Session 12D: Decentralized Cryptographic Protocols

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

RandPiper — Reconfiguration-Friendly Random Beacons with
Quadratic Communication

Adithya Bhat"
abhatk@purdue.edu
Purdue University
West Lafayette, USA

Aniket Kate
aniket@purdue.edu
Purdue University
West Lafayette, USA

ABSTRACT

A random beacon provides a continuous public source of ran-
domness and its applications range from public lotteries to zero-
knowledge proofs. Existing random beacon protocols sacrifice ei-
ther the fault tolerance or the communication complexity for se-
curity, or ease of reconfigurability. This work overcomes the chal-
lenges with the existing works through a novel communication
efficient combination of state machine replication and (Publicly)
Verifiable Secret Sharing (PVSS/VSS).

For a system with n nodes in the synchronous communication
model and a security parameter k, we first design an optimally
resilient Byzantine fault-tolerant state machine replication protocol
with O(xn?) bits communication per consensus decision without
using threshold signatures. Next, we design GRandPiper (Good
Pipelined Random beacon), a random beacon protocol with bias-
resistance and unpredictability, that uses PVSS and has a communi-
cation complexity of O(kn?) always, for a static adversary. However,
GRandPiper allows an adaptive adversary to predict beacon values
up to ¢ + 1 epochs into the future. Therefore, we design BRandPiper
(Better RandPiper), that uses VSS and has a communication com-
plexity of O(x fn?), where f is the actual number of faults, while
offering a strong unpredictability with an advantage of only a single
round even for an adaptive adversary. We also provide reconfigura-
tion mechanisms to restore the resilience of the beacon protocols
while still maintaining quadratic communication complexity per
epoch. We implement BRandPiper and compare it against the state-
of-the-art practically deployed beacon protocol, Drand, and show
that we are always better than or equal to it in performance.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Secu-
rity protocols.

*Contributed equally and listed alphabetically

This work is licensed under a Creative Commons Attribution International 4.0 License.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3484574

Nibesh Shrestha*
nxs4564@rit.edu
Rochester Institute of Technology
Rochester, USA

3502

Zhongtang Luo
zhtluo@purdue.edu
Purdue University
West Lafayette, USA

Kartik Nayak
kartik@cs.duke.edu
Duke University
Durham, USA

KEYWORDS

Random beacon protocols, Secret Sharing, Byzantine Fault Toler-
ance, Synchrony

ACM Reference Format:

Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik
Nayak. 2021. RandPiper — Reconfiguration-Friendly Random Beacons with
Quadratic Communication. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS °21), November 15-19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 23 pages.
https://doi.org/10.1145/3460120.3484574

1 INTRODUCTION

Public digital randomness is essential across a large spectrum of
security applications ranging from e-voting to blockchains. Its prac-
tical relevance is further evident from NIST’s Randomness Beacons
project [21] and from the recent emergence of Drand Organiza-
tion [25]. In addition, several other proposals [16, 20, 24, 29, 30,
43, 44, 47] and implementations [18, 28, 39] offer random beacons
protocols [40].

A random beacon protocol emits a new random value at inter-
mittent intervals such that the emitted values are bias-resistant,
i.e., no entity can influence a future random beacon value, and un-
predictable, i.e., no entity can predict future beacon value. Clearly,
we cannot trust a single node to offer such a service — the node
can easily affect both bias-resistance and unpredictability of the
beacon. A series of recent works have instead relied on distributing
the trust across multiple nodes such that even if a subset of nodes
gets compromised, the beacon is still secure [16, 30, 44, 47].

In a system consisting of n nodes, tolerating t Byzantine faults,
with security parameter k, an ideal distributed randomness bea-
con protocol, in addition to being bias-resistant and unpredictable,
should have the following properties: (i) optimal resilience, (ii) low
communication overhead, (iii) reconfiguration friendliness (allow-
ing efficient addition and removal of nodes), and (iv) use efficient
cryptographic schemes as opposed to computationally expensive
schemes such as Proof-of-Work (PoW) or Verifiable Delay Func-
tions (VDFs). Existing works trade one or the other of the above fea-
tures expected from a random beacon. For instance, HydRand [44]
sacrifices optimal resilience (+ < n/3) for better communication
complexity (O(xn?) in the best case and O(kn?) in the worst case)
with minimal setup assumptions. Cachin et al. [16] provide a pro-
tocol with communication complexity of O(xn?), but it requires

https://doi.org/10.1145/3460120.3484574
https://doi.org/10.1145/3460120.3484574
https://creativecommons.org/licenses/by/4.0/

Session 12D: Decentralized Cryptographic Protocols

a threshold (cryptographic) setup and hence cannot support a re-
configuration of the system without changing the threshold setup
through proactive secret (re-)sharing techniques. Several other so-
lutions [24, 43] use computationally expensive mechanisms such
as VDFs! [12] where nodes compute VDF function constantly to
ensure security of the beacon.

In this work?, we ask whether we can design an optimally re-
silient random beacon protocol that achieves good communica-
tion complexity while using efficient cryptographic schemes and
a re-usable setup, i.e., avoiding setups such as those of threshold
signatures where the entire setup needs to be re-generated when
a participating node is replaced. To answer this question, we first
design an optimally resilient Byzantine fault-tolerant (BFT) state
machine replication (SMR) protocol with O(kn?) communication
complexity per consensus decision while requiring a structured
reference string (SRS) [34] setup that allows any bounded reconfigu-
ration. Next, we present two random beacon protocols GRandPiper
(Good Pipelined Random beacon) and BRandPiper (Better Pipelined
Random beacon) using our BFT SMR protocol as a building block
and provide similar guarantees. GRandPiper is communication ef-
ficient (O(kn?) in the best and worst case) but allows an adaptive
adversary to predict t + 1 epochs into the future. BRandPiper offers
stronger unpredictability guarantees, but has a communication com-
plexity of O(x fn?) where f is the actual number of faults. Finally,
we present a communication efficient reconfiguration protocol to
add nodes to the system while maintaining quadratic communica-
tion complexity per round.

1.1 Efficient State Machine Replication Without
Threshold Signatures

There has been a long sequence of work in improving communi-
cation complexity of consensus protocols [1, 4, 14, 26, 33, 35, 49].
In the synchronous SMR setting, the optimal communication com-
plexity per consensus decision of an SMR protocol is O(xn?) bits [1,
3, 35, 46]. However, all of these solutions use threshold signatures.
Our first result improves upon the communication complexity in
the absence of threshold signatures. Specifically, we show the fol-
lowing:

THEOREM 1.1. Assuming public-key infrastructure and a univer-
sal structured reference string setup under q-SDH assumption, there
exists a state machine replication protocol with amortized O(xn?)
communication complexity per consensus decision tolerating t < n/2
Byzantine faults.

To be precise, the protocol incurs O(kn?) communication com-
plexity under g-strong Diffie-Hellman (SDH) assumption [13] (Can
be generated using distributed protocols) or O(kn? log n) without
it. Getting rid of threshold signatures allows for efficient reconfigu-
ration of the participating nodes and does not require generating
threshold keys each time a new node joins the system. It is in this
sense that our system is reconfiguration-friendly. Thus, an efficient
BFT protocol in this setting is also of independent interest. We re-
duce communication by making use of efficient erasure coding [41]
and cryptographic accumulators [8] to efficiently broadcast large

1VDFs require computing operations such as squarings, which are energy intensive.
2Full version of this work can be found here [11].

3503

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

messages at the expense of increase in latency of SMR protocol.
As we will see, the increase in latency does not affect our random
beacon protocols adversely.

1.2 RandPiper - Random Beacon Protocols

RandPiper is a suite of random beacon protocols that use our SMR
protocol as a building block. We present two protocols: GRand-
Piper (Good Pipelined Random beacon) and BRandPiper (Better
Pipelined Random beacon) which differ in unpredictability and
communication complexity. In both protocols, we use secret shar-
ing schemes to privately commit random numbers ahead of time.
This ensures bias-resistance as the random number once shared
cannot be changed. For unpredictability, we ensure that the beacon
outputs are generated using inputs from ¢ + 1 nodes (where t is the
threshold of Byzantine nodes) at least one of which is truly random,
and therefore the output is truly random.

GRandPiper. In GRandPiper, we explore how to build a communi-
cation optimal random beacon protocol with bias-resistance and
strong unpredictability, i.e., allowing a static adversary to predict
up to a security parameter number of epochs into the future. In
particular, we show the following:

THEOREM 1.2 (INFORMAL). Assuming public-key infrastructure
and a universal structured reference string setup under q-SDH as-
sumption, there exists a reconfiguration friendly, bias-resistant, and
O(min(k, t))-absolute unpredictable (see Definition 2.2) random bea-
con protocol tolerating t < n/2 Byzantine faults with O(xn?) com-
munication per beacon output.

Our GRandPiper protocol outputs a random beacon with O(xn?)
communication complexity per beacon output, where « is the secu-
rity parameter. The output of the beacon protocol is bias-resistant
and satisfies strong unpredictability against a static adversary, i.e.,
the probability of a static adversary predicting ¢ rounds into the fu-
ture is less than 27¢ (in expectation this is 2 rounds into the future).
For cases when « is smaller than ¢, waiting x rounds is sufficient.
After t + 1 epochs, an adversary can never predict beacons into the
future except with negligible probability. We concisely term this
as O(min(k, t))-absolute unpredictable protocol. We also do not
need any threshold setups, which allows nodes to join and leave
the system easily without stopping our protocol.

At a high-level, our protocol uses Publicly Verifiable Secret Shar-
ing (PVSS) schemes, and allows a leader to input an O(kn)-sized
PVSS encryptions PVSS.E into the SMR to share a single secret per
epoch. This secret will be reconstructed when the same node is
chosen as the leader again. To ensure that eventually there is an
honest leader, a leader does not repeat for the next ¢ epochs. This
also ensures that our BFT SMR protocol decides on the proposed
shares once we get an honest leader. Our construction ensures that
we always have a communication complexity of O(xn?) for the
beacon, as the beacon keeps outputting values based on buffered
PVSS shares, and we remove Byzantine nodes to avoid the buffer
from ever being empty.

However, an adaptive adversary can predict® ¢ + 1 epochs into
the future in GRandPiper by simply corrupting the next ¢ leaders

3 An adaptive adversary may also break the security of PVSS used in GRandPiper, as
we do not know of any adaptively secure PVSS.

Session 12D: Decentralized Cryptographic Protocols

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Table 1: Comparison of related works on Random Beacon protocols in standard synchrony

Comm. Compl

Adp. Re-usable No

Protocol Res.(t) Unpred. Assumption
Best Worst Adv. Setup DKG?

Cachin et al./Drand [16,25] 49% 1 O(xn?) O(xn?) X X X Threshold Secret/BLS
Dfinity [2,30] 49% O(k) O(xn?) O(kn®) b X X Threshold BLS
HERB [20] 33% 1 O(xn?) O(xn®) X X X Threshold ElGamal
HydRand [44] 33% O(min(x, £)" O(xn?) O(xn®) X v v PVSS
HydRand (Worst) [44] 33% t+1 O(kn?) O(xn®) X v v PVSS
RandChain [29] 33% O(k) O(xn?) O(xn®) v X X PoW
RandHerd [47] 33% O(k) O(kclogn)1 O(xn*) X X X Threshold Schnorr
RandHound [47] 33% 1 O(xc?n)1 O(kc?n?)1 X v v Client based, PVSS
RandRunner [43] 49% t+1 O(kn?) O(xn?) v v v VDF
RandShare [47] 33% 1 O(xn?) O(xn*) v v v VSS
GRandPiper 49% O(min(x, 1))t O(xn?) O(xn?) X v v PVSS, q-SDH
GRandPiper (Worst) 49% t+1 O(kn?) O(xn?) X v v PVSS, q-SDH
BRandPiper 49% 1 O(xn?)8 O(xn®) v v v VSS, g-SDH

K is the security parameter denoting maximum of sizes of signatures, hashes, and other components used in the protocol. Res. refers to the number of Byzantine faults tolerated in

the system. Unpred. refers to the unpredictability of the random beacon, in terms of the number of future rounds an adaptive rushing adversary can predict. A rushing adversary

can always obtain outputs before correct nodes, and hence, the minimum is 1. Adp. Adv refers to Adaptive Adversary whether the adversary can pick its ¢ corruptions at any point

in the protocol. Reusable Setup refers to a setup that can be reused when a node is replaced in the system. *probabilistically O (xn*) when O(n) consecutive leaders are bad. Ic is

the average (constant) size of the groups of server nodes. fIn expectation it is 2 rounds, the probability of an adversary predicting ¢ epochs into the future is 27, with a security
parameter it is min(x, ¢) + 1 epochs. SIn the optimistic case, when the leader is honest and f = O(1) nodes are Byzantine.

and learning their committed secrets. At this point, continuing to
use the PVSS scheme to improve the unpredictability leads to a
loss of quadratic communication complexity. Hence, we look in a
different direction to improve unpredictability.

BRandPiper. In BRandPiper, we explore how to achieve the best
possible unpredictability while having the best possible communica-
tion complexity and also supporting reconfiguration. In particular,
we show the following result:

THEOREM 1.3 (INFORMAL). Assuming public-key infrastructure
and a universal structured reference string setup under q-SDH as-
sumption, there exists a reconfiguration-friendly, bias-resistant and
1-absolute unpredictable (see Definition 2.2) adaptively secure random
beacon protocol tolerating t < n/2 Byzantine faults with O(xfn?)
communication, where f < t is the actual number of faults.

Our second protocol BRandPiper outputs a random beacon with
O(xfn?) communication per output, and guarantees bias-resistance
and strong unpredictability against an adaptive adversary. Here,
f is the actual number of faults; when f = O(1), the protocol en-
joys O(xn?) communication complexity. BRandPiper uses random
inputs from > ¢t nodes in every epoch, ensuring strong unpre-
dictability of only 1 epoch into the future.

As a building block, we first construct an improved VSS (iVSS)
protocol by modifying the state-of-the-art VSS scheme eVSS [32].
Compared to e€VSS, which requires O(kn + kf + kfn) information
on the bulletin board (broadcast channel), iVSS posts only O(xn)
bits of information on the bulletin board which in effect improves
the amortized communication complexity of the VSS scheme to
O(xfn?) where f is the actual number of faults. This may be of
independent interest in applications requiring batched VSS.

At a high level, we use round-robin leaders and iVSS in point-to-
point channels to secret share n random numbers in every epoch.
Since we are producing n shares every epoch, we can now consume

3504

n shares in every epoch. Thus, in every epoch, using the homomor-
phic properties of VSS secret shares, we reconstruct a homomorphic
sum of n shares in every epoch, thus eliminating the ¢ + 1 epoch
advantage held by the adaptive adversary and reducing it to just 1
epoch. We carefully design the protocol so that we have a commu-
nication complexity of O(kfn?). Our key insight in BRandPiper is
that a leader can efficiently secret share n shares at once instead
of one. These shares are buffered by all nodes, and it ensures that
there are always sufficient shares available for reconstruction in
the next n epochs so far as leaders are chosen in a round-robin
manner. The buffering helps prevent a Byzantine node from biasing
by refusing to share new blocks, when the outputs are unfavor-
able. Without our techniques, while assuming threshold signatures,
existing VSS protocols have an optimistic communication complex-
ity of O(xn?) [32] and worst case communication complexity of
O(kn®) to perform one secret sharing. The difference in the order
arises from opening f shares for every node that complains against
the leader. BRandPiper shows how to perform O(n) VSS with a
communication complexity of O(x fn?) which is quadratic when

f=0(1).

1.3 Efficient Reconfiguration

While prior works [16, 44] provide a random beacon protocol with
O(kn?) communication without threshold signatures and claim to
be reconfiguration-friendly, they do not provide any reconfigura-
tion mechanisms. In this work, we provide reconfiguration proto-
cols to restore the resilience of our beacon protocol when some
Byzantine nodes have been removed from the system. Since we do
not rely on threshold signatures, new nodes can join the system
without generating new keys for all nodes. Moreover, the recon-
figuration protocol is executed while still maintaining quadratic
communication complexity per round.

Clock synchronization for the new joining nodes during reconfig-
uration while keeping low communication overhead is challenging.

Session 12D: Decentralized Cryptographic Protocols

Prior protocols [1] incur O(xn?) communication without thresh-
old signatures, and moreover, the execution cannot be split across
rounds to reduce per round complexity. We introduce a new clock
synchronization primitive that synchronizes new nodes when a
majority of honest nodes are already synchronized while main-
taining quadratic communication per round. The protocol utilizes
homomorphic addition property of VSS secret shares that yields
constant-sized secrets when the secret is opened. The homomor-
phic secret can be broadcast among all nodes to synchronize all the
nodes with only O(kn?) communication.
Implementation and Evaluation. We implement our protocol
and demonstrate the practicality of our random beacon. We show
that our BRandPiper protocol is as good as the state of the art
practically deployed system: Drand in terms of beacons per minute.
Concretely, we show that choosing a A value for BRandPiper such
that it always succeeds, we are always better than Drand if we
assume a similar low A value for Drand. Giving a benefit of doubt
to Drand, by choosing slightly relaxed value of 99.9th percentile
value of A, we show that our protocol is still as practical as Drand.
Summary of contributions. To summarize, we make the follow-
ing contributions in this work:

(1) In Section 3, we present a communication efficient BFT SMR
protocol with quadratic communication per consensus decision.

(2) We then present two random beacon protocols. Section 4.1
presents GRandPiper, a simple beacon protocol using PVSS with
O(xn?) communication. We then present BRandPiper, a protocol
with better unpredictability in Section 4.2.

(3) In Section 5, we evaluate our BRandPiper protocol.

(4) We present mechanisms for synchronizing a new node in
Appendix C and reconfiguration in Appendix D.
Related Work. We present detailed related works in Appendix A.
Limitations. Our protocol depends on the synchrony assumption,
i.e., messages sent between any two honest nodes in the system are
always delivered within a public value A.

2 MODEL AND DEFINITIONS

We consider a system P := {p1, ..., pn} consisting of n nodes out
of which at most ¢t = |n — 1/2] nodes can be Byzantine which we
term as a t-bounded adversary. The Byzantine nodes may behave
arbitrarily. When we assume an adaptive adversary A, the nodes
can be corrupted to behave arbitrarily at any time during execution.
When we assume a static adversary A, the nodes to be corrupted
must be chosen by the adversary before the start of the protocol
execution. We also use the term ¢t-bounded adversary. A node that
is not faulty throughout the execution is considered to be honest
and executes the protocol as specified.

We assume the network between nodes consists of point-to-point
secure (authenticated and confidential) synchronous communica-
tion channels. Messages between nodes may take at most A time
before they arrive, where A is a known maximum network delay.
To provide safety under adversarial conditions, we assume that the
adversary is capable of delaying the message for an arbitrary time
upper bounded by A. In addition, we assume all honest nodes have
clocks moving at the same speed. They also start executing the pro-
tocol within A time from each other. This can be easily achieved by

3505

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

using the clock synchronization protocol [1] once at the beginning
of the protocol.

We make use of digital signatures and a public-key infrastructure
(PKI) to prevent spoofing and replays and to validate messages.
Message x sent by a node p is digitally signed by p’s private key
and is denoted by (x),. In addition, we use H(x) to denote the
invocation of the random oracle H on input x.

2.1 Definitions

We consider a state machine replication protocol defined as follows:

Definition 2.1 (Byzantine Fault-tolerant State Machine Replica-
tion [45]). A Byzantine fault-tolerant state machine replication proto-
col commits client requests as a linearizable log to provide a consistent
view of the log akin to a single non-faulty server, providing the follow-
ing two guarantees: (i) Safety. Honest nodes do not commit different
values at the same log position. (ii) Liveness. Each client request is
eventually committed by all honest nodes.

We define d-absolute unpredictability as follows:

Definition 2.2 (d-absolute unpredictability). Consider an epoch
based protocol. Let the fastest honest node be at epoch e. The protocol
is said to be unpredictable with absolute bound d ford > 1, if the
probability of an adversary A predicting the honest output for any
epoch e’ > e +d is negl(x).

We define the security requirements for a random beacon proto-
col R8B as follows:

Definition 2.3 (Secure random beacon protocol). An epoch based
protocol RB is said to be a d-secure random beacon protocol if it
satisfies the following conditions:

(1) Bias-resistance. Let O be the output of the beacon for some
epoch e. No adversary A can bias the output of the beacon, i.e., fix
some ¢ bits of O for any epoch e > 1 with probability better than
negl(c) + negl(x).

(2) Unpredictability. The protocol is d-absolute unpredictable.

(3) Guaranteed Output Delivery. For every epoch e > 1, the
protocol outputs a value.

2.2 Primitives

In this section, we present several primitives used in our protocols.
Linear erasure and error correcting codes. We use standard
(t + 1, n) Reed-Solomon (RS) codes [41]. This code encodes t + 1
data symbols into code words of n symbols and can decode the t + 1
elements of code words to recover the original data.

e ENC. Given inputs my, ..., ms4+1, an encoding function ENC
computes (s1,...,sp) = ENC(my,...,ms1), where (s, ..., sp) are
code words of length n. A combination of any ¢+1 elements of n code
words uniquely determines the input message and the remaining
of the code word.

e DEC. DEC computes (mj,...,ms1) = DEC(s1, ..., sp), and is
capable of tolerating up to c errors and d erasures in code words
(s1,...,8n), ifand only if t > 2¢ +d.

Cryptographic accumulators. A cryptographic accumulator sc-
heme constructs an accumulation value for a set of values and
produces a witness for each value in the set. Given the accumulation
value and a witness, any node can verify if a value is indeed in the

Session 12D: Decentralized Cryptographic Protocols

set. Formally, given a parameter k, and a set D of n values dy, . . ., dp,

an accumulator has the following components:

e Gen(1%, n): This algorithm takes a parameter k represented in
unary form 1¥ and an accumulation threshold n (an upper bound on
the number of values that can be accumulated securely), returns an
accumulator key ag. The accumulator key ay. is part of the g-SDH
setup and therefore is public to all nodes.

e Eval(ag, D): This algorithm takes an accumulator key a; and
a set D of values to be accumulated, returns an accumulation value
z for the value set D.

o CreateWit(ag, z, d;, D): This algorithm takes an accumulator
key ag, an accumulation value z for O and a value d;, returns L if
d; € D, and a witness w; if d; € D.

o Verify(ag, z, wi, d;): This algorithm takes an accumulator key
ay, an accumulation value z for D, a witness w; and a value d;,
returns true if w; is the witness for d; € D, and false otherwise.

In this paper, we use collision free bilinear accumulators from [37]
as cryptographic accumulators.
Verifiable Secret Sharing and Commitments. We assume the
existence of a secure Verifiable secret sharing scheme VSS with
commitments, satisfying the security properties in Definition 2.4.
We use the interfaces to a secure VSS scheme VSS as described in
Table 2 (Appendix B).

Definition 2.4 (VSS Security [6]). A VSS protocol consists of two
phases: sharing and reconstruction. We call an n—node VSS protocol,
with t—bounded adversary A and security parameterk, an (n—t)-VSS
protocol if it satisfies the following conditions:

1. Secrecy. If the dealer L is honest, then the probability of A learning
any information about the dealer’s secret s in the sharing phase is
negl(x).

2. Correctness. If L is honest, then the honest nodes output the secret
s at the end of the reconstruction phase with a high probability of
1 — negl(x).

3. Commitment. If L is Byzantine, then at the end of the sharing
phase there exists a value s* in the input space including 1, such that
at the end of the reconstruction phase all honest nodes output s* with
high probability 1 — negl(x).

In our work, we implicitly assume that the VSS scheme used is
(n/2 + 1)-secure.
Publicly Verifiable Secret Sharing — PVSS. PVSS schemes con-
sist of communication such as broadcasts, posts on the bulletin
board, as well as computational components such as share genera-
tion, encryption, etc. We separate the two components and present
interfaces to computational algorithms that we will use in our pro-
tocols. We use the interfaces to a secure PVSS scheme PVSS as
described in Table 3 (Appendix B).

We assume the existence of a secure PVSS algorithm PVSS as
defined in Definition 2.5.

Definition 2.5 (PVSS security [6, 17]). Let L € P be the dealer with
secret s and x be the security parameter. A PVSS scheme PVSS is a
secure VSS scheme (see Definition 2.4) and must provide the following
guarantees:

4. Public Verifiability. If the check in share verification algorithm
(PVSS.ShVrfy, see Table 3) returns 1, i.e., succeeds, then with high
probability 1—negl(x), the encryptions are valid shares of some secret.

3506

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Normalizing the length of cryptographic building blocks. Let
A denote the security parameter, xj, = k1, (4) denote the hash size,
Ka = Kq(A) denote the size of the accumulation value and witness
of the accumulator and x, = kK, (1) denote the size of secret share
along with the associated proofs (both for PVSS and VSS). Further,
let k = max(kp, kg, Kp); We assume k = O(kp) = O(ky) = O(kg) =
©(A). Throughout the paper, we will use the same parameter x to
denote the hash size, signature size, accumulator size and secret
share size for convenience.

3 BFT SMR PROTOCOL

In this section, we present a simple BFT SMR protocol as a ba-
sic building block for the random beacon protocols discussed in
following sections. Our SMR protocol achieves O(xn?) bits com-
munication complexity with a universal structured reference string
(SRS) setup under the g-SDH assumption, or O(xn? log n) bits com-
munication complexity without the ¢g-SDH setup assumption. In
particular, we do not use threshold signatures, and thus avoid any
distributed key generation during the setup or proactive secret
sharing during reconfiguration. We note that prior synchronous
BFT SMR protocols [3, 19, 46] with honest majority incur O(xn®)
communication per consensus decision without threshold signa-
tures.

Epochs. Our protocol progresses through a series of numbered
epochs with each epoch coordinated by a distinct leader. Epochs
are numbered by integers starting with one. Each epoch lasts for
11A time. The leaders for each epoch are rotated irrespective of the
progress made in each epoch. For simplicity, we use round-robin
leader election in this section and the leader of epoch e, represented
as Le, is determined by e mod n. Later in the beacon protocols, we
introduce different leader election rules.

Blocks and block format. An epoch leader’s proposal is repre-
sented as a block. Each block references its predecessor except for
the genesis block which has no predecessor. We call a block’s po-
sition in the chain as its height. A block By, at height h has the
format, By, := (bp, H(Bj_1)) where b, denotes the proposed pay-
load at height A, Bj,_; is the block at height h — 1 and H(By,_;) is
the hash digest of B,_;. The predecessor for the genesis block is L.
A block By, is said to be valid if (1) its predecessor block is valid, or
if h = 1, predecessor is L, and (2) the payload in the block meets
the application-level validity conditions. A block By, extends a block
By (h > 1) if B; is an ancestor of By. Note that a block’s height h
and its epoch e need not necessarily be the same.

Certified blocks, and locked blocks. A block certificate on a
block By, consists of t + 1 distinct signatures in an epoch e and is
represented by Ce(By,). Block certificates are ranked by epochs, i.e.,
blocks certified in a higher epoch has a higher rank. During the
protocol execution, each node keeps track of all certified blocks and
keeps updating the highest ranked certified block to its knowledge.
Nodes will lock on highest ranked certified blocks and do not vote
for blocks that do not extend the locked blocks to ensure safety of
a commit.

Equivocation. Two or more messages of the same type but with
different payload sent by an epoch leader are considered an equiv-
ocation. In this protocol, the leader of an epoch e sends propose

Session 12D: Decentralized Cryptographic Protocols

and vote-cert messages (explained later) to all other nodes. In or-
der to facilitate efficient equivocation checks, the leader sends the
payload along with the signed hash of the payload. When an equiv-
ocation is detected, broadcasting the signed hash suffices to prove
equivocation by L.

3.1 Protocol Details

We first describe a simple function that is used by an honest node
to forward a long message received from the epoch leader.
Deliver function. The Deliver() function (refer Figure 2) imple-
ments efficient broadcast of long messages using erasure coding
techniques and cryptographic accumulators. The input parameters
to the function are message type mtype, long message b, accumu-
lation value z, corresponding to object b and epoch e in which
the Deliver function is invoked. The input message type mtype
corresponds to message type containing large message b sent by
leader L, of epoch e. In order to facilitate efficient leader equiv-
ocation checks, the input message type mtype, hash of object b,
accumulation value z, and epoch e are signed by leader L.

When the function is invoked using the above input parameters,
the message b is partitioned into ¢ + 1 data symbols. The ¢ + 1 data
symbols are then encoded into n code words (s, . . ., s,) using ENC
function (defined in Section 2). Then, the cryptographic witness
w; is computed for each code words (s1, ..., sp) using CreateWit
(defined in Section 2). Then, the code word and witness pair (s, w;)
is sent to the node p; € # along with the accumulation value z,
message type mtype, and L’s signature on the message.

When a node p; receives the first valid code word s; for an
accumulation value ze such that the witness w; verifies the code
word s; (using Verify function defined in Section 2), it forwards the
code word and witness pair (sj, w;) to all nodes. Note that node p;
forwards only the first code word and witness pair (sj, w;). Thus, it
is required that all honest nodes forward the code word and witness
pair (sj, wj) for long message b; otherwise all honest nodes may
not receive ¢ + 1 code words for b. When a node p; receives t + 1
valid code words corresponding to the first accumulation value z, it
receives, it reconstructs the object b. Note that node p; reconstructs
object b for the first valid share even though it detects equivocation
in an epoch.

The Deliver function contains two communication steps and
hence requires 2A time to ensure all honest nodes can receive at
least t + 1 code words sufficient to reconstruct the original input b.
Invoking Deliver on a long message of size £ incurs O (né+(x+w)n?)
bits where « is the size of accumulator and w is the size of the
accumulator witness. The witness size is O(x) and O(k log n) when
bilinear accumulators and Merkle trees are respectively used as
witnesses. Thus, the total communication complexity to broadcast
a single message of size £ is O(nf + kn?) bits, or O(n¢ + xn? log n)
bits without the g-SDH assumption.

BFT SMR Protocol. Our BFT SMR protocol is described in Figure 1.
Consider an epoch e and its epoch leader L. To ensure an honest
leader can always make progress, leader L, first collects the highest
ranked certificate Ce’ (By,) from all honest nodes. In each epoch, at
a high level, there are two “rounds” of communication from the
epoch leader. The first round involves leader making a proposal and

3507

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

the second round involves sending certificates to aid in committing
the proposal.

Efficient propagation of proposal. In the first round, the leader
proposes a block By, to every node (step 2) by extending the high-
est ranked certificate Cer (By,). The proposal for By, conceptually,
has the form (propose, By, Ce’ (Bl),zpe, e)r, where Zpe is the ac-
cumulation value for the pair (Bj, Ce (B;)). In order to facilitate
efficient equivocation checks, the leader signs the following tu-
ple (propose, H(Bp,, Cer (By)), zpe, €) and sends By, and C,’ (B;) sep-
arately. The size of this signed message is O(x) bits. In case of
equivocation, all-to-all broadcast of this signed message incur only
O(xn?) in communication.

If the received proposal is valid and it extends the highest ranked
certificate known to a node p;, node p; forwards the proposal.
Forwarding the received proposal is required to ensure all honest
nodes receive a common proposal; otherwise only a subset of the
nodes may receive the proposal if the leader is Byzantine. Observe
that the size of the proposal is linear as it contains certificate C, (By)
(which is linear in the absence of threshold signatures). A naive
approach of forwarding the entire proposal incurs O(xn®) when
all nodes broadcast their proposal. In order to save communication,
nodes forward the proposal by invoking Deliver function. For linear
sized proposal, invoking Deliver incurs O(xn?) bits (or O(xn? log n)
bits under g-SDH assumption) in communication.

Observe that the Deliver primitive requires 2A time. In particular,

we need to ensure all honest nodes forward their code word and
witness pair for the proposal. Thus, our protocol waits for 2A time
(i.e., vote-timer,) before voting to check for equivocation. Hence, if
no equivocation is detected at the end of 2A wait, all honest nodes
forwarded their code word and witness pair for the proposal and all
honest nodes can reconstruct the proposal. At the end of 2A wait,
if there no equivocation is detected, nodes vote for the proposed
block By, (step 3).
Ensuring the receipt of a certificate efficiently. Observe that
a vote message is O(k) sized and hence, it can be broadcast us-
ing all-to-all communication with communication complexity of
O(xn?). However, if every node that commits needs to ensure that
all honest nodes receive a certificate for the block being committed,
this can result in O(xn®) complexity again. This is because, all-to-
all broadcast of linear sized certificate incurs O(kn?). One might
try to invoke Deliver to propagate the certificate. However, this
does not save communication. This is because, in general, there can
be exponentially many combinations of ¢ + 1 signatures forming
a certificate depending on the set of signers, and each node may
invoke Deliver on a different combination.

This issue can be addressed if we ensure that there is a single
certificate for a block. Hence, we use the leader to collect signatures
and form a single certificate (step 3). The leader forwards this cer-
tificate via (vote-cert, C¢(Bp,), Zve, €)1, to all nodes (step 4) where
Zye 1s the accumulation value of C, (By,). Similar to the proposal, the
hash of the certificate is signed to allow for efficient equivocation
checks. It is important to note that two different certificates for the
same value is still considered an equivocation in this step.

To ensure that every honest node receives this certificate, we
again resort to the Deliver primitive which yields a communication
complexity of O(xn?) when all honest nodes are invoking it using
the same certificate. Again, to tolerate malicious behaviors such

Session 12D: Decentralized Cryptographic Protocols CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

Let e be the current epoch and L, be the leader of epoch e. For each epoch e, node p; performs the following operations:
(1) Epoch advancement. When epoch-timer,_, reaches 0, enter epoch e. Upon entering epoch e, send the highest ranked certificate C,/ (B;) to L. Set
epoch-timer, to 11A and start counting down.

(2) Propose. L. waits for 2A time after entering epoch e and broadcasts (propose, By, Cer (By), Zpe, €)1, Where By, extends B;. Ces (B;) is the highest
ranked certificate known to Le.

(3) Vote. If epoch-timer, > 7A and node p; receives the first proposal p. = (propose, By, Cer (B), Zpe, €)1, Where B, extends a highest ranked certificate,
invoke Deliver(propose, pe, Zpe, €). Set vote-timere to 2A and start counting down. When vote-timer, reaches 0, send (vote, H(By,), e); to Le.

(4) Vote cert. Upon receiving ¢ + 1 votes for By, L. broadcasts (vote-cert, Ce (Bp), Ze, €))L, -

(5) Commit. If epoch-timer, > 3A and node p; receives the first v, = (vote-cert, C¢(Bp), Zve, €)1., invoke Deliver(vote-cert, ve, Zye, €). Set
commit-timer, to 2A and start counting down. When commit-timer, reaches 0, if no equivocation for epoch-e has been detected, commit By, and
all its ancestors.

(6) (Non-blocking) Equivocation. Broadcast equivocating hashes signed by L. and stop performing epoch e operations.

Figure 1: BFT SMR Protocol with O(xn?) bits communication per epoch and optimal resilience

Deliver(mtype, b, z¢, e): an adaptive adversary. The second protocol BRandPiper outputs
(1) Partition input b into ¢ + 1 data symbols. Encode the ¢ + 1 data a random beacon with O(xfn®) communication complexity per
symbols into n code words (sy,...,sn) using ENC function. Com- output after amortization where « is the security parameter, and
pute witness w; Vs; € (s1,...,S,) using CreateWit function. Send

guarantees bias-resistance and 1-absolute unpredictability. When
the actual number of faults f = O(1), the communication complex-
(2) If node p; receives the first wvalid code word ity is quadratic.

(codeword, mtype, sj, wj, ze, e), for the accumulator z., forward
the code word to all the nodes.

{codeword, mtype, s;, wj, z,,), to node j Vj € [n].

A key aspect of both of our protocols is their reconfiguration-
friendliness. A protocol is said to be reconfiguration-friendly if it

(3) Upon receiving ¢ + 1 valid code words for the accumulator z., decode allows changing protocol parameters such as the scheme and nodes,
b using DEC function. without stopping the old instance, and starting a new one. Such
Figure 2: Deliver function reconfiguration is possible if the setup used for the protocol does

not bind to the system, as such a binding will force a new setup
to change any parameter in the system. This is true, for instance,

as sending multiple different certificates for the same block (due when using threshold signatures in a protocol which is used by
to which none of them may be delivered), we treat the vote-cert many existing permissioned systems (7, 14, 15, 27]. Neither of our
message similar to the proposal and perform equivocation checks. protocols use setups for threshold signatures, but a setup based on
Thus, nodes commit only if they observe no equivocation 2A time the ¢-SDH assumption. This allows for easy reconfiguration.*
after they invoke Deliver (step 5). . .

Epoch timers. Observe that we set the epoch timer epoch-timer, 4.1 RandPiper - GRandPiper Protocol

for each epoch e to be 11A. This is the maximum time required
for an epoch when the leader is honest and all messages take A
time. Similarly, in different steps, we make appropriate checks
w.r.t. epoch-timer, to ensure that the protocol is making sufficient

Enqueue(Q(Le), Re) Share Queue Q(-)

Dequeue(Q(Le))

progress within the epoch. Eroch¢ } CRocherd :
Latency. We note that all honest nodes commit in the same epoch : { e } { o J
when the epoch leader is honest. However, when the epoch leader is |
Byzantine, only some honest nodes may commit in that epoch. Due - { Recon. } e { Recon. }
to the round-robin leader selection, there will be at least one honest

. Leader L, Leader Les;
leader every t + 1 epochs and all honest nodes commit common
blocks up to the honest epoch. Thus, our protocol has a worst-case
commit latency of t + 1 epochs. vie (EL;’:_%‘”H[}

Due to space constraints, we present complete proofs in Appen- Figure 3: Overview of RandPiper — GRandPiper. In every epoch, a
dix B.1. PVSS sharing of some random value is secret shared. At the same
time, a reconstruction protocol is used to reconstruct the random

4 RANDOM BEACON PROTOCOLS value committed by the leader of this epoch, the last time it was a
In this section, we present two random beacon protocols while tol- leader. O is genf:rated usm,g the random value R,, shared in epoch
e, reconstructed in epoch ¢’ > e + ¢, and outputs {Op/_1,...,Oer_; }

erating f < t < n/2Byzantine faults. The first protocol GRandPiper from previous epochs by using them as inputs to the random oracle
outputs a random beacon with O(xn?) communication complexity H.

always, per beacon output, where k is the security parameter, guar-

antees bias-resistance, and O(min(x, t))-absolute unpredictability 4We can use Merkle trees instead of g-SDH at the expense of O (log n) multiplicative
against a static adversary, but ¢ + 1-absolute unpredictability against communication complexity.

3508

Session 12D: Decentralized Cryptographic Protocols

We use the SMR protocol (refer Figure 1) described in Section 3
as a building block. At a high-level, consider using the SMR protocol
such that the leader outputs a number chosen uniformly at random
in each epoch. The random beacon output can be a function of
the outputs of the last t + 1 epochs, allowing for the presence of
at least one honest input (chosen uniformly at random) which is
potentially sufficient to obtain a random output. This argument
holds only if each leader chooses their input in the SMR protocol
independently of other inputs. Otherwise, if a Byzantine leader
can choose an input after knowing the outputs of the previous t
instances then it can bias the output. A separate concern with using
the SMR protocol as is, is that in an epoch with a Byzantine leader,
honest nodes may not all output the same value or output at all.

To fix both of these concerns, we require each node to send a
commitment of a random value more than ¢ epochs before it will
be reconstructed and used in the beacon protocol. To ensure the
secrecy of this value (for unpredictability and bias-resistance), the
values are shared with the nodes using a publicly verifiable secret
sharing (PVSS) scheme (refer to Appendix B for detailed PVSS
interface). Committing a secretly chosen value ahead of time helps
us solve both of our previous concerns. First, if the same leader is
not chosen twice in any span of t + 1 epochs, it ensures that the ¢ +1
values that will be used to construct the beacon protocol are chosen
independently of one another. Thus, when nodes reconstruct a
value in an epoch, it corresponds to a value committed more than
t epochs before. Moreover, the nodes can reconstruct this value
independent of the participation of the leader in this epoch. Second,
waiting for t + 1 epochs before opening allows for the value to be
committed by the SMR protocol. Thus, all honest nodes will open
the same value in an epoch.

A graphical description of this approach is presented in Figure 3.
In epoch e, a leader L, inputs PVSS shares corresponding to a
random value R, to the SMR protocol. Conceptually, when the block
is committed, this value is added to a queue Q(L,) corresponding
to this leader. When the same node is chosen the next time as a
leader, say in epoch e’, the committed shares of R, is dequeued
and reconstructed by all honest nodes to obtain R,. The output O,/
of epoch e’ can be computed as H(Re, O¢/—1, . . ., Oer—t). To allow
for unpredictability in leader selection while disallowing repetition
within ¢ + 1 epochs, the leader for the next epoch e’ + 1 is chosen
based on O, and by removing the leaders L, . . ., Le—;.

A remaining concern is when no values are added to the chain at
epoch e. Observe that the reconstruction in epoch e is not affected,
since nodes reconstruct values previously committed. However,
nodes may not have shares in epoch e’ > e + t where e’ is the first
epoch where L, is chosen as the leader again. To fix this concern,
we ensure that such a malicious leader who does not commit in
epoch e can be removed by all nodes by e +t < e’. Subsequently,
we can ensure that L, is never chosen as the leader again. To allow
for reconstruction the first time a node is chosen as the leader, we
ensure a setup where each node has an agreed upon share buffered
for every other node.

4.1.1 Protocol details. We now explain the protocol in detail (de-
scribed in Figure 4). We use a Publicly Verifiable Secret Sharing
(PVSS) scheme PVSS with threshold ¢ to generate encrypted shares

3509

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

and an associated proof that guarantees that any > ¢ nodes will
reconstruct a unique secret.

Setup. We establish PVSS parameters PVSS.pp, and public keys
PVSS.pk; for every node p; € P. We also buffer shares for one
random value for every node pj, i.e., fill Q(p;) for p; € P. We
start with epoch e = 1, and use seed random values for R, and
{O¢=1,...,0¢_t}. We also assign L5t < {pn, ..., pn—t} and set
P, «— 0 arbitrarily.

Leader selection. The leader for epoch e is chosen based on the
following rule:

Definition 4.1 (Leader selection rule). Let e be the current epoch,
Lrast = {Le—1,...,Le—¢} be the leaders of the last t epochs, P, be
the set of nodes that are removed (due to misbehavior), and L, =
(P\ Lrast) \ Pr:={l, ..., lw-1}, be a set of candidate leaders for
epoch e ordered canonically, with0 < w <n—t and L, € P. Then
the leader L of epoch e, is derived from output O—1, as

Le — l(Oe,l mod w)

Blocks. The leader of an epoch chooses R uniformly at random
from the input space of the PVSS algorithm (which could be a cyclic
additive/multiplicative group, or pairing groups). The leader uses
the PVSS.ShGen algorithm to generate share PVSS.s; for node p;
which are encrypted using PVSS.pk;, and all shares for the nodes
are stored in PVSS.E. The PVSS.ShGen algorithm also outputs the
proof PVSS. that any > t shares will reconstruct a unique secret,
which implies that the degree of the polynomial cannot be more
than ¢. Finally, the block in our SMR protocol consists of the outputs
of the PVSS.ShGen algorithm, ie., by := (PVSS.E, PVSS.m) «
PVSS.ShGen(Re). An honest nodes acknowledges By, if by, meets
the validity condition PVSS.ShVrfy algorithm. Note that despite
the blocks being O(kn) sized, due to our usage of Deliver primitive,
we retain a communication complexity of O(xn?) per epoch.
Commit, reconstruct, and output beacon value. In each epoch,
nodes commit the shares sent by the leader. They also reconstruct
the last sharing sent by the leader at the start of the epoch. Note
that each node can separately maintain the last time a node was
elected as the leader, and thus, be able to appropriately invoke
Dequeue(Q(Le)). Moreover, since a leader does not repeat in any
consecutive ¢ + 1 epochs, and we ensure that the set of leaders are
consistently known to all honest nodes (as will be shown in the next
subsection), the value being reconstructed is agreed upon by all the
honest nodes. When the nodes reconstruct R,, they already have
access to {Oe-1,...,01}. Hence, they can compute a consistent
output O,. Observe that since all nodes enter epoch e within a
delay of A, they also output the beacon value within A time of each
other.
Remove misbehaving leaders. Finally, at the end of an epoch e,
if no block was committed in epoch e — ¢ by Le—;, Le—; is removed
from all future proposals. Since this operation is performed after
t + 1 epochs, all nodes will perform this action consistently.

Due to space constraints, we analyze security in Appendix B.2.

4.2 RandPiper - BRandPiper Protocol

In this section, we present a random beacon protocol using O(k fn?)
bits of communication complexity where f < t is the actual number
of faults and with 1-absolute unpredictability. Thus, in the optimistic

Session 12D: Decentralized Cryptographic Protocols CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

All nodes p; € P running the SMR protocol do the following:
Setup. Set e = 1. All nodes agree upon seed random values for R, and {Oe¢—1, ..., Oc—t }. Set Ligst < {Pn,---» Pn-t}, Pr < 0. Run PVSS.Setup and
agree on the public parameters PVSS.pp. Then every node generates a key pair (PVSS.sk, PVSS.pk) < PVSS.KGen(k), and all nodes agree on each others
public keys.
Leaders. Choose leaders for an epoch e using Definition 4.1 instead of a round-robin order.
Blocks. The leader L, of an epoch e, creates a PVSS sharing (PVSS.§, PVSS.E, PVSS.z) « PVSS.ShGen(R) of a random value chosen from the input
space of PVSS, and creates a block By, with block contents by, as by, = (PVSS.E, PVSS.7m) « PVSS.ShGen(R). (We drop the individual shares in PVSS.§.)
Update. When committing a block By, sent by leader L,/ for some epoch e, Enqueue(Q(L,’), by,). At the end of epoch e, if no block was committed for
epoch e — t by Le_;, then remove L._; from future proposals, i.e., P, < P U {Le_; } from epoch e + 1.
Reconstruct. When the epoch timer epoch-timer,_; for epoch e — 1 ends, obtain the (PVSSAE, PVSS.7) corresponding to the committed block in
Dequeue(Q(Le)). Send s « PVSS.Dec(PVSS.sk, PVSS.Ei) to all the nodes in the system. On receiving share s’ from another node p;, ensure that
PVSS.Enc(PVSSApkj, s') = PVSS.EJ-. On receiving ¢ + 1 valid shares in PVSS.S, reconstruct Re « PVSSARecon(PVSS.g)‘
Output. After reconstructing R, for epoch e, output the beacon value O, by computing O, «— H(Re, O¢—1, ..., Oe—t)

Figure 4: RandPiper — GRandPiper beacon protocol description.

case when f = O(1), our communication complexity is quadratic. (1) Commitment and sharing. Dealer L invokes BB to broadcast n
In order to achieve 1-absolute unpredictability, we need to ensure commitments Step 1, while privately sharing individual shares

that we reconstruct inputs from > t nodes in every epoch. If we Step 2.

use PVSS schemes, we need to add O(t) shares in every epoch, so (2) Blame. Nodes invoke n parallel instances of BB to broadcast

that we can consume > t combined shares in every round. A PVSS blame messages Step 3.

sharing for one secret is of size O(n), and therefore performing (3) Open shares. Dealer L invokes an instance of BB with secret

O(nt) sharings trivially results in a communication complexity of shares corresponding to the blames received.

O(n®). Therefore, we will use VSS schemes (refer to Appendix B for

detailed VSS interface) in an attempt to improve the communication
complexity for a 1-absolute unpredictable random beacon protocol.

We note that state-of-the-art honest majority BB protocols, with-
out threshold signatures, incur O(xn?) bits communication cost to
achieve consensus on a single decision [1, 23, 33]. Thus, invoking n

4.2.1 Improved VSS. We will first describe an improved VSS (iVSS) parallel instances of BB trivially incurs O(xn*) communication cost.
scheme that achieves better communication complexity to share n In addition, running BB on inputs of size O(fn) incurs O(xfn3)
secrets in the optimistic case which will then be used in our random without threshold signatures and extension techniques. Thus, the
beacon protocol. total communication complexity is O(xn*) bits.
Efficient VSS (eVSS). eVSS [32] (refer Figure 5) presents the state- Improved eVSS (iVSS). In order to reduce the large communication
of-the-art VSS scheme for synchronous network setting. The pro- overhead, we first present an improved VSS scheme, that reduces
tocol is described assuming the presence of a bulletin board (or (i) the number of posts to the bulletin board, and (ii) the amount of
broadcast channels) [6, 17, 20, 32] where there exists a public bul- information posted on the bulletin board.
letin board, in which messages posted by any node are available In iVSS (refer Figure 6), the dealer posts commitments on the
instantly, and the bulletin board provides a consistent view to all bulletin board, privately sends the secret shares and corresponding
the nodes. We can realize such message delivery guarantees by witnesses similar to eVSS. However, unlike eVSS, nodes send the
invoking Byzantine Broadcast (BB) protocols. blame messages to all nodes. In addition, nodes forward the received
In this protocol, a dealer L creates a commitment VSS.C to a blame messages to the dealer to request for missing shares. The
random polynomial whose constant term is the secret, and posts the dealer privately sends missing shares to the nodes that forwarded
commitment on the bulletin board (Step 1), while privately sending the blame message instead of posting on the bulletin board. If
individual shares VSS.s; along with witnesses VSS.7; to every node an honest node receives missing shares for all blame messages it
pj € P (Step 2). Nodes post complaints on the bulletin board in the forwarded, it sends an ack to the dealer. The dealer collects ¢ + 1
form of blame message if they do not receive valid shares (Step 3) ack messages and posts the ack certificate on the bulletin board.
in a timely manner. The dealer then opens the secret shares on the An honest node commits the proposed commitment if it observes
bulletin board corresponding to the nodes that blamed (Step 4). If an ack certificate on the bulletin board.
there are > t complaints, the nodes abort (Step 5). Otherwise, the The honest nodes then forward the missing shares if the dealer
honest nodes commit their shares (Step 5), with the guarantee that sent the missing shares. A key correctness argument for our scheme
all honest nodes will be able to reconstruct the shared secret. is the following: if an honest node p; € does not receive commit-
Note that f < t Byzantine nodes can always blame regardless ments and secret shares, it must have sent blame messages to all
of the dealer being honest or not. This forces an honest dealer to honest nodes. If some honest node p; € P sends an ack message, it
post O(fn) shares on the bulletin board when secret sharing O(n) must have received missing shares corresponding to the blame mes-
secrets. In general, the amount of information posted on the bulletin sages it received and forwarded (which includes share for p;). Thus,
board is O(kn + kf + kfn) corresponding to O(n) commitments, f all the honest nodes shares to reconstruct the proposed secrets.
blame messages and O(fn) opened secret shares. A naive approach We note that both eVSS and iVSS schemes guarantee secrecy
of using BB protocols (extension protocols [36] for larger inputs) (see Definition 2.4) only when the dealer is honest. If ¢ Byzantine
to instantiate the bulletin board involves following steps: nodes send a blame message, then an honest but curious node can

3510

Session 12D: Decentralized Cryptographic Protocols CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

Let VSS be the VSS scheme being used. Let VSS.pp be the public VSS parameters. Let L be a dealer with secret s. Assuming the existence of a
bulletin board, each node p; € # does the following:

1. Post commitment. If p; is L, then generate shares for every node by running (VSS.§, VSS.W, VSS.C) « VSS.ShGen(s), and post the
commitment VSS.C to the secret s on the bulletin board.

2. Send shares. If p; is L, then send shares VSS.s; € VSS.S and witness VSS.mj € VSS.W over the confidential channel to all nodes pj € P.

3. Send blames. Post complaints (blame,L); on the bulletin board, if no wvalid share is received privately or if
VSS.ShVrfy(VSS.s;, VSS.z;, VSS.C) = 0.

4. Open shares. For all blames (blame, L);, if p; is L, post their shares VSS.s; and witnesses VSS.xj on the bulletin board.

5. Decide. If the published share and witness satisfies VSS.ShVrfy(VSS.sg, VSS.mg, VSS.C) = 1 for every blame, and there are only up to
f < t blames on the bulletin board, then commit VSS.s;. Otherwise, abort, i.e., output L.

Figure 5: eVSS [32] protocol description. This scheme is to secret share one secret.

Let VSS be the VSS scheme being used. Let VSS.pp be the public VSS parameters. Let L be a dealer with n secrets S := {sy, ..., sp } it wishes to secret share
with nodes P. Assuming the existence of a bulletin board, each node p; € P does the following:
1. Post commitment. If p; is L, run (VSS.§i, VSS.I/T/I-, VSS.C;) « VSS.ShGen(s;) for all s; € S. Build the commitment vector Vvss.C =
{VSS.Cy,...,VSS.Cy, } which contain commitments VSS.C; for s;. Post VSS.C on the bulletin board.
2. Send shares. If p; is L, collect shares and witnesses (VSS.Sj,VSS.]l’j) for every node p; € P, and secret s; € S, and build VSS.gj,VSS.IX/j. Send
(VSS.5;,VSS.W;) to node p; € P.
If p; € P is not the dealer L, then wait to obtain (VSS.§i, VSS.IX/,—) from the dealer L, and ensure that VSS.ShVrfy(VSS.s;, VSS.x;, VSS.éj) =1 holds for
VSS.s; € VSS.S;, and VSS.xr; € VSS.W;.
3. Send blames. If invalid/no shares are received from the dealer L, then send (blame, L); to all the nodes. Collect similar blames from other nodes.
4. Private open. Send all the collected blames to the dealer L. If p; is the leader, then for every blame (blame, L) received from node p;, send
(VSS.Sk, VSS. W) to node p;.
If p; is not L, then ensure that VSS.ShVrfy(VSS.s;, VSS.x;, vss.éj) =1 for every (blame,L);, VSS.s; € VSS.§j, and VSS.zr; € VSS.WJ.
5. Ack and decide. If p; received < ¢ blames and the leader responded with valid shares (VSS.§]—, VSS.VT/]-) for every (blame, L); it forwarded, then send an
ack message to the dealer L.
If p; is L, then post ack certificate (denoted by .ﬂC(VSS.é)) on the bulletin board.
If there is an ack certificate ﬂC(VSS.@) on the bulletin board, commit VSS.(_:‘, and send (VSS.§j, VSS.Wj), if received from L.
6. Reconstruction. Each node p; € P does the following:
(a) If there is a share VSS.s;, VSS.7;, send the share and witness to all the nodes.
On receiving a share and witness (VSS.sj, VSS.x;) from pj, ensure that VSS.ShVrfy(VSS.s;,VSS.z;,VSS.C) = 1.
(b) On receiving ¢ + 1 valid shares in VSS.S, reconstruct the secret s using s « VSS.Recon(VSS.g). Send s to all the nodes.
(c) On receiving an opened secret s, ensure that VSS.ComVrfy(VSS.C, s) = 1 and output s.

Figure 6: iVSS - Improved eVSS protocol description

violate secrecy, however this was also possible in the bulletin board common randomness R,. Such reconstructed randomness is guar-
based protocol and can be easily solved by assuming an additional anteed to be unbiasable since an adversary cannot know the secrets
honest node, i.e., n > 2t + 1. of honest nodes until reconstructed, and an adversary cannot pre-

vent reconstruction. For the same reason, our BRandPiper protocol

4.2.2 Random Beacon for BRandPiper. In this section, we instanti- ensures 1-absolute unpredictability, even for a rushing adaptive

ate bulletin boards using our SMR protocol (Section 3) and present a

’ - i adversary.

random beacon protocol, we call BRandPiper, using the iVSS scheme.

If we use our SMR protocol with rotating leaders, we can commit Protocol Details. Leader selection. We employ a round robin leader
blocks of size O(kn) within ¢+1 epochs while incurring O(xn?) bits selection policy. If an epoch leader p; fails to commit within ¢ + 1
of communication per epoch. To obtain 1-absolute unpredictability, epochs, it is added to the set of removed nodes #, and is prevented
we need to reconstruct at least ¢ + 1 secrets from distinct nodes in from being a future leader. The remaining nodes # \ #, propose in
each epoch. For simplicity, we reconstruct one secret from all nodes a round robin manner.

that have not been removed. Using the round-robin leader selection Setup. During the setup phase, all the nodes are provided with
rule, every node can share secrets at least once every n epochs. If in VSS parameters VSS.pp required for using the VSS scheme VSS.
every epoch, the leader proposes commitments to n secrets using Each node maintains n queues Q(p;), for p; € P. Each queue
SMR protocol, we can use these secrets for the next n epochs in Q(p;) holds tuples with each tuple containing a secret share, its
the reconstruction. Our beacon output step can take advantage of witness and commitment proposed by node p; when node p; was
the homomorphic properties of the underlying VSS scheme VSS to an epoch leader. During the setup phase, each queue Q(p;) is filled
combine secret shares for multiple secrets from different nodes into with m = n + t tuples containing secret shares, witnesses and
an O(k)-sized share which can be efficiently broadcast to all nodes. commitments for m secrets. This ensures that all honest nodes have
Honest nodes collect ¢ + 1 homomorphic shares to reconstruct the common secret shares in Q(py) and can perform Dequeue(Q(pn))

3511

Session 12D: Decentralized Cryptographic Protocols

up to epoch n + t even if p, does not propose in epoch n. This is
because honest nodes perform Dequeue(Q(pp)) (explained later)
in each epoch unless node p, has been removed. If node p, does
not propose in epoch n, it is removed only in epoch n + ¢.

Buffer ¢ + 1 shares

—_——t
p1 ©1913 01,4
p2 ©| 023 V24 | V25
P3 ‘| o33 v34 | 035 |36| — QE3)
Pa <] V43 V44 | Vg5 1 Vas 047‘
Ps cluss «

Figure 7: An example illustration of BRandPiper for n =5 and ¢ = 2
in epoch e = 5. The region marked in red are the shares that will be
homomorphically combined in every epoch for reconstruction. In
general, in every epoch, shares from the left-most column will be
used for reconstruction. The region marked in yellow is the addition
of n new shares by the leader L, = ps.

Example. Consider an example scenario as shown in Figure 7. In
epoch 5, ps proposes and adds n VSS shares to the system which
will be committed within ¢ + 1 = 3 epochs. If p5 is Byzantine, by the
end of epoch 8, all the nodes will remove ps from future proposals,
thus guaranteeing outputs for every epoch. Until epoch 8 observe
that we have shares for ps.

Block validation protocol. BRandPiper uses a block validation
protocol to generate valid blocks for use in the SMR. A valid block
in BRandPiper is a vector of VSS commitments Vvss.C along with
acks from ¢+ 1 nodes. The block validation protocol is essentially an
instance of iVSS where the leader ends up with t + 1 votes for a VSS
commitment vector VSS.C. The commitment and ack certificate
is then input to the SMR protocol to ensure that all honest nodes
agree on a single commitment vector. During the SMR protocol,
the honest nodes vote only if a valid block is produced via the
block validation protocol. The block validation protocol guarantees
that if a block is certified, then all the honest nodes have sharings
for all the secrets committed in VSS.C. When these commitments
are committed via SMR, all the honest nodes use the secret shares
in the commitments in different epochs to generate the common
randomness.

The block validation protocol (refer Figure 8) is executed in par-
allel with SMR protocol. The leader L. of epoch e executes the
block validation protocol while in epoch e — 1 to generate an ack
certificate for commitments to be proposed in epoch e. The protocol
consists of following steps:

Distribute. Leader L, creates n commitments VSS.C correspond-
ing to n secrets {si,...,sn} it wishes to share using VSS.ShGen
algorithm for secrets {s;|V1 < i < n}, along with shares VSS.§j
{VSS.s1j,...,VSS.sp;} and witnesses VSS.W; := {VSS.my;,
..., VSS.mp j}, for all p; € P. We define a block containing n com-
mitments VSS.C as SB := (Commitment, vSS.C,e, Zse)L,- The leader

3512

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

L, sends VSS.§j, VSS.Wj, and SB to node pj, for all p; € P. Simi-
lar to the SMR protocol, the leader signs the tuple (Commitment,
H (VSS.@)), e, zse) and sends VSS.C separately to facilitate efficient
equivocation checks. It is important to note that commitment VSS.C,
shares VSS.§j, and witness VSS.VT/j are O(n)-sized and the shares
VSS.s; are only sent to node p;. Sending only the required shares
to designated nodes reduces communication complexity.

Blame/Forward. If a node p; receives a valid secret share VSS.§i,

witness VSS.Wi, and sharing block SB := (Commitment, VSS.é,
e, Zse)L, Within 3A time in epoch e — 1, it then calls the function-
ality Deliver(Commitment, SB, zse, €). The valid share must satisfy
VSS.ShVrfy(VSS.sj, VSS.xj,

VSS.éj) =1, Vj € [n]. Otherwise, node p; broadcasts (blame, e);
to all nodes.

Request open. Node p; waits for 6A time in epoch e — 1 to collect
any blames sent by other nodes. If no blames or equivocation by
Le has been detected within that time, p; sends (ack, H(SB), e); to
Le. If up to t blames are received, p; forwards the blames to L.
Private open. If L, receives any blames from node p;, it sends valid

VSS.§j, witness VSS.WJ- for every blame (blame, e) ; received from
node p;.

Ack. If node p; forwarded any blames and received valid secret
shares VSS.§]~ and witness VSS.I/_l)/j for every blame (blame, e); it
forwarded and detects no equivocation, node p; sends a signed ack
(ack, H(SB), e); to L. In addition, node p; forwards secret shares
VSS.§j and witness VSS.VT/]- for every blame (blame, e); it received.
Thus, if an honest node sends an ack for the sharing block SB, then
all honest nodes have their respective secret shares corresponding
to sharing block SB (more details in Lemma B.17).

Equivocation. At any time in epoch e — 1, if a node p; detects an
equivocation, it broadcasts equivocating hashes signed by L, and
stops participating in epoch e — 1 block validation protocol.
Beacon protocol. We now present the beacon protocol (refer Fig-
ure 9) in BRandPiper. It consists of the following rules for an epoch
e. Here, an epoch corresponds to an epoch in SMR protocol.
Generate Blocks. The leader L, of an epoch e chooses n secrets uni-
formly at random and invokes the block validation protocol while
in epoch e — 1 to obtain an ack certificate (denoted by AC.(SB)), to
generate a valid block SB corresponding to the n secrets. In epoch e,
the leader proposes block By, with by, := (H(SB), AC¢(SB)) where
AC(SB) is an ack certificate for commitment SB using the SMR
protocol obtained from the block validation protocol. We redefine
valid blocks for the SMR protocol with an additional constraint to
contain an ack certificate created in epoch e — 1° and all honest
nodes vote in the SMR protocol as long as the proposed block meets
this additional constraint. As mentioned before, an ack certificate
for a sharing block SB implies all honest nodes have secret shares
required to reconstruct the secrets corresponding to commitments
in SB. Thus, it is safe for honest nodes to vote in the SMR protocol
although they sent blame during the block validation phase.
Update. At the end of epoch e, node p; updates Q(L,—;) as follows.
If Le—; proposed a valid block B; in epoch e — ¢ and B; has been
committed by epoch e, node p; replaces the contents of Q(Le—;)
with n tuples with each tuple containing secret shares, witnesses

SFor the first epoch, an ack certificate can be created during the setup phase.

Session 12D: Decentralized Cryptographic Protocols CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

This protocol is executed in parallel with BFT SMR protocol in Figure 1 using the round-robin leader selection. Let L, be the leader of epoch e and the current
epoch be e — 1. Node p; performs following operations while in epoch e — 1:
1. Distribute. L, waits for A time after entering epoch e — 1 and then does the following:

e Let {s1,..., s, } be n random numbers chosen uniformly from the input space of VSS.

e Build SB := (Commitment, VSS.é, e, Zse)L, the sharing block which consists of commitments VSS.C = {VSS.Cy,...,VSS.C, } to the n random numbers
generated by running (VSS.§1~,VSS.VT/,~,VSS.C1-) «— VSS.ShGen(s;) for i € {1,...,n}, where VSS.§,~ = {VSS.si,l, . ..,VSS.si,n}, and VSS.Wi =
{VSS.mi1,...,VSS.min}.

e Build the share vector VSS,§j = {VSS.s1 « VSS.§1J, ..., VSS.s, «— VSS.§,,,]~} and the witness vector VSS.V_{/j = {VSS.m; «— VSS.VT/l,j, ..., VSS.m), —
VSS.WnJ } for node p; using jth share and witness from VSS.§,— and VSS.W',— for random number s;.

e Send VSS.§J~, VSS.Wj, and SB to every node p; € P.

. Blame/Forward. If epoch-timer,_; > 8A and node p; receives valid share vector VSS.§i, witness vector VSS.Wi and commitment SB =

(Commitment, VSS.é, e, Zse)L, then invoke Deliver (Commitment, SB, zge, €). If no shares has been received within 3A time while in epoch e — 1, broadcast

a blame (blame, e); to all nodes.

. Request open. Wait until epoch-timer,_; > 5A. Collect all blames received so far. If up to ¢ blames are received so far, forward the blames to L.. If no
blames or equivocation by L, has been detected, send (ack, H(SB), e); to Le.

. Private open. L, sends valid share VSS.§J~ and witness VSS.‘Z/j to node p;, for every blame (blame, e); received from node p;.

. Ack. Upon receiving valid share VSSA§]- and witness VSS.VT/]- for every (blame, e); it forwarded and detects no equivocation, send (ack, H(SB), e); to Le.

oo

w

(SN

Forward share VSS,§j and witness VSS.I/T/]- to node p; for every (blame, e); it received.
. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by L and stop performing any operations.

(=2}

Figure 8: Block validation protocol.

Let VSS be the VSS scheme used, e be the current epoch and L, be the leader of epoch e. Node p; € augments SMR protocol in Figure 1 as follows:

o Setup. Set e = 1. All nodes agree upon and fill Q(p;) with m = n + ¢ tuples Vp; € P. Set P, < 0. Run VSS.Setup and agree on the public parameters
VSS.pp. Set Le < py.
Blocks. While in epoch e — 1, leader L, starts the block validation protocol (refer Figure 8) with {sy, ..., s, }, where the secrets are chosen randomly
si s {0,1} for1 <i <n.
In epoch e, L, proposes block By, with by, := (H(SB), AC.(SB)) where AC.(SB) is an ack certificate for commitment SB.
Update. When epoch-timer,, expires, if Lo_; proposed a valid block B; in epoch e — t and B; has been committed by epoch e, update Q(L._;) with n
tuples with each tuple containing secret shares, witnesses and commitments shared in epoch e — t. Otherwise, remove L._,; from future proposals i.e.,
Pr — PrU{Le—+}
e Reconstruct. When epoch-timer, expires, do the following:

(1) Get (VSS.5,VSS.W, VSS.C) := {Dequeue(Q(p)))Ip; & Pr}.

(2) Build homomorphic sum share SV;, witness VSS.7;, and commitment VSS.C, using all shares from VSS.C. Send SV; and VSS.; to all the nodes.

(3) Upon receiving share SV; and witness VSS.z; for VSS.C,, ensure that VSS.ShVrfy (SV;,VSS.7;,VSS.Ce) = 1.

(4) Upon receiving (¢ + 1) valid homomorphic sum shares in SV, obtain R, < VSS.Recon(SV).
o Output. Compute and output O, < H(R,).

Figure 9: RandPiper — BRandPiper beacon protocol.

and commitments shared in epoch e — t. If no epoch e — t block 5 PERFORMANCE EVALUATION

was committed, it removes L,—; from future proposals, i.e., Py « In this section, we evaluate the performance of RandPiper, and
PrU{Le_; }. It is important to note that the SMR protocol guarantees compare it with the performance of related works.
all honest nodes commit proposed blocks in ¢ + 1 epochs. Thus, all Implementation. We implement BRandPiper protocol in Rust [11,
honest nodes either update Q(Le-) or remove Le— in epoch e. Performance Evaluation], due to its strong support for correctness
Reconstruct. At the end of epoch e, all the nodes perform the op- in concurrency, and compile-time memory safety guarantees. Our
eration Dequeue(Q(p;)), Vpj & Pr, to fetch n secret shares (one implementation is lock-free and uses message passing to ensure
from each node) and corresponding witnesses. The nodes compute efficiency. We provide the setup parameters for every node in the
the homomorphic sum of shares and witnesses and broadcast it to config files. Our code is event driven, and reacts to various timeouts
all other nodes. and messages from the network. We use ED25519 for digital signa-
Output. From the above discussion, it is clear that all honest nodes tures. We use the BLS-12-381 [9] curve and use implementations of
send homomorphic sum of shares for common commitments and SCRAPE [17] over this curve as the PVSS scheme, Pedersen-based
all honest nodes will receive at least ¢ + 1 valid homomorphic €VSS and Polycommit [32] over this curve as the VSS and bilinear
shares. When a node p; receives t + 1 homomorphic shares, it accumulator scheme.
reconstructs the randomness R using VSS.Recon primitive and Optimizations. We perform some system-level optimizations. In
computes O¢ < H(Re). particular, we do the following: (1) We generate random shares
Due to space constraints, we analyze security in Appendix B.3. before the propose step (this can be done using extra cores, an

external node supplying the shares) and use it during the propose

3513

Session 12D: Decentralized Cryptographic Protocols

.

5001 Y % -+ Drand (99.9)
% 100 ‘\\ \‘\ Drand (100)
‘£ \ \\\ --—- HydRand (no unpred.)
g3001 %4 \ -®- BRandPiper (Bilinear)

¥eo
29004 @ “\\g -#-- BRandPiper (Merkle Tree)
3 N —~
3 \ \\1 =
@ 1001 e "~
e &
01 e
0 10 20 30 70

Number of Nodes (n)

Figure 10: Overview of the beacons produced per minute for the
various protocols. Among the compared implementations, HydRand
is only bias-resistant but does not offer 1-absolute unpredictability

step, so that the share generation does not block the critical path.
(2) We take advantage of the Tokio library [48] and futures in Rust to
run concurrently without spawning threads. (3) We implement both
the accumulator libraries: the bilinear accumulator and the Merkle
tree accumulator. We observe that the computational performance
of the Merkle tree accumulator is much better in practice in general.
Setup. All our experiments were conducted on t2.micro AWS in-
stances from ohio region, which have 1 GB RAM, 8 GB hard disk,
1 vCPU running at up to 3.3 GHz. The advertised bandwidth for
these instances is 60-80 MBits/s.
Baselines. We compared the performance of our implementation
with two baselines which are the current state-of-the-art public im-
plementations: Drand [25] and HydRand [42, 44]. We chose Drand
because it is a practically deployed system implementing Cachin
et al. [16] and evaluating our performance against it justifies our
practicality. We chose HydRand as our second baseline because, it is
theoretically related to our work: HydRand requires 2/3 honest ma-
jority as compared to the optimal 1/2 honest majority necessary for
us. Note that the basic HydRand protocol and implementation [42]
only offers bias-resistance but no unpredictability: an adversary
may correctly predict a random beacon in t + 1 epochs in advance.
Micro-Benchmarks. We measure the efficiency of the primitives
used in our protocol. Concretely, we measure the run times for
(1) accumulator share generation, verification and reconstruction
for the bilinear accumulator as well as the Merkle tree accumulator,
(2) PVSS share generation, verification, and reconstruction, (3) eVSS
share generation, verification, and reconstruction, and (4) the size of
the various messages used in the protocol. The details are provided
n [11]. We observe that the Merkle tree accumulator for our small
scales has smaller message sizes and very efficient run times. We
also observe that eVSS operations in general perform much better
than its PVSS counterparts.

We build communication-efficient random beacon protocols with
comparable or better performance than the state-of-the-art solu-
tions. Thus, the key metric we compare is the number of beacon
values that can be produced in a minute. In addition, compared
to Drand, we have the advantage of reconfigurability and weaker
network assumptions, and compared to HydRand, we can tolerate
more faults. The methodology is to run protocols at appropriate
values of A, which in turn depends on the computation and com-
munication costs. We provide additional micro benchmarks in the
full online version [10].

3514

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

BRandPiper. Our beacon produces a value every 11A. We measure
the smallest value of A for which our beacon produces outputs
without any of the n correct nodes blaming/reporting malicious
behavior in the logs. Using this, we measure the metric: number of
beacons produced per minute for BRandPiper protocol, and present
them in Figure 10. We run our beacon for 100 rounds, thereby giving
a strong confidence that the A used is viable, provided the network
conditions stay the same.

Drand. For Drand, we measure the parameter time discrepancy,
which is a value output by Drand by every node. It reports the
time (in ms) between obtaining the beacon value and the time at
which the epoch started. This time accounts for the synchronization
losses, network delays as well as the computations. The beacon
continues to produce values every period seconds. However, the
time discrepancy parameter defines the lowest period we can set
to ensure continuous beacon output. We give the benefit of the
doubt to Drand here as there is no guarantee that setting such low
values for A does not overwhelm the system. We allow the beacon
to run for 100 epochs, and measure the 99.9" percentile of the
time discrepancies observed in the logs of all the nodes over all the
epochs, and present their growth in Figure 10. For 100 percentile, we
observe that we are always better than Drand. In our experiments,
when n = 65, we observed that the DKG initialization in Drand
results in all the nodes aborting, even after setting large values for
period.

HydRand. We use the public implementation [42]. It consists of
three rounds: propose, acknowledge and vote, timeouts for which
can be configured. We find the smallest such configuration that
allows the system to work and report the numbers in Figure 10.
HydRand on its own offers ¢ + 1-absolute unpredictability where
t < n/3 along with the bias-resistance property. However, Drand
and BRandPiper are both 1-absolute unpredictable, and in that sense,
HydRand is not unpredictable.

From Figure 10, we can clearly see that the Merkle tree based
BRandPiper is quantitatively as practical as the state-of-the-art
practical random beacon protocol: Drand. Drand uses a leader to
coordinate the DKG and reconfiguration protocols. There is no de-
scription on how to recover if the leader was Byzantine. Addition-
ally, in Drand, the synchronization for the reconfigured instance is
via the coordinator (the leader). It is not clear how the protocol will
recover if the leader becomes Byzantine. Therefore, qualitatively,
we use much clearer and formal network assumptions and allow
efficient and secure reconfiguration, including synchronization for
the incoming nodes, without pausing the protocol, unlike Drand,
and therefore can conclude that BRandPiper protocol is not just
theoretically interesting, but also practical.

ACKNOWLEDGEMENTS

We would like to thank our shepherd Alin Tomescu, Sourav Das and
the anonymous reviewers for their insightful feedback to improve
this draft. This work has been partially supported by research gift
grants from VMware Research and Novi, the Army Research Labo-
ratory (ARL) under grant W911NF-20-2-0026, the National Institute
of Food and Agriculture (NIFA) under grant 2021-67021-34251, and
the National Science Foundation (NSF) under grant CNS-1846316.

Session 12D: Decentralized Cryptographic Protocols

REFERENCES

(1]

l6

=

[7

[

[10

[11

[12]

(13

[14]

[15

[16]

[17

[18

[19]

™
A=A

[21]

Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
2019. Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected
O(n?) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security, lan Goldberg and Tyler Moore (Eds.). Springer International Pub-
lishing, Cham, 320-334.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2018. Dfinity Con-
sensus, Explored. IACR Cryptol. ePrint Arch. 2018 (2018), 1153.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync HotStuff: Simple and Practical Synchronous State Machine Replication.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, Oakland, 106-118.
https://doi.org/10.1109/SP40000.2020.00044

Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
Optimal Validated Asynchronous Byzantine Agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (Toronto ON, Canada)
(PODC '19). Association for Computing Machinery, New York, NY, USA, 337-346.
Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021.
Good-case Latency of Byzantine Broadcast: a Complete Categorization.
arXiv:2102.07240 [cs.DC]

Michael Backes, Aniket Kate, and Arpita Patra. 2011. Computational Verifiable Se-
cret Sharing Revisited. In Advances in Cryptology — ASIACRYPT 2011, Dong Hoon
Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
590-609.

Shehar Bano, Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis,
Francois Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, et al.
2020. State machine replication in the Libra Blockchain.

Niko Bari¢ and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-Stop
Signature Schemes Without Trees. In Advances in Cryptology — EUROCRYPT 97,
Walter Fumy (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 480-494.
Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2002. Constructing Elliptic
Curves with Prescribed Embedding Degrees. Cryptology ePrint Archive, Report
2002/088. https://eprint.iacr.org/2002/088.

Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2020. RandPiper
- Reconfiguration-Friendly Random Beacons with Quadratic Communication.
Cryptology ePrint Archive, Report 2020/1590. https://eprint.iacr.org/2020/1590.
Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2020. RandPiper-
Reconfiguration-Friendly Random Beacons with Quadratic Communication.
IACR Cryptol. ePrint Arch. 2020 (2020), 1590.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. 2018. Verifiable
Delay Functions. In Advances in Cryptology — CRYPTO 2018, Hovav Shacham and
Alexandra Boldyreva (Eds.). Springer International Publishing, Cham, 757-788.
Dan Boneh and Xavier Boyen. 2008. Short Signatures Without Random Oracles
and the SDH Assumption in Bilinear Groups. J. Cryptol. 21, 2 (2008), 149-177.
Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2019. The latest gossip on BFT
consensus. arXiv:1807.04938 [cs.DC]

Vitalik Buterin and Virgil Griffith. 2019. Casper the Friendly Finality Gadget.
arXiv:1710.09437 [cs.CR]

Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology 18, 3 (2005), 219-246.

Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness
Attested by Public Entities. In Applied Cryptography and Network Security, Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer International
Publishing, Cham, 537-556.

Chainlink. 2021. Generate Random Numbers for Smart Contracts using Chainlink
VRE. https://docs.chain.link/docs/chainlink-vrf

T-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2018. PiLi: An Extremely Simple
Synchronous Blockchain. Cryptology ePrint Archive, Report 2018/980. https:
//ia.cr/2018/980.

Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic
Encryption Random Beacon. IACR Cryptol. ePrint Arch. 2019 (2019), 1320.
Information Technology Laboratory Computer Security Division. 2021. Interop-
erable Randomness Beacons: CSRC. https://csrc.nist.gov/projects/interoperable-
randomness-beacons

Danny Dolev and Riidiger Reischuk. 1985. Bounds on information exchange for
Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191-204.
Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for
Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656—-666.

J Drake. 2021. Minimal VDF randomness beacon. Ethereum Research Post (2018).
Drand. 2021. Drand - A Distributed Randomness Beacon Daemon. https:
//github.com/drand/drand

Pesech Feldman and Silvio Micali. 1997. An optimal probabilistic protocol for
synchronous Byzantine agreement. SIAM J. Comput. 26, 4 (1997), 873-933.
Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). ACM, New York, 51-68.

3515

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

[28] Mads Haahr. 2021. True Random Number Service. https://www.random.org/
[29] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2020. RandChain: Decentralised
Randomness Beacon from Sequential Proof-of-Work. Cryptology ePrint Archive,
Report 2020/1033. https://ia.cr/2020/1033.
[30] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY Tech-
nology Overview Series, Consensus System. arXiv:1805.04548 [cs.DC]
Somayeh Heidarvand and Jorge L. Villar. 2009. Public Verifiability from Pairings
in Secret Sharing Schemes. In Selected Areas in Cryptography: 15th International
Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised
Selected Papers. Springer-Verlag, Berlin, Heidelberg, 294-308.
Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in Cryptol-
ogy - ASIACRYPT 2010, Masayuki Abe (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 177-194.
Jonathan Katz and Chiu-Yuen Koo. 2006. On Expected Constant-Round Protocols
for Byzantine Agreement. In Advances in Cryptology - CRYPTO 2006, Cynthia
Dwork (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 445-462.
Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-Knowledge SNARKSs from Linear-Size Universal and Updatable Structured
Reference Strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). ACM, New
York, 2111-2128.
Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of
Authenticated Byzantine Agreement. arXiv:2007.13175 [cs.DC]
Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang.
2020. Improved Extension Protocols for Byzantine Broadcast and Agreement.
arXiv:2002.11321 [cs.CR]
Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In Top-
ics in Cryptology — CT-RSA 2005, Alfred Menezes (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 275-292.
Torben Pryds Pedersen. 1992. Non-Interactive and Information-Theoretic Se-
cure Verifiable Secret Sharing. In Advances in Cryptology — CRYPTO 91, Joan
Feigenbaum (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 129-140.
Provable. 2021. blockchain oracle service, enabling data-rich smart contracts.
https://provable.xyz/
Michael O. Rabin. 1983. Randomized byzantine generals. In 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). IEEE, Tuscon, 403-409.
https://doi.org/10.1109/SFCS.1983.48
Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300-304.
Philipp Schindler. 2021. HydRand. https://github.com/PhilippSchindler/hydrand
Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar
Weippl. 2020. RandRunner: Distributed Randomness from Trapdoor VDFs with
Strong Uniqueness. Technical Report. Cryptology ePrint Archive, Report 2020/942,
https://eprint. iacr. org/2020/942.
Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2020.
HydRand: Efficient Continuous Distributed Randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, Oakland, 73-89.
Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),
299-319.
Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. 2020. On the
Optimality of Optimistic Responsiveness. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). ACM, New York, 839-857.
Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-
Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, Oakland, 444-460.
Tokio-Rs. 2021. tokio-rs/tokio. https://github.com/tokio-rs/tokio
Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(Toronto ON, Canada) (PODC ’19). ACM, New York, 347-356.

w
—

'w
&,

[33

[34

[35

'S
&

[37

[38

[39

[40

[41

"~
&

[43

[44

[45

[46

[47

[48

e
2,

A RELATED WORK
A.1 Related Works in the BFT SMR Literature

There has been a long line of work in improving the latency and
communication complexity of consensus protocols [1, 4, 5, 14, 26,
33, 35, 46, 49]. The state-of-the-art BFT SMR protocols [1, 3, 5, 46]
incur quadratic communication per consensus decision while using

https://doi.org/10.1109/SP40000.2020.00044
https://arxiv.org/abs/2102.07240
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2020/1590
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437
https://docs.chain.link/docs/chainlink-vrf
https://ia.cr/2018/980
https://ia.cr/2018/980
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://github.com/drand/drand
https://github.com/drand/drand
https://www.random.org/
https://ia.cr/2020/1033
https://arxiv.org/abs/1805.04548
https://arxiv.org/abs/2007.13175
https://arxiv.org/abs/2002.11321
https://provable.xyz/
https://doi.org/10.1109/SFCS.1983.48
https://github.com/PhilippSchindler/hydrand
https://github.com/tokio-rs/tokio

Session 12D: Decentralized Cryptographic Protocols

threshold signatures. Without threshold signatures, they incur cu-
bic communication per consensus decision. Our BFT SMR protocol
makes progress in the setting where threshold signatures are not
desirable. Our protocol incurs O(kn?) communication complex-
ity under the ¢-SDH assumption or O(xn? log n) without it at the
expense of increased latency.

A.2 Related Works in the Random Beacons
Literature

In this section, we explore random beacon protocols, sometimes
also referred to as coin tossing protocols, in the synchronous setting.
Some works were originally designed for the asynchronous settings,
but in this section, we evaluate them in the synchronous setting.

Cachin et al. [16] use a threshold shared secret x; of the secret
X € Zg, where q is the order of a group G. To generate beacons,
they create shares g“* of the beacon g, for some generator g €
G. The beacon value c is some agreed upon coin value , say for
instance, a counter. When > t such shares are obtained, all the
honest nodes obtain the same beacon value g°*. Drand [25] uses a
similar approach by replacing the threshold secret with a threshold
BLS key and using signatures on the common coin ¢ (say, a counter).
This incurs a communication complexity of O(kn?) always, but
comes with the drawback that it does not support reconfiguration,
i.e., if a single node is replaced or joins the system, the threshold
shared keys (sharing x; of x) must be regenerated or new keys (or
shares xl.’) for the old key (or secret x) need to be reshared between
the new participants.

Homomorphic Encryption Random Beacon (HERB) [20] uses
homomorphic threshold ElGamal encryption scheme to generate
random numbers. The system tolerates n > 3¢ faults. Each node in
the system encrypts a random share and posts it on the bulletin
board. The protocol uses ¢ + 1 such encryptions to produce the final
beacon output. The work requires the use of a Byzantine Agreement
protocol whose inputs are O(xn) sized, and therefore trivially has
a communication complexity of O(xn?) in the best and worst cases.
It also uses a variant of the threshold setup, thereby not permitting
a re-usable setup.

RandChain [29] builds a DRB - Decentralized Random Beacon
that assumes sequential Proof-of-Work (Seq-PoW), and VDFs along
with Nakamoto consensus for consistency. Constructions using
these assumptions are not energy-efficient. In PoW, an adversary
with more hash power can neglect unfavorable random numbers
by forking, and to avoid this requires the total honest hash power
to be greater than 1/2. The work uses existing Byzantine Agree-
ment techniques which makes the protocol have a communication
complexity of O(kn?) in the best case, while inheriting the O(xn®)
communication complexity from BA [22] in the worst case.

Drake et al. [24] proposed a minimal bias-resistant VDF-based
random beacon scheme, that assumes the existence of a VDF [12]
and that the adversary has an advantage A;,qx in terms of speed
over the honest nodes, in computing the VDF. The VDF is used
to determine the beacon output for a round, and sufficiently old
beacon outputs are used to select leaders for the Ethereum Proof-of-
Stake protocol. The system tolerates n > 3t faults, and is designed
for partial synchrony.

3516

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

RandRunner [43] builds a random beacon protocol using VDFs.
Therefore, it has a setup that can be re-used. It uses trapdoor Veri-
fiable Delay Functions - VDFs with strong uniqueness properties
that produces unique values efficiently for the node that has the
trapdoor, but takes time T to produce an output for the nodes that
do not have the trapdoor. This allows the beacon to output bias-
resistant outputs in every round. It is not immediately unpredictable
as an adaptive adversary can corrupt the next t < n/2 leaders to
know the outputs for the next ¢ epochs. RandRunner uses reliable
broadcasts which results in communication complexity of O(xn?)
for every round.

RandShare [47] is a strawman protocol for where the beacon
output is generated using n independent Byzantine Agreement
instances are run in a system tolerating n > 3t faults. Running
n BA instances incurs a communication complexity of O(kn?) in
the best case and O(kn*) in the worst case. RandHerd [47] is an
improved version of RandShare, driven by a client seeking a random
beacon value. The client splits the system into groups of size ¢ which
internally use RandShare, leading to a communication complexity
of O(kc?n), even in the worst case. However, even though c is a
constant, it depends on n as the randomness of the beacon output is
determined by c. RandHound [47] goes beyond RandHerd by using a
stable-leader approach and dividing the system into groups of nodes
with group leaders in a tree structure during the setup. This incurs
RandHound, a communication complexity of O(kc? logn) when
the leader and the group leaders are honest. However, when the
leader is bad, it uses a view-change protocol which is analogous to
Byzantine Agreement, and incurs a cost of O(xn®) communication
complexity when t < n/3 consecutive leaders are Byzantine.

HydRand [44] is a random beacon protocol in the synchrony
model which tolerates t faults, with n > 3t, with a communication
complexity of O(xn?), and O(xn3) communication complexity in
the worst case. It uses PVSS schemes (in particular SCRAPE [17])
and tolerates an adversary which can predict up to t + 1 epochs
into the future.

Summary of limitations. The state-of-the-art SMR protocols [1,
3, 5, 49] have a lower bound of O(xn?) on the communication
complexity in the best case, which hints that we cannot do better
than O(xn?) without improving SMR first. State-of-the-art random
beacon protocols [16, 20, 47] show that we cannot achieve an unpre-
dictability advantage better than 1 epoch, since a rushing adversary
can always know one epoch output before the rest of the honest
nodes. State-of-the-art Random beacon protocols [16, 20, 47] also
show that a random beacon not in lock-step cannot avoid giving a
time advantage of less than 2A to a rushing adversary. Our work
aims to bridge these gaps in existing random beacon protocols.

Insights from existing works. RandPiper uses some insights
from HydRand [44] and non-trivially improves upon them for op-
timal fault tolerance (¢ < n/2 unlike t < n/3 from HydRand) and
better communication complexity (recall that HydRand has a com-
munication complexity of O(kn?) in the best case and O(xn?) in
the worst case). We first observe that HydRand secret shares one
value and uses this shared value the next time the same node be-
comes a leader again. We observe that this is buffering of shares,
and that this buffering can be done for more than one share, i.e.,
every time a node becomes a leader, we can use the value from the

Session 12D: Decentralized Cryptographic Protocols

last d*" time it was a leader to buffer d shares. Next, we observe
that HydRand cannot tolerate more than ¢t > n/3 because it fails to
deliver the PVSS encryptions to all correct nodes, if the leaders fails
to send it to them. We solve this concern using extension techniques
from recent works [36]. However, these works assume threshold
signatures which we avoid in our protocol. Thus, in RandPiper, we
achieve an optimal fault tolerance of ¢ < n/2 and also improved
communication complexity.

B EXTENDED PRELIMINARIES

In this section, we provide additional preliminaries used in our
paper. The VSS interface is presented in Table 2 and the PVSS
interface is presented in Table 3.

B.1 Safety and Liveness for BFT SMR

We say a block By, is committed directly in epoch e if it is committed
as a result of its own commit-timer, expiring. We say a block By,
is committed indirectly if it is a result of directly committing a
proposal By (¢ > h) that extends By,.

Fact B.1. If an honest node delivers an object b at time t in epoch
e and no honest node has detected an epoch e equivocation by time
T+ A, then all honest nodes will receive object b by time t + 2/ in
epoch e.

PRrRoOF. Suppose an honest node p; delivers an object b at time
7 in epoch e. Node p; must have sent valid code words and witness
(codeword, mtype, sj, wj, ze, €); computed from object b to every
pj € P at time 7. The code words arrive at all honest nodes by time
T+A.

Since no honest node has detected an epoch e equivocation by
time 7 + A, it must be that either honest nodes will forward their
code word (codeword, mtype, sj, wj, ze, e) when they receive the
code words sent by node p; or they already sent the corresponding
code word when they either delivered object b or received the code
word from some other node p;. In any case, all honest nodes will
forward their epoch e code word corresponding to object b by time
7 + A. Thus, all honest nodes will have received ¢ + 1 valid code
words for a common accumulation value z, by time 7+ 2A sufficient
to decode object b by time 7 + 2A. O

Fact B.2. If an honest node votes for a block By, at time t in epoch e,
then all honest nodes receive By, by time .

PRrROOF. Suppose an honest node p; votes for a block By, at time
7 in epoch e. Node p; must have received proposal p, for By by
time 7 — 2A and detected no epoch e equivocation by time 7. This
implies no honest node detected an epoch e equivocation by time
7 — A. Node p; must have invoked Deliver(propose, pe, zpe, €) at
time 7 — 2A. By Fact B.1, all honest nodes receive p, by time 7. Thus,
all honest nodes must have received By, by time 7. O

Lemma B.3. Ifan honest node directly commits a block By, in epoch
e, then (i) no equivocating block certificate exists in epoch e, and (ii)
all honest nodes receive Ce(By,) before quitting epoch e.

PRrRoOF. Suppose an honest node p; commits a block By, in epoch
e at time 7. Node p; must have received a vote-cert for By, at time
7 — 2A such that its epoch-timer, > 3A and did not detect an

3517

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

equivocation by time 7. This implies no honest node detected an
epoch e equivocation by time 7 — A. In addition, some honest node
pj must have voted for By, by time 7 — 2A. By Fact B.2, all honest
nodes would receive By, by time 7 — 2A.

For part (i), observe that no honest node received an equivocating
proposal by time 7 — 2A; otherwise, all honest nodes would have
received a code word for equivocating proposal by time 7 — A and
node p; would not commit. And, no honest node would vote for an
equivocating block after time 7 — 2A (since they have received By,
by time 7 — 2A). Thus, an equivocating block certificate does not
exist in epoch e.

For part (ii), observe that node p; must have invoked the primitve
Deliver(vote-cert, ve, zge, €) for ve = Ce(Bp) at time 7 — 2A and
did not detect epoch e equivocation by time 7. By Fact B.1, all
honest nodes receive v, by time 7. Note that node p; must have
its epoch-timer, > 3A at time 7 — 2A. Since, all honest nodes are
synchronized within A time, all other honest nodes must have
epoch-timer, > 2A at time 7 — 2A. Thus, all nodes are still in epoch
e at time 7 and receive Ce(By,) before quitting epoch e. O

Lemma B.4 (Unique Extensibility). If an honest node directly com-
mits a block By, in epoch e, then any certified blocks that ranks higher
than C¢(By,) must extend By,.

Proor. The proofis by induction on epochs e’ > e. For an epoch
e’, we prove that if a G (Byy) exists then it must extend By,

For the base case, where ¢/ = e + 1, the proof that C’ (By)
extends By, follows from Lemma B.3. The only way Ce (By) for By
forms is if some honest node votes for By,. However, by Lemma B.3,
there does not exist any equivocating block certificate in epoch e
and all honest nodes receive and lock on C, (By,) before quitting
epoch e. Thus, a block certificate cannot form for a block that does
not extend By,.

Given that the statement is true for all epochs below e’, the proof
that C,/(By) extends By, follows from the induction hypothesis
because the only way such a block certificate forms is if some
honest node votes for it. An honest node votes in epoch e’ only if
By extends a valid certificate C,~ (Bp~). Due to Lemma B.3 and the
induction hypothesis on all block certificates of epoch e < e’ < ¢/,
Ce (Byy) must extend By,. O

THEOREM B.5 (SAFETY). Honest nodes do not commit conflicting
blocks for any epoch e.

Proor. Suppose for the sake of contradiction two distinct blocks
By, and Bl’1 are committed in epoch e. Suppose By, is committed as
a result of By, being directly committed in epoch e’ and B is
committed as a result of B, , being directly committed in epoch e”’.
Without loss of generality, assume h’ < h”’. Note that all directly
committed blocks are certified. By Lemma B.4, B/, extends By .

Therefore, B, = B} . O

Fact B.6. Let By, be a block proposed in epoch e. If the leader of an
epoch e is honest, then all honest nodes commit By, and all its ancestors
in epoch e.

PRroOF. Suppose leader L, of an epoch e is honest. Let 7 be the
earliest time when an honest node p; enters epoch e. Due to A delay
between honest nodes, all honest nodes enter epoch e by time 7+ A.

Session 12D: Decentralized Cryptographic Protocols

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Table 2: VSS scheme algorithm interface

Interface Description

VSS.pp « VSS.Setup(k, aux)
(VSS.S, VSS.W, VSS.C) « VSS.ShGen(s)

polynomial.
{0,1} «

VSS.ShVrfy (VSS.s, VSS., VSS.C) indicates a success

s « VSS.Recon(VSS.S)
{0,1} « VSS.ComVrfy(VSS.C,s)

Ty, ..

Generate the scheme parameters VSS.pp. VSS.pp is an implicit input to all other algorithms.
Typically executed by the dealer L with secret s to generate secret shares VSS.S := {VSS.sy,...,VSS.s,),

witnesses VSS.W = {VSs. .,VSS.7m, }, and a constant size commitment VSS.C to a degree ¢ + 1

Verify if the share VSS.s and witness VSS.z form a correct share for VSS.C. 0 indicates a failure and 1

Reconstruct the shared secret s from the collection of shares VSS.S € {VSS.sy,...,VSS.s, }ET1L.
Check if s is the correct opening for the commitment VSS.C. 0 indicates a failure, and 1 indicates a success.

Table 3: PVSS scheme algorithm interface

Interface Description

PVSS.pp < PVSS.Setup(x, aux)
(PVSS.pk, PVSS.sk) « PVSS.KGen (k)
¢ « PVSS.Enc(PVSS.pk, m)

m «— PVSS.Dec(PVSS.sk, ¢)

Generate the scheme parameters PVSS.pp. PVSS.pp is an implicit input to all other algorithms.
Generate PVSS key-pair (PVSS.pk, PVSS.sk) used for share encryption and decryption

The encryption and decryption algorithms used to send shares to all, and obtain private share respectively.
The invariant Pr [PVSS.Dec(PVSS.Enc(m)) = m] = 1 must always hold true for all m in the message

domain of PVSS.Enc. The decryption algorithm may also optionally output a proof of correct decryption.

(PVSS.S, PVSS.E, PVSS.7r) —

PVSS.ShGen(s) PVSS.S == {PVSS.s;

Typically, executed by the dealer L with secret s to generate secret shares
.,PVSS.s,, } and encryptions of shares

PVSS.E := {PVSS.Enc(PVSS.s1), ..., PVSS.Enc(PVSS.s,) } for all nodes £, and a cryptographic proof
PVSS.7zr committing to s which guarantees any node with > ¢ shares reconstruct a unique s.

{0,1} « PVSS.ShVrfy(PVSS.E, PVSS.)

Verify if the sharing is correct. A successful verification guarantees that all the encrypted shares are correct

and that any ¢ + 1 nodes will reconstruct a unique s. 0 indicates a failure and 1 indicates a success.

s — PVSS.Recon(PVSS.g)

Reconstruct the shared secret s from the collection of shares PVSS.S C {PVSS.sy,.

..,PVSS.s, it

Some honest nodes might have received a higher ranked certificate
than leader L, before entering epoch e; thus, they send their highest
ranked certificate to leader Le.

Leader L, might have entered epoch e at time 7 while some
honest nodes enter epoch e only at time 7 + A. The 2A wait in the
Propose step ensures that the leader can receive highest ranked
certificates from all honest nodes. However, leader L, may enter
epoch e A time after the earliest honest nodes. Due to 2A wait
after entering epoch e, leader L, collects the highest ranked cer-
tificate Cer (By) by time 7 + 3A and sends a valid proposal p,
(propose, By, e, Ce’ (B;), zpe)1, for a block B, that extends Ce (Bj)
which arrives all honest nodes by time 7 + 4A.

Thus, all honest nodes satisfy the constraint epoch-timer, > 7A.
In addition, By, extends the highest ranked certificate. So, all honest
nodes will invoke Deliver(propose, pe, Zpes e) and set vote-timer,
to 2A which expires by time 7 + 6A. All honest nodes send vote
for By, to L, which arrives L, by time 7 + 7A. Leader L, forwards
Ce(Bp) which arrives all honest nodes by time 7 + 8A. Note that
all honest nodes satisfy the constraint epoch-timer, > 3A and
honest nodes set their commit-timer, to 2A which expires by time
7 + 10A. Moreover, no equivocation exists in epoch e. Thus, all
honest nodes will commit By, and its ancestors in epoch e before
their epoch-timer, expires. O

THEOREM B.7 (LIVENESS). All honest nodes keep committing new
blocks.

Proor. For any epoch e, if the leader L, is Byzantine, it may not
propose any blocks or propose equivocating blocks. Whenever an

3518

honest leader is elected in epoch e, by Fact B.6, all honest nodes
commit in epoch e. Since we assume a round-robin leader rotation
policy, there will be an honest leader every t + 1 epochs, and thus
the protocol has a commit latency of t + 1 epochs. O

Lemma B.8 (Communication complexity). Let ¢ be the size of block
By, k be the size of accumulator and w be the size of witness. The
communication complexity of the protocol is O(nf + (i + w)n?) bits
per epoch.

PRrRoOF. At the start of an epoch e, each node sends a highest
ranked certificate to leader Le. Since, size of each certificate is O(kn),
this step incurs O(kn?) bits communication. A proposal consists
of a block of size £ and block certificate of size O(xn). Proposing
O(n + ¢)-sized object to n nodes incurs O(xn® + nt). Delivering
O(kn+£)-sized object has a cost O(nf+ (x +w)n?), since each node
broadcasts a code word of size O((n + £)/n), a witness of size w
and an accumulator of size k.

In Vote cert step, the leader broadcasts a certificate for block
By, which incurs O(xn?) communication. Delivering O(kn)-sized
Ce(Byp,) incurs O((k + w)n?) bits. Hence, the total cost is O(nf +
(x + w)n?) bits.]

B.2 GRandPiper Security Analysis

THEOREM B.9 (CONSISTENT BEACON). LetL = L denote the leader
of epoch e. Then the following properties hold:

(i) Block consistency: if an honest node commits a block B
proposed in epoch e’ < e — t, then all the honest nodes

commit block B by epoch e.

Session 12D: Decentralized Cryptographic Protocols

(ii)) Leader validity: all the honest nodes have a block in Q(Le).

(iii) Output consistency: all the honest nodes output the same
randomness Re, output O, and

(iv) Leader consistency: all the honest nodes choose the same

leader for epoch e + 1.

ProoFr. We prove the theorem by induction on epochs.
Base case for epoch e = 1 to e = ¢ + 1. (ii) should hold for the first
t + 1 leaders because we fill Q(p;) with m = 1 values for all nodes
pi € P during the setup phase. Additionally, from Definition 4.1,
no leaders repeat in the first ¢ + 1 epochs, thereby proving (ii) for
the base case. (iii) and (iv) hold since the first ¢ + 1 outputs only
use the seed values, and pre-agreed upon shares from Q from the
setup phase. At epoch e = t + 1, from the proof for (iv) for the
base cases, we know that all nodes agree on the leaders for epochs
1 < ¢’ < t+ 1. Therefore, if some honest node commits block B;
from epoch e = 1, then all honest nodes will commit B; by epoch
e =t + 1, because at least one leader in some epoch 1 < e’ <t+1
must be honest, and from Fact B.6 all honest nodes commit the
block proposed in e’ and therefore directly or indirectly commit Bj.
Therefore, by epoch e = t + 1 all honest nodes commit By, thereby
proving (i) for the base cases.
Induction hypothesis. The statements hold until epoch e — 1.
Induction step. Proof for (i). From the induction hypothesis for
(iv), we have that all the leaders until epoch e are consistent and
at epoch e — 1, and from the induction hypothesis for (i) all honest
nodes would have committed all the blocks for epoch e’ < e—1—1t
by consistent leaders up to epoch e — 1. Now, at epoch e all honest
nodes need to decide on the block B proposed in epoch e — ¢ — 1. In
epochse —t — 1 < e’ < e, there is one epoch e’ whose leader L is
honest, from Fact B.6, all honest nodes commit B in epoch e’, thus
proving the hypothesis for (i).
Proof for (ii). By the induction hypothesis for (iv), the leader of
epoch e and all previous epochs is agreed upon. Let L, be the leader
for epoch e. Then L, must have committed a block in some epoch
< e — t, or during the setup. If L, was never the leader, then the
hypothesis (ii) is trivially satisfied. Let e’ < e —t be the latest epoch
in which L, was the leader last. If L, proposed a block in some
epoch e’ < e — f, then from the proof for (i) for epoch e, all nodes
agree on the same block for epoch e’. If no block proposed in epoch
e’ is added to the chain by epoch e’ +t < e, then from our leader
selection rule (in Definition 4.1), no honest node will derive L, as
the leader as L, € Py. Therefore, (ii) also holds for epoch e.
Proof for (iii). The randomness R, depends on choosing a commit-
ted value to be reconstructed. The output O, depends on R, and
{O¢-1,...,0¢—t}. By the induction hypothesis for (iii), all honest
nodes agree on Oe-—1, . . ., O, . Moreover, by the induction hypoth-
esis for (iv), they also choose the same leader L, for epoch e. Thus,
if we can prove that all honest nodes agree upon the value from L,
that is reconstructed in epoch e, then agreement on O, is trivial.
From the proof of (i) and (ii), we know that there is a block by, that is
enqueued in the queue Q(L,) for L., which all honest nodes agree
on, and therefore obtain the same R, for epoch e. Thus, (iii) holds
true for epoch e.
Proof for (iv). The leader derivation depends on the candidate set
L., outputs of the last ¢ iterations {Qe_1, . . ., Oe— }, and the recon-
structed randomness R in epoch e. By the induction hypothesis

3519

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

for (iv), and proof of (iii), the output of the last f iterations and
that of epoch e is agreed upon. From the proof of (i), (ii), and the
induction hypothesis for (iv), all honest nodes have the same Ly ;¢
and #,. From (iii), all honest nodes derive the same leader for epoch
e+1. m]

THEOREM B.10 (SECURE PVSS). Assuming a secure PVSS scheme
PVSS, the GRandPiper protocol is a secure publicly verifiable secret
sharing protocol with the dealer as the leader of an epoch, and the
rest of the nodes as the verifiers.

ProoF SKETCH. We already know that our SMR is secure against
a t-bounded adversary assuming a secure digital signature scheme,
q-SDH and a random oracle H. Given a secure suite of algorithms
in PVSS, on a high level we do not reveal any new information.

To formally prove it, consider the view V; of any honest node p;.
It observes V; := (PVSS.E, PVSS.pki, PVSS.7). In the underlying
PVSS scheme PVSS, the view of a node is also V;. An adversary A
that can successfully violate the secrecy property from GRandPiper
can do so by:

(1) Breaking the underlying PVSS scheme PVSS. Since PVSS
satisfies Definition 2.5, this can occur with negl(k) probability.

(2) Guessing the secret. The probability of an adversary winning
this way is negl(x).
Correctness. Let L, be an honest leader for epoch e. Then its pro-
posed block that shares R, is always committed (from Fact B.6).
Thus when the secret is reconstructed in the beacon protocol (Fig-
ure 4) all the honest nodes will output R, with a high probability
of 1 — negl(x) (from the underlying PVSS algorithm).
Commitment. If L, is Byzantine, then either all the honest nodes
commit to one of the blocks By, proposed, or L by epoch e +1t + 1.
Therefore, the commitment property is satisfied by our protocol.
From the underlying scheme PVSS, there is a negligible probability
negl(x) for two correct nodes p; and p; to output different s; #
st # L
(Public) Verifiability. This property holds true with high probability
from the underlying PVSS scheme PVSS as the views are identical.
The probability is over the choice of randomness for the verifier. O

Concrete instantiations. Consider instantiating GRandPiper us-
ing SCRAPE [17]. We can show a reduction from an adversary
breaking the IND1-secrecy [31] property in GRandPiper into an
adversary that can break the secrecy property from SCRAPE (which
in turn shows a reduction to DDH or DBS assumptions [17, Sec.3,
Sec.4]). In the simulation, since the adversary is static, pick ran-
dom public keys for the n — t honest nodes, and use A to run an
instance of GRandPiper using the input secrets. When A wins, we
can directly break the IND1-Secrecy property.

Remark. There are no known adaptively secure PVSS protocols.
It is not the case that there are attacks on existing PVSS schemes
when assuming an adaptive adversary, it is just that the existing
proof techniques fail to show security against adaptive adversaries.

Lemma B.11 (Rushing Adversary Advantage). Foranyepoche > 1,
a rushing adversary can reconstruct output O, at most 2AA time before
the honest nodes.

ProOF. An honest node sends its secret shares in epoch e when
its epoch-timer,_; expires. Let node p; be the earliest honest node

Session 12D: Decentralized Cryptographic Protocols

whose epoch-timer,_; expires and node p; sends its secret share at
time 7. A rushing adversary may instantaneously receive the share
and reconstruct the output O, at time 7.

Due to the A delay among the honest nodes entering epoch e,
the other honest nodes may send their secret shares only at time
7+ A which arrives at all the honest nodes by time 7 + 2A. In the
worst case, the honest nodes can reconstruct only at time 7 + 2A.
Thus, a rushing adversary can reconstruct output O, at most 2A
time before honest nodes.]

Lemma B.12 (Guaranteed Beacon Output). For any epoche > 1,
all the honest nodes output a new beacon output O,.

ProoF. By Theorem B.9 part (iv), all the honest nodes have
consistent leaders. Let node p; be the leader of epoch e. The honest
nodes output a new beacon output in each epoch e if Q(p;) # L.
Suppose for the sake of contradiction Q(p;) = L inepoch e. Observe
that nodes update Q(p;) with secret proposed in epoch e’ (with
e’ < e —t) when p; was an epoch leader in epoch e’ by epoch e
and node p; did not propose any secrets in epoch e’. However, if
pi did not propose in epoch e’, p; would have been removed from
the candidate leader set for epoch e and would not be epoch leader
for epoch e and honest nodes would not use Q(p;) in epoch e. A
contradiction. Thus, all the honest nodes send shares for secret
shared in Q(p;) and all the honest nodes will receive ¢ + 1 valid
shares to reconstruct a common randomness R, and output Q.. O

Lemma B.13 (Bias-Resistance). For any epoche > 1, the probability
that at bounded adversary A can fix any c bits of the GRandPiper
beacon output O, is negl(c) + negl(x).

Proor SKETCH. The output in any epoch e is O, which is the
hash H(Re, Oc—1, ..., Oc—t). Assume that some static adversary
A wants to bias ¢ bits of Q.. Now there is at least one honest
leader in epoch e’ where e — ¢t < ¢’ < e. WLOG, assume that the
leader at epoch e’ = e — t is honest. Then the output of epoch e’ is
known only in epoch e’ within 2A time of entering the epoch e’
(from Lemma B.12). Therefore, a rushing adversary A can know
the O, at max 2A before an honest node enters epoch e’ (from
Lemma B.11). But the adversary has to choose all R.» before epoch
e/, where e —t < e’/ < e, so that it can bias O,. But all blocks
containing Re» are committed before the epoch e’, since R comes
from the blocks previously proposed by the leaders before epoch
e’ at the start (or during the setup). Thus all blocks containing
R, are proposed before observing R/, which is guaranteed to be
secret for a honest node against A (from the secrecy property of
Theorem B.10) except with negligible probability negl(x). Thus,
an adversary A can do no better than negl(c) + negl(x) to fix c
bits.]

Lemma B.14 (GRandPiper unpredictability). Assuming a secure
PVSS scheme PVSS and SMR protocol, the GRandPiper random beacon
protocol is an O(min(k, t))-absolute unpredictable random beacon
protocol against a static adversary.

ProOF SKETCH. Since the leaders are chosen using the beacon
outputs, the probability that the adversary’s nodes are chosen in
an epoch e is t/n < 1/2. The probability that ¢ consecutive leaders
are Byzantine is therefore ([)/(n—)¢ < 27 for 3 < ¢ < t and is

3520

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

exponentially decreasing in c. The expected value of c is [log 2] = 2.
If ¢ = t + 1, the probability is already negl(x) (from the probability
of breaking secrecy of secrets shared by honest nodes). Thus, for
a given security parameter «, a static adversary cannot predict
the output with better than negl(x) probability in min(x,t) + 1
epochs. O

THEOREM B.15 (GRANDPIPER SECURE RANDOM BEACON). GRand-
Piper protocol is a O(min(x, t))-secure random beacon protocol as-
suming a static adversary.

Proor. The proof follows from Lemma B.13 for bias-resistance,
Lemma B.12 for guaranteed output delivery, and Lemma B.14 for
unpredictability. O

B.3 BRandPiper Security Analysis

THEOREM B.16 (SECURITY OF 1VSS). The verifiable secret sharing
scheme proposed in Figure 6 is a secure verifiable secret sharing scheme
assuming a bulletin board.

Proor SKETCH. Consider any secure VSS scheme VSS. The view
V; of an honest node is V; := (VSS.C, VSS.si, VSS.7i) to every node
pi in both VSS and the iVSS protocol. Any t-bounded adversary
with access to t views in both the protocols, has an equal probability
of extracting the secret. The case where the adversary forges the
digital signatures to obtain t+1 acks, which happens with negligible
probability, is an extra case to consider for the commitment and
correctness properties.

Formally, assume a secure VSS scheme satisfying Definition 2.4.
Secrecy: If the dealer L is honest, then no honest node will blame

and the maximum number of blames is at most ¢. Thus, only up to
t blames will be opened privately by the leader. Therefore, the view
Vr of an adversary corrupting T C [n] nodes with |T| < t has the
same view in both the protocols.

Correctness: If the dealer L is honest, then all honest nodes have
their shares for the secret s, and similar to eVSS, will output the
same secret s except with negl(x) probability, where the probability
is over forging digital signatures.

Commitment: If an ack certificate is formed, irrespective of the
leader being honest or Byzantine, at least one honest node has not
observed > t + 1 blames, and has received valid shares for every
blame. This honest node, say p; has all the shares for every honest
node that does not have a share. Therefore, all honest nodes together
have t + 1 shares, which guarantees reconstruction to the unique
secret s that was committed except with negl(k) probability. If no
ack certificate is formed, then all the honest nodes, agree on L, thus
satisfying the Commitment requirement with high probability of
1 — negl(x), where the probability is over forging digital signatures
and the adversary generating incorrect witnesses. O

Lemma B.17. If an honest node sends an ack for a sharing block
SB in epoch e, then (i) all honest nodes receive the sharing block SB
in epoch e, (ii) all honest nodes receive their respective secret shares
corresponding to sharing block SB within A time of entering epoch
e+1.

PRrROOF. Suppose an honest node p; sends an ack for sharing
block SB := (Commitment,VSS.C,e, zs)r, at time 7 in epoch e.

Session 12D: Decentralized Cryptographic Protocols

Node p; must have received up to t blame messages. This im-
plies at least one honest node p; received a valid share VSS.s;
and sharing block SB within 3A time in epoch e and invoked
Deliver(Commitment, SB, z, €). Let 7’ be the time when node p;
invoked Deliver(Commitment, SB, zge, €). The earliest node p; sends
an ack for SB is when it waits until epoch-timer, > 5A (ie., 6A
in epoch e) and does not detect any equivocation by L, or any
blame messages. Due to A delay between honest nodes entering
into epoch e, this time corresponds to 7/ + 2A in the worst case.
This implies no honest node received an epoch e equivocation by
time 7’ + A. By Fact B.1, all honest nodes receives the sharing block
SB. This proves part (i) of the Lemma.

For part (ii), node p; can send ack on two occasions: (a) when it
does not detect any equivocation or blame until its epoch-timer, >
5A, and (b) when leader Le4; sent valid secret shares for every
blame message it forwarded and does not detect any equivocation
by time .

In case (a), node p; did not detect any equivocation or blame
messages until its epoch-timer, > 5A at time 7. Observe that all
honest nodes must have received valid shares corresponding to the
sharing block SB within 3A time in epoch e; otherwise node p; must
have received blame message by time 7 (since honest nodes may
enter epoch e with A time difference and send blame message if no
valid secret shares received within 3A time in epoch e). In addition,
no honest node received an equivocating sharing block SB” within
3A time in epoch e; otherwise, node p; must have received a share
for SB’ (via Deliver) by time 7. Thus, all honest nodes receive their
respective secret shares corresponding to sharing block SB in epoch
e (i.e., within A time of entering epoch e + 1).

In case (b), node p; receives valid secret shares from leader Le41
for every blame (up to ¢t blame) messages it forwarded and detected
no equivocation by time 7. Observe that node p; received f < t
blame messages and received valid shares for every blame message
it forwarded. This implies at least n — t — f honest nodes have
received valid shares for sharing block SB from leader L¢4+1 within
3A in epoch e; otherwise, node p; would have received more than
f blame message by the time its epoch-timer, = 5A. Since, node
pi forwards f received secret shares corresponding to f received
blame message in epoch e and honest nodes enter epoch e + 1
within A time, all honest nodes receive their respective secret shares
corresponding to sharing block SB within A time of entering epoch
e+1.]

THEOREM B.18 (CONSISTENT BEACON). For any epoch e, all honest
nodes reconstruct the same randomness R, and output the same beacon

Oe.

Proor. Honest nodes output the same randomness R, and out-
put the same beacon O in epoch e if all honest nodes receive
t + 1 valid homomorphic shares for the same set of secrets. This
condition is satisfied if all honest nodes (i) have consistent Q(p;),
Vpi € P and consistent P, in each epoch, (ii) {Dequeue(Q(p;)) #
L1,Vp; € P\ Pr} in each epoch, and (iii) share valid homomorphic
shares corresponding to dequeued secret shares.

For part(i), we show all honest nodes have consistent Q(p;),
Vp; € P and consistent $, in every epoch.

3521

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

We prove part (i) by induction on epochs. Consider the base
case for epochs 1 to t. During setup phase, each node is assigned
m = n+t tuples (with each tuple containing secret shares, witnesses
and commitments) for each Q(p;), Vp; € P (i.e., m * n secrets in
total). Since, removing a Byzantine node requires ¢ + 1 epochs, all
honest nodes have P, = 0 for epochs 1 to ¢. In addition, no honest
node update Q(p;) during epochs 1 to t. Thus, for epochs 1 to ¢, all
honest nodes have consistent Q(p;), Vp; € P and P;.

We assume part(i) holds until epoch e — 1.

Consider an epoch e > t. In epoch e, all honest nodes up-
date only Q(L—¢). If Le—; proposed a valid block B; (with b; =
(H(SB), ack-cert(SB)) for some commitment SB and B; is commit-
ted by epoch e, all honest nodes update Q(Le—;) with n tuples
containing secret shares, witnesses and commitments in SB (by
Lemma B.17, all honest nodes receive commitments and secret
shares in SB before epoch e). Otherwise, all honest nodes update
P, to exclude Le—; i.e., Pr < Pr U {Le—;}. Thus, all honest nodes
should have consistent Q(L.—;) by epoch e. Since honest nodes
do not update Q(p; # Le—;) and do not add p; into P; in epoch e,
by induction hypothesis, all honest nodes should have consistent
Q(p;i) Vp; € P and consistent P, in epoch e. This proves part(i).
Since, all honest nodes have a consistent Q(p;) Yp; € P and consis-
tent Py, all honest nodes perform {Dequeue(Q(p;))¥p; € P\ Pr}
for common secrets.

Next, we show {Dequeue(Q(p;)) # LVp; € P \ P,} in epoch e.
Suppose for the sake of contradiction, Dequeue(Q(p;)) = L and
pi € Pr in epoch e. Observe that, honest nodes update Q(p;) or
include p; in P t + 1 epochs after node p; becomes an epoch
leader. Let e’ be the last epoch in which node p; last proposed with
e’ < e —t. However, if node p; did not propose in e’, all honest
nodes would have removed p; by epoch ¢’ + ¢ < e and p; € Py in
epoch e. A contradiction.

Finally, we show all honest nodes send valid homomorphic shares
for the dequeued secret shares. Observe that honest nodes only
dequeue secret shares corresponding to a committed block that
contains a valid ack certificate. By Lemma B.17 part(ii), all honest
nodes receive valid secret shares before honest nodes update their
queues. Thus, all nodes will dequeue common secret shares and
will receive at least ¢ + 1 valid homomorphic shares for a common
secrets and reconstruct the same randomness R, and output the
same beacon Oe. O

Lemma B.19 (Liveness). If the leader L, of an epoch e is honest,
then (i) an ack certificate for its sharing block SB will form in epoch
e — 1, and (ii) all honest nodes commit (H(SB), AC¢(SB)) in epoch
e.

Proor. Consider an honest leader L, for an epoch e. Let 7 be the
time when leader L, enters epoch e — 1. Leader L, waits for A time
after entering epoch e — 1 and must have sent valid shares VSS.s;
and sharing block SB containing commitments to node p; Vp; € P
at time 7 + A.

Since honest nodes enter epoch e — 1 within A time, all honest
nodes must have entered epoch e — 1 by time 7+ A. Leader L, could
have entered epoch e—1 A time before some honest nodes or Leader
L, could have entered epoch e — 1 A time after some honest nodes.
In any case, all honest nodes must have received valid secret shares

Session 12D: Decentralized Cryptographic Protocols

and sharing block SB within 3A after entering epoch e — 1. Thus, no
honest nodes send blame in epoch e — 1 and will receive no blame
messages from honest nodes within 6A time in epoch e — 1 (i.e.,
until epoch-timer,_; > 5A).

Consider an honest node p;. If node p; receives no blame mes-
sages from Byzantine nodes, it will send an ack for sharing block SB
to Le. On the other hand, if node p; receives up to t blame messages
from Byzantine nodes, it forwards blame messages to L. Honest
Leader L, sends the shares corresponding to the blame messages to
node p; which node p; receives within 8A in epoch e — 1. Moreover,
there is no equivocation from leader L. Thus, node p; sends an ack
for sharing block SB to Le.

Thus, all honest nodes send ack for sharing block SB and leader
L, receives t + 1 ack message for sharing block SB within 10A (L,
may start epoch e — 1 A time before node p;) in epoch e — 1. This
proves part (i) of the Lemma.

Since leader L, proposes a valid proposal (H(SB), AC.(SB)) in
epoch e, part(ii) follows immediately from Fact B.6. O

Lemma B.20 (Guaranteed Beacon Output). For any epoche > 1,
all the honest nodes output a new beacon output O,.

Proor. Due to the round-robin leader selection, the honest nodes
propose in at least n — t epochs out of n epochs. By Lemma B.19, all
honest nodes commit n new secret shares in every honest epoch and
updates their queues after ¢ + 1 epochs. Thus, Dequeue(Q(p;)) #
1Vp; € P\ Pr. where p; is an honest node. From the proof of
Theorem B.18, all honest nodes have consistent queues and £, in
each epoch. At the end of each epoch, all honest nodes dequeue
common secret shares and send homomorphic sums to all other
nodes. Thus, honest nodes will have ¢ + 1 valid homomorphic sums
and will output new beacon outputs in every epochs. O

Lemma B.21 (Communication Complexity). Let f < t be the
number of actual Byzantine faults, k be the size of accumulator and
w be the size of witness. The amortized communication complexity of
the protocol is O(x fn® + (x + w)n?) bits per epoch.

Proor. In the Block validation protocol, distributing O(xn)-
sized commitment costs O(xn?) bits in communication. Sending
corresponding O(kn)-sized secret shares and O(wn)-sized witness
incur O((x + w)n?) communication. Up to f Byzantine nodes can
always blame even if the epoch leader is honest. Thus, an epoch
leader needs to send O(xfn)-sized secret shares while privately
opening the secret shares. The nodes also forward privately opened
secret secrets to nodes that blamed. This step costs O(x fn?) com-
munication in an honest epoch. When the leader is Byzantine, it
can create a scenario when up to ¢ nodes send blame and hence,
this step has O(xtn?) cost. Out of n consecutive epochs, there can
be at most f Byzantine epochs and n — f honest epochs. Hence,
this step has amortized complexity of O(k fn?).

By Lemma B.8, the SMR protocol has a cost of O((k +w)n?) bits
for input of size O(xn). The homomorphic sum of secret shares is
k and homomorphic sum of witness is w. Thus, all-to-all broadcast
of homomorphic sums incurs O((x + w)n?). Thus, the amortized
communication complexity is O(x fn? + (k + w)n?) bits per epoch.

O

3522

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

THEOREM B.22 (SECURE VSS). Assuming a secure VSS scheme VSS,
the BRandPiper protocol is a secure verifiable secret sharing protocol
with the dealer as the leader of an epoch, and the rest of the nodes as
the verifiers.

Proor SKETCH. The view of an adversary A in BRandPiper is
the same as the view of an adversary running one instance of iVSS
assuming a bulletin board. Therefore, an adversary that can break
the secrecy property in BRandPiper protocol can also break the
secrecy in iVSS, which in turn can break the secrecy property from
VSS (Theorem B.16). The commitment property has an additional
failure probability arising from the case where the adversary can
forge t + 1 signatures which occurs with negl(x) probability.

Formally, we prove the security of VSS by proving the individual
properties:

Secrecy: For an honest leader L, of epoch e, no honest node will
blame, and therefore an adversary A will only learn the t shares
of its own corruption, and not learn any new share by blaming.
Therefore the probability of A of violating the secrecy property
is negl(x) from the underlying VSS scheme, since the views are
identical to that of iVSS.

Correctness: For an honest leader L, of epoch e, from Lemma B.19,
all the honest nodes commit the SB with shares for the secret.
During the reconstruction for the beacon, every honest node p; € P
use the same share for SV;_ ; with a high probability of 1 — negl(x).
A Byzantine node p; € # cannot provide a valid witness VSS.zr, ;
for an incorrect share with probability better than negl(x), thereby
ensuring that the correctness property is maintained.
Commitment: If an honest node commits a valid block SB from a
byzantine leader L, in some epoch e, then all honest nodes commit
SB, from the SMR property in Theorem B.5. Therefore during recon-
struction, a Byzantine node p; € # cannot provide incorrect shares
as it cannot generate a valid witness VSS.z, ; (except with negl(x)
probability). If a Byzantine leader does not propose any block, then
all honest nodes agree on _L, thereby ensuring the commitment
property. [m}

Concrete Instantiations. Consider instantiating VSS using the
Pedersen commitment based VSS [32] using the polynomial com-
mitment scheme. This scheme is identical to the Pedersen VSS [38]
which is an information-theoretic VSS scheme except that the poly-
nomial commitment based on g-SDH is used. The polynomial com-
mitment scheme however is identical to the Pedersen commitment
and is unconditionally hiding. Since our SMR is adaptively secure,
and our VSS scheme is unconditionally hiding, BRandPiper is also
adaptively secure. For the binding part, as shown in [32], one can
show a reduction to an adversary violating the binding property to
an adversary violating the ¢g-SDH assumption.

Lemma B.23 (Bias-resistance). For any epoch e > 1, the probability
that a t-bounded adversary A can fix any c bits of the BRandPiper
beacon output O, is negl(c) + negl(k).

Proor SKETCH. The output in any epoch e is O, «— H(R,),
where R is the homomorphic sum of secrets from at least ¢ + 1
honest nodes. From the secrecy guarantee in Theorem B.22, we
know that no adversary A can predict the value of these honest
nodes until reconstruction with probability better than negl(x). At

Session 12D: Decentralized Cryptographic Protocols

the same time, no adversary A can change the committed value
for any p; during reconstruction due to the commitment guarantee
from Theorem B.22 with probability better than negl(x). Therefore,
a t-bounded adversary cannot do better than guessing whose prob-
ability is negl(c) + negl(x) to fix ¢ bits in the output O, for any
epoche > 1. O

Lemma B.24 (Rushing Adversary Advantage). For any epoche, a
rushing adversary can reconstruct output O at most 2AA time before
honest nodes.

The proof remains identical to Lemma B.11.

Lemma B.25 (BRandPiper 1-absolute unpredictability). The BRand-
Piper random beacon protocol is an 1-absolute unpredictable random
beacon.

PRrROOF SKETCH. Since our SMR protocol is adaptively secure and
our protocol is as secure as VSS, we can instantiate VSS with Ped-
ersen VSS which is information theoretically secure but at the cost
of communication complexity to prove adaptive security of BRand-
Piper. By instantiating VSS with eVSS [32], we do not know how to
show adaptive security using existing proof techniques. However,
no adaptive attacks against eVSS are known either.

Let 7 be some time at which all honest nodes are in an epoch
e > 1. We show that an adversary A cannot predict Oe+1. Due to
the secrecy property in Theorem B.22 and the fact that the beacon
output O,41 is derived from the reconstruction of Re41, which is
a homomorphic sum of inputs from at least n — t > t nodes, any
adversary A cannot predict Oe41. The values from the honest nodes
are guaranteed to be truly random (by definition). Therefore, the
output Q41 is unpredictable for an adversary A.

An adversary A can get a 1 epoch advantage since there can
exists times 7 where some honest nodes are in epoch e and others
are in epoch e — 1. At this point, a rushing adversary knows the
output O, before the honest nodes. O

THEOREM B.26 (BRANDPIPER SECURE RANDOM BEACON). BRand-
Piper protocol is a 1-secure random beacon.

The proofs follow trivially from Lemma B.23, Lemma B.25, and
Lemma B.20.

C CLOCK SYNCHRONIZATION FOR NEW
NODES

In this section, we present a clock synchronization protocol to syn-
chronize some additional nodes when majority of honest nodes
are synchronized. Such a synchronization is useful during recon-
figuration when a new node joins the system. Prior known clock
synchronization protocol [1] can be used to synchronize all nodes
with a communication cost of O(xn?) without threshold signatures.
This holds true even when synchronizing a single node in the sys-
tem where a majority of nodes are already synchronized.

Our clock synchronization protocol to add new nodes (refer Fig-
ure 11) makes use of VSS secret sharing scheme presented in Sec-
tion 4.2.2. Our approach requires a total communication complexity
of O(xn3); however, this can be split over O(n) iterations with
O(xn?) communication. This will be useful in our beacon protocol
to maintain quadratic communication complexity in each round.

3523

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Our protocol uses the fact that O(t) secret shares can be homo-
morphically combined to a single secret share of size O(1) and
t + 1 homomorphic secret shares can be be opened to get a O(x)
sized secret. The opened secret can be broadcast among all nodes
to synchronize the clocks of all honest nodes including the new
joining node within A time from each other.

The first honest node to reset epoch-timer for some epoch e will
broadcast sync message containing R, which makes all other honest
nodes reset their epoch-timer, within A time. Observe that since
the size of homomorphic R, is O(k) bits, an all-to-all broadcast has
a cost of O(xn?) bits.

D RECONFIGURATION

In this section, we present reconfiguration mechanisms for our
beacon protocols to restore the resilience of the protocol after re-
moving some Byzantine nodes. We make following modification
to the protocols. Each node maintains a variable n; that records
the number of additional nodes that can be added to the system.
Variable n; is incremented each time a Byzantine node is added to
set P and is decreased by one when a new node joins the system.
The value of n; can be at most t.

The generic reconfiguration protocol is presented in Figure 12.
The reconfiguration protocol applies to both beacon protocols. Later,
we make appropriate modifications for each beacon protocols.

Lemma D.1 (Liveness). Ifn; > 0 at some epoch e* and there are
new nodes intending to join the system in epochs > e*, then eventually
a new node will be added to the system.

Proor. Suppose n; > 0 and a new node p; intends to join the
system. Suppose for the sake of contradiction, no new node includ-
ing p; is added to the system. However, since node p; intends to join
the system, it must have sent inquire requests to all nodes in the
system and at least ¢ + 1 honest nodes will respond to the inquire
request since n; > 0 at the end of some epoch e’ > e*.

Let node p; send join request along with an inquire certificate
and nodes receive the request in epoch e > e’. The first honest
leader L~ of epoch e”” > e will include the join request in its
block proposal if no new node has been added to the system since
epoch e’ and there does not exist any block proposal with a join
request in the last ¢ + 1 epochs in its highest ranked chain and by
Fact B.6, the block proposal with join request will be committed. A
contradiction.

If some node has already been added to the system since epoch e’,
this trivially satisfies the statement. Thus, we obtain a contradiction.
If there exists a block proposal By, with a join request for some node
Pk in last t epochs in the highest ranked chain for Le», By, will be
committed since honest node Ly~ extends it. The lemma holds and
we obtain a contradiction. O

D.1 Reconfiguration for GRandPiper

Node py generates a PVSS (PVSS.S, PVSS.E, PVSS.) « PVSS.ShGen(R)

of a random value chosen from the input space of PVSS for nodes
P U {pr} \ Pr. During the join phase in the reconfiguration pro-
tocol (refer Figure 12), it sends a join request to all nodes P \ Pr
with entity M set to the above PVSS. In addition, all nodes update

Session 12D: Decentralized Cryptographic Protocols CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

Let clock synchronization protocol start in epoch e. Node p; € P performs the following:

(1) Share secrets. Leaders {Le, ..., Lt } use block validation (refer Figure 8) and the BFT protocol to commit secrets {se, ..., Se+s } respectively. e.g.,

Leader L. uses the block validation protocol while in epoch e — 1 to share a single secret s, chosen uniformly at random and collect an ack certificate

AC(SB) on the commitment SB for secret se. In epoch e, Leader L, proposes block By := (H(SB), AC(SB)).

(2) Reconstruct. When epoch-timer,,,, expires, perform the following:

e Build homomorphic sum share SV;, witness VSS.;, and commitment VSS.C, using secret shares for {se, ..., Se+s }- Send SV; and VSS.7; to all the
nodes.

o Upon receiving share SV; and witness VSS.x; for VSS.Ce, ensure that VSS.ShVrfy (SV;, VSS.7;, VSS.C.) = 1.

e Upon receiving ¢ + 1 valid homomorphic sum shares in SV, obtain R, « VSS.Recon(SV).

(3) Synchronize. The first time node p; receives a valid homomorphic secret R, either through reconstruction or on receiving sync message from other

nodes, it (i) resets its epoch-timer,,,,,; to the beginning of epoch e + 2¢ + 1, and (ii) broadcasts a sync message containing R, to all other nodes.

Figure 11: Clock synchronization protocol

A new node py that intends to join the system uses following procedure to join the system.

(1) Inquire. Node py inquires all nodes in the system to send the set of active nodes, i.e., \ #,. Upon receiving the inquire request, an honest node p;
responds to the request only if n; > 0. Node p; sends # \ P, at the end of some epoch e’ in which the inquire request was received. Node py waits for at
least ¢ + 1 consistent responses from the same epoch e’ and forms an inquire certificate. An inquire certificate is valid if it contains ¢ + 1 inquire responses
that belong to the same epoch e’ and contains the same set of active nodes.

(2) Join. Node py sends a join request to all nodes # \ P, along with the inquire certificate and an additional entity M specific to the beacon protocols.
(3) Propose. Upon receiving the join request, the leader L, of current epoch e adds the join request containing inquire certificate and entity M in its block
proposal By if (i) Le does not observe a block proposal with a join request in last # + 1 epochs in its highest ranked chain and (ii) no new node has been
added since epoch e’.

(4) Update. If the block By with the join request from node py proposed in epoch e gets committed by epoch e + ¢, update n; < n; — 1 in epoch e + t and
send P \ P, to node pg. Henceforth, node pi becomes a passive node and receives all protocol messages from active nodes.

(5) Synchronize. Nodes execute clock synchronization protocol (refer Figure 11) from epoch e + ¢ + 2 to synchronize node pg. All nodes including node px
are synchronized in epoch e + 3¢ + 3. At epoch e + 3¢ + 3 update P «— P U {px }. Henceforth, node px becomes an active node and participates in the
protocol. Additionally, node py participates in the reconstruction protocol only if it has required secret shares.

If node py fails to join the system, it restarts reconfiguration process again after some time.

Figure 12: Reconfiguration protocol

Q(py) with the PVSS provided by node py once its join request D.2 Reconfiguration for BRandPiper
gets committed. Node py that intends to join the system uses the reconfiguration
An adaptive adversary can corrupt any node as long as ¢ + 1 protocol (Figure 12) to join the system. During the join phase, node
honest nodes have full queue Q(pj) # LVpj € P \ P, ie, if the pr does not need to send any additional commitment i.e., sets
adversary already corrupted ¢ nodes some of which are removed, M := L. Once node py becomes the active node, it is then allowed
the adversary can corrupt old honest nodes only when node py to become a leader using round-robin leader election and shares
has full queue (i.e., Q(pj) # LVp; € P \ Pr). This happens when VSS commitments to n secrets when it becomes the leader. All
all nodes in % \ #» becomes a leader at least once after node py active nodes use the secret shares for node p; only when they have
becomes a leader. Due to random leader election, the expected committed the commitment shared by node py.
number of epochs required for all nodes to be selected as leaders is Like the reconfiguration for GRandPiper protocol, an adaptive
n i % = O(nlogn). adversary can corrupt any node as long as t + 1 honest nodes have
i=0

full queue Q(p;) # LVpj € P\ Pr. Le,, if the adversary already
corrupted ¢ nodes some of which are removed, the adversary can

h h this ch h . " ¢ ;) corrupt old honest nodes only when node p has full queue (i.e.,
phase. Wlt this change, the adaptive resilience of BRandPiper is Q(pj) # LVp; € P\ P;). This happens when all nodes in P \ P,
restored in n + t + 1 epochs compared to expected nlogn epochs.

Remark. GRandPiper beacon protocol can employ a rotating leader
election for BFT SMR with randomized leaders for reconstruction

becomes a leader at least once after node p; becomes a leader. Due

THEOREM D.2. GRandPiper protocol maintains safety and liveness to the round-robin leader election, node py will have full queue
after reconfiguration. after n + t + 1 epochs after it has become an active node.

PRrOOF. Let node p; be the new joining node. GRandPiper pro- TrEOREM D.3. BRandPiper protocol maintains safety and liveness
tocol is safe and live before reconfiguration. Since we assume the after reconfiguration.

adversary can corrupt a new node as long as ¢ + 1 honest nodes
have full queue, i.e., Q(pj) # LVpj € P \ Pp, there will always be
t + 1 honest nodes with correct secret shares. Hence, the protocol
maintains safety and liveness after reconfiguration. O

The proof remains identical to Theorem D.2.

3524

	Abstract
	1 Introduction
	1.1 Efficient State Machine Replication Without Threshold Signatures
	1.2 RandPiper – Random Beacon Protocols
	1.3 Efficient Reconfiguration

	2 Model and Definitions
	2.1 Definitions
	2.2 Primitives

	3 BFT SMR Protocol
	3.1 Protocol Details

	4 Random Beacon Protocols
	4.1 RandPiper – GRandPiper Protocol
	4.2 RandPiper – BRandPiper Protocol

	5 Performance Evaluation
	References
	A Related Work
	A.1 Related Works in the BFT SMR Literature
	A.2 Related Works in the Random Beacons Literature

	B Extended Preliminaries
	B.1 Safety and Liveness for BFT SMR
	B.2 GRandPiper Security Analysis
	B.3 BRandPiper Security Analysis

	C Clock Synchronization for New Nodes
	D Reconfiguration
	D.1 Reconfiguration for GRandPiper
	D.2 Reconfiguration for BRandPiper

