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Distances Between Probability Distributions of
Different Dimensions

Yuhang Cai and Lek-Heng Lim , Senior Member, IEEE

Abstract— Comparing probability distributions is an
indispensable and ubiquitous task in machine learning and
statistics. The most common way to compare a pair of Borel
probability measures is to compute a metric between them,
and by far the most widely used notions of metric are the
Wasserstein metric and the total variation metric. The next most
common way is to compute a divergence between them, and
in this case almost every known divergences such as those of
Kullback–Leibler, Jensen–Shannon, Rényi, and many more, are
special cases of the f -divergence. Nevertheless these metrics and
divergences may only be computed, in fact, are only defined,
when the pair of probability measures are on spaces of the
same dimension. How would one quantify, say, a KL-divergence
between the uniform distribution on the interval [−1, 1] and
a Gaussian distribution on R

3? We show that these common
notions of metrics and divergences give rise to natural distances
between Borel probability measures defined on spaces of
different dimensions, e.g., one on R

m and another on R
n where

m, n are distinct, so as to give a meaningful answer to the
previous question.

Index Terms— Probability densities, probability measures,
Wasserstein distance, total variation distance, KL-divergence,
Rényi divergence.

I. INTRODUCTION

MEASURING a distance, whether in the sense of a metric
or a divergence, between two probability distributions

is a fundamental endeavor in machine learning and statistics.
We encounter it in clustering [1], density estimation [2],
generative adversarial networks [3], image recognition [4],
minimax lower bounds [5], and just about any field that
undertakes a statistical approach towards data. It is well-known
that the space of Borel probability measures on a measurable
space Ω ⊆ R

n may be equipped with many different metrics
and divergences, each good for its own purpose, but two of
the most common families are the p-Wasserstein metric

Wp(μ, ν) :=
�

inf
γ∈Γ(μ,ν)

�
Ω×Ω

�x − y�p
2 dγ(x, y)

�1/p
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and the f -divergence

Df (μ�ν) :=
�

Ω

f
�dμ

dν

�
dν.

For p = 1 and 2, the p-Wasserstein metric gives the
Kantorovich metric (also called earth mover’s metric) and
Lévy–Fréchet metric respectively. Likewise, for various
choices of f , we obtain as special cases the Kullback–
Liebler, Jensen–Shannon, Rényi, Jeffreys, Chernoff, Pearson
chi-squared, Hellinger squared, exponential, and alpha–beta
divergences, as well as the total variation metric (see Table I).
Nevertheless, a p-Wasserstein metric cannot be expressed as
an f -divergence.

All these distances are only defined when μ and ν are
probability measures on a common measurable space Ω ⊆ R

n.
This article provides an answer to the question:

How can one define a distance between μ, a prob-
ability measure on Ω1 ⊆ R

m, and ν, a probability
measure on Ω2 ⊆ R

n, where m �= n?
We will show that this problem has a natural solution that
works for any of the aforementioned metrics and diver-
gences in a way that is consistent with recent extensions
of distances to inequidimensional covariance matrices [6]
and subspaces [7]. Although we will draw from the same
high-level ideas in [6], [7], we require substantially different
techniques in order to work with probability measures.

Given a p-Wasserstein metric or an f -divergence, which
is defined between two probability measures of the same
dimension, we show that it naturally defines two different
distances for probability measures μ and ν on spaces of
different dimensions — we call these the embedding distance
and projection distance respectively. Both these distances
are completely natural and are each befitting candidates for
the distance we seek; the trouble is that there is not one
but two of them, both equally reasonable. The punchline,
as we shall prove, is that the two distances are always equal,
giving us a unique distance defined on inequidimensional
probability measures. We will state this result more precisely
after introducing a few notations.

To the best of our knowledge — and we have one of our
referees to thank for filling us in on this — the only alternative
for defining a distance between probability measures of differ-
ent dimensions is the Gromov–Wasserstein distance proposed
in [8]. As will be evident from our description below, we adopt
a ‘bottom-up’ approach that begins from first principles and
requires nothing aside from the most basic definitions. On the
other hand, the approach in [8] is a ‘top-down’ one by adapting
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the vastly more general and powerful Gromov–Hausdorff
distance to a special case. Our construction works with a
wide variety of common metrics and divergences mentioned
in first paragraph. Although the work in [8] is restricted to
the 2-Wasserstein metric, it is conceivable that the framework
therein would apply more generally to other metrics as well;
however, it is not obvious how the framework might apply
to divergences given that the Gromov–Hausdorff approach
requires a metric. In the one case that allows a compari-
son, namely, applying the two different constructions to the
2-Wasserstein metric to obtain distances on probability mea-
sures of different dimensions, they lead to different results.
We are of the opinion that both approaches are useful although
our simplistic approach is more likely to yield distances that
have closed-form expressions or are readily computable, as we
will see in Section VI; the Gromov–Wasserstein distance tends
to be NP-hard [9] and closed-form expression are rare and not
easy to obtain [10].

A. Main Result

Let M(Ω) denote the set of all Borel probability measures
on Ω ⊆ R

n and let Mp(Ω) ⊆ M(Ω) denote those with finite
pth moments, p ∈ N. For any m, n ∈ N, m ≤ n, we write

O(m, n) := {V ∈ R
m×n : V V T = Im},

i.e., the Stiefel manifold of m× n matrices with orthonormal
rows. We write O(n) := O(n, n) for the orthogonal group.
For any V ∈ O(m, n) and b ∈ R

m, let

ϕV,b : R
n → R

m, ϕV,b(x) = V x + b;

and for any μ ∈ M(Rn), let ϕV,b(μ) := μ ◦ ϕ−1
V,b be the

pushforward measure. For simplicity, we write ϕV := ϕV,0

when b = 0. More generally, for any measurable map ϕ :
R

n → R
m, we let ϕ(μ) := μ ◦ ϕ denote the pushforward

measure.
For any m, n ∈ N, there is no loss of generality in assuming

that m ≤ n for the remainder of our article. Our goal is
to define a distance d(μ, ν) for measures μ ∈ M(Ω1) and
ν ∈ M(Ω2) where Ω1 ⊆ R

m and Ω2 ⊆ R
n, and where by

‘distance’ we include both metrics and divergences. Again,
there is no loss of generality in assuming that

Ω1 = R
m, Ω2 = R

n (1)

since we may simply restrict our attention to measures sup-
ported on smaller subsets. Henceforth, we will assume (1).
We call μ and ν an m- and n-dimensional measure
respectively.

We begin by defining the projection and embedding of mea-
sures. These are measure theoretic analogues of the Schubert
varieties in [7] and we choose notations similar to [7].

Definition 1: Let m, n ∈ N, m ≤ n. For any μ ∈ M(Rm)
and ν ∈ M(Rn), the embeddings of μ into R

n are the set of
n-dimensional measures

Φ+(μ, n) := {α ∈ M(Rn) : ϕV,b(α) = μ

for some V ∈ O(m, n), b ∈ R
m};

and the projections of ν onto R
m are the set of m-dimensional

measures

Φ−(ν, m) := {β ∈ M(Rm) : ϕV,b(ν) = β

for some V ∈ O(m, n), b ∈ R
m}.

Let d be any notion of distance on M(Rn) for any n ∈ N.
Define the projection distance

d−(μ, ν) := inf
β∈Φ−(ν,m)

d(μ, β)

and the embedding distance

d+(μ, ν) := inf
α∈Φ+(μ,n)

d(α, ν).

Both d−(μ, ν) and d+(μ, ν) are natural ways of defining d
on probability measures μ and ν of different dimensions. The
trouble is that they are just as natural and there is no reason
to favor one or the other. Our main result, which resolves this
dilemma, may be stated as follows.

Theorem 1: Let m, n ∈ N, m ≤ n. Let d be a p-Wasserstein
metric or an f -divergence. Then

d−(μ, ν) = d+(μ, ν). (2)

The common value in (2), denoted �d(μ, ν), defines a distance
between μ and ν and serves as our answer to the question on
page 4020. We will prove Theorem 1 for p-Wasserstein metric
(Theorem 4) and for f -divergence (Theorem 5).
Jensen–Shannon divergence (Theorem 6) and total variation
metric (Theorem 7) require separate treatments since the
definition of p-Wasserstein metric requires that μ and ν have
finite pth moments and the definition of f -divergence requires
that μ and ν have densities, assumptions that we do not need
for Jensen–Shannon divergence and total variation metric.
While the proofs of Theorems 4, 5, 6, and 7 follow a similar
broad outline, the subtle details are different and depend on
the specific distance involved.

An important departure from the results in [6], [7] is that
in general �d(μ, ν) �= d(μ, ν) when m = n although the
Gromov–Wasserstein distance [8] mentioned earlier also lacks
this property. To see this, we state a more general corollary.

Corollary 1: Let m, n ∈ N, m ≤ n. Let d be a
p-Wasserstein metric, a Jensen–Shannon divergence, a total
variation metric, or an f -divergence. Then �d(μ, ν) =
d−(μ, ν) = d+(μ, ν) = 0 if and only if ϕV,b(ν) = μ for
some V ∈ O(m, n) and b ∈ R

m.
Corollary 1 gives a necessary and sufficient condition for�d(μ, ν) to be zero, saying that this happens if only if the two

measures μ and ν are rotated and translated copies of each
other, modulo embedding in a higher-dimensional ambient
space when m �= n. For any d that is not rotationally invariant,
we will generally have �d(μ, ν) �= d(μ, ν) when m = n.

The discussion in the previous paragraph notwithstanding,
the distance �d has several nice features. Firstly, it preserves cer-
tain well-known relations satisfied by the original distance d.
For example, we know that for p ≤ q, the p- and q-Wasserstein
metrics satisfy Wp(μ, ν) ≤ Wq(μ, ν) for measures μ, ν of the
same dimension; we will see in Corollary 2 that

�Wp(μ, ν) ≤ �Wq(μ, ν)
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for measures μ, ν of different dimensions. Secondly, as our
construction applies consistently across a wide variety of
distances, both metrics and divergences, relations between
different types of distances can also be preserved. For example,
the total variation metric and KL-divergence satisfy Pinker’s
inequality dTV(μ, ν)2 ≤ 1/2 DKL(μ�ν) for measures μ, ν of
the same dimension; we will see in Corollary 3 that

�dTV(μ, ν)2 ≤ 1
2

�DKL(μ�ν)

for measures μ, ν of different dimensions. As another example,
the Hellinger squared divergence and total variation metric
satisfy DH(μ, ν)2 ≤ 2 dTV(μ, ν) ≤ √

2DH(μ, ν) for measures
μ, ν of the same dimension; we will see in Corollary 4 that

�DH(μ, ν)2 ≤ 2�dTV(μ, ν) ≤ √
2�DH(μ, ν)

for measures μ, ν of different dimensions.
Another advantage of our construction is that for some

common distributions, the distance �d obtained often has
closed-form expression or is readily computable,1 as we will
see in Section VI. In particular, we will have an explicit
answer for the rhetorical question in the abstract: What is the
KL-divergence between the uniform distribution on [−1, 1] and
a Gaussian distribution on R

3?

B. Background

For easy reference, we remind the reader of two results.
Theorem 2 (Hahn Decomposition): Let Ω be a measurable

space and μ be a signed measure on the σ-algebra Σ(Ω). Then
there exist P and N ∈ Σ(Ω) such that

(i) P ∪ N = Ω, P ∩ N = ∅;
(ii) any E ∈ Σ(Ω) with E ⊆ P has μ(E) ≥ 0;

(iii) any E ∈ Σ(Ω) with E ⊆ N has μ(E) ≤ 0.
The Disintegration Theorem [11] rigorously defines the

notion of a nontrivial “restriction” of a measure to a measure-
zero subset of a measure space. It is famously used to establish
the existence of conditional probability measures.

Theorem 3 (Disintegration Theorem): Let Ω1 and Ω2 be
two Radon spaces. Let μ ∈ M(Ω1) and ϕ : Ω1 → Ω2 be
a Borel measurable function. Set ν ∈ M(Ω2) to be the
pushforward measure ν = μ ◦ ϕ−1. Then there exists a
ν-almost everywhere uniquely determined family of probabil-
ity measures {μy ∈ M(Ω1) : y ∈ Ω2} such that

(i) the function Ω2 → M(Ω1), y 
→ μy is Borel measurable,
i.e., for any measurable B ⊆ Ω1, y → μy(B) is a
measurable function of y;

(ii) μy

	
Ω1 \ ϕ−1(y)



= 0;

(iii) for every Borel-measurable function f : Ω1 → [0,∞],�
Ω1

f(x) dμ(x) =
�

Ω2

�
ϕ−1(y)

f(x) dμy(x) dν(y).

In this article, we use the terms ‘probability measure’
and ‘probability distribution’ interchangeably since given
a cumulative distribution function F and A ∈ Σ(Ω),
μ(A) :=

�
x∈A dF (x) defines a probability measure.

1To the extent afforded by the original distance d — if d has no closed-form
expression or is NP-hard, we would not expect �d to be any different.

II. WASSERSTEIN METRIC

We begin by properly defining the p-Wasserstein metric,
filling in some details left out in Section I. Given two measures
μ, ν ∈ Mp(Rn) and any p ∈ [1,∞], the p-Wasserstein metric,
also called the Lp-Wasserstein metric, between them is

Wp(μ, ν) :=
�

inf
γ∈Γ(μ,ν)

�
R2n

�x − y�p
2 dγ(x, y)

�1/p

(3)

where, as usual, p = ∞ is interpreted in the limiting sense of
essential supremum. Here

Γ(μ, ν) :=
�
γ ∈ M(R2n) : πn

1 (γ) = ν, πn
2 (γ) = μ



is the set of couplings between μ and ν, where πn

1 : R
2n → R

n

is the projection onto the first n coordinates and πn
2 : R

2n →
R

n the projection to the last n coordinates. The measure
π ∈ Γ(μ, ν) that attains the minimum in (3) is called the
optimal transport coupling. For the purpose of this article,
we use the standard Euclidean metric dE(x, y) = �x−y�2 but
this may be replaced by other metrics and R

n by other
metric spaces; in which case (3) is just called the Wasserstein
metric or transportation distance. The general definition is
due to Villani [12] but the notion has a long history involving
the works of Fréchet [13], Kantorovich [14], Lévy [15],
Wasserstein [16], and many others. As we mentioned earlier,
the 1-Wasserstein metric is often called the earth mover’s
metric or Kantorovich metric whereas the 2-Wasserstein metric
is sometimes called the Lévy–Fréchet metric [13].

The Wasserstein metric is widely used in the imaging
sciences for capturing geometric features [17]–[19], with a
variety of applications including contrast equalization [20],
texture synthesis [21], image matching [22], [23], image
fusion [24], medical imaging [25], shape registration [26],
image watermarking [27]. In economics, it is used to match job
seekers with jobs, determine real estate prices, form matrimo-
nial unions, among many other things [28]. Wasserstein metric
and optimal transport coupling also show up unexpectedly
in areas from astrophysics, where it is used to reconstruct
initial conditions of the early universe [29]; to computer music,
where it is used to automate music transcriptions [30]; to
machine learning, where it is used for machine translation [31]
and word embedding [32].

Unlike the f -divergence in Section III, a significant advan-
tage afforded by the Wasserstein distance is that it is finite
even when neither measure is absolutely continuous with
respect to the other. Our goal is to use Wp to construct a
new distance �Wp so that �Wp(μ, ν) would be well-defined
for μ ∈ M(Rm) and ν ∈ M(Rn) where m �= n. Note that
any attempt to directly extend the definition in (3) to such a
scenario would require that we make sense of �x − y�2 for
x ∈ R

m and y ∈ R
n — our approach would avoid this conun-

drum entirely. We begin by establishing a simple but crucial
lemma.

Lemma 1: Let m, n ∈ N, m ≤ n, and p ∈ [1,∞]. For any
α, ν ∈ Mp(Rn), any V ∈ O(m, n), and any b ∈ R

m, we have

Wp

	
ϕV,b(α), ϕV,b(ν)


 ≤ Wp(α, ν).
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Proof: Let γ ∈ M(R2n) be the optimal transport coupling
for Wp(α, v). Consider the measurable map

ϕV,b : R
2n → R

2m, (x, y) 
→ 	
ϕV,b(x), ϕV,b(y)



,

and define γ+ = ϕV,b(γ). As ϕV,b ◦ πn
i = πm

i ◦ ϕV,b,

πm
1 (γ+) = ϕV,b(α), πm

2 (γ+) = ϕV,b(β),

and thus γ+(x, y) ∈ Γ
	
ϕV,b(α), ϕV,b(ν)



. Now

Wp(ϕV,b(α), ϕV,b(ν)) ≤
�

x∈Rm, y∈Rm

�x − y�p
2 dγ+(x, y)

=
�

z∈Rn, w∈Rn

�ϕV,b(z) − ϕV,b(w)�p
2 dγ(z, w)

≤
�

z∈Rn, w∈Rn

�z − w�p
2 dγ(z, w),

and taking pth root gives the result. The last inequality follows
from �ϕV,b(z) − ϕV,b(w)�2 ≤ �z − w�2 as ϕV,b is an
orthogonal projection plus a translation.

Lemma 1 assures that Φ−(μ, m) ⊆ Mp(Rm) but in general
we may not have Φ+(ν, n) ⊆ Mp(Rn). With this in mind,
we introduce the set

Φ+
p (μ, n) := {α ∈ Mp(Rn) : ϕV,b(α) = μ

for some V ∈ O(m, n), b ∈ R
m}

for use in the next result, which shows that projection and
embedding Wasserstein distances are always equal.

Theorem 4: Let m, n ∈ N, m ≤ n, and p ∈ [1,∞]. For
μ ∈ Mp(Rm) and ν ∈ Mp(Rn), let

W−
p (μ, ν) := inf

β∈Φ−(ν,m)
Wp(μ, β),

W+
p (μ, ν) := inf

α∈Φ+
p (μ,n)

Wp(α, ν).

Then

W−
p (μ, ν) = W+

p (μ, ν). (4)

Proof: It is easy to deduce that W−
p (μ, ν) ≤ W+

p (μ, ν):
For any α ∈ Φ+(μ, n), there exists Vα ∈ O(m, n) and
bα ∈ R

m with ϕVα,bα(α) = μ. It follows from Lemma 1
that Wp(α, ν) ≥ Wp

	
μ, ϕVα,bα(ν)



and thus

inf
α∈Φ+(μ,n)

Wp(α, ν) ≥ inf
α∈Φ+(μ,n)

Wp

	
μ, ϕVα,bα(ν)



≥ inf

V ∈O(m,n), b∈Rm
Wp

	
μ, ϕV,b(ν)



.

The bulk of the work is to show that W−
p (μ, ν) ≥ W+

p (μ, ν).
Let ε > 0 be arbitrary. Then there exists β∗ ∈ Φ−(ν, m) with

Wp(μ, β∗) ≤ W−
p (μ, ν) + ε.

Let V∗ ∈ O(m, n) and b∗ ∈ R
m be such that ϕV∗,b∗(ν) = β∗

and W∗ ∈ O(n − m, n) be such that

�
V∗
W∗

�
∈ O(n).

Then ϕW∗ is the complementary projection of ϕV∗,b∗ . Apply-
ing Theorem 3 to ϕV∗,b∗ , we obtain a family of measures
{νy ∈ M(Rn) : y ∈ R

m} that satisfy�
Rn

f(x) dν(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

f(x) dνy(x) dβ∗(y)

for any measurable function f .

Let γ ∈ Γ(β∗, μ) be the optimal transport coupling attaining
Wp(β∗, μ). Then

πm
1 (γ) = β∗, πm

2 (γ) = μ.

We define a new measure γ+ ∈ M(R2n) that will in turn give
us a measure α∗ ∈ Φ+

p (μ, n) with Wp(α∗, ν) ≤ Wp(μ, β∗).
Firstly, we will define an intermediate probability measure γ̃
in M(Rn+m). For any measurable set S ⊆ R

n+m, we define

γ̃(S) :=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

I(x,z)∈S dνy(x) dγ(y, z)

where I denotes an indicator function. Consider the map

ρ : R
n+m → R

2n, (x, z) 
→ 	
x, V T

∗ (z − b∗) + W T

∗W∗x



with x ∈ R
n, z ∈ R

m. Observe that this is an embedding of
R

n+m into R
2n. If we let (x, y) = ρ

	
(x, z)



, then we find

that ϕV∗,b∗(y) = z and ϕW∗(y) = ϕW∗(x). We define γ+ to
be the pushforward measure ρ(γ̃). Next we will prove that
πn

1 (γ+) = ν. For any measurable set S ⊆ R
n, we have

πn
1 (γ+)(S) = γ+

	
(πn

1 )−1(S)



= γ+(S × R
n)

= γ̃
	
ρ−1(S × R

n)



= γ̃(S × R
m)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

I(x,z)∈S×Rm dνy(x) dγ(y, z)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

Ix∈S dνy(x) dγ(y, z)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

Ix∈S dνy(x) dβ∗(y) = ν(S).

Note that the first four equalities follow from the definition of
the pushforward measure. For the next-to-last equality, observe
that the indicator function Ix∈S is only a function of y. Hence
ν(x) is a marginal measure of γ+. Let α∗ ∈ M(Rn) be defined
by α∗ = πn

2 (γ+). Then�
y∈Rn

�y�p
2 dα∗(y) =

�
y∈Rn

	�y�2
2


p/2
dα∗(y)

=
�

y∈Rn

	�ϕV∗,b∗(y) − b∗�2
2 + �ϕW∗(y)�2

2


p/2
dα∗(y)

≤ max{2 p−2
2 , 1}

�
y∈Rn

�ϕV∗,b∗(y) − b∗�p
2 + �ϕW∗(y)�p

2 dα∗(y)

= max{2 p−2
2 , 1}

��
y∈Rm

�y − b∗�p
2 dμ(y)

+
�

(x,y)∈R2n

�ϕW∗(y)�p
2 dγ+(x, y)

�

≤ max{2 3p−4)
2 , 1}

��
y∈Rm

�y�p
2 dμ(y) + �b∗�p

2

+
�

x∈Rn

�ϕW∗(x)�p
2 dν(x)

�

≤ max{2 3p−4
2 , 1}

��
y∈Rm

�y�p
2 dμ(y) +

�
x∈Rn

�x�p
2 dν(x)

�
.

Some explanation is in order: In the first inequality we have
used (σ+τ)p/2 ≤ max{2 p−2

2 , 1} · (σp/2 +τp/2); in the fourth
equality we observe that the support of γ+ is contained in the
subspace {(x, y) : ϕW∗(x) = ϕW∗(y)}; in the fifth inequality
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we have used �σ − τ�2 ≤ �σ�2 + �τ�2 and (σ + τ)p ≤
2p−1(σp +τp); and in the last inequality, �ϕW∗(x)�2 ≤ �x�2.
Since the pth central moment of α∗ is bounded by the pth
central moments of μ and ν, we have α∗ ∈ Mp(Rn). Finally,

Wp
p(α∗, ν) ≤

�
R2n

�x − y�p
2 dγ+(x, y)

=
�

R2n

�ϕV∗,b∗(x) − ϕV∗,b∗(y)�p
2 dγ+(x, y)

=
�

Rn+m

�ϕV∗,b∗(x) − z�p
2 dγ̃(x, z)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

�ϕV∗,b∗(x) − z�p
2 dνy(x) dγ(y, z)

=
�

R2m

�y − z�p
2 dγ(y, z) = Wp

p(μ, β∗).

Note that the first relation is an inequality as γ+ may not
be an optimal transport coupling between α∗ and ν; the next
equality follows from the support of γ+ being contained in
the subspace {(x, y) : ϕW∗(x) = ϕW∗(y)}; and the next-
to-last equality comes from the definition of pushforward
measure.

We next show that ϕV∗,b∗(α∗) = μ under the projection
ϕV∗,b∗ , i.e., α∗ ∈ Φ+

p (μ, n). For a measurable S ⊆ R
m,

ϕV∗,b∗(α∗)(S) = α∗
	
ϕ−1

V∗,b∗(S)



= γ+

	
R

n × ϕ−1
V∗,b∗(S)



= γ̃(Rn × S)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

I(x,z)∈Rn×S dνy(x) dγ(y, z)

=
�

(y,z)∈R2m

�
ϕ−1

V∗,b∗ (y)

Iz∈S dνy(x) dγ(y, z) = μ(S),

as required. Observe that the first three equalities are all
consequences of the definition of a pushforward measure.
Therefore, with Lemma 1, we have Wp(α∗, ν) = Wp(μ, β∗).
Hence

W+
p (μ, ν) = inf

α∈Φ+(μ,n)
Wp(α, ν) ≤ Wp(α∗, ν)

= Wp(μ, β∗) ≤ W−
p (μ, ν) + ε.

Since ε > 0 is arbitrary, W−
p (μ, ν) ≥ W+

p (μ, ν).
We denote the common value in (4) by �Wp(μ, ν), and call it

the augmented p-Wasserstein distance between μ ∈ Mp(Rm)
and ν ∈ Mp(Rn). Note that this is a distance in the sense of
a distance from a point to a set; it is not a metric since if we
take μ, ν ∈ Mp(Rm) with ν a nontrivial rotation of μ, we will
have �Wp(μ, ν) = 0 even though μ �= ν.

The augmented p-Wasserstein distance �Wp preserves some
properties of the p-Wasserstein metric Wp; an example is the
following inequality, which is known to hold for Wp.

Corollary 2: Let m, n ∈ N, m ≤ n. Let p, q ∈ [1,∞],
p ≤ q. For any μ ∈ Mq(Rm) and ν ∈ Mq(Rn), we have

�Wp(μ, ν) ≤ �Wq(μ, ν).

Proof: This follows from �Wp(μ, ν) = infβ∈Φ−(ν,m)

Wp(μ, β) ≤ infβ∈Φ−(ν,m) Wq(μ, β) = �Wq(μ, ν).

III. f -DIVERGENCE

The most useful notion of distance on probability den-
sities is often not a metric. Divergences are in general
asymmetric and do not satisfy the triangle inequality. The
Kullback–Leibler divergence [33], [34] is probably the best
known example, ubiquitous in information theory, machine
learning, and statistics. It is used to characterize relative
entropy in information systems [35], to measure randomness
in continuous time series [36], to quantify information gain
in comparison of statistical models of inference [37], among
other things.

The KL-divergence is a special limiting case of a Rényi
divergence [38], which is in turn a special case of a vast
generalization called the f -divergence [39].

Definition 2: Let μ, ν ∈ M(Ω) and μ be absolutely contin-
uous with respect to ν. For any convex function f : R → R

with f(1) = 0, the f -divergence of μ from ν is

Df (μ�ν) =
�

Ω

f
�dμ

dν

�
dν =

�
Ω

f
	
g(x)



dν(x),

with g the Radon–Nikodym derivative dμ(x) = g(x) dν(x).
Aside from the Rényi divergence, the f -divergence

includes just about every known divergences as special
cases. These include the Pearson chi-squared [40], Hellinger
squared [41], Chernoff [42], Jeffreys [43], alpha–beta [44],
Jensen–Shannon [45], [46], and exponential [47] divergences,
as well as the total variation metric. For easy reference,
we provide a list in Table I. Note that taking limit as θ → 1 in
the Rényi divergence gives us the KL-divergence.

These divergences are all useful in their own right. The
Pearson chi-squared divergence is used in statistical test
of categorical data to quantify the difference between two
distributions [40]. The Hellinger squared divergence is used
in dimension reduction for multivariate data [48]. The Jeffreys
divergence is used in Markov random field for image clas-
sification [49]. The Chernoff divergence is used in image
feature classification, indexing, and retrieval [50]. The Rényi
divergence is used in quantum information theory as a measure
of entanglement [51]. The alpha–beta divergence is used in
geometrical analyses of parametric inference [52]. We will
defer discussions of Jensen–Shannon divergence and total
variation metric in Sections IV and V respectively.

By definition, an f -divergence Df (μ�ν) is only defined if
μ is absolutely continuous with respect to ν. For convenience,
in this section we will restrict our attention to probability
measures with densities so that we do not have to keep
track of which measure is absolutely continuous to which
other measure. Let λn be the Lebesgue measure restricted to
Ω ⊆ R

n. With respect to λn, we define

Md(Ω) := {μ ∈ M(Ω) : μ has density},
Mpd(Ω) := {μ ∈ Md(Ω) : μ has strictly positive density}.

Note that μ ∈ Md(Ω) iff it is absolutely continuous with
respect to λn. The following lemma guarantees the existence
of projection and embedding f -divergences, to be defined later.

Lemma 2: Let m, n ∈ N, m ≤ n, and Φ−(ν, m) be as in
Definition 1.
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TABLE I

IN THE FOLLOWING, ζ = (1 − θ)μ + θν , η = (1 − θ)ν + θμ, AND θ, φ ∈ (0, 1)

(i) If ν ∈ Mpd(Rn), then Φ−(ν, m) ⊆ Mpd(Rm).
(ii) If α ∈ Md(Rn) and ν ∈ Mpd(Rn), then α is absolutely

continuous with respect to ν.
Proof: Let β ∈ Φ−(ν, m) and let V ∈ O(m, n), b ∈ R

m

be such that ϕV,b(ν) = β. Let dν(x) = t(x) dλn(x) and

W ∈ O(n − m, n) be such that

�
V
W

�
∈ O(n). For any

measurable g : R
m → R,�

y∈Rm

g(y) dβ(y) =
�

x∈Rn

g(ϕV,b(x)) dν(x)

=
�

x∈Rn

g(ϕV,b(x))t(x) dλn(x)

=
�

y∈Rm

g(y)t�(y) dλm(y),

where t�(y) =
�

ϕ−1
V,b(y)

t(x) dλn−m
	
ϕW (x)



. This is because

ϕV,b is an orthogonal projection plus a translation and for any
measurable function f ,�

x∈Rn

f(x) dλn(x)

=
�

y∈Rm

�
ϕ−1

V,b(y)

f(x) dλn−m(ϕW (x)) dλm(y),

where the existence of ϕW follows from Theorem 3. Hence
dβ(y) = t�(y) dλm(y) and we have (i). For (ii), suppose
dα(x) = tα(x) dλn(x) and dν(x) = tν(x) dλn(x) with
tν(x) > 0, then

dα(x) =
tα(x)
tν(x)

dν(x).

We deduce an f -divergence analogue of Lemma 1.

Lemma 3: Let m, n ∈ N, m ≤ n, and f : R → R be
convex with f(1) = 0. Let α ∈ Md(Rn), ν ∈ Mpd(Rn),
V ∈ O(m, n), and b ∈ R

m. Then

Df (α�ν) ≥ Df

	
ϕV,b(α)�ϕV,b(ν)



.

Proof: Let μ = ϕV,b(α) and β = ϕV,b(ν) with dα(x) =
t(x) dν(x). By Theorem 3, for any measurable function g,�

Rn

g(x) dα(x) =
�

Rm

�
ϕ−1

V,b(y)

g(x) dαy(x) dμ(y),�
Rn

g(x) dν(x) =
�

Rm

�
ϕ−1

V,b(y)

g(x) dνy(x) dβ(y).

By Lemma 2, we have dμ(y) = t�(y) dβ(y) with t�(y) =�
ϕ−1

V,b(y)
t(x) dνy(x). By Definition 2 and Jensen inequality,

Df (α�v) =
�

x∈Rn

f
	
t(x)



dν(x)

=
�

y∈Rm

��
ϕ−1

V,b(y)

f
	
t(x)



dνy(x)

�
dβ(y)

≥
�

y∈Rm

f

��
ϕ−1

V,b(y)

t(x) dνy(x)
�
dβ(y)

=
�

y∈Rm

f
	
t�(y)



dβ(y) = Df (μ�β).

Lemma 2 assures that Φ−(ν, m) ⊆ Md(Rm) but in general,
it will not be true that Φ+(μ, n) ⊆ Md(Rn). As such we
introduce the following subset:

Φ+
d (μ, n) := {α ∈ Md(Rn) : ϕV,b(α) = μ

for some V ∈ O(m, n), b ∈ R
m}

and with this, we establish Theorem 1 for f -divergence.
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Theorem 5: Let m, n ∈ N and m ≤ n. For μ ∈ M(Rm)
and ν ∈ M(Rn), let

D−
f (μ�ν) := inf

β∈Φ−(ν,m)
Df (μ�β),

D+
f (μ�ν) := inf

α∈Φ+
d (μ,n)

Df (α�ν).

Then
D−

f (μ�ν) = D+
f (μ�ν). (5)

Proof: Again, D−
f (μ�ν) ≤ D+

f (μ�ν) is easy: For any
α ∈ Φ+

d (μ, n), there exist Vα ∈ O(m, n) and bα ∈ R
m with

ϕVα,bα(α) = μ. It follows from Lemma 3 that Df (α�ν) ≥
Df

	
μ�ϕVα,bα(ν)



and thus

inf
α∈Φ+

d
(μ,n)

Df (α�ν) ≥ inf
α∈Φ+

d
(μ,n)

Df

	
μ�ϕVα,bα(ν)



≥ inf

V ∈O(m,n), b∈Rm
Df

	
μ�ϕV,b(ν)



.

It remains to show D−
f (μ�ν) ≥ D+

f (μ�ν). By the definition of
D−

f (μ�ν), for any ε > 0, there exists β∗ ∈ Φ−(ν, m) with

D−
f (μ�ν) ≤ Df (μ�β∗) ≤ D−

f (μ�ν) + ε.

Let V∗ ∈ O(m, n) and b∗ ∈ R
m be such that ϕV∗,b∗(ν) = β∗

and W∗ ∈ O(n−m, n) be such that

�
V∗
W∗

�
∈ O(n). Applying

Theorem 3 to ϕV∗,b∗ , we obtain a family of measures {νy ∈
M(Rn) : y ∈ R

m} such that for any measurable function f ,�
Rn

f(x) dν(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

f(x) dνy(x) dβ∗(y).

Define α∗ ∈ M(Rn) by

α∗(S) =
�

Rn

Ix∈S dα∗(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

Ix∈S dνy(x) dμ(y)

for any measurable set S ⊆ R
n. Since ν ∈ Mpd(Rn),

we may identify {νy ∈ M(Rn) : y ∈ R
m} as a subset

of Md(Rn−m). Let dνy(x) = sy(x) dλn−m(ϕW∗(x)) and
dμ(y) = g(y) dλm(y). Then

dα∗(x) = g
	
ϕV∗,b∗(x)



sϕV∗,b∗ (x)(x)

dλn−m(ϕW∗(x))dλm(ϕV∗,b∗(x))
= g

	
ϕV∗,b∗(x)



sϕV∗,b∗ (x)(x) dλn(x).

Hence we deduce that α∗ ∈ Md(Rn). We may also check that
ϕV∗,b∗(α∗) = μ. Let dμ(y) = t(y) dβ∗(y). Then

dα∗(x) = t
	
ϕV∗,b∗(x)



dν(x).

Finally, by Definition 2, we have

D+
f (μ�ν) ≤ Df (α∗�ν)

=
�

Rn

f
	
t(ϕV∗,b∗(x))



dν(x)

=
�

Rm

f
	
t(y)



dβ∗(y)

= Df (μ�β∗) ≤ D−
f (μ�ν) + ε.

Since ε > 0 is arbitrary, we have D+
f (μ�ν) ≤ D−

f (μ�ν).
As in the case of Wasserstein distance, we denote the

common value in (5) by �Df (μ�ν) and call it the augmented
f -divergence, and likewise for all specific f -divergences.

Surprisingly, certain relations between these distances
remain true with our extension to probability densities of
different dimensions. For example, Pinker’s inequality [53]
between the total variation metric dTV and KL-divergence DKL

holds for the augmented total variation distance �dTV and aug-
mented KL-divergence �DKL; another standard relation between
the Hellinger squared divergence DH and total variation metric
is preserved for their augmented counterparts too.

Corollary 3 (Pinker’s Inequality for Probability Measures
of Different Dimensions): Let m, n ∈ N, m ≤ n. For any
μ ∈ Md(Rm) and ν ∈ Mpd(Rn), we have

�dTV(μ, ν) ≤
�

1
2

�DKL(μ�ν).

Proof: This follows from �DKL(μ�ν) = infβ∈Φ−(ν,m)

DKL(μ�β) ≥ infβ∈Φ−(ν,m) 2dTV(μ�β)2 = 2�dTV(α�ν)2.
Corollary 4: Let m, n ∈ N, m ≤ n. For any μ ∈ Md(Rm)

and ν ∈ Mpd(Rn), we have

�DH(μ, ν)2 ≤ 2�dTV(μ, ν) ≤
√

2�DH(μ, ν).

Proof: Clearly the two inequalities hold for DH and dTV

when m = n. The inequidimensional version then follows
from

�DH(μ, ν)2 = inf
β∈Φ−(ν,m)

DH(μ, β)2

≤ inf
β∈Φ−(ν,m)

2dTV(μ, β) = 2�dTV(μ, ν)

≤ inf
β∈Φ−(ν,m)

√
2DH(μ, β) =

√
2�DH(μ, ν).

IV. JENSEN–SHANNON DIVERGENCE

Let μ, ν ∈ M(Rn) and θ ∈ (0, 1). The Jensen–Shannon
divergence is defined by

DJS(μ, ν) :=
1
2

DKL(μ�ζ) +
1
2

DKL(ν�η), (6)

where ζ := (1−θ)μ+θν and η := (1−θ)ν+θμ. What we call
Jensen–Shannon divergence here is slightly more general [46]
than the usual definition [45],2 which corresponds to the case
when θ = 1/2. When θ = 1, we get the Jeffreys divergence
in Table I as another special case. We have written DJS(μ, ν)
instead of the usual DJS f(μ�ν) for f -divergence to remind
the reader that DJS is symmetric in its arguments; in fact,
DJS(μ, ν)1/2 defines a metric on M(Rn).

The Jensen–Shannon divergence is often viewed as the
symmetrization of the Kullback–Liebler divergence but this
perspective hides an important distinction, namely, the
JS-divergence may be defined on probability measures without
densities: Observe that μ, ν are automatically absolutely con-
tinuous with respect to ζ and η. As such the definition in (6)
is valid for any μ, ν ∈ M(Rn) and we do not need to work
over Md(Rn) like in Section III.

2Neither Jensen nor Shannon is a coauthor of [45]. The name comes from
an application of Jensen inequality to Shannon entropy as a convex function
to establish nonnegativity of the divergence.
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The JS-divergence is used in applications to compare
genome [54], [55] and protein surfaces [56] in bioinformat-
ics; to quantify information flow in social and biological
systems [57], [58], and to detect anomalies in fire experi-
ments [59]. It was notably used to establish the main theorem
in the landmark paper on Generative Adversarial Nets [60].

Lemma 4: Let m, n ∈ N, m ≤ n, and θ ∈ (0, 1). For any
α, ν ∈ M(Rn), V ∈ O(m, n), and b ∈ R

m,

DJS(α, ν) ≥ DJS

	
ϕV,b(α), ϕV,b(ν)



.

Proof: The proof is similar to that of Lemma 3. We only
need to check that ϕV,b(ζ) = (1 − θ)ϕV,b(α) + θϕV,b(ν),
ϕV,b(η) = θϕV,b(α)+(1−θ)ϕV,b(ν), where ζ = (1−θ)μ+θν,
η = (1 − θ)ν + θμ.

We now prove Theorem 1 for Jensen–Shannon divergence.
Theorem 6: Let m, n ∈ N and m ≤ n. For μ ∈ M(Rm)

and ν ∈ M(Rn), let

D−
JS(μ, ν) := inf

β∈Φ−(ν,m)
DJS(μ, β),

D+
JS(μ, ν) := inf

α∈Φ+(μ,n)
DJS(α, ν).

Then
D−

JS(μ, ν) = D+
JS(μ, ν). (7)

Proof: For any α ∈ Φ+(μ, n), there exist Vα ∈ O(m, n)
and bα ∈ R

m with ϕVα,bα(α) = μ. It follows from Lemma 4
that DJS(α, ν) ≥ DJS

	
μ, ϕVα,bα(ν)



and thus

inf
α∈Φ+(μ,n)

DJS(α, ν) ≥ inf
α∈Φ+(μ,n)

DJS

	
μ, ϕVα,bα(ν)



≥ inf

V ∈O(m,n), b∈Rm
DJS

	
μ, ϕV,b(ν)



and thus D−

JS(μ, ν) ≤ D+
JS(μ, ν).

We next show that D−
JS(μ, ν) ≥ D+

JS(μ, ν). By the definition
of D−

JS(μ, ν), for each α ∈ Φ+(μ, n) and any ε > 0, there
exists β∗ ∈ Φ−(ν, m) such that

D−
JS(μ, ν) ≤ DJS(μ, β∗) ≤ D−

JS(μ, ν) + ε.

Let V∗ ∈ O(m, n) and b∗ ∈ R
m be such that ϕV∗,b∗(ν) = β∗.

Applying Theorem 3 to ϕV∗,b∗ , we obtain {νy ∈ M(Rn) : y ∈
R

m} that satisfies�
Rn

f(x) dν(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

f(x) dνy(x) dβ∗(y)

for any measurable function f . Let α∗ ∈ M(Rn) be such that

α∗(S) =
�

Rn

Ix∈S dα∗(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

Ix∈S dνy(x) dμ(y)

for any measurable set S ⊆ R
n. Then ϕV∗,b∗(α∗) = μ and so

α∗ ∈ Φ+(μ, n). Consider the weighted measures

ζ∗ := (1 − θ)μ + θβ∗, η∗ := θμ + (1 − θ)β∗,
ξ1 := (1 − θ)α∗ + θν, ξ2 := θα∗ + (1 − θ)ν.

Since μ is absolutely continuous with respect to ζ∗ and β∗ to
η∗, we let dμ = g1 dζ∗ and dβ∗ = g2 dη∗. Then we have

ϕV∗,b∗(ξ1) = ζ∗, dα∗(x) = g1

	
ϕV∗,b∗(x)



dξ1(x),

ϕV∗,b∗(ξ2) = η∗, dν(x) = g2

	
ϕV∗,b∗(x)



dξ2(x).

By the definition of D+
JS,

D+
JS(μ, ν) ≤ DJS(α∗, ν) =

1
2
�
DKL(α∗�ξ1) + DKL(ν�ξ2)

�
=

1
2

�
Rn

log
�
g1

	
ϕV∗,b∗(x)


�
g1

	
ϕV∗,b∗(x)



dξ1(x)

+ log
�
g2

	
ϕV∗,b∗(x)


�
g2

	
ϕV∗,b∗(x)



dξ2(x)

=
1
2

�
Rm

log
	
g1(y)



g1(y) dζ∗(y)

+ log
	
g2(y)



g2(y) dη∗(y)

=
1
2
�
DKL(μ�ζ∗) + DKL(β∗�η∗)

�
= DJS(μ, β∗) ≤ D−

JS(μ, ν) + ε.

Since ε > 0 is arbitrary, D+
JS(μ, ν) ≤ D−

JS(μ, ν).

V. TOTAL VARIATION DISTANCE

The total variation metric is quite possibly the most classical
notion of distance between probability measures. It is used in
Markov models [61], [62], stochastic processes [63], Monte
Carlo algorithms [64], geometric approximation [65], image
restoration [66], among other areas.

The definition is straightforward: The total variation metric
between μ, ν ∈ M(Rn) is simply

dTV(μ, ν) := sup
A∈Σ(Rn)

|μ(A) − ν(A)|.

As we saw in Section III, when the probability measures have
densities, the total variation metric is a special case of the
f -divergence with f(t) = |t − 1|/2. While it is not a special
case of the Wasserstein metric in Section II, it is related in
that

dTV(μ, ν) = inf
γ∈Γ(μ,ν)

�
R2n

Ix �=y(x, y) dγ(x, y),

where Γ(μ, ν) is the set of couplings as in the definition of
Wasserstein metric and Ix �=y is an indicator function, i.e., takes
value 1 when x �= y and 0 when x = y.

For any μ, ν ∈ M(Rn), it follows from Hahn Decomposi-
tion, i.e., Theorem 2, that there exists S ∈ Σ(Rn) with

dTV(μ, ν) = μ(S) − ν(S). (8)

So for any measurable B ⊆ S, C ⊆ S� := R
n \ S,

μ(B) − ν(B) ≥ 0, μ(C) − ν(C) ≤ 0; (9)

or, equivalently, for all measurable function f(x) ≥ 0,�
S

f(x) d
	
μ(x) − ν(x)


 ≥ 0,�
S�

f(x) d
	
μ(x) − ν(x)


 ≤ 0. (10)

Lemma 5: Let α, ν ∈ M(Rn). Then for any V ∈ O(m, n)
and b ∈ R

m,

dTV(α, ν) ≥ dTV

	
ϕV,b(α), ϕV,b(ν)



.

Proof: By (8) and (9), dTV

	
ϕV,b(α), ϕV,b(ν)



=

ϕV,b(α)(S) − ϕV,b(ν)(S) = α
	
ϕ−1

V,b(S)

 − ν

	
ϕ−1

V,b(S)

 ≤

dTV(α, ν).
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Theorem 7: Let m, n ∈ N and m ≤ n. For μ ∈ M(Rm)
and ν ∈ M(Rn), let

d−
TV(μ, ν) := inf

β∈Φ−(ν,m)
dTV(μ, β),

d+
TV(μ, ν) := inf

α∈Φ+(μ,n)
dTV(α, ν).

Then

d+
TV(μ, ν) = d−

TV(μ, ν). (11)

Proof: For any α ∈ Φ+(μ, n), there exist Vα ∈ O(m, n)
and bα ∈ R

m with ϕVα,bα(α) = μ. So by Lemma 5,
dTV(α, ν) ≥ dTV

	
μ, ϕVα,bα(ν)



and we get d+

TV(μ, ν) ≥
d−

TV(μ, ν) from

inf
α∈Φ+(μ,n)

dTV(α, ν) ≥ inf
α∈Φ+(μ,n)

dTV

	
μ, ϕVα,bα(ν)



≥ inf

V ∈O(m,n),b∈Rm
dTV

	
μ, ϕV,b(ν)



.

We next show that d−
TV(μ, ν) ≥ d+

TV(μ, ν). By the definition
of d−

TV(μ, ν), for any ε > 0, there exists β∗ ∈ Φ−(ν, m) with

d−
TV(μ, ν) ≤ dTV(μ, β∗) ≤ d−

TV(μ, ν) + ε.

Let V∗ ∈ O(m, n) and b∗ ∈ R
m be such that ϕV∗,b∗(ν) = β∗

and S ∈ Σ(Rm) be such that dTV(μ, β∗) = μ(S) − β∗(S).
Applying Theorem 3 to ϕV∗,b∗ , we obtain {νy ∈ M(Rn) : y ∈
R

m} that satisfies�
Rn

f(x) dν(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

f(x) dνy(x) dβ∗(y)

for any measurable function f . Let α∗ ∈ M(Rn) be such that

α∗(S) =
�

Rn

Ix∈S dα∗(x) =
�

Rm

�
ϕ−1

V∗,b∗ (y)

Ix∈S dνy(x) dμ(y)

for any measurable set S ⊆ R
n. We can check α∗ is indeed

a probability measure and ϕV∗,b∗(α∗) = μ. Partition R
n into

ϕ−1
V∗,b∗(S) and ϕ−1

V∗,b∗(S
�). We claim that for any measurable

B ⊆ ϕ−1
V∗,b∗(S) and C ⊆ ϕ−1

V∗,b∗(S
�),

α∗(B) − ν(B) ≥ 0, α∗(C) − ν(C) ≤ 0.

Let g = Ix∈B . Then

α∗(B) − ν(B) =
�

Rn

g(x) d
	
α∗(x) − ν(x)



=

�
Rm

�
ϕ−1

V∗,b∗ (y)

g(x) dνy(x) d
	
μ(y) − β∗(y)



=

�
S

�
ϕ−1

V∗,b∗ (y)

g(x) dνy(x) d
	
μ(y) − β∗(y)



=

�
S

h(y) d
	
μ(y) − β∗(y)



,

where h(y) =
�

ϕ−1
V∗,b∗ (y) g(x)dνy(x) ≥ 0. By (9), we deduce

that α∗(B) − ν(B) ≥ 0. Likewise, α∗(C) − ν(C) ≤ 0. Let
T = ϕ−1

V∗,b∗(S). Then for any measurable A ⊆ R
n,

α∗(A) − ν(A) = α∗(A ∩ T )− ν(A ∩ T )

+ α∗(A ∩ T �) − ν(A ∩ T �)
≤ α∗(A ∩ T )− ν(A ∩ T ) ≤ α∗(T ) − ν(T ).

Hence we obtain

d+
TV(μ, ν) ≤ dTV(α∗, ν) = α∗(T ) − ν(T )

= μ(S) − β∗(S) = dTV(μ, β∗) ≤ d−
TV(μ, ν) + ε.

Since ε > 0 is arbitrary, d+
TV(μ, ν) ≤ d−

TV(μ, ν).
Theorem 7 is stronger than what we may deduce from

Theorem 5 as measures are not required to have densities.

VI. EXAMPLES

Theorems 4, 5, 6, and 7 show that to compute any of the
distances therein between probability measures of different
dimensions, we may either compute the projection distance d−

or the embedding distance d+. We will present five examples,
three continuous and two discrete. In this section, we denote
our probability measures by ρ1, ρ2 instead of μ, ν to avoid any
clash with the standard notation for mean.

In the following, we will write Nn(μ, Σ) for the n-
dimensional normal measure with mean μ ∈ R

n and
covariance Σ ∈ R

n×n. For ρ1 = Nn(μ1, Σ1) and ρ2 =
Nn(μ2, Σ2) ∈ M(Rn), recall that the 2-Wasserstein metric
and the KL-divergence between them are given by

W2
2(ρ1, ρ2) = �μ1 − μ2�2

2 + tr
	
Σ1 + Σ2 − 2Σ

1
2
2 Σ1Σ

1
2
2


 1
2 ,

DKL(ρ1�ρ2) =
1
2

�
tr(Σ−1

2 Σ1) + (μ2 − μ1)TΣ−1
2 (μ2 − μ1)

− n + log
�

detΣ2

detΣ1

��
respectively. The former may be found in [67] while the latter
is a routine calculation.

We adopt the standard convention that a vector in R
m will

always be assumed to be a column vector, i.e., R
m ≡ R

m×1.
A matrix X ∈ R

m×n, when denoted X = [x1, . . . , xn]
implicitly means that x1, . . . , xn ∈ R

m are its column
vectors, and when denoted X = [yT

1, . . . , y
T
m]T implicitly

means that y1, . . . , ym ∈ R
n are its row vectors. The notation

diag(λ1, . . . , λn) means an n × n diagonal matrix with
diagonal entries λ1, . . . , λn ∈ R.

Example 1 (2-Wasserstein Distance Between One- and n-
Dimensional Gaussians): Let ρ1 = N1(μ1, σ

2) ∈ M(R) be
a one-dimensional Gaussian measure and ρ2 = Nn(μ2, Σ) ∈
M(Rn) be an n-dimensional Gaussian measure, n ∈ N arbi-
trary. We seek the 2-Wasserstein distance �W2(ρ1, ρ2) between
them. By Theorem 4, we have the option of computing either
W−

2 (ρ1, ρ2) or W+
2 (ρ1, ρ2) but the choice is obvious, given

that the former is considerably simpler:

W−
2 (ρ1, ρ2)2 = min

�x�2=1, y∈R

�μ1 − xTμ2 − y�2
2

+ tr(σ2 + xTΣx − 2σ
√

xTΣx)

= min
�x�2=1

(σ −
√

xTΣx)2.

Let λ1 and λn be the largest and smallest eigenvalues of Σ.
Then λn ≤ xTΣx ≤ λ1 and thus we must have

�W2(ρ1, ρ2) =

⎧⎪⎨
⎪⎩
√

λn − σ if σ <
√

λn,

0 if
√

λn ≤ σ ≤ √
λ1,

σ −√
λ1 if σ >

√
λ1.
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Example 2 (KL-Divergence Between One- and n-
Dimensional Gaussians): Let ρ1 = N1(μ1, σ

2) ∈ M(R)
and ρ2 = Nn(μ2, Σ) ∈ M(Rn) be as in Example 1.
By Theorem 5, we may compute either D−

KL(ρ1�ρ2) or
D+

KL(ρ1�ρ2) and again the simpler option is

D−
KL(ρ1�ρ2) = min

�x�2=1,y∈R

1
2

� σ2

xTΣx
+

(μ1 − xTμ2 − y)2

xTΣx

− 1 + log
�xTΣx

σ2

��
= min

�x�2=1

1
2

� σ2

xTΣx
− 1 + log

�xTΣx

σ2

��
.

Again λn ≤ xTΣx ≤ λ1 where λ1 and λn are the largest and
smallest eigenvalues of Σ. Since f(λ) = σ2/λ + log(λ/σ2)
has f �(λ) = (λ − σ2)/λ2, we obtain

�DKL(ρ1�ρ2)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

�σ2

λn
− 1 + log

�λn

σ2

��
if σ <

√
λn,

0 if
√

λn ≤ σ ≤ √
λ1,

1
2

�σ2

λ1
− 1 + log

�λ1

σ2

��
if σ >

√
λ1.

Example 3 (KL-Divergence Between Uniform Measure on
m-Dimensional Ball and n-Dimensional Gaussian): Let B

m =
{x ∈ R

m : �x�2 ≤ 1} be the unit 2-norm ball in R
m and let

ρ1 = U(Bm) be the uniform probability measure on B
m. Let

ρ2 = Nn(μ2, Σ) be an n-dimensional Gaussian measure with
mean μ2 ∈ R

n and Σ ∈ R
n×n symmetric positive definite.

By Theorem 5,

�DKL(ρ1�ρ2) = D−
KL(ρ1�ρ2)

= inf
V ∈O(m,n), b∈Rm

DKL

	
ρ1�ϕV,b(ρ2)



.

Note that ϕV,b(ρ2) = Nm(V μ2 + b, V ΣV T) is an m-
dimensional Gaussian. Let λ1 ≥ · · · ≥ λn > 0 be the
eigenvalues of Σ and σ1 ≥ · · · ≥ σm > 0 be the eigenvalues
of V ΣV T. Then

DKL

	
ρ1�ϕV,b(ρ2)



=

1
2

� m�
i=1

log(σi) +
1

(m + 2)

m�
i=1

1
σi

�

+ log Γ
�m

2
+ 1

�
+

m log 2
2

+ min
b∈Rm

(V μ2 + b)TV ΣV T(V μ2 + b)

=
1
2

� m�
i=1

log(σi) +
1

(m + 2)

m�
i=1

1
σi

�

+ log Γ
�m

2
+ 1

�
+

m log 2
2

, (12)

where the minimum is attained at b = −V μ2 and Γ is the
Gamma function. Let g(σ) := log(σ)/2+1/[2(m+2)σ], which
has global minimum at σ = 1/(m + 2). For any α ≥ β ≥ 0,

gm(α, β) :=

⎧⎪⎨
⎪⎩

g(β) if β > 1
m+2 ,

g
	

1
m+2



if β ≤ 1

m+2 ≤ α,

g(α) if α < 1
m+2 .

(13)

Thus when m = 1, we have

�DKL(ρ1�ρ2) = g1(λ1, λn) +
1
2

log
π

2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

log
π

2
+

1
6λn

+
1
2

log λn if λn > 1
3 ,

1
2

log
π

6
+

1
2

if λn ≤ 1
3 ≤ λ1,

1
2

log
π

2
+

1
6λ1

+
1
2

log λ1 if λ1 < 1
3 .

Note that setting n = 3 answers the question we posed in
the abstract: What is the KL-divergence between the uniform
distribution ρ1 = U([−1, 1]) and the Gaussian distribution
ρ2 = N3(μ2, Σ) in R

3.
More generally, suppose m < n/2. For any σ1 ≥ · · · ≥

σm ≥ 0 with

λn−m+i ≤ σi ≤ λi i = 1, . . . , m,

we construct V ∈ O(m, n) with V ΣV T = diag(σ1, . . . , σm).
Let Σ = QΛQT be an eigenvalue decomposition with
Q = [q1, . . . , qn] ∈ O(n). For each i = 1, . . . , m, let

vi(θi) := qi sin θi + qn−m+i cos θi ∈ R
n,

σi(θi) := λi sin2 θi + λn−m+i cos2 θi ∈ R+.

Then V = [v1(θ1)T, . . . , vm(θm)T]T ∈ O(m, n) and V ΣV T =
diag

	
σ1(θ1), . . . , σm(θm)



. Choosing θi so that σi(θi) = σi,

i = 1, . . . , m, gives us the required result.
With this observation, it follows that when m < n/2, the

minimum in (12) is attained when σi = λi, i = 1, . . . , m, and
we obtain the closed-form expression

�DKL(ρ1�ρ2)=
m�

i=1

gm(λi, λn−m+i)+log Γ
�m

2
+1

�
+

m log 2
2

,

where gm is as defined in (13).
Example 4 (2-Wasserstein Distance Between Dirac Mea-

sure on R
m and Discrete Measure on R

n): Let y ∈ R
m and

ρ1 ∈ M(Rm) be the Dirac measure with ρ1(y) = 1, i.e., all
mass centered at y. Let x1, . . . , xk ∈ R

n be distinct points,
p1, . . . , pk ≥ 0, p1 + · · · + pk = 0, and let ρ2 ∈ M(Rn)
be the discrete measure of point masses with ρ2(xi) = pi,
i = 1, . . . , k. We seek the 2-Wasserstein distance �W2(ρ1, ρ2)
and by Theorem 4, this is given by W−

2 (ρ1, ρ2). We will show
that it has a closed-form solution. Suppose m ≤ n, then

W−
2 (ρ1, ρ2)2 = inf

V ∈O(m,n), b∈Rm

k�
i=1

pi�V xi + b + y�2
2

= inf
V ∈O(m,n)

k�
i=1

pi

����V xi −
k�

i=1

piV xi

����2

2

= inf
V ∈O(m,n)

tr(V XV T),

noting that the second infimum is attained by b =
−y − �k

i=1 piV xi and defining X in the last infimum to be

X :=
k�

i=1

pi

�
xi −

k�
i=1

pixi

��
xi −

k�
i=1

pixi

�T

∈ R
n×n.
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Let the eigenvalue decomposition of the symmetric pos-
itive semidefinite matrix X be X = QΛQT with
Λ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0. Then

inf
V ∈O(m,n)

tr(V XV T) =
m−1�
i=0

λn−i

and is attained when V ∈ O(m, n) has row vectors given by
the last m columns of Q ∈ O(n).

Example 5 (2-Wasserstein Distance Between Discrete Mea-
sures on R

m and R
n): More generally, we may seek the

2-Wasserstein distance between discrete probability measures
ρ1 ∈ M(Rm) and ρ2 ∈ M(Rn). Let ρ1 be supported on
x1, . . . , xk ∈ R

m with values ρ1(xi) = pi, i = 1, . . . , k;
and y1, . . . , yl ∈ R

n with values ρ2(xi) = qi, i = 1, . . . , l.
The optimization problem for W−

2 (ρ1, ρ2) becomes

inf
V ∈O(m,n),b∈Rm, π∈Γ(ρ1,ρ2)

k�
i=1

l�
j=1

πij�V xi +b−yj�2
2, (14)

where

Γ(ρ1, ρ2) =
�

π ∈ R
k×l
+ :

l�
j=1

πij = pi, i = 1, . . . , k;

k�
i=1

πij = qj , j = 1, . . . , l

�
.

While the solution to (14) may no longer be determined in
closed-form, it is a polynomial optimization problem and can
be solved using the Lasserre sum-of-squares technique as a
sequence of semidefinite programs [68].

VII. CONCLUSION

We proposed a simple, natural framework for taking
any p-Wasserstein metric or f -divergence, and construct-
ing a corresponding distance for probability distributions on
m- and n-dimensional measure spaces where m �= n. The new
distances preserve some well-known properties satisfied by the
original distances. We saw from several examples that the new
distances may be either determined in closed-form or near
closed-form, or computed using Stiefel manifold optimization
or sums-of-squares polynomial optimization. In future work,
we hope to apply our framework to other distances like
the Bhattacharyya distance [69], the Lévy–Prokhorov metric
[15], [70], and the Łukaszyk–Karmowski metric [71].
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