u∈K
〈g,u〉 =

√
8π

m
· w′(K). (2.4)

Note that supu∈K−K〈g,u〉 is the distance between two hyperplanes (with normal direction g)
that exactly sandwich K. w′(K) can therefore be interpreted as the average width of K under
the Gaussian measure, which is a geometric attribute of K measuring its complexity. As was
observed in [39], Theorem 2.2 implies the following average relative recovery error estimate in
`1 minimization:

4



Theorem 2.4. Let x∗ be the solution to (1.2), and x0 be an s-sparse signal satisfying Ax0 = b
and ‖x0‖0 = s. Then,

E
‖x∗ − x0‖2
‖x0‖2

.

√
s log n

m
, (2.5)

where a . b means that a ≤ Cb for a universal constant C.

Proof. Let K1 = ‖x0‖1 · Bn1 , where Bn1 is the unit `1 ball in Rn. By definition, ‖x∗‖1 ≤ ‖x0‖1
so that x∗ ∈ K1. Therefore, x∗ − x0 ∈ (K1 −K1) ∩ ker(A). It follows immediately from (2.4)
with K = K1 −K1 and E = ker(A) that

E‖x∗ − x0‖2 ≤
1

2
Ediam(K ∩ E) ≤

√
2π

m
· w′(K)

≤
√

8π

m
· w′(K1) . ‖x0‖1 ·

√
log n

m
. ‖x0‖2 ·

√
s log n

m
,

where the penultimate inequality uses w′(Bn1 ) = 2w(Bn1 ) and (2.3), and the last inequality follows
from ‖x0‖0 ≤ s and the Cauchy-Schwarz inequality. Dividing ‖x0‖2 on both sides finishes the
proof.

Remark 2.5. Taking m & s log n in (2.5) results in a bound on the right-hand side of (2.5),
which, up to logarithmic factors, achieves the desired statement thatmmeasurements can recover
s-sparse signals. Note that the statement in (2.5) is only concerned with the average relative
error. One can go further to obtain a (pathwise) exact recovery result using Gordon Escape
Theorem [39, 32]. However, the ideas from the proof of this result depend on the convex nature
of the problem and are not extensible to non-convex cases, so we do not state it here.

An alternative approach to achieve an exact recovery condition for the `1 minimization prob-
lem is to interpret the kernel of A as a random subspace under the Gaussian assumption of the
measurements and is RIP-free [47]. This method is similar to ideas described above in [39]. In
fact, this RIP-free approach yields nearly all results that can be attained by RIP approaches.
The analysis in [47] is the inspiration for our approach, so we shall summarize its main results.

The first idea is to note that a sufficient condition for A to satisfy the (s, 1)-NSP is given by

inf
0 6=h∈ker(A)

‖h‖1
‖h‖2

> 2
√
s. (2.6)

The condition (2.6) is concerned with the ratio between the `1 and `2 norms in a random subspace
of dimension n − m, which can be analyzed using the tools from high-dimensional geometry.
Indeed, a classical result in geometric functional analysis states that if the measurement A has
iid Gaussian entries, then

inf
06=h∈ker(A)

‖h‖1
‖h‖2

>
c
√
m√

1 + log(n/s)
(2.7)

holds with overwhelming probability, where c is a dimension-free constant [17, 22]. Relations
(2.6) and (2.7) together give a bound on m that is asymptotically equivalent to the classic result
in [6].

A condition similar to (2.6) is given in [47] to guarantee that `1 minimization is stable. A
specialization of the result reads as follows:

Theorem 2.6. Let x̃ be the solution to the following minimization problem:

min ‖x‖1 subject to ‖Ax− b‖2 ≤ ε,

where b := Ax0 + e with ‖e‖2 ≤ ε and ‖x0‖0 ≤ s. Let u and w be the orthogonal projections of
x̃− x0 to ker(A) and ker⊥(A), respectively. If

s =
v2

4

‖u‖21
‖u‖22

5



for some v ∈ (0, 1), then for either p = 1 or p = 2,

‖x̃− x0‖p ≤ 2γp

(
1 +

1 + v
√
2− v2

1− v2

)
‖w‖2,

where γ1 =
√
n and γ2 = 1.

It was also shown in [47] that ‖w‖2 can be further bounded by ε‖R−T ‖2, where R is the
triangular matrix in the QR decomposition of AT . It is worth noting that Theorem 2.6 is not
implied by the RIP results in [6]. In fact, the constants involved in Theorem 2.6 are more
revealing since they are directly related to the sparsity level s rather than the RIP parameters,
which are not invariant under invertible transforms.

3 A local optimality criteria
In this section, we give a sufficient condition for an s-sparse signal x0 to be the local min-

imizer of (1.4) with b := Ax0. Compared to the global optimality condition obtained later in
Section 4, the local optimality condition in this section aids in understanding the behavior of
`1/`2 optimization near x0. This is important in practice since many non-convex algorithms
only have local convergence guarantees. Our local optimality result is signal-dependent but it
offers asymptotically weaker and more interpretable conditions than those in [30]. Our charac-
terization of local optimality depends on the (inverse) dynamic range ρ = ρ(x) of a nontrivial
vector x, defined as

ρ :=
mini∈supp(x) |xi|
maxi∈supp(x) |xi|

=
mini∈supp(x) |xi|

‖x‖∞
(3.1)

Smaller values of ρ indicate larger variation in the magnitude of the extremal nonzero entries
in x0. It was observed in [43] that the performance of `1/`2 improves when the dynamic range
increases. We will also need a quantity κ that is ratio of norm ratios:

κ = κ(x0) :=
‖x0‖1‖x0‖∞
‖x0‖22

=

‖x0‖1
‖x0‖2
‖x0‖2
‖x0‖∞

. (3.2)

The main result is the following:

Theorem 3.1 (Local optimality). Let x0 be a nonzero s-sparse vector (s > 1), and A be a
measurement matrix. Define

c = c(A) := sup
06=h∈ker(A)

‖h‖22
‖h‖21

. (3.3)

Suppose that x0,A are such that

ρ(κ+ 1) ≤ 1

2c
, (3.4)

where ρ = ρ(x0) and κ = κ(x0), and that A satisfies the NSP with parameters (s, 1
2κ+1 ), i.e.,

‖hT ‖1 <
1

2κ+ 1
‖hT{‖1 for every h ∈ ker(A) and T ⊂ [n]s (3.5)

Then x0 is the local minimizer of the constrained `1/`2 objective function with `1 convergence
radius δ = ρ ‖x0‖∞, i.e., for any x ∈ Rn satisfying Ax = Ax0 and ‖x − x0‖1 ≤ δ, then
‖x0‖1/‖x0‖2 < ‖x‖1/‖x‖2.

We prove this theorem later in this section, but first focus on some of its consequences.
Theorem 3 is initially difficult to fully comprehend since the conditions (3.4) and (3.5) not only
depend on the measurement matrixA but also on the sparse vector x0. However, a specialization
is more transparent: A worst-case upper bound for κ results in a local optimality condition that
is uniformly true for all s-sparse vectors.
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Corollary 3.2. Assume s > 6. If A satisfies the NSP with parameters (s, 1√
s+2

), then x0 is a
local minimizer of `1/`2 for all ‖x0‖0 ≤ s.

Proof. Note that for any s-sparse x0,

κ ≤ (
√
s+ 1)

2
, ρ ≤ 1. (3.6)

Indeed, since κ(x0) is invariant under both scaling and permutation, we may assume x0 =
(x1, · · · , xs, 0, · · · , 0)T with x1 ≥ · · · ≥ xs ≥ 0 and ‖x0‖2 = 1. In this case, κ(x0) = x2

1 +
x1(
∑s
i=2 xi) ≤ x2

1+x1

√
(s− 1)(1− x2

1), with equality achieved at x2 = · · · = xs. The maximum
of the right-hand side is (

√
s+ 1)/2 and is attained when x1 = 1/2 + 1/(2

√
s).

Since A satisfies the (s, 1√
s+2

)-NSP, then

‖hT ‖1 <
1√
s+ 2

‖hT{‖1 ∀(h, T ) ∈ ker(A)× [n]s, (3.7)

which combines with (3.6) to establish (3.5). Now we note that if

c ≤ 1√
s+ 3

. (3.8)

is achieved for all s-sparse vectors, then this along with (3.6) implies (3.4). We claim that (3.7)
implies (3.8) for s > 6: Let h ∈ ker(A) and note that (3.7) implies that

‖h‖21 ≥ (
√
s+ 3)2‖hT ‖21, h ∈ ker(A).

For r ∈ N, let Tr be the support of the ((r − 1)s+ 1)-th to the rs-th components of h arranged
in decreasing magnitude. This partition ensures that

‖hTr
‖∞ ≤ min

i∈Tr−1

|hi| ≤
1

s

∑
i∈Tr−1

|hi| =
1

s
‖hTr−1

‖1. (3.9)

Then applying a block-type argument, for s > 6,

‖h‖22 = ‖hT1‖22 +
∑
r≥2

‖hTr‖22 ≤
1

(
√
s+ 3)2

‖h‖21 +
∑
r≥2

‖hTr‖22

(3.9)
≤ 1

(
√
s+ 3)2

‖h‖21 +
∑
r≥2

s∑
i=1

(
‖hTr−1

‖1
s

)2

≤ 1

(
√
s+ 3)2

‖h‖21 +
1

s

∑
r≥1

‖hTr
‖21

=
1

(
√
s+ 3)2

‖h‖21 +
1

s
‖h‖21 ≤

1√
s+ 3

‖h‖21.

We have thus established both (3.4) and (3.5), so that the conclusion of Theorem 3.1 holds.

A similar technique does not, unfortunately, provide a uniform bound on the local conver-
gence radius due to technical issues. Without asking for uniformity of the local convergence
radius, Corollary 3.2 gives an asymptotic weaker condition for local optimality of sparse vec-
tors compared to the result in [30], which requires a stronger NSP with parameters (s, 1

s+1 )
for s ≥ 1. In fact, in many situations of interest, κ is of mild order (which is specified in the
following proposition), suggesting that (3.5) is not as restrictive as in Corollary 3.2.

Proposition 3.3. Suppose that the s nonzero components of x0 are iid with the same distribution
as a scalar centered sub-gaussian random variable X. Then, for sufficiently large s, the following
event holds with probability at least 1− 1/s2:

κ(x0) ≤ C
√
log s,

where C is a constant depending only on the sub-gaussian norm of X/
√
EX2.
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Proof. Since κ is scale-invariant, we may assume that EX2 = 1, i.e., E|X| ≤ 1 and VarX ≤ 1.
Denote the sub-gaussian norm (see Definition 4.2) of X as σX . Applying Hoeffding’s inequality
to ‖x0‖1, Bernstein’s inequality to ‖x0‖22 and the maximal inequality [31, Theorem 1.14] to
‖x0‖∞ yields that for sufficiently large s,

P (‖x0‖1 > 2s) ≤ P (‖x0‖1 − E‖x0‖1 > sE|X|) ≤ 2e−cs ≤ 1/3s2

P
(
‖x0‖22 < s/2

)
≤ P

(
‖x0‖22 − E‖x0‖22 ≤ −sEX2/2

)
≤ 2e−cs ≤ 1/3s2

P
(
‖x0‖∞ > 4σX

√
log s

)
≤ P

(
‖x0 − Ex0‖∞ > 3σX

√
log s

)
≤ 1/3s2,

where c is a constant depending only on σX . It follows from a union bound that

P
(
κ(x0) ≤ 16σX

√
log s

)
≥ 1− 1/s2.

The proof is complete.

We now provide the proof of Theorem 3.1:

Proof of Theorem 3.1. The main idea of the proof is that under condition (3.5), a large propor-
tion of the perturbation of x0 by h ∈ ker(A) will be well-spread outside the support of x0, which
necessarily increases the value of the objective `1/`2.

For any x,y 6= 0, define the ordering x < (�)y as ‖x‖1‖x‖2 ≥ (>)‖y‖1‖y‖2 . For simplicity and
without loss of generality, we assume the nonzero entries of x0 are arranged in order of decreasing
magnitude in the first s components, i.e., that x0 = (x1, · · · , xs, 0, · · · , 0)T ∈ Rn with |x1| ≥
· · · ≥ |xs| > 0. Define δ := ρ‖x0‖∞ = |xs| > 0.

We claim that for any h = (h1, · · · , hn)T ∈ ker(A) with ‖h‖1 ≤ δ, the perturbed vector x
satisfies

x := x0 + h = (x1 + h1, · · · , xs + hs, hs+1, · · · , hn)T � x0,

which would prove the desired result. To show the above relation, we will construct another
vector x′ from x and establish the ordering,

x < x′ < x0. (3.10)

To begin, introduce β =
∑s
i=1 sgn(xi)hi and γ =

∑s
i=1 |hi| , and augment entries 1 and s in x

to obtain

x′ :=

(
x1 + sgn(x1)

γ + β

2
, x2, · · · , xs−1, xs − sgn(xs)

γ − β
2

, hs+1, · · · , hn
)T

.

Note that since |β| ≤ γ, then

‖x′‖1 =

∣∣∣∣x1 + sgn(x1)
γ + β

2

∣∣∣∣+ ∣∣∣∣xs − sgn(xs)
γ − β
2

∣∣∣∣+ s−1∑
j=2

|xj |+
n∑

j=s+1

|hj |

= β +

s∑
j=1

|xj |+
n∑

j=s+1

|hj | =
s∑
j=1

|xj |+ sgn(xj)hj +

n∑
j=s+1

|hj |

=

s∑
j=1

|xj + hi|+
n∑

j=s+1

|hj | = ‖x‖1, (3.11)

where the penultimate equality uses the fact that the assumption ‖h‖1 ≤ δ implies |hi| ≤ |xi|
for i = 1, . . . , s. To show that ‖x′‖2 ≥ ‖x‖2, we express the difference of their squares as

‖x′‖22−‖x‖22 = (γ + β)|x1| − (γ − β)|xs| − 2

s∑
i=1

sgn(xihi)|xi‖hi|︸ ︷︷ ︸
(A)

+
1

2
(γ2 + β2)−

s∑
i=1

h2
i︸ ︷︷ ︸

(B)

(3.12a)
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Term (A) satisfies

(A) = 2
∑

sgn(xihi)=1

(|x1| − |xi|)|hi|+ 2
∑

sgn(xihi)=−1

(|xi| − |xs|)|hi| ≥ 0, (3.12b)

and term (B)

(B) =
1

2

2

s∑
i=1

h2
i + 2

∑
1≤i<j≤s

(|hi‖hj | − sgn(xixj)hihj)

− s∑
i=1

h2
i

=
∑

1≤i<j≤s

(|hi‖hj | − sgn(xixj)hihj) ≥ 0. (3.12c)

Relations (3.11) and (3.12) establish the upper ordering in (3.10). To show the lower ordering,
we first note that Taylor’s Theorem applied to the function y 7→ √y along with that function’s
concavity implies that for any β > 0:√

‖x0‖22 + β ≤ ‖x0‖2 +
1

2‖x0‖2
β. (3.13)

Now we directly compare the `1/`2 norms of x0 and x′:

‖x′‖1
‖x′‖2

=
‖x0‖1 + β +

∑n
i=s+1 |hi|√

‖x0‖22 + (γ + β)|x1| − (γ − β)|xs|+ 1
2 (γ

2 + β2) +
∑n
i=s+1 h

2
i

|β|≤γ
≥

‖x0‖1 − γ +
∑n
i=s+1 |hi|√

‖x0‖22 + 2γ|x1|+ γ2 + ‖h‖22
(3.13)
≥

‖x0‖1 − γ +
∑n
i=s+1 |hi|

‖x0‖2 + 1
2‖x0‖2 (2γ|x1|+ γ2 + ‖h‖22)

(3.5),(3.1),(3.3)
>

‖x0‖1 + 2κ
2κ+2‖h‖1

‖x0‖2 + 1
2‖x0‖2 (

2
2κ+2‖x0‖∞‖h‖1 + ρ

(2κ+2)2 ‖x‖∞‖h‖1 + cρ‖x‖∞‖h‖1)

≥ min

(
‖x0‖1
‖x0‖2

,
4κ

2κ+2
2

2κ+2 + ρ
(2κ+2)2 + cρ

‖x0‖2
‖x0‖∞

)
(3.2)
≥ min

(
1,

4
2κ+2

2
2κ+2 + ρ

(2κ+2)2 + cρ

)
‖x0‖1
‖x0‖2

(3.4)
=
‖x0‖1
‖x0‖2

.

We have thus established the lower relation in (3.10) and the proof is complete.

Remark 3.4. From Theorem 3.1, we notice that (3.4) is automatically satisfied if ρ < 1/(
√
s+3).

This suggests that the local optimality criteria is more likely to hold for vectors with a larger
dynamic range, which is a possible explanation for why large dynamic range aids in the numerical
performance of `1/`2 algorithms [43]. We will also numerically investigate this in Section 6.

Remark 3.5. It is possible to derive a sufficient and necessary condition for an s-sparse solution
x0 to be a local minimum by taking directional derivatives, which is the approach taken in [30].
Without loss of generality we assume that ‖x0‖2 = 1. For h ∈ ker(A), consider the function
Lh(t) = ‖x0 + th‖1/‖x0 + th‖2, t ≥ 0. x0 is a local minimizer of the `1/`2 minimization subject
to Ax = Ax0 if and only if L′h(0) ≥ 0 for all h ∈ ker(A), and this is equivalent to the following
condition:

‖hS{‖1 ≥ 〈(‖x0‖1(x0)S − sgn((x0)S),hS〉 ∀0 6= h ∈ ker(A),
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where S is the support of x0. An unconditional upper bound on the right-hand side (independent
of x0) is (

√
s+ 1)‖hS‖1, from which one can deduce that the NSP with parameters (s, 1√

s+1
) is

sufficient to guarantee the uniform local optimality of s-sparse signals. This implies the uniform
local optimality result in Corollary 3.2. However, the NSP condition is not tight since the
equality cannot be attained, i.e., 〈sgn((x0)S),hS〉 = ‖hS‖1 implies 〈‖x0‖1(x0)S ,hS〉 < 0. As an
alternative, Theorem 3.1 makes an attempt to understand the local optimality of a given sparse
signal based on signal-dependent structure.

4 A sufficient condition for exact recovery
In this section, we propose a sufficient condition that guarantees the uniform exact recovery

for sparse vectors using `1/`2. As we will see, the condition to be obtained will hold with
overwhelming probability for a large class of sub-gaussian random matrices. Since our approach
for deriving this recoverability condition applies to other situations as well, we consider the
following problem which is slightly more general than (1.4): For 0 < q ≤ 1 fixed, consider the
optimization

min
‖x‖q
‖x‖2

subject to Ax = b. (4.1)

We will refer to (4.1) as the `q/`2 minimization problem. The problem (4.1) is equivalent to (1.4)
when q = 1. Clearly, (4.1) recovers all s-sparse vectors if and only if for any nonzero h ∈ ker(A)
and x0 with ‖x0‖0 ≤ s,

‖x0‖qq
‖x0‖q2

<
‖x0 + h‖qq
‖x0 + h‖q2

. (4.2)

We will now directly work with (4.2) to find a sufficient condition establishing this property.
As we will see, the condition to be obtained from our analysis is strictly sufficient and stronger
than the NSP assumption used in the-state-of-art `q recovery (in particular with q = 1). This
is mainly due to the technical difficulty in analyzing the ratio form in a uniform way. The main
exact recovery result is as follows.

Theorem 4.1 (Uniform recoverability). If, for some s ∈ N, the matrix A satisfies

inf
h∈ker(A)\{0}

‖h‖q
‖h‖2

> 31/qs1/q−1/2. (4.3)

then (4.2) holds, establishing exact recovery for the optimization (4.1).

Condition (4.3) should be compared to (2.6) in Section 2. When q = 1, the right-hand side
of (4.3) is 3

√
s, which is slightly larger (worse) than 2

√
s in (2.6). When A is Gaussian, (2.7)

ensures that (4.3) is satisfied with overwhelming probability provided that m behaves linearly
in s (up to a logarithmic factor). The next theorem generalizes (2.7) to the class of isotropic
sub-gaussian matrices, but with a slightly worse logarithmic factor. For convenience, we first
recall the definition of sub-gaussian and isotropic vectors.

Definition 4.2 (Sub-gaussian random vectors). A random vector X ∈ Rn is said to be sub-
gaussian if its one-dimensional marginal aTX is sub-gaussian for all a ∈ Rn. In other words,
X is sub-gaussian if ‖aTX‖Ψ2

:= inf{t > 0,E[e|aTX|2/t2 ] ≤ 2} < ∞ for all a ∈ Rn, where the
sub-gaussian norm ‖ · ‖Ψ2

of X is defined as

‖X‖Ψ2
= sup
‖a‖2=1

‖aTX‖Ψ2
.

If X is standard normal, all of its marginals are standard normal in 1D, therefore ‖X‖Ψ2 =
‖N (0, 1)‖Ψ2 .
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Definition 4.3 (Isotropic random vectors). A random vector X ∈ Rn is said to be isotropic if
E[XXT ] = In, where In is the identity matrix.

Theorem 4.4 (Uniform recoverability for sub-gaussian matrices). Let A ∈ Rm×n be a random
matrix whose rows are independent, isotropic and sub-gaussian random vectors in Rn. Suppose
that s satisfies,

m

s
> DF 4u log n, (4.4)

where F is the maximum sub-gaussian norm of rows of A, u ≥ 1, and D is an absolute constant.
Then, for q = 1, (4.3) holds with probability at least 1− 2e−u.

The class of sub-gaussian random matrices considered in Theorem 4.4 is general enough for
practical purposes: Gaussian, symmetric Bernoulli, and many other random matrices whose en-
tries are sampled from bounded distributions with appropriate centralization and normalization
fall into this realm.

We now provide the proof of Theorem 4.1.

Proof of Theorem 4.1. To find a sufficient condition only, we may require the left-hand side of
(4.2) to be smaller than a quantity which is unconditionally smaller than the right-hand side of
(4.2). First recall the q-triangle inequality, which states that for 0 < q ≤ 1,

‖x1 + x2‖qq ≤ ‖x1‖qq + ‖x2‖qq, ∀x1,x2 ∈ Rn.

Fix an x0 such that ‖x0‖0 ≤ s, and let S ⊂ [n] denote the support of x0. The right-hand side
of (4.2) satisfies

‖x0 + h‖qq
‖x0 + h‖q2

≥
‖(x0 + h)S‖qq + ‖hS{‖qq

(‖x0‖2 + ‖h‖2)q

≥
‖x0‖qq + ‖hS{‖qq − ‖hS‖qq

‖x0‖q2 + ‖h‖
q
2

, (4.5)

where for the first inequality we used ‖x0+h‖2 ≤ ‖x0‖2+‖h‖2, and for the second inequality, we
used the q-triangle inequality for the numerator, ‖(x0 + h)S‖qq ≥ ‖x0‖qq − ‖hS‖qq, and concavity
of y 7→ yq for the denominator, (‖x0‖2 + ‖h‖2)q ≤ ‖x0‖q2 + ‖h‖

q
2. Continuing, we have

‖x0‖qq + ‖hS{‖qq − ‖hS‖qq
‖x0‖q2 + ‖h‖

q
2

≥ min

{‖x0‖qq
‖x0‖q2

,
‖hS{‖qq − ‖hS‖qq

‖h‖q2

}
= min

{‖x0‖qq
‖x0‖q2

,
‖h‖qq − 2‖hS‖qq

‖h‖q2

}
for all nonzero h ∈ ker(A). Thus, we have established that

‖x0 + h‖qq
‖x0 + h‖q2

≥ min

{‖x0‖qq
‖x0‖q2

,
‖h‖qq − 2‖hS‖qq

‖h‖q2

}
, (4.6a)

where equality holds if and only if ‖x0‖qq
‖x0‖q2

=
‖h‖qq−2‖hS‖qq

‖h‖q2
. Now by the generalized Hölder’s

inequality, we have

s1−q/2 ≥
‖x0‖qq
‖x0‖q2

(4.6b)

which is a sharp estimate since we consider a general s-sparse x0. Therefore the conditions (4.6)
in tandem with

‖h‖qq − 2‖hS‖qq
‖h‖q2

> s1−q/2. (4.7)
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are sufficient to conclude Theorem 4.1. In order to prove (4.7), we note that under assumption
(4.3) then

‖h‖qq
‖h‖q2

(4.3)
> 3s1−q/2

(4.6b)
≥ s1−q/2 + 2

‖hS‖qq
‖hS‖q2

≥ s1−q/2 + 2
‖hS‖qq
‖h‖q2

,

where the second inequality uses the generalized Hölder inequality (4.6b) for the s-sparse vector
hS . This inequality is equivalent to (4.7), proving Theorem 4.1.

Remark 4.5. In the derivation above, the condition (4.7) is very different from (4.2). Since
(4.7) is scale-invariant, it holds for all h ∈ ker(A) if and only if it holds for h ∈ ker(A) ∩ K,
where K is any 0-starshaped set in Rn. E.g., K can be the unit ball in `q. However, for (4.2),
it is generally not true that ‖x0‖q/‖x0‖2 < ‖x0 +h‖q/‖x0 +h‖2 implies the same inequality for
h replaced by th, t ∈ R\{0}. This suggests that (4.7) is strictly stronger than (4.2).

Next we give the proof for Theorem 4.4, based on a matrix deviation inequality inspired by
[40].

Proof. Under the assumption of Theorem 4.4, it follows from [40, Exercise 9.13] that for any
bounded T ⊂ Rn and u > 0, with probability at least 1− 2e−u

2

,

sup
x∈T

∥∥∥∥|Ax‖2 −
√
m‖x‖2

∣∣∣∣ ≤ cF 2(γ(T ) + u · rad(T )), (4.8)

where

γ(T ) := E sup
x∈K
|〈g,x〉|

is a variant of the Gaussian width w(T ) from Definition 2.3, rad(T ) is the radius of T , c is some
absolute constant, and F = maxi ‖Ai‖ψ2

with Ai the i-th row of A.
Take T = ker(A) ∩Bn1 . In this case, T is symmetric with respect to the origin, so we have

γ(T ) = w(T ) ≤ w(Bn1 )
(2.3)
≤
√

8 log n < 2
√
π log n,

rad(T ) =
1

2
diam(T ) ≤

√
2π

2
w(T )

(2.3)
≤ 2

√
π log n.

Using these in (4.8), we have the following inequality with probability at least 1− 2e−u
2

:

sup
x∈ker(A)∩Bn

1

‖x‖2 ≤ 2cF 2
√
π (1 + u)

√
log n

m
≤ 4cF 2

√
πu

√
log n

m
, (4.9)

where the last inequality uses u ≥ 1. Thus, with probability at least 1− 2e−u
2

,

inf
h∈ker(A)\{0}

‖h‖1
‖h‖2

(4.9)
≥ 1

4cF 2
√
πu

√
m

log n

(4.4)
> 3
√
s,

where we have taken D = 144πc2 in our use of (4.4). Renaming u2 by u leads to the final
inequality (4.3).

Remark 4.6. Theorem 4.4 only shows that (4.3) is satisfied with high probability for isotropic
subgaussian matrices when q = 1. It is interesting to know if the same holds true for all q < 1
and if the corresponding constant will get better. The answer to this question is not completely
known to us, but there is some evidence that it might be true. Indeed, for fixed q ≤ 1, if A
satisfies

inf
x∈ker(A)\{0}

‖x‖q
‖x‖2

≥ c1/qq

(
m

log(n/m) + 1

)1/q−1/2

(4.10)
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for some cq > 0, then

m ≥
(cq
3

)1−q/2
s log n

is sufficient for (4.3). The right-hand side of (4.10) is closely related to the Gelfand’s widths of
`p balls, see [16]. Assuming that A is a Gaussian random matrix and n ≥ m2, a result in [12]
states that there exists cq > 0 such that (4.10) is satisfied with probability approaching 1 as
n→∞. However, it is not clear whether the best attainable cq in (4.10) ensures (cq/3)1−q/2 as
a decreasing function in q.

5 Robustness analysis
In this section, we discuss the robustness of `1/`2 minimization when noise is present. As

in other compressed sensing results, we assume that b is contaminated by some noise e: b =
Ax0 + e ∈ Rm, where x0 is a sparse vector. If the size (say the `2 norm) of e is bounded by an
a priori known quantity ε, then the `1/`2 denoising problem can be stated as

min
‖x‖1
‖x‖2

subject to ‖Ax− b‖2 ≤ ε. (5.1)

Let x∗ be a minimizer of (5.1). Then ‖Ax∗ −Ax0‖2 ≤ 2ε, and necessarily,

‖x∗‖1
‖x∗‖2

≤ ‖x0‖1
‖x0‖2

≤
√
s. (5.2)

This inequality will play an important role in our following discussion. Since `1/`2 is scale-
invariant, it would be difficult to distinguish x∗ from x0 when x∗ is nearly parallel to x0 with
similar magnitude. This behavior is quantified in our main robustness result:

Theorem 5.1 (Robustness). Let x0 ∈ Rn be an s-sparse vector and x∗ be a minimizer of (5.1).
Let x∗ − x0 = u+w with 〈u,w〉 = 0 and assume that

β := 4
√
2s
‖u‖2
‖u‖1

< 1. (5.3)

Let α ∈ (β, 1) be any number. The following holds:

• If both of the conditions

〈x0,x
∗〉 ≥ (1− α2/2)‖x0‖2‖x∗‖2, (5.4a)

‖x0‖2 ≤ ‖x∗‖2 ≤ (1 + α)‖x0‖2, (5.4b)

hold, then

‖x∗ − x0‖2 ≤ 2
√
α‖x0‖2. (5.5)

• If at least one of (5.4) is violated, then

‖x∗ − x0‖p ≤
2α− β
α− β

‖w‖p, (5.6)

for either p = 1 or p = 2.

We provide some intuitive interpretation of the results in Theorem 5.1. The conditions
(5.4) codify the regime when suboptimal behavior of `1/`2 optimization is expected due to a
confounding geometric positions of x∗ and x0. If (5.4) is violated, then x∗ either points to a
different direction than x0 or has a different magnitude. In either case, it can be shown that
‖x∗ − x0‖1/‖x∗ − x0‖2 is reasonably small. This combined with the orthogonal decomposition
x∗ − x0 = u+w and the fact that u has large `1/`2 ratio implies that ‖u‖ � ‖w‖ under some
appropriate norm. This gives an informal justification for (5.6). Note that (5.6) provides an
upper bound on ‖x∗ − x0‖2 relative to ‖w‖1 regardless of the value of p since ‖ · ‖2 ≤ ‖ · ‖1. We
demonstrate the utility of Theorem 5.1 by showing how it can be used to show the robustness
of (5.1).
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Corollary 5.2. Let A ∈ Rm×n be an isotropic sub-gaussian random matrix, and let x∗ be a
solution to (5.1). Let α ∈ (0, 1) be such that for some u > log 5,

n

4
+ 1 ≥ m ≥ K u

α2
s log n (5.7)

where K is a constant depending only the sub-gaussian distribution of A. Then with probability
exceeding 1 − 5e−cu, for all s-sparse vectors x0 ∈ Rn, at least one of the following is true: (i)
(5.5) is true, or (ii)

‖x∗ − x0‖p ≤ Cpε, (5.8)

is true for either p = 1 or p = 2, where C1 =
√
nC2, and c, C2 are constants depending only on

the sub-gaussian distribution of A.

Proof. Decompose x∗ − x0 = u +w with u ∈ ker(A) and w ∈ ker(A)⊥. By assumption (5.7),
we can apply Theorem 4.4 to conclude that with probability at least 1− 2e−u, we have

‖u‖1
‖u‖2

≥ 8
√
2s

α
=⇒ β

α
≤ 1

2
, (5.9)

with β as in (5.3). Note in particular that this implies β < 1. We can now apply Theorem 5.1,
so that either (5.5) holds (as desired) or (5.6) holds. We now investigate (5.6):

‖x− x0‖p ≤
2α− β
α− β

‖w‖p
(5.9)
≤ 3‖w‖p, (5.10)

for either p = 1 or p = 2. In order to compute bounds for ‖w‖p, we appeal to a well-known
result on the lower bound of the singular value of sub-gaussian random matrices: Theorem 1.1
in [33] shows that the smallest nonzero singular value σmin(A) of A is bounded below by some
positive constant with high probability. More precisely,

P

(
σn(A) ≥ 0.5C

(
1−

√
m− 1

n

))
≥ 1− e−cn − 2−n−m+1 ≥ 1− 3e−c1n, (5.11)

where c, c1, C > 0 are absolute constants only depending on the sub-gaussian distribution of A.
Since u < n (otherwise (5.7) implies more measurements than unknowns), then the events (5.11)
and (5.9) occur simultaneously with probability at least 1 − 5e−cu for some constant c. Under
this simultaneous event, with A† the Moore-Penrose pseudoinverse of A, then

‖w‖2 = ‖Projker(A)(x0 − x∗)‖2 = ‖A†A(x0 − x∗)‖2 ≤ ‖A†‖2‖A(x0 − x∗)‖2

≤ 2εσmin(A) ≤ 4C−1

(
1−

√
m− 1

n

)−1

ε ≤ 8C−1ε.

holds with the probability on the right-hand side of (5.11). Using this in (5.10) with p = 2 yields
(5.8). To show the p = 1 result, we first use the inequality ‖w‖1 ≤

√
n‖w‖2 in (5.10), which

yields (5.8) with p = 1. Note that this
√
n factor is sharp when A is a Gaussian random matrix,

cf. Theorem 2.1.

Note that both bounds (5.5) and (5.8) are comparable if one can choose α . ε2, but this
unfortunately makes (5.7) quite restrictive. Similar issue also rises in the analysis of the `1
minimization in Theorem 2.4. Note also that (5.8) is consistent with the result in Theorem 2.6.

Now we provide the proof of Theorem 5.1:

Proof of Theorem 5.1. If both conditions (5.4) hold, then

‖x∗ − x0‖22 = ‖x∗‖22 + ‖x0‖22 − 2〈x∗,x0〉

≤ (1 + (1 + α)2)‖x0‖22 − 2

(
1− α2

2

)
‖x0‖22 ≤ 4α‖x0‖22,
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where the last inequality uses α2 < α for 0 < α < 1. Thus, we now restrict our attention to when
(5.4) do not hold simultaneously; the goal in this case is to compute upper and lower bounds for
‖x∗−x0‖1/‖x∗−x0‖2, with the intuition for the upper bound being motivated by (5.2). In the
sequel, we denote the violation of (5.4a) or (5.4b) as (5.4a){ and (5.4b){, respectively. When
(5.4) is violated, our desired upper bound will take the form

‖x∗ − x0‖1
‖x∗ − x0‖2

≤ 4
√
s

α
. (5.12)

To show this, suppose first that (5.4a) is violated, then

‖x∗ − x0‖1
‖x∗ − x0‖2

≤ ‖x∗‖1 + ‖x0‖1√
‖x∗‖22 + ‖x0‖22 − 2〈x∗,x0〉

(5.4a){

≤ ‖x∗‖1 + ‖x0‖1√
α2

2 (‖x∗‖22 + ‖x0‖22)

≤ 2

α
· ‖x

∗‖1 + ‖x0‖1
‖x∗‖2 + ‖x0‖2

≤ 2

α
· ‖x0‖1
‖x0‖2

(5.2)
≤ 2

α

√
s ≤ 4

√
s

α
,

which is the desired inequality (5.12). A violation of the lower condition in (5.4b) in addition
to (5.2) implies ‖x∗‖1 ≤ ‖x0‖1. We therefore split the case when (5.4b) is violated into two
dichotomous sub-cases.

1. (5.4b){, case 1: ‖x∗‖1 ≤ ‖x0‖1. Let S be the support of x0. The following inequality is
true:

‖x0‖1 ≥ ‖x∗‖1 = ‖x0 + (x∗ − x0)‖1 = ‖(x0 + (x∗ − x0))S‖1 + ‖x∗S{‖1
≥ ‖x0‖1 − ‖(x∗ − x0)S‖1 + ‖x∗S{‖1,

so that we must have ‖x∗
S{‖1 ≤ ‖(x∗ − x0)S‖1. Therefore, the Cauchy-Schwarz inequality

implies

‖x∗ − x0‖1
‖x∗ − x0‖2

≤
√
2 ·
‖(x∗ − x0)S‖1 + ‖x∗S{‖1
‖(x∗ − x0)S‖2 + ‖x∗S{‖2

≤
√
8 · ‖(x

∗ − x0)S‖1
‖(x∗ − x0)S‖2

≤
√
8s ≤ 4

√
s

α
,

which is the desired inequality (5.12).

2. (5.4b){, case 2: ‖x∗‖1 > ‖x0‖1 and ‖x∗‖2 > (1 + α)‖x0‖2. The condition ‖x∗‖1 > ‖x0‖1
and (5.2) together imply ‖x∗‖2 > ‖x0‖2. With this, we have

‖x∗ − x0‖1
‖x∗ − x0‖2

≤ ‖x0‖1 + ‖x∗‖1
‖x∗‖2 − ‖x0‖2

≤ α+ 1

α
· ‖x0‖1 + ‖x∗‖1

‖x∗‖2

≤ α+ 1

α

(
‖x0‖1
‖x0‖2

+
‖x∗‖1
‖x∗‖2

)
≤
(
2 +

2

α

)√
s ≤ 4

√
s

α
,

where the last inequality uses the fact that α < 1.

When (5.4) is violated, we have established (5.12). We now begin the main part of the proof:
decompose x = u+w as in the assumption. If ‖u‖p ≤ ‖w‖p for either p = 1, 2, then

‖x0 − x∗‖p ≤ ‖u‖p + ‖w‖p ≤ 2‖w‖p ≤
2− β
1− β

‖w‖p,
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for any β ∈ (0, 1), proving (5.6). Therefore, we can assume ‖u‖p > ‖w‖p for both p = 1, 2. In
this case,

‖x∗ − x0‖1
‖x∗ − x0‖2

≥ ‖u‖1 − ‖w‖1√
‖u‖22 + ‖w‖22

≥
1− ‖w‖1‖u‖1√
1 +

‖w‖22
‖u‖22

· ‖u‖1
‖u‖2

≥ h(v) ‖u‖1
‖u‖2

,

where

h(v) :=
1− v√
1 + v2

, v := max

{
‖w‖1
‖u‖1

,
‖w‖2
‖u‖2

}
. (5.13)

If h(v) ‖u‖1‖u‖2 >
4
√
s

α , then this contradicts (5.12), so that (5.4) must hold, showing (5.5). Therefore

it only remains to consider when h(v) ‖u‖1‖u‖2 ≤
4
√
s

α . Since h(v) ≥ 1√
2
(1− v) for v > 0, then

β

α
√
2
=

4
√
s

α

‖u‖2
‖u‖1

≥ h(v) ≥ 1√
2
(1− v),

showing that v ≥ 1 − β
α . Thus, if p = 1 or 2 corresponds to whichever norm maximizes (5.13),

then

‖u‖p = v−1‖w‖p ≤ (1− β/α)−1 ‖w‖p

If we add ‖w‖p to both sides and apply the triangle inequality to the left-hand side, we obtain
the desired result (5.6).

Remark 5.3. The discussion above splits into two cases based on the conditions 〈x0,x
∗〉 ≥

(1 − α2/2)‖x0‖2‖x∗‖2 and ‖x0‖2 ≤ ‖x∗‖2 ≤ (1 + α)‖x0‖2. This would be unnecessary if one
can show that ‖x∗ − x0‖1/‖x∗ − x0‖2 is bounded by some universal constant (independent of n
and x∗) times

√
s. Even though there is strong intuition that this is correct, a proof is currently

elusive.

6 Numerical experiments
In this section, we present several numerical simulations to complement our previous theo-

retical investigation. All the results in this section are repeatable on a standard laptop installed
with R [29]. For simplicity, we will restrict to the noiseless case. The noisy case can be carried
out similarly by tuning the parameter of the penalty term arising from the constraint. Since
`1/`2 minimization problems are non-convex, our algorithms solve the problem approximately.
In particular, we utilize the algorithms from [43], which is essentially the Inverse Power Method
[19] with an extra augmented quadratic term in x-update. For completeness, we briefly explain
how the algorithm works: It was observed in [43] that subject to Ax = b, minimizing ‖x‖1/‖x‖2
is equivalent to minimizing ‖x‖1 − α‖x‖2 for some α ∈ [1,

√
n], where α is some case-dependent

parameter. Since the true value of α is unknown, one can start with an initial guess and update
it using a bisection search. At iteration k, a full bisection search requires solving a minimization
problem of the form minAx=b ‖x‖1 − α(k)‖x‖2 and the minimizer will be used to update α(k).
To accelerate, an adaptive algorithm based on the difference of convex functions algorithm (see
[36]) was proposed in [43] by replacing α(k)‖x‖2 by its linearization at the previous iterate x(k−1)

with an additional regularization term scaled by a tunable parameter β. Given an initialization
x(0) and α(0), the alternating algorithm can be summarized as follows:x(k+1) = argminAx=b

{
‖x‖1 − α(k)

‖x(k)‖2
〈x,x(k)〉+ β

2 ‖x− x(k)‖22
}

α(k+1) = ‖x(k+1)‖1
‖x(k+1)‖2

.

The x-subproblem can be efficiently solved using the Alternating Direction Method of Multipliers
(ADMM), see [4]. It was shown in [43] that small regularization parameters β tend to yield better
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local decay rate. In our simulations we use β = 0.5. A choice for the penalty parameter ρ in the
ADMM algorithm (not shown above) is slightly more tricky. In our experiment we choose ρ = 20,
but other kinds of simulations may require tuning for a different value of ρ. We emphasize that
the lack of certainty about the choice of these parameters is a drawback of the algorithms in
general, and is not introduced by our implementation or choice of application. Since ADMM is
a relaxation scheme, it can only approximately solve the original problem, resulting in a solution
vector upon termination many of whose components have small magnitude. To increase the
stability of the algorithm, a box constraint based on prior information will be incorporated, and
the details will be specified later.

6.1 Initialization and support selection
A common issue in solving non-convex optimization problems is that algorithms may become

trapped at local minimizers. This phenomenon is particularly worrying in our case. Indeed, due
to the scale-invariant structure, the objective function `1/`2 may have infinitely many local
minimizers in the feasible set. As a result, global convergence of the above algorithm depends on
a good initialization. A natural choice would be the `1 minimizer or the first a few steps of the
iterative reweighted least squares (IRLS) solving `0, see [15], [10] and [24]. The intuition of these
choices is that the `1 (or `q if IRLS is used) minimizer is not too far from x0, and x0 is one of the
minimizers of `1/`2. Therefore, success of the above algorithm under such initialization heavily
relies on the ‘approximate’ success of the `1 minimization. This observation will be numerically
verified later. To overcome the strong dependence on the `1 (`q) minimization, we will propose
a novel initialization approach based on a support selection process to make the algorithm less
reliant on the `1 minimizer and leads to improved results.

We propose to initialize x(0) in a way that utilizes the information of the support of x0.
Unfortunately, the support of x0 is generally unknown. As a substitute, one can use the support
of the recovered solution from other algorithms. Here we will interpret the support of the `1
minimizer as near-oracle identification of the support of x0. Indeed the theoretical uniform
recoverability of `1 minimization makes it superior to most greedy algorithms, and algorithmic
implementations of `1 minimization have better convergence guarantees than many other non-
convex algorithms. For a fixed sparsity s, we first compute the best s-term approximation of
the `1 minimizer, which we denote by xs. Instead of using xs directly for initialization, we
will consider each element of the support separately. For every i ∈ supp(xs), we consider the
initialization x(0) as defined by a vector whose i-th component is 〈b,ai〉/‖ai‖22 and the other
components are 0, where ai is the i-th column vector of A. The idea behind this is to counteract
the influence of incorrectly detected components in the support on the correctly detected support.
One may also view this as a way to mitigate algorithm failure (see [30]) via multi-initialization.
In total, one needs to solve s subproblems of `1/`2 minimization and choose the solution that
gives the smallest `1/`2 value. Thus, the computational complexity will be s times more than
that of solving a single `1/`2 minimization problem. This increased cost can be mitigated via
parallel computing since the subproblems are embarrassingly parallel. We will call the `1/`2
algorithm with this proposed initialization “`1/`2+SS", where SS stands for support selection.
In fact, this multi-initialization approach is also applicable to other iterative algorithms.

6.2 `1/`2 simulation particulars
In the simulation below, we choose the measurement matrix A to be a 50 × 250 Gaussian

random matrix with iid standard normal entries. s is the sparsity level of generated vectors
x0. For each fixed value of s, we generate x0 by randomly choosing s of its components to be
nonzero. The nonzero components are independently drawn from distributions with different
dynamic range: Uniform([−10, 10]) and Uniform([−10, 5] ∪ [5, 10]).

An additional box constraint ‖x‖∞ ≤ 10 based on this prior information on magnitude of
entries is computationally imposed during iterations to solve the `1/`2 problem in both cases.
Note that this extra constraint does not change the problem if x0 is the global minimizer. If
x0 is not the global minimizer, the box constraint will disallow solution vectors with erroneous
large magnitude, making the algorithm more stable in practice.
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To detect exact recovery, we will use a slightly different criteria than the commonly used
relative error threshold in other literature. We say that a computed solution x recovers x0 if
the support of the best 50-term approximation of x under the `1 norm contains the support of
x0. Indeed, in this case x0 can be easily reconstructed by solving Ax = b with A’s columns
restricted to the support of the 50 largest components of x. The reason for this criteria is due
to computational reasons. Based on our choice of regularization and relaxation parameters, the
computational error of `1/`2 cannot be made as small as many other algorithms with known
convergence guarantees.

6.3 List of algorithms
Now we compare the `1/`2+SS algorithm (l1/l2+SS) described above with the box constraint

against the following popular non-convex (and `1) methods in sparse recovery:

• `1 minimization (l1): The box constraint is included for consistency in comparison. We
will use the linear programming package lpSolve ([1]) in R to solve it.

• Reweighted `1 minimization (RWl1+l1): The box constraint is included for consistency in
comparison. We will use the algorithm in Section 2.2 of [7] to solve it, with the regular-
ization parameter ε = 0.1. The initialization is set as the `1 minimizer.

• `1/2 + `1 minimization (l1/2+l1): We will use the IRLS algorithm in [15] to solve it. (We
do not use the improved versions in [10] or [24] as they require knowledge on the NSP/RIP
of A, which is hard to compute in practice. For technical reasons, we are not able to
incorporate the box constraint in this case.) The initialization is set as the `1 minimizer.

• `1/2+SS minimization (l1/2+SS): This is the same as the above `1/2 algorithm but initial-
ized with the additional support selection process introduced above.

• `1− `2 minimization (l1-l2+l1): The box constraint is included for consistency in compar-
ison. We will use the algorithm in [45] to solve it. The Lasso penalty parameter and the
ADMM penalty parameter are chosen to be 0.01 and 100, respectively. The stopping rules
are the same as the one proposed in [45]. The initialization is set as the `1 minimizer.

• `1/`2 + `1 minimization (l1/l2+l1): The box constraint is included for consistency in com-
parison. We use the adaptive algorithm in [43] to solve it with the `1 initialization.

• Orthogonal Marching Pursuit (OMP): We use the OMP algorithm in [38]. The stopping
criterion is either the length of the residual falls below 10−8 or the size of the detected
support exceeds the total number of measurements, which in our case equals 50.

• Compressive Sampling Marching Pursuit (CoSaMP): We use the CoSaMP algorithm in
[27]. The stopping criterion is either the length of the residual falls below 10−8 or the total
iteration step exceeds 100. The use of the maximal iteration step in the halting rule is
due to that convergence of the CoSaMP is guaranteed if the measurement matrix satisfies
certain RIP conditions [34]. When sparsity gets larger, the required RIP condition is no
longer valid thus the algorithm may not converge.

The sparsity s ranges from 6 to 24 by increments of 2, and for each s we perform 100 inde-
pendent experiments with the average recovery rates and relative error recorded. The complete
average comparison simulation is run 100 times with the quantiles plotted to demonstrate the
uncertainty in the simulation. The quantile levels are chosen as 0.2-0.5-0.8 for each method. The
results are given below.

To compare the scalability of the algorithms, we compute the average processing time of
each algorithm applied to signals of varying length. The range of length of the signal n is chosen
between 26 and 212, increasing by a multiple constant 2 at a time. The number of measurements
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Figure 1: 0.2-0.5-0.8 quantile band for the average recovery rate: Left: Uniform([−10, 10])
coefficients. Right: Uniform([−10,−5] ∪ [5, 10]) coefficients.

m is set as m = n/4, and the sparsity level s is set as s = m/4. The components in the
support of the signal are uniformly generated from [−10, 10]. For each algorithm, its average
processing time is computed as the average time of running 10 independent samples. Since
the support selection procedure is algorithmically equivalent to applying a single-initialization
algorithm s times, its average processing time is taken as s multiplied by the time for the same
algorithm without support selection. The results are given in Figure 2. Many of the algorithms
exhibit similar asymptotic computational complexity, although CoSaMP, l1-l2+l1, and l1/l2+l1
have slightly better complexity. The computational cost for the support selection procedures is
higher than most of the rest, but the asymptotic complexity is similar.
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Figure 2: Average processing time of the algorithms applied to signals of different length. Both
the x and y axis are plotted using the logarithm with based 10.

6.4 Simulation results
It can be seen from Figure 1 that for both types of coefficients, `1/`2 with the box constraint

and SS-initialization has the best performance among all non-convex optimization methods under
comparison. `1/2 also performs fairly well but is slightly inferior to `1/`2. This is no surprise
since `1/`2 utilizes the box constraint which is absent in the `1/2 algorithm. On the other hand,
by taking the SS-initialization, the recovery rate of `1/`2 has significantly improved compared
to a similar step taken for `q. This implies that `1/`2 is more sensitive to the initial value and
the multi-initialization step enhances the success rate of the algorithm. By comparing the left-
and right-hand panels in Figure 1, it is easy to observe that all the methods under comparison
perform better when the dynamic range of the coefficients is large. This phenomenon can be
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well explained for reweighted `1 and `q, in which a reweighting step is used to reduce the bias
between `q (0 < q ≤ 1) and `0. However, for `1/`2, this is not well understood. We provide some
theoretical evidence in Theorem 3 for this behavior in terms of the local optimality condition;
nevertheless, a complete understanding of this is still absent.

It can be seen from Figure 2 that based on our choice of algorithms, `1/`2 with single
initialization demonstrates a reasonable computational time asymptotically. It is more expensive
than the greedy algorithms and `1, of which the solution is used to give a good initialization for
`1/`2. It is almost at the same level as the `1 − `2 since both used the ADMM relaxation in
the computation. Meanwhile, it is cheaper than the other non-convex algorithms such as `q and
reweighted `1 which either require matrix inversion or solving a linear programming problem in
each iteration (more advanced numerical methods can help accelerate computation in practice,
but we do not investigate it here). The support selection procedure increases the processing time
of the algorithms by a multiple factor of the sparsity level. When sparsity is large, this effect is
not negligible but can be mitigated via parallel computing.

It is worth pointing out that although `1/`2 algorithms yield better recovery results when
the magnitude of the entries of x0 are known a priori to be bounded from above, their recovery
rate is closely related to the accuracy of the `1 (`q) minimizer. If the solution x obtained from
minimizing `1 (`q) is incoherent with x0, then it is unlikely that `1/`2 will give substantially
better result. Our initialization approach proposed earlier is not able to completely remove
such a dependence, and only mitigates the impact. However, it is likely that the support of
the `1 minimizer contains at least one component that lies in the true support of x0. If one of
these components happens to be close to the `1/`2 convergence regime of x0, then the support
selection process will promote convergence to x0 by removing the influence of other elements in
the detected support. Figure 3 below verifies this point.
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Figure 3: Numerical experiments on the support selection initialization. Left: Correlation be-
tween the minimizers of `1, `1/`2 + `1, `1/`2+SS and the ground truth x0 in 100 experiments in
the case of coefficients drawn from the distribution Uniform([−10, 10]) with sparsity level s = 16.
Right: Recovery rate of `1, `1/`2 + `1, and `1/`2+SS as a function of `1-detected support size
over 2000 experiments (total), with Uniform([−10, 10]) coefficients and sparsity level s = 16.

In Figure 3, the left panel illustrates the correlation between the minimizers of `1, `1/`2 + `1,
`1/`2+SS and the true signal x0 in 100 experiments when s = 16 and the coefficients are chosen
from Uniform[−10,−10]. It can be seen that the general trend of the three curves is similar.
When the correlation between the `1 minimizer and x0 is low, say below 0.5, it is also low for
both the `1/`2 minimizers. This implies that success of the `1/`2 algorithms heavily relies on
the `1 minimizer being reasonably close to x0. On the other hand, the right panel compares
the recovery rate of the three methods for different sizes of the `1-detected support over 2000
experiments. The `1-detected support refers to the number of indices in the support of x0

that are correctly detected by the best s-sparse truncation of the `1 minimizer. When the
detected support is close to the true support, there is a large chance that both `1/`2 algorithms
can successfully push it towards x0. As the detected support size diminishes, `1/`2 with the
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support-selection based initialization appears to do a better job. This provides some numerical
evidence that utilizing support information of the `1 minimizer through support selection helps
reduce algorithm failure.

In Figure 4, we give a concrete example in which both `1 and `1/`2 initialized with `1 failed
to recover x0 but with the additional support selection process, it succeeded. The left panel
visualizes the structures of both the true and recovered signals. The support of the true signal
is

supp(x0) = {212, 194, 66, 73, 132, 248, 234, 70, 12, 249, 226, 102, 69, 85, 201, 106},

arranged according to decreasing magnitude of the entries. In particular, x0[212] = −9.832 and
x0[106] = 0.158. The `1 minimization completely fails to recover the solution in the sense that
supp(x0) 6⊆ supp(x`1), where x`1 is the `1 minimizer. In this case, the `1/`2 with `1 initialization
moves to a local minimizer near x`1 which is different from x0, whereas the same algorithm with
support selection initialization successfully detects x0. The right panel gives a more careful
comparison between the true components and the recovered components using `1/`2+SS on the
support.

To better understand the success of the support selection procedure, we compare the `1/`2
objective value of the s minimizers obtained from initializing on each component in the support
of the best s-approximation of x`1 . This is given in Table 1. In our example, the support of the
best s-approximation of x`1 is

supp(x`1 |s) = {234, 137, 212, 66, 145, 85, 87, 102, 194, 132, 99, 110, 205, 40, 246, 128}.

The detected support by the `1 is

supp(x0) ∩ supp(x`1 |s) = {212, 194, 66, 132, 234, 102, 85}.

The `1/`2 objective values of x0 and the solutions found by the `1 and `1/`2+ `1 are 3.456, 5.173
and 4.510, respectively. It is clear from Table 1 that support selection procedure initialized
at indices 212, 194, 66 and 132 succeeded in recovering x0 (up to some computational error).
These indices are in the support of x0. Note that initialization at other indices which are also
in supp(x0) such as 234, 102 and 85 results algorithm failure. A possible explanation for this is
that the magnitude of x0 on these indices is relatively small compared to that on the indices
leading to success.
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Figure 4: A case where both `1 and `1/`2+`1 failed to recover x0 but `1/`2+SS succeeded in the
case of coefficients Uniform([−10, 10]) and sparsity level s = 16: Left: General distribution of
magnitude of the true components and recovered components using `1, `1/`2 + `1 and `1/`2+SS.
Right: Careful comparison between the true components and the recovered components using
`1/`2+SS on the support.
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Initialized index in supp(x`1 |s) `1/`2
234 4.235
137 4.450
212 3.483
66 3.483
145 4.401
85 4.277
87 4.282
102 4.248
194 3.483
132 3.483
99 4.520
110 4.361
205 4.493
40 4.505
246 4.520
128 4.480

Table 1: Comparison of the `1/`2 objective value from the 16 single-support initializations in
the Figure 4. Initializations started from support indices 212, 66, 194 and 132 lead to solutions
with the best `1/`2 value 3.483, which approximately matches the `1/`2 value (3.456) of x0.

7 Conclusion and future work
We have theoretically and numerically investigated the `1/`2 minimization problem in the

context of recovery of sparse signals from a small number of measurements. We have provided a
novel local optimality criterion in Theorem 3.1, which gives some theoretical justification to the
empirical observation that `1/`2 performs better when the nonzero entries of the sparse solution
have a large dynamic range. We also provide a uniform recoverability condition in Theorem 4.1
for the `1/`2 minimization problem. Our final theoretical contribution is a robustness result in
Theorem 5.1 that can be used to provide stability for noisy `1/`2 minimization problems, see
Corollary 5.2. We have also proposed a new type of initialization for this nonconvex optimization
problem called support selection that empirically improves the recovery rate for `1/`2 minimiza-
tion. Investigations that give a better theoretical understanding of why large dynamic range
improves this type of minimization, along with additional analysis to better quantify stability in
noisy cases, will be the subject of future research.

Although our analysis in this article arrives in similar recoverability and stability conditions
analogous to the ones given by `1, it does not give anything better. This may be due to the fact
that the inequalities originally sharp for `1 become less optimal when additional division steps are
taken in the estimates. Also, norm ratios are more of objectives promoting the compressibility
of a signal rather than the sparsity defined by `0, which is highly discontinuous. Whereas in
many practical problems, a sparse signal comes from the approximation of a compressible signal.
This suggests that `1/`2 itself could be an alternative objective in terms of defining the goal of
compressed sensing. More theoretical work in this direction is also worth exploring in the future.
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