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ABSTRACT
We introduce a Bayesian model for inferring mixtures of subspaces of di!erent dimensions. The model
allows "exible and e#cient learning of a density supported in an ambient space which in fact can
concentrate around some lower-dimensional space. The key challenge in such a mixture model is spec-
i$cation of prior distributions over subspaces of di!erent dimensions. We address this challenge by
embedding subspaces or Grassmann manifolds into a sphere of relatively low dimension and specifying
priors on the sphere. We provide an e#cient sampling algorithm for the posterior distribution of the
model parameters. We illustrate that a simple extension of our mixture of subspaces model can be applied
to topic modeling. The utility of our approach is demonstrated with applications to real and simulated
data.
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1. Introduction

The problem of modeling manifolds has been of great interest in
a variety of statistical problems including dimension reduction
(Belkin and Niyogi 2003; Donoho and Grimes 2003; Roweis
and Saul 2000), characterizing the distributions of statistical
models as points on a Riemannian manifold (Rao 1945; Efron
1978; Amari 1982), and the extensive literature in statistics and
machine learning on manifold learning (Giné and Koltchinskii
2006; Cook 2007; Mukherjee, Zhou, and Wu 2010). A general-
ization of the manifold setting is to model unions and intersec-
tions of manifolds (of possibly di!erent dimensions), formally
called strati"ed spaces (Goresky and MacPherson 1988; Geiger
et al. 2001; Bendich, Mukherjee, and Wang 2012). Strati"ed
spaces arise when data or parameter spaces are characterized
by combinations of manifolds such as the case of mixture mod-
els. One of the most important special cases arises when the
manifolds involved are all a#ne subspaces or linear subspaces.
There is large body of work on learning this important spe-
cial case of mixture of subspaces, see (Huang, Ma, and Vidal
1999; Zheng 2011; Pimentel-Alarcón et al. 2017; Chen, De,
and Vijayaraghavan 2021). Mixtures of linear subspaces have
been suggested in applications such as tracking images (Vidal,
Ma, and Sastry 2005; Haro, Randall, and Sapiro 2007), repre-
sentation learning of high-dimensional visual objects, such as
faces, handwritten digits, or general targets (Laaksone and Oja
1996; Zheng 2011), quantitative analysis of evolution or arti"cial
selection (Lande 1979; Hansen and Houle 2008), applications
in communication and coding theory (Zheng and Tse 2002;
Ashikhmin and Calderbank 2003), and is relevant for text mod-
eling (Reisinger et al. 2010; Blei, Ng, and Jordan 2003). In this
paper we provide a model for the simplest instance of inferring
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strati"ed spaces: estimating mixtures of linear subspaces of dif-
ferent dimensions.

A recent work Chandra, Canale, and Dunson (2021) pro-
posed a latent mixture model for Bayesian clustering of high-
dimensional data where a common factor loading matrix (sub-
space) is assumed across the clusters, thus a "xed subspace
is learnt. Recent work on estimating mixtures of subspaces
with theoretical guarantees has been limited to equidimensional
subspaces (Lerman and Zhang 2010; Page, Bhattacharya, and
Dunson 2013). A Bayesian procedure for inference of mixtures
of subspaces of equal dimensions was developed in Page, Bhat-
tacharya, and Dunson (2013). A penalized loss-based procedure
was introduced in Lerman and Zhang (2010) to learn mixtures
of subspaces, called K-$ats. The conceptual di#culty in extend-
ing either approach to subspaces of di!erent dimensions is the
loss of Riemannian structure. A natural parameterization of
subspaces of "xed dimension is as points on the Grassmann
manifold where there is a natural geodesic. The problem with
considering subspaces of di!erent dimensions is that there is
no clear Riemannian structure and no well-de"ned geodesic
distance, and moving across dimensions introduces singular-
ities that result in a loss of the Riemannian structure. The
complication due to the lack of Riemannian structure manifests
in the Bayesian approach by requiring the posterior samples
drawn from subspaces of di!erent dimensions which is a dif-
"cult sampling problem via reversible-jump MCMC (Green
1995). In the penalized loss model, the problem is immedi-
ate as the loss function requires the computation of distances
between subspaces which is problematic for subspaces of di!er-
ent dimensions.

There are many applications where variable dimensions of
subspaces would be of great utility. In the quantitative genetics
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setting (Lande 1979; Hansen and Houle 2008), subspaces
spanned by the additive genetic variance-covariance matrix may
be of di!erent intrinsic dimensions, which necessitates to com-
pare subspaces of varying dimensions. In the setting of shape
statistics and Procrustes analysis (Kendall 1984), the number of
dimension is related to the number of landmarks used to model
a surface. Shape statistics with a variable number of dimensions
or landmarks would have practical implications.

The key idea we develop in this article is that subspaces of
di!erent dimensions 1, 2, . . . , m can be embedded into a sphere
of relatively low dimension S(m−1)(m+2)/2 where chordal dis-
tances on the sphere can be used to compute distances between
subspaces of di!ering dimensions (Conway, Hardin, and Sloane
1996). This embedding removes the discontinuity that occurs
in moving between subspaces of di!erent dimensions when one
uses the natural metric for a Grassmann manifold. It allows us
to embed subspaces of di!erent dimensions into a sphere where
we can sample e#ciently. The idea of sampling subspaces of
di!erent dimensions extends the work of Ho! (2009) where
e#cient methodology was developed to sample from a space
of orthonormal matrices with "xed intrinsic dimension using
the matrix Bingham–von Mises–Fisher distribution. From a
geometric perspective, the method developed in Ho! (2009)
simulated from a Stiefel manifold with "xed intrinsic dimen-
sion. In this article, we provide a methodology to simulate over
Stiefel manifolds of varying intrinsic dimensions.

There exists an extensive frequentist literature on subspace
learning such as Sparse Subspace Clustering (Elhamifar and
Vidal 2009), Low-rank Subspace Clustering and variations
thereof, and Ensemble K-Subspaces (Lipor et al. 2021; Liu,
Lin, and Yu 2010; Lu et al. 2012; Soltanolkotabi and Candes
2012; Vidal and Favaro 2014), many of which do not require
the subspace dimensions be known or equal. We highlight
some distinctive features of our method in comparison with
the existing literature: (i) our model is fully Bayesian which
allows the learning of all the parameters including the sub-
space dimension as well as the representation of the subspaces
in the same framework while most of the existing algorithms
are not able to recover the subspaces or the associated rich
geometric information such as subspace dimensions; (ii) our
model-based approach makes out of sample prediction possible
and easy while most of other algorithms apply the spectral
clustering algorithms to an a#nity matrix of data, which returns
only clustering information of the dataset making prediction of
the cluster information of an out of sample di#cult; (iii) our
model does not require hyperparameter tuning or solving any
optimization problem which can in general be computationally
expensive and, (iv) our model allows uncertainty quali"cations
of all the parameters in the models. Numerical comparisons
with these methods are carried out in our simulation section. A
key contribution of our work is employing the Conway embed-
ding for subspaces to a higher-dimensional sphere which allows
us to impose a natural prior on subspaces of di!erent dimen-
sions through a prior on the sphere. The proposed algorithm
is implemented in an R package, which is available at https://
kisungyou.com/T4cluster.

The structure of the paper is as follows. In Section 2, we state a
likelihood model for a mixture of k subspaces each of dimension
dk. In Section 2.3, we de"ne the embedding procedure we use to

model subspaces of di!erent dimensions and specify the model
with respect to the likelihood and prior. In Section 3, we provide
an algorithm for sampling from the posterior distribution. For
some of the parameters standard methods will not be su#cient
for e#cient sampling and we use a Gibbs posterior for e#cient
sampling. In Section 4, we extend the mixture of subspaces
model to topic modeling. In Section 5, we use simulated data
to provide an empirical analysis of the model and then we use
real data to show the utility of the model. We close with a
discussion.

2. Model Speci!cation

2.1. Notation

We "rst specify notation for the geometric objects used through-
out this paper. The Grassmann manifold or Grassmannian of a
d-dimensional subspace in Rm will be denoted Gr(d, m), d ≤
m. The Stiefel manifold of m × d matrices with orthonormal
columns will be denoted V(d, m) and when d = m we write
O(d) for the orthogonal group. We use boldfaced uppercase let-
ters, for example, U, to denote subspaces and the corresponding
letter in normal typeface, for example, U, to denote the matrix
whose columns form an orthonormal basis for the respective
subspace. Note that U ∈ Gr(d, m) and U ∈ V(d, m). A subspace
has in"nitely many di!erent orthonormal bases, related to one
another by the equivalence relation U ′ = UX where X ∈ O(d).
We identify a subspace U with the equivalence class of all its
orthonormal bases {UX ∈ V(m, d) : X ∈ O(d)} thereby
allowing the identi"cation Gr(d, m) = V(d, m)/O(d).

In this article, the dimension of the ambient space m will
always be "xed but our discussions will o%en involve multiple
copies of Grassmannians Gr(d, m) with di!erent values of d. We
will use the term “Grassmannian of dimension d” when refer-
ring to Gr(d, m) even though as a manifold, dim Gr(d, m) =
d(m − d).

2.2. Likelihood Speci!cation

We consider data X = (x1, . . . , xn) drawn independently and
identically from a mixture of K subspaces where each observa-
tion xi is measured in the ambient space Rm. We assume each
point in the population is concentrated near a linear subspace
Uk which we represent with an orthonormal basis Uk, Uk =
span(Uk), k = 1, . . . , K.

We "rst state the likelihood of a sample conditional on the
mixture component. Each mixture component is modeled using
a dk-dimensional normal distribution to capture the subspace
and a m − dk-dimensional normal distribution to model the
residual error or null space:

UT
k x ∼ Ndk(µk, !k), VT

k x ∼ Nm−dk(VT
k θk, σ 2

k I),

where Uk is the orthonormal basis for the kth component and
UT

k x is modeled by a multivariate normal with mean µk and
covariance !k. Vk is the basis for the null space ker(Uk), which
models the residual error as multivariate normal with variance
σ 2

k I. We are estimating a#ne subspaces so the parameter θk
serves as a location parameter for the component. Also note
that without loss of generality we can assume that !k is diagonal
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since we may diagonalize the covariance matrix !k = QkDkQT
k

and rotate Uk by Qk resulting in a parameterization that depends
on Uk and a diagonal matrix. The distributions for the null space
and the subspace can be combined and speci"ed by either of the
following parameterizations:

x ∼
{

Nm
(
Ukµk + θk, Uk!kUT

k + σ 2
k VkVT

k
)

Nm
(
Ukµk + θk, Uk(!k − σ 2

k Idk)UT
k + σ 2

k Im
)

.
(1)

It will be convenient to use the second parameterization for our
likelihood model.

Given the above likelihood model for a component, we can
specify the following mixture model:

x ∼
K∑

k=1
wk Nm

(
Ukµk + θk, Uk(!k − σ 2

k Idk)UT
k + σ 2

k Im
)

,

(2)
where w = (w1, . . . , wK) is a probability vector and we
assume K components. We will use a latent or auxiliary variable
approach to sample from the above mixture model and specify
a K-dimensional vector δ with a single entry of 1 and all other
entries of zero, δ ∼ Mult(1, w). The conditional probability of x
given the latent variable is

x|δ ∼
K∑

k=1
δkNm

(
Ukµk + θk, Uk(!k − σ 2

k Idk)UT
k + σ 2

k Im
)

.

2.3. Prior Speci!cation and the Spherical Embedding

The parameters in the likelihood for each component are
(θk, !k, σ 2

k , Uk, µk, dk) and the mixture parameters are weights
w. Again we "x the number of mixtures at K. Prior speci"cation
for some of these parameters are straightforward. For example,
the location parameter θk is normal, the variance terms !k and
σ 2

k are inverse-gamma, and the mixture weights are Dirichlet. A
prior distribution for each triple (Uk, µk, dk) is less obvious.

The inherent di#culty in sampling this triple is that we do
not want to "x the dimension of the subspace dk, but consider
dk as random. We can state the following joint prior on the triple
(Uk, µk, dk):

π(Uk, µk, dk) = π(Uk|dk)π(µk|dk)π(dk).

Given dk we can specify µk|dk as a multivariate normal of
dimension dk. For π(Uk|dk), one possible choice is to specify
a conjugate distribution for Uk as the von Mises–Fisher (MF)
distribution (Fisher 1953)

MF(Uk|A) ∝ etr(ATUk),

where etr is the exponential trace operator. The matrix von
Mises–Fisher distribution is a spherical distribution over the set
of all m × dk matrices, also known as the Stiefel manifold which
we denote as V(dk, m). In addition to the requirement on "xed
dimensionality, this speci"cation faces many other issues. As dk
changes, the dimension of the matrix A also needs to change
and one cannot simply add columns of zeros since columns
need to be orthonormal. An additional constraint on the prior
is that a small change in dimension dk should only change the
prior on Uk slightly. This constraint is to avoid model "tting

inconsistencies. This constraint highlights the key di#culty in
prior speci"cation over subspaces of di!erent dimensions: how
to measure the distance between subspaces of di!erent dimen-
sions.

We will use the geometry of the subspace Uk to specify an
appropriate joint prior on (Uk, dk). Recall that the set of all dk-
dimensional linear subspaces in Rm is the Grassmann manifold
Gr(dk, m) and that we represent a subspace Uk ∈ Gr(dk, m) with
an orthonormal matrix Uk ∈ V(dk, m) from an equivalence
class {Uk ∈ V(dk, m) : span(Uk) = Uk}. We need to place
priors on Grassmanians of di!erent dimension dk. The key tool
we use to specify such a prior is the embedding of Gr(dk, m) into
S(m−1)(m+2)/2, an appropriately chosen sphere1 in Rm(m+1)/2 as
proposed in Conway, Hardin, and Sloane (1996). This embed-
ding allows us to embed subspaces of di!erent dimensions into
the same space and measure distances between the embedded
subspaces as a function of only the ambient (embedded) space.
We will use this embedding to place a prior on Uk which implic-
itly speci"es a prior on dk. This embedding will have some very
nice properties in terms of prior speci"cation and computation.

The following theorem states that embedding the Grass-
manian into a sphere allows us to measure distances between
subspaces.

Theorem 1 (Conway–Hardin–Sloane 1996). The representation
of a subspace U ∈ Gr(d, m) by its projection matrix PU gives
an isometric embedding of Gr(d, m) into a sphere of radius√

d(m − d)/m in Rm(m+1)/2, with dp(U, V) = 1√
2‖PU − PV‖F ,

where PV is the projection matrix onto V.

The embedding procedure can be described in the following
steps: (i) given a basis Uk compute the projection matrix Pk =
UkUT

k , (ii) take all the entries of Pk in the upper triangle (or lower
triangle) as well as all the elements in the diagonal except for
one as a vector in Rm(m+1)/2−1. The sum of all the entries on
the vector will be a constant. This is a result of the orthogonality
of Uk, which means that all the subspaces of dimension dk lie on
the same sphere. The key observation by Conway, Hardin, and
Sloane (1996) was that if the extra coordinate is included, thus
embedding into Rm(m+1)/2, the subspaces are still embedded
into spheres and each of these spheres are cross-sections of a
higher-dimensional sphere which we denote as S(m−1)(m+2)/2.
The sphere S(m−1)(m+2)/2 is centered at ϕ

( 1
2 Im

)
= vech

( 1
2 Im

)

where ϕ(A) denotes the embedding of the projection matrix A
and vech is the half-vectorization operation

vech
([

a b
b d

])
=




a
b
d



 ,

for an example of 2 by 2 matrix. The 0-dimensional subspace
is embedded at the origin 0 ∈ Rm(m+1)/2. The radius of
S(m−1)(m+2)/2 is

√
m(m + 1)/8. In summary,

S(m−1)(m+2)/2 = {x ∈ Rm(m+1)/2 : ‖x − c‖2 = m(m + 1)/8},

where c = vech
(1

2
Im

)
.

1Note that the dimension of a sphere in Rd is d−1 and that m(m+1)/2−1 =
(m − 1)(m + 2)/2.
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Grassmann manifolds are embedded into cross-sections of
S(m−1)(m+2)/2 where the projection matrix corresponding to the
pre-image has an integer-valued trace. The geodesic distance
along the surface of the sphere, dS(m−1)(m+2)/2 , corresponds to the
projective distance dp( · , · ) between two subspaces U1, U2 ∈
Gr(d, m),

dp(U1, U2) =
[∑d

j=1
sin2(θj)

]1/2
,

where θ1, . . . , θd are the principal angles between the subspaces.
The representation of Grassmannians as points on

S(m−1)(m+2)/2 has several useful properties.

Sphere interpretation. The sphere S(m−1)(m+2)/2 provides an
intuitive way to sample subspaces of di!erent dimensions by
sampling from S(m−1)(m+2)/2. Under the projective distance,
the sphere also has an intuitive structure. For example, dis-
tances between subspaces of di!erent dimensions can also be
computed as the distance between points on the sphere where
the points will be located on di!erent cross-sections. Under
the projective distance, the orthogonal complement of a sub-
space U is the point on S(m−1)(m+2)/2 that maximizes the
projective distance. Further, the projection matrix is always
invariant to the representation U.

Di!erentiable. The projective distance, however, is square dif-
ferentiable everywhere, making it more suitable in general for
optimization problems. This is not the case for distances like
geodesic distance or the Asimov–Golub–Van Loan distance
where maximizing the distance between a set of subspaces
will result in distances that lie near non-di!erentiable points
(Conway, Hardin, and Sloane 1996). This numerical instabil-
ity can lead to sub-optimal solutions.

Ease of computation. The projective distance is easy to com-
pute via principal angles, which are readily computable with
singular value decomposition (Golub and Van Loan 2013).
Working with the embedding requires only a relatively small
number of coordinates—in fact only quadratic in m or m(m+
1)/2. Furthermore one can exploit many properties of a
sphere in Euclidean space in our computations. For example,
sampling from a sphere is simple. The number of required
coordinates is small compared to alternative embeddings
of the Grassmannian, see Hamm and Lee (2005). In con-
trast, the usual Plücker embedding requires a number of
coordinates that is

(m
d
)
, that is, exponential in m. Moreover,

the Plücker embedding does not reveal a clear relationship
between Grassmannians of di!erent dimensions, as there is
using the spherical embedding.

We will place a prior on projection matrices by placing a
distribution over the lower half of S(m−1)(m+2)/2, points on
S(m−1)(m+2)/2 corresponding to cross-sections where the sub-
space corresponding to the pre-image has dimension d <

m(m + 1)/4. We only consider the lower half since we assume
the model to be low-dimensional. The prior over projection
matrices implies a prior over Uk and dk. A point drawn from
S(m−1)(m+2)/2 may not correspond to a subspace since only a
point with integer-valued trace quali"es as a pre-image. We
address this problem by the following procedure: given a sam-
pled point q ∈ S(m−1)(m+2)/2 we return the closest point p ∈

S(m−1)(m+2)/2 that is the pre-image of a subspace. The following
theorem states the procedure.

Theorem 2. Given a point q ∈ S', the point p that minimizes
the geodesic distance on S', dS'(q, p), subject to

ϕ−1(p) ∈
'⋃

d=0
Gr(d, ')

can be found by the following procedure:

1. Compute Q = ϕ−1(q).
2. Set the dimension of p to d = tr(Q).
3. Compute the eigendecomposition Q = A(A−1.
4. Set B an '×d matrix equal to the columns of A correspond-

ing to the top d eigenvalues.
5. Let p = ϕ(BBT).

Proof. We can consider two cases dichotomously. Suppose the
point q ∈ S' is already on a cross-section of the sphere
corresponding to d-dimensional subspaces Gr(d, '). The eigen-
decomposition of Q = ϕ−1(q) returns exactly d non-zero
eigenvalues and the corresponding eigenvectors form a basis for
the subspace that is embedded into the point q. On the other
hand, suppose the point q lies between cross-sections of the
sphere that correspond to Grassmannians. The above algorithm
minimizes the Euclidean distance between the point p and q
since the procedure to use top d eigenpairs is the best low-rank
approximation of any symmetric matrix (Golub and Van Loan
2013) and therefore minimizes the distance on S' induced by
the embedding.

The full model is speci"ed as follows for each xi, i = 1, . . . , n,

w ∼ DirK(α), δi ∼ Mult(w),
Pk ∼ P(S(m−1)(m+2)/2), UkUT

k = Pk,
dk = tr(Pk), (3)

µk|dk ∼ Ndk(0, λI),
θk|Uk ∼ Nm(0, φI), UT

k θk = 0, (4)
σ−2

k ∼ Ga(a, b),
!−1

k(j)|dk ∼ Ga(c, d), j = 1, . . . , dk,

xi|δi ∼
∑K

k=1
δikNm

(
Ukµk + θk, Uk(!k − σ 2

k Idk)UT
k

+ σ 2
k Im

)
,

where Equation (3) corresponds to sampling from a distribution
P supported on the lower half of the sphere S(m−1)(m+2)/2 a
projection matrix Pk that corresponds to a subspace, computing
the dimension dk as the trace of the subspace, and computing
the subspace Uk from the projection. Equation (4) corresponds
to sampling from a normal distribution subject to the projection
constraint UT

k θk = 0.

3. Posterior Sampling

In this section, we provide an e#cient algorithm for sampling
the model parameters from the posterior distribution. Sampling
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directly from a joint posterior distribution of all the parameters
is intractable and we will use Markov chain Monte Carlo meth-
ods for sampling. For most of the parameters, we can sample
from the posterior using a Gibbs sampler. This is not the case
for sampling from the posterior distribution over projection
matrices with prior P on the sphere S(m−1)(m+2)/2. The prior
P should place more mass on cross-sections of the sphere cor-
responding to lower dimensions dk. Sampling e#ciently from
a joint distribution on dk, Pk is di#cult. We will address this
problem by using a Gibbs posterior (Jiang and Tanner 2008) to
sample the projection matrices. We "rst state the Gibbs posterior
we use to sample Uk and θk e#ciently and the rationale for this
form of the posterior. We then close with the sampling algorithm
for all the model parameters.

It is not obvious how to place a prior on the sphere
S(m−1)(m+2)/2 that will allow for e#cient sampling. We follow
the idea of a Gibbs posterior to design an e#cient sampler.
While a standard posterior takes the form of

posterior ∝ prior × likelihood,

a Gibbs posterior replaces the likelihood with a loss or risk
function that depends on both the data as well as the parameter
of interest. In our case, the loss function is given by

L(P[1:K], θ[1:K], X) (5)

= 1
n

∑n
i=1

[
min

k=1,...,K

(
‖Pk(xi − θk) − (xi − θk)‖2 + tr(Pk)

)]

= 1
n

∑n
i=1

[
min

k=1,...,K
(eik + dk)

]
,

where eik is the residual error for the ith sample given by the kth
subspace with the error de"ned by our likelihood model. The
above loss function corresponds to computing for each sample
the residual error to the closest subspace weighted by the dimen-
sion of the subspace. The penalty weighting the dimension of the
subspace enforces a prior that puts more mass on subspaces of
lower dimension. Given the likelihood or loss function, we state
the following Gibbs posterior:

g(P[1:K], θ[1:K]|X) ∝ exp
(
−nψL(P[1:K], θ[1:K], X)

)

π(P[1:K])π(θ[1:K]), (6)

where ψ is a chosen temperature parameter. Gibbs posterior
is simply a loss-oriented alternative to the likelihood based
posterior distribution. It is traditionally used to account for
model misspeci"cation. Here, the Gibbs posterior is used to
avoid over"tting by arbitrarily increasing the dimension of the
subspace and for computational e#ciency in sampling.

3.1. Sampling U[1:K] and θ[1:K] from the Gibbs Posterior

In this subsection, we outline our procedure for sampling the
model parameters U[1:K] and θ[1:K] using a Metropolis–Hastings
algorithm with a modi"ed version of random walk on the
sphere. We "rst state a few facts that we will use. First, there
is a deterministic relation between Uk and Pk, so given Pk we
can compute Uk. Also recall that not every point sampled from
S(m−1)(m+2)/2 quali"es as an image of a subspace. Given a point
s0
k ∈ S(m−1)(m+2)/2 we denote the subspace corresponding to

this point as Pk = ϕ−1(s0
k), which is the closest projection

matrix to s0
k corresponding to a subspace. The procedure to

compute Pk from s0
k is given in Theorem 2. We obtain Uk

corresponding to the top dk eigenvectors of Pk where dk is the
trace of Pk.

We now state two procedures. The "rst procedure initializes
the parameters U[1:K] and θ[1:K]. The second procedure com-
putes the 'th sample of the parameters.

The "rst procedure which we denote as
Initialize(U[1:K], θ[1:K]) proceeds as follows:
1. Draw σ ∼ SK , the symmetric group of permutations on K

elements.
2. For i = 1, . . . , K,

(a) draw z0
σ (i) ∼ Nm(m+1)/2(0, τ I);

(b) compute s0
σ (i) = (

√
m(m + 1)/8)z0

σ (i)/‖z0
σ (i)‖+ϕ( 1

2 Im);
(c) compute P0

σ (i) = ϕ−1(s0
σ (i));

(d) compute d0
σ (i) = tr(P0

σ (i));
(e) compute U0

σ (i) as the top d0
σ (i) eigenvectors of P0

σ (i);
(f) draw β0

σ (i) ∼ N (0, Im);
(g) compute θ0

σ (i) = (Im − P0
σ (i))β

0
σ (i).

The "rst step permutes the order we initialize the K components.
Step (a) samples a point from a multivariate normal with the
dimension of the sphere. In Step (b) we normalize the sampled
point, recenter it, and embed it onto the sphere Sm(m+1)/2. In
Step (c), we compute the projection matrix by computing the
closest subspace to the embedded point computed in Step (b).
Given the projection matrix we compute the dimension in
Step (d) and the basis of the subspace in Step (e). Steps (f) and
(g) we compute the θ parameters.

The second procedure which we denote as
Update

(
U(')

[1:K], θ
(')
[1:K]

)
computes the 'th sample as follows:

1. Draw σ ∼ SK , the symmetric group of permutations on K
elements.

2. For i = 1, . . . , K,
(a) draw zσ (i) ∼ Nm(m+1)/2(z('−1)

σ (i) , τ I);
(b) compute sσ (i) = (

√
m(m + 1)/8)zσ (i)/‖zσ (i)‖ +

ϕ( 1
2 Im);

(c) compute Pσ (i) = ϕ−1(sσ (i));
(d) compute dσ (i) = tr(Pσ (i));
(e) compute Uσ (i) as the top dσ (i) eigenvectors of Pσ (i);
(f) draw u ∼ Unif[0, 1];
(g) set

P[1:K] =
[
P('−1)

[1:K]−σ (i), Pσ (i)
]
;

(h) set
θ[1:K] =

[
θ

('−1)
[1:K]−σ (i), (Im − Uσ (i)UT

σ (i))θ
('−1)
σ (i)

]
;

(i) compute the acceptance probability

α = min
(

1,
exp

(
−nψL(P[1:K], θ[1:K], X)

)

exp
(
−nψL(P('−1)

[1:K] , θ ('−1)
[1:K] , X)

)

)

;

(j) set
(
U(')

σ (i), z(')
σ (i)

)
=

{ (
Uσ (i), zσ (i)

)
if α > u,(

U('−1)
σ (i) , z('−1)

σ (i)
)

otherwise;
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(k) draw βσ (i) ∼ Nm(β
('−1)
σ (i) , Im);

(l) compute θσ (i) = (Im − P'−1
σ (i) )βσ (i);

(m) draw u ∼ Unif[0, 1];
(n) set

θ[1:K] =
[
θ

('−1)
[1:K]−σ (i), θσ (i)

]
;

(o) compute the acceptance probability

α = min
(

1,
exp

(
−nψL(P('−1)

[1:K] , θ[1:K], X)
)

exp
(
−nψL(P('−1)

[1:K] , θ ('−1)
[1:K] , X)

)

)

;

(p) set

(
θ

(')
σ (i), β

(')
σ (i)

)
=

{ (
θσ (i), βσ (i)

)
if α > u,(

θ
('−1)
σ (i) , β('−1)

σ (i)
)

otherwise.

Many steps of this procedure are the same as the "rst procedure
with the following exceptions. In Steps (a) and (k) we are cen-
tering the random walk to the previous values of zσ (i) and βσ (i)
respectively. Step (g) updates the set of K projection matrices by
replacing the ith projection matrix in the set with the proposed
new matrix. Step (h) is analogous to Step (g) but for the set of
θ vectors. In Step (j) we update the subspace and in Step (p) we
update the θ vector.

3.2. Sampling Algorithm

We now state the algorithm we use to sample from the posterior.
To simplify notation we work with precision matrices Jk = !−1

k
instead of the inverse of covariance matrices for each mixture
component. Similarly, we work with the precision of the k-th
component γk instead of the inverse of the variance, γk = σ−2

k .
The following procedure provides posterior samples:

1. Draw U(0)
[1:K], θ

(0)
[1:K], d(0)

[1:K] ∼ Initialize(U[1:K], θ[1:K]).
2. Draw Jk(jk) ∼ Ga(a, b) for k = 1, . . . , K and jk = 1, . . . , d(0)

k .
3. For t = 1, . . . , T,

(a) for i = 1, . . . , n and k = 1, . . . , K, compute

eik =
∥∥P(t−1)

k
(
xi − θ

(t−1)
k

)
−

(
xi − θ

(t−1)
k

)∥∥2;
(b) for i = 1, . . . , n, set

wi =
( exp(−κei1)∑K

j′=1 exp(−κeij′)
, . . . , exp(−κeiK)

∑K
j′=1 exp(−κeij′)

)
;

(c) for i = 1, . . . , n, draw δi ∼ Mult(wi);
(d) update for k = 1, . . . , K each µ

(t)
k ∼ N (m∗

k , S∗
k) where

S∗
k =

(
nkJ(t−1)

k + λ−1I
)−1,

m∗
k = S∗

k

(
J(t−1)
k U(t−1)T

k
∑

δi=k
xi

)
,

and nk = #{i : δi = k};
(e) update for k = 1, . . . , K, and each γ

(t)
k ∼ Ga(a∗

k , b∗
k),

a∗
k = nk(m − dk) + a,

b∗
k = b + nk

2
(θ

(t−1)
k )Tθ

(t−1)
k

+
∑

δi=k

(1
2

xT
i xi − xT

i U(t−1)
k U(t−1)T

k xi
)

− θ
(t−1)T
k

∑
δi=k

xi;

(f) update for k = 1, . . . , K, and jk = 1, . . . , d(t−1)
k ,

J(t)
k(jk) ∼ Ga

(nk
2

+ a, b + 1
2

∑
δi=k

(
U(t−1)T

k xi − µ
(t)
k

)2
jk

)
,

where (u)j denotes the jth element of the vector u;
(g) draw

U(t)
[1:K], θ

(t)
[1:K], d(t)

[1:K] ∼ Update
(
U(t−1)

[1:K] , θ (t−1)
[1:K]

)
.

The update steps for µ, σ 2, and ! are (d), (e), and (f), respec-
tively, and are given by the conditional probabilities given all
other variables. Steps (a), (b), and (c) assign the latent member-
ship variable to each observation based on the distance to the K
subspaces. We set the parameter κ very large which e!ectively
assigns membership of each xi to the subspace with the least
residual error.

Here, we suggest some heuristic guidelines for implemen-
tation of the algorithm. Two algorithmic parameters of a
Metropolis–Hastings (MH) algorithm for the Gibb’s posterior
distribution are the proposal distribution and temperature,
which are o%en abbreviated or omitted in the presentation of
algorithmic details. We opted for a strategy to sequentially deter-
mine the two parameters through a burn-in period to make our
MH sampler draw a moderate number of informative samples.
In the "rst stage of burn-in, the proposal variance parameter τ

is "xed and temperature is chosen via a line search on a log-scale
grid 10−20 to 1020 until the acceptance ratio is bound in a wide
range. Once the temperature is determined, the second stage
is to adjust proposal variance τ until the acceptance ratio falls
in a narrower range during the burn-in period. We observed
that the two-stage parameter tuning does not heavily depend
on initialization of τ so we "xed the initial value τ = 1 in
our experiments. We used the 10%–90% as a wide range for
tuning the temperature at the "rst stage and the 25%–45% range
for tuning the step-size parameter in the latter stage, where the
choice of these values are subject to a user’s decision.

4. Speci!cation of a Topic Model: A Generative Model
on the Stiefel Manifold

The idea behind topic modeling is to specify a generative model
for documents where the model parameters provide some intu-
ition about a collection of documents. A common representa-
tion for documents is what is called a “bag of words” model
where the grammar and structure of a document are ignored
and a document is just a vector of counts of words (Blei, Ng, and
Jordan 2003; Deerwester et al. 1990; Ho!man 1999). A natural
generative model for collections of documents is an admix-
ture of topics where each topic is a multinomial distribution
over words. This model is called a latent Dirichlet allocation
(LDA) model (Pritchard, Stephens, and Donnelly 2000; Blei,
Ng, and Jordan 2003). We will propose a slight variation of
the LDA model later in this section which is a direct exten-
sion/application of a mixture of subspaces.

The generative model speci"ed by LDA considers a vocabu-
lary of size V and each of D documents is a mixture of multino-
mials where each multinomial corresponds to one of K topics
and each topic has a di!erent multinomial distribution over
the words in the vocabulary. In a spherical admixture model
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(SAM) (Reisinger et al. 2010) the vector of word counts in each
document is transformed by centering at zero and normalizing
to unit length. The idea behind a SAM is to represent word
frequencies as directional distributions on a hypersphere. The
advantage of a SAM is that one can simultaneously model both
frequency as well as presence/absence of words, whereas an LDA
model can only model frequency. There is empirical evidence
of greater accuracy in using a SAM for sparse data such as text
(Banerjee and Dhillon 2005; Zhong and Ghosh 2005).

We extend the SAM model in two important ways, "rst
by ensuring all the topics are orthogonal. The logic behind
orthogonality constraints in the topics is to avoid the empirically
observed problem of redundant topics. Removing stop words
can mitigate redundancy but it is not always known a priori
what words should be stop words. For example, the word “topic”
should be a stop word in a corpus of papers on topic modeling.
In Ho! (2009), a Bayesian model for an orthogonal SAM is
speci"ed and a posterior sampling procedure is developed. A
key insight of this paper was how to e#ciently simulate from
the set of orthonormal matrices using the matrix Bingham–
von Mises–Fisher distribution. For an orthogonal SAM model,
the K topics on V words were modeled using the matrix
Bingham–von Mises–Fisher distribution which is on the Stiefel
manifold, V(V , K). The second extension is to infer the number
of topics K. While the orthogonality constraints help with the
interpretation of topics and remove redundant topics, topics
with low posterior mixture probabilities and low coherence can
still appear. This is mainly driven by misspeci"cation of the
number of topics.

We now state a novel SAM model that enforces orthonormal
columns as well as allows for the inference of the number of
topics. Using the Conway embedding allows us to place a joint
prior over the number of topics as well as the word frequencies
in each topic. We are able to sample from Stiefel manifolds
of variable intrinsic dimension K by coupling draws from the
von Mises–Fisher distribution with the map given by inverting
the Conway embedding. This allows us to avoid using the matrix
Bingham–von Mises–Fisher distribution.

We provide some intuition for our SAM with orthogonality
constraints as well as useful notation before we specify the
model. We will simulate a topic matrix φ where the columns
of the matrix are topics {φk}K

k=1 and the number of topics
K is random. Orthogonal matrices of the topics are sampled
from a distribution over Stiefel manifolds V(V , K), with "xed
ambient dimension V (the number of words) and variable
embedding dimension K. For each document probability vector
of topic proportions θd over the K topics is generated. The
'2-normalized unit vector vd representing normalized word
frequencies for each document is generated from the topic
proportions θd and the topic matrix φ. The following notation
and concepts will be used in the generative model. We denote
S as the Conway sphere S(V−1)(V+2)/2 which is the collection
of orthogonal subspaces of variable dimension embedded into
a sphere. We denote ϕ(·) and ϕ−1(·) as the embedding function
and its inverse respectively. We denote vMFS as the von Mises–
Fisher distribution over the Conway sphere S(V−1)(V+2)/2 and
vMFV as the von Mises–Fisher distribution over the unit sphere
SV . Given the topics matrix and the topic proportions θd for a
document, a spherical average of the topics with respect to the

proportions is the admixed parameter that models the combi-
nation of topics in document and is computed by avg(φ, θd) =

φθd
||φθd|| . We did not use the Buss-Fillmore spherical average due
to computational considerations. Given a vocabulary of size V
and D documents, the '2-normalized unit vector vd for each
document is speci"ed by the following hierarchical model:

µ|κ0 ∼ vMFS(m, κ0) (corpus average),
η|µ, ξ ∼ vMFS(µ, ξ) (embedded orthogonal topics),
(φ, K) = ϕ−1(η) (orthogonal topics and number,

of topics)
θd|α ∼ DirK(α) (topic proportions for each,

document)
φ̄d = avg(φ, θd) (spherical average, admixed,

parameter)
vd|φ̄d, κ ∼ vMFV

(
φ̄d, τ

)
(generates a document vector).

(7)
The main di!erence in the above model and prior models on
spheres (Ho! 2009; Reisinger et al. 2010) is that instead of sam-
pling topics from the embedding on the Conway sphere, "xed-
K topic vectors were each sampled from a von Mises–Fisher
distribution over SV . In Reisinger et al. (2010), the vectors were
not constrained to be orthogonal, and in Ho! (2009) an e#cient
procedure is given to simulate these K orthogonal vectors. The
Conway sphere in this case is extremely high dimensional and
there is computational utility in reducing the vocabulary size.

As in the mixture of subspaces model, we require a prior
that will place greater weight on models with fewer topics as
increasing the number of topics will result in a better "t with
respect to the likelihood. In the same spirit as Section 3, we
specify a Gibbs posterior to place a prior on the Conway sphere
that can be e#ciently be sampled from and favors models with
fewer topics. We specify the following loss function for each
document vector vd:

L
(
φ, K|{vd}D

d=1, τ
)

= 2DK
V −

D∑

d=1

(
τ φ̄T

d vd
)

(8)

and corresponding Gibbs posterior

g(φ, K|{vd}D
d=1, τ ) ∝ exp

(
− ψDL ×

(
φ, K|{vd}D

d=1, τ
))

π(φ).
(9)

The maximum penalty above is D and would counterbalance
a perfect "t to each document with a loss value of zero. Using
the Gibbs posterior allows us to skip the step of estimating the
corpus average parameter µ since the remaining parameters and
µ are conditionally independent given the topics. We set the
temperature parameter ψ using out-of-sample "ts on a random
search over log(ψ) ∈ [−10, 10].

The remaining parameters of Model (7) are estimated using
the same sampling steps as in a standard SAM once the topics
and number of topics are sampled. The high-dimension of the
Conway sphere can result in slower mixing of the topics and
it is of interest to explore EM or Hamiltonian Monte Carlo
approaches for computational gain.

5. Results on Real and Simulated Data

We illustrate the utility of the embedding through an extensive
simulation study and real data analysis. The simulation study
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involves synthetic data with simple geometric structure to con-
trast the performance of our method with k-means clustering,
a Gaussian mixture model, and a Bayesian factor model. We
also compare performance of non-Bayesian subspace clustering
methods. In the second example, we compare the performance
of our model with a logistic model, a Gaussian mixture model,
as well as a factor model on three supervised classi"cation
problems from the UCI machine learning repository (Bache and
Lichman 2013). The last example compares the spherical topic
model we developed to a latent Dirichlet allocation model on a
corpus of NSF award abstracts (NSF 2010).

5.1. Lines Intersecting a Plane

Possibly the simplest example of a mixture of subspaces is a
line puncturing a plane. We will use this example to illustrate
basic properties of the mixture of subspaces as well as explore
comparisons to comparable models. We will study how well we
can cluster the observed points into those sampled from the
plane or line respectively. We perform clustering comparison
in two-folds. Our method is "rst compared against standard
clustering algorithms. Also, we compare with popular non-
Bayesian methods in the context of subspace clustering.

The mixture model for a line intersecting a plane in R3

comprises two components: a subspace U1 corresponding to a
line and a subspace U2 corresponding to the plane. Although
simple, this example can be challenging inference problem. To
understand the e!ect of uncertainty of subspace measurements
on accuracy of models we add isotropic noise around the sub-
spaces via a precision parameter.

The data are speci"ed by the following distribution with the
following "ve values for the precision parameter of the isotropic
noise around the subspaces, ν = [10, 5, 1, 0.5, 0.2]:

Line Plane
U1 ∼ Unif(V(1, 3)), U2 ∼ Unif(V(2, 3)),
µ1 ∼ N1(0, 1), µ2 ∼ N2(0, I),

!−1
1 ∼ TGa(1, 1, ν), diag(!−1

2 )
iid∼ TGa(1, 1, ν),

(I3 − U1UT
1 )−1θ1 ∼ N3(0, I), (I3 − U2UT

2 )−1θ2 ∼ N3(0, I),

where TGa(1, 1, ν) is a le% truncated Gamma truncated at preci-
sion ν. Given these parameters for the two mixture components,
we specify the following two conditional distributions:

x|Line iid∼ N3(U1µ1 + θ1, U1(!1 − σ 2
1 )UT

1 + σ 2
1 I),

x|Plane iid∼ N3(U2µ2 + θ2, U2(!2 − σ 2
1 I)UT

2 + σ 2
1 I).

We generated 500 observations from both the line and the plane,
see Figure 1. For each of the "ve variance levels, 10 datasets were
generated.

Our initial comparison set of models includes K-means clus-
tering (K-means), a mixture of normals (GMM), a mixture of
nonparametric factor models (MFM) (Carvalho et al. 2008), our
mixture of subspaces model with variable dimensions (MSM),
and our mixture of subspaces model with dimension "xed to
d = 2 (MSM d1 = d2 = 2). For the subspace model we
set the temperature parameter for the Gibbs posterior to 10−6,
and acceptance rate between 38% and 48% was achieved for
the subspace and a#ne mean parameters. For the model-based
clustering algorithms in this experiment, a holdout set of 50
observations from the line and plane is used for testing. Under
the settings described, a comparison of clustering accuracy of
the "ve models is summarized in Table 1. We report the range
in clustering accuracy for each method on the holdout set
over the ten runs. We conclude from Table 1 that (i) K-means
performs poorly, (i) as the precision parameter increases, the
performance of the GMM improves and starts to approach the
MFM and MSM results, (iii) the MSM with variable dimension

Figure 1. An example of one line and one plane in R3. The upper-left panel (a) displays the true cluster assignments and estimated clusterings are given for (b) MSM, (c)
SSC, (d) K-means, (e) GMM, and (f ) MFM algorithms.
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Table 1. Range of cluster assignment accuracy of K-means and model-based algorithms for the simulated data.

Precision MSM MSM d = (2, 2) GMM MFM K-means

0.2 (0.95, 0.99) (0.92, 0.97) (0.89, 0.97) (0.95, 0.99) (0.66, 0.77)
0.5 (0.90, 0.98) (0.90, 0.96) (0.87, 0.98) (0.91, 0.99) (0.64, 0.82)
1 (0.87, 0.98) (0.86, 0.97) (0.85, 0.98) (0.88, 0.98) (0.57, 0.70)
2 (0.87, 0.96) (0.87, 0.95) (0.87, 0.95) (0.86, 0.98) (0.64, 0.72)
5 (0.84, 0.97) (0.84, 0.97) (0.84, 0.97) (0.83, 0.97) (0.59, 0.80)

Table 2. Range of cluster assignment accuracy for subspace clustering algorithms.

Precision MSM EKSS LRR LRSC LSR SSC

0.2 (0.51, 0.59) (0.51, 0.73) (0.50, 0.57) (0.49, 0.56) (0.49, 0.55) (0.49, 0.54)
0.5 (0.59, 0.87) (0.49, 0.83) (0.49, 0.63) (0.49, 0.72) (0.49, 0.70) (0.49, 0.69)
1 (0.60, 0.87) (0.49, 0.88) (0.49, 0.69) (0.57, 0.75) (0.55, 0.75) (0.50, 0.79)
2 (0.59, 0.98) (0.51, 0.98) (0.50, 0.79) (0.53, 0.83) (0.51, 0.82) (0.50, 0.80)
5 (0.76, 1.00) (0.50, 1.00) (0.49, 0.99) (0.52, 0.95) (0.52, 0.95) (0.51, 0.69)

Figure 2. Average Rand index of 1 plane and k lines simulation.

outperforms the MSM with "xed dimension, and (iv) the MSM
and MFM results are very similar. Note that the MSM provides
richer geometric information including the intrinsic dimension
of the subspace.

The second simulation examined recovering a line punctur-
ing a plane and contrasts our method to popular subspace clus-
tering methods, including Ensembles of K-Subspaces (EKSS)
(Lipor et al. 2021), low-rank representation (LRR) (Liu, Lin,
and Yu 2010), low-rank subspace clustering (LRSC) (Vidal and
Favaro 2014), Least-squares regression (LSR) (Lu et al. 2012),
and sparse subspace clustering (SSC) (Elhamifar and Vidal
2009). In this experiment, we use MSM with variable dimen-
sions and the same settings as before. For the "ve subspace
clustering algorithms compared, we use the simplest form of
each model. For example, a cost function of the SSC algorithm
has two regularization terms besides the sparse connectivity
objective to penalize sparse outlying entries and noise. Since
these penalties involve tuning hyperparameters, we use mini-
mal formulation of cost functions. Furthermore, these meth-
ods are not model-based and out-of-sample prediction may
not be straightforward so that we opt to measure and report
clustering accuracy for the whole datasets, which are summa-
rized in Table 2. The experiment shows that MSM performs
well, comparable to EKSS which ensembles a large number of
independent runs, while MSM enables to extract information
about estimated dimensionalities of the "tted a#ne subspaces
and predict cluster information for new observations. Except

for ν = 0.2, MSM outperforms all competing algorithms
from which we can conclude that MSM handles noisy sam-
ple well unless it becomes extensive beyond an algorithm’s
capability. Furthermore, one noticeable observation is that it
has the best worst-case performance across all levels of pre-
cision, leading to empirical guarantee of its worst-scenario
performance.

Next, we examine beyond a line and a plane in R3—multiple
subspaces and higher dimensional cases. We initially tried a
speci"c example of two lines and one plane where 100 observa-
tions are drawn from each subspace. MSM reports mean Rand
index of 0.9453 when k = 3 while k = 2 gives 0.7325 and
k = 4 gives 0.7094, respectively, from 100 posterior samples. To
observe the algorithm’s capability to distinguish unions of lines
from a plane, we performed another test where data consists of 1
plane and (k−1) lines all randomly generated for k = 2, 3, . . . , 9.
For each subspace, 100 observations are drawn. Figure 2 shows
the algorithm’s capability to distinguish unions of lines from
a plane where the increased number of lines does not hurt
the performance much. One may wonder whether our model
can recognize the union of two subspaces with dimension 1
as a single subspace of dimension 2 in this setup. Although
any pair of perfect lines forms a plane in theory, we see that
when the number of mixture components is properly chosen,
the algorithm successfully distinguishes two lines.

Second, we assess how the model performs for a line and
a plane example embedded in higher dimensions. To describe
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Figure 3. Performance of MSM on a line and a plane example with varying dimensions.

Table 3. Mean clustering assignment accuracy of a line and a plane example embedded in higher dimensions.

Dimension Precision MSM EKSS LRR LRSC LSR SSC GMM K-means

5 0.2 0.538 0.592 0.513 0.510 0.509 0.510 0.565 0.531
0.5 0.578 0.657 0.581 0.613 0.611 0.549 0.668 0.632
1 0.792 0.631 0.595 0.711 0.705 0.623 0.604 0.651
2 0.836 0.658 0.632 0.742 0.729 0.615 0.602 0.674
5 0.878 0.676 0.608 0.716 0.706 0.650 0.661 0.625

10 0.2 0.572 0.566 0.511 0.510 0.511 0.505 0.568 0.578
0.5 0.621 0.676 0.591 0.614 0.612 0.547 0.666 0.644
1 0.632 0.656 0.597 0.687 0.682 0.602 0.690 0.684
2 0.684 0.667 0.610 0.734 0.719 0.665 0.604 0.662
5 0.866 0.623 0.605 0.736 0.728 0.683 0.694 0.630

25 0.2 0.604 0.604 0.516 0.519 0.518 0.505 0.566 0.607
0.5 0.671 0.713 0.582 0.606 0.599 0.551 0.737 0.673
1 0.683 0.707 0.626 0.691 0.674 0.638 0.682 0.673
2 0.858 0.682 0.617 0.724 0.718 0.664 0.688 0.665
5 0.911 0.683 0.636 0.771 0.761 0.694 0.755 0.617

50 0.2 0.638 0.610 0.518 0.512 0.510 0.510 0.560 0.629
0.5 0.790 0.643 0.569 0.610 0.609 0.547 0.674 0.725
1 0.845 0.696 0.606 0.677 0.671 0.592 0.723 0.688
2 0.865 0.683 0.603 0.719 0.707 0.649 0.671 0.768
5 0.887 0.682 0.619 0.755 0.742 0.686 0.658 0.695

100 0.2 0.624 0.603 0.524 0.526 0.526 0.510 0.613 0.604
0.5 0.751 0.651 0.620 0.679 0.668 0.608 0.711 0.721
1 0.748 0.657 0.594 0.721 0.696 0.617 0.692 0.674
2 0.850 0.620 0.570 0.634 0.628 0.580 0.713 0.667
5 0.913 0.633 0.621 0.823 0.810 0.779 0.694 0.657

an embedding procedure, given an arbitrary projection matrix
P ∈ Rp×3 where P+P = I3 is an identity matrix, we map a
generated dataset of one line and one plane in R3 into Rp by
post-multiplying P+(PP+)+ where A+ is a pseudo-inverse of an
arbitrary matrix A. Figure 3 shows that increasing the dimension
of an ambient space p does not hurt the performance much as
long as the underlying structure is low-dimensional.

Table 3 summarizes further experiments that show compet-
itive performance of our model against non-Bayesian subspace
clustering algorithms as well as GMM and K-means in higher
dimensions p = 5, 10, 25, 50, 100. As the magnitude of white
noise gets smaller, MSM shows a tendency to outperform com-
peting algorithms. Along with the immediate bene"t, one key
feature of our model is its ability to detect the dimensionality
of the subspaces unlike non-Bayesian algorithms that do not
require explicit recovery of low-dimensional structures. When
the number of cluster is properly chosen, we observed light level
of errors in estimated dimensions for each subspace from the
generated data although increased amount of additive noise may
a!ect discovering true dimensionalities.

Remark 1. The model is empirically invariant to the scaling
of the datasets. Figure 4 shows results from applying MSM
algorithm on the same dataset (the line intersecting plane exam-
ple) scaled by constants from 2 to 20, which concludes that scale
of the data does not degrade performance of the algorithm as
long as the assumption on the intrinsic structure of the data is
valid.

5.2. Classi!cation on UCI Data

To study the clustering performance on more realistic data,
we examined the classi"cation accuracy on three datasets from
the UCI Data Repository: the Statlog Vehicle Silhouettes data
(Siebert 1987), the Wisconsin Breast Cancer data (Mangasarian
and Wolberg 1990), and the Statlog Heart data (Detrano et
al. 1989). Our metric of success on all three data was holdout
classi"cation accuracy. We compared "ve models: a (multino-
mial) logit model (Logit), our mixture of subspaces model with
variable dimensions (MSM), our mixture of subspaces model
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Figure 4. Performance of MSM with rescaled data.

Table 4. Range of cluster assignment accuracy for the three datasets using "ve models on holdout data.

Dataset MSM MSM EKSS GMM Logit MFM
d = (5, 2, 2)

Breast (0.89, 0.94) (0.83, 0.89) (0.79, 0.93) (0.64, 0.70) (0.78, 0.86) (0.90, 0.96)
Heart (0.77, 0.81) (0.73, 0.77) (0.63, 0.79) (0.56, 0.60) (0.72, 0.78) (0.80, 0.82)
Vehicle (0.77, 0.83) (0.75, 0.80) (0.70, 0.84) (0.74, 0.79) (0.46, 0.59) (0.76, 0.85)

Table 5. Uncertainty in the dimension of the subspaces.

Dataset Class 1 Class 2 Class 3 Class 4

Breast {5, 0.45; 6, 0.53} {4, 0.66; 5, 0.34} – –
Heart {1, 0.10; 2, 0.78; 3, 0.12} {1, 0.79; 2, 0.21} – –
Vehicle {1, 0.69; 2, 0.31} {1, 0.76; 2, 0.24} {1, 0.78; 2, 0.22} {1, 0.93; 2, 0.07}

with "xed dimensions (MSM d = (5, 2, 2)), and a mixture of
nonparametric factor models (MFM) (Carvalho et al. 2008).

For the subspace models, the temperature parameter of the
Gibbs posterior was set to obtain an acceptance ratio in the
range of 20–40% during the burn-in period. We did not use a
cross-validation criterion to set the temperature parameter due
to computational burden. To compute predictive accuracy, we
use the maximum a posterior estimate of our MCMC runs to
classify a new point.

The Heart Data Set contains 270 observations of two classes
with 13 covariates, the Vehicle Data Set contains 846 observa-
tions of four classes on 18 covariates, and the Breast Cancer Data
Set contains 569 observations of two classes on 30 covariates. For
each dataset, we measured the test error on a holdout set of 10%
of the data. We repeated the test error estimates 10 times and
report the range in test errors in Table 4 for the results.

We conclude from Table 4 that (i) the MSM with variable
dimension outperforms the MSM with "xed dimension, (ii)
the mixture of subspaces and mixture of factors perform as
well or better than the logit model which is the only super-
vised method, (iii) MSM and MFM have very comparable
performance.

Our subspace model allows for an estimate of the dimension
of the linear subspaces which is not possible in the the Bayesian
mixture models proposed in Page, Bhattacharya, and Dunson
(2013), the nonparametric mixture of factor models proposed
in Carvalho et al. (2008), or the penalized cost-based mixture of
subspaces model (Lerman and Zhang 2010). Table 5 states the
uncertainty in estimates of the subspace dimension, the notation
we use is {dim1, Pr(dim1); dim2, Pr(dim2); ...}.

5.3. Analysis of NSF Award Abstracts

In this subsection, we compare the topic model proposed in
Section 4 to the standard latent Dirichlet allocation model. The
corpus we use to compare the two methods consists of 13,092
abstracts from NSF awards in 2010 (NSF 2010). The vocabulary
was constructed using the tokenizer from the Mallet package
with bi-gram extraction (McCallum 2002). The vocabulary was
then reduced to the terms that were within the top 10% term fre-
quency inverse document frequency metric (Wu et al. 2008) and
occurred in at least "ve documents. The resulting vocabulary
consisted of 78,343 terms. The average length of the documents
a%er trimming the vocabulary was 379 words.

We compared the spherical topic model speci"ed in Equation
(7) to the a standard LDA model with 20 "xed topics. It was
pointed out in Reisinger et al. (2010) that a direct compari-
son of topic models and spherical topic models is not possi-
ble/meaningful. We instead examine the topic coherence and
most relevant words in each topic. Example word clouds are
displayed in Figures 5(a) and 5(b,c).

In the spherical topic models, positive and negative parts of
the topic vectors tend to be thematically coherent (also noted
by Reisinger et al. 2010). This is interesting because of a richer
representation of the topics. One interesting result of the model
speci"ed in Equation (7) on the NSF abstract data are that the
positive and negative components of the topics tend to relate to
broader impact terms and "eld or discipline terms, respectively.
It may not be surprising that writers of grants from di!erent
disciplines use di!erent goals in broader impacts. However,
the spherical topic model structure gives us a tool for making
thematic connections that would not be obvious from simply
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Figure 5. Comparison of world clouds for LDA versus the spherical topic model on the NSF abstract data.

looking at the top terms of a topic. Unlike standard mixture
models, our spherical topic model allows for the inference on
the number of topics with the support of the density over the
number of topics ranging from 26 topics to 34 topics centered
around 30 topics.

6. Discussion

We present a method for learning or inferring mixtures of linear
subspaces of di!erent dimensions. We show how this model
can be trivially adapted for admixture modeling. The key idea
in our procedure is based on the observation that subspaces of

di!erent dimensions can be represented as points on a sphere,
which is very useful for inference. The utility of this represen-
tation is that sampling from a sphere is straightforward. There
exists a distance between subspaces of di!erent dimensions that
is di!erentiable and can be computed using principal angles,
allowing us to avoid MCMC algorithms that jump between
models of di!erent dimensions. We suspect that this idea of
embedding or representing models of di!erent dimensions by
embedding them into a common space endowed with a distance
metric that allows for ease of computation and sampling as well
as nice analytic properties may also be of use in other settings
besides subspace models.
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One of the potential limitations of our model is that it cannot
handle scenarios when the ambient dimension of the data is
super huge. For example, in a gene expression dataset, it is not
uncommon to collect data with more than 20k genes where
the intrinsic dimension of the subspace is much smaller. Future
work will be devoted to extending our model to this setup.
One potential solution is to impose a prior that induces much
stronger sparsity on the subspace dimensions. Scaling our esti-
mation procedure to higher dimensions and more samples will
also require greater computational e#ciency and an EM-type
algorithm for this model holds promise. It is also of interest to
examine if we can replace the Gibbs posterior with an e#cient
fully Bayesian procedure.
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