
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Master’s Theses Theses and Dissertations

Spring 5-15-2022

SPLICEcube Architecture: An Extensible Wi-Fi Monitoring SPLICEcube Architecture: An Extensible Wi-Fi Monitoring
Architecture for Smart-Home Networks Architecture for Smart-Home Networks

Namya Malik
Namya.Malik.GR@Dartmouth.edu

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer and Systems Architecture Commons, and the Digital Communications and
Networking Commons

Recommended Citation Recommended Citation
Malik, Namya, "SPLICEcube Architecture: An Extensible Wi-Fi Monitoring Architecture for Smart-Home
Networks" (2022). Dartmouth College Master’s Theses. 50.
https://digitalcommons.dartmouth.edu/masters_theses/50

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Dartmouth College Master’s Theses by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/50?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Abstract

The vision of smart homes is rapidly becoming a reality, as the Internet of Things

and other smart devices are deployed widely. Although smart devices o↵er conve-

nience, they also create a significant management problem for home residents. With

a large number and variety of devices in the home, residents may find it di�cult to

monitor, or even locate, devices. A central controller that brings all the home’s smart

devices under secure management and a unified interface would help homeowners and

residents track and manage their devices.

We envision a solution called the SPLICEcube whose goal is to detect smart

devices, locate them in three dimensions within the home, securely monitor their

network tra�c, and keep an inventory of devices and important device information

throughout the device’s lifecycle. The SPLICEcube system consists of the following

components: 1) a main cube, which is a centralized hub that incorporates and ex-

pands on the functionality of the home router, 2) a database that holds network data,

and 3) a set of support cubelets that can be used to extend the range of the network

and assist in gathering network data.

To deliver this vision of identifying, securing, and managing smart devices, we in-

troduce an architecture that facilitates intelligent research applications (such as net-

work anomaly detection, intrusion detection, device localization, and device firmware

updates) to be integrated into the SPLICEcube. In this thesis, we design a general-

purpose Wi-Fi architecture that underpins the SPLICEcube. The architecture specif-

ii

ically showcases the functionality of the cubelets (Wi-Fi frame detection, Wi-Fi frame

parsing, and transmission to cube), the functionality of the cube (routing, reception

from cubelets, information storage, data disposal, and research application integra-

tion), and the functionality of the database (network data storage). We build and

evaluate a prototype implementation to demonstrate our approach is scalable to ac-

commodate new devices and extensible to support di↵erent applications. Specifically,

we demonstrate a successful proof-of-concept use of the SPLICEcube architecture by

integrating a security research application: an “Inside-Outside detection” system that

classifies an observed Wi-Fi device as being inside or outside the home.

iii

Acknowledgements

First, I would like to thank my advisor Professor David Kotz for giving me the

opportunity to pursue research work, providing invaluable guidance, and holding my

work to a high standard. I would also like to thank Professor Timothy Pierson who

provided patient support and insightful feedback at many stages of this project.

A special thank you to Chixiang Wang who helped me conduct my experiments

and also provided insights into the Inside-Outside application.

Thank you to Tina Pavlovich who helped purchase project materials and coordi-

nate meetings and project logistics.

Finally, I would like to thank my family and friends who have supported me

throughout this experience.

SPLICE research is supported primarily by the National Science Foundation under

NSF award number CNS-1955805. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

iv

Contents

Abstract . ii

Acknowledgements . iv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Proposed Solution . 2

1.3 Contributions . 6

2 Background 7

2.1 Home IoT . 7

2.2 Key Stakeholders . 9

2.3 Architecture Attributes . 10

3 Related Work 11

3.1 Commercial . 11

3.2 Literature . 12

4 Architecture 14

4.1 Conceptual Architecture . 14

4.2 Cubelets . 15

4.2.1 Capturer Module . 15

4.2.2 Parser Module . 16

v

4.2.3 Transmitter Module . 16

4.2.4 Support of Architecture Attributes 16

4.3 Cube . 17

4.3.1 Router Module . 17

4.3.2 Reception Module . 19

4.3.3 Storage Module . 19

4.3.4 Disposal Module . 19

4.3.5 Integration Module . 20

4.3.6 Support of Architecture Attributes 20

4.4 Database . 21

4.4.1 Support of Architecture Attributes 21

5 Implementation 22

5.1 Cubelets . 22

5.1.1 Thread 1: Capturer . 25

5.1.2 Thread 2: Parser . 27

5.1.3 Thread 3: Transmitter . 30

5.2 Cube . 33

5.2.1 Thread 1: Reception . 36

5.2.2 Thread 2: Storage . 37

5.2.3 Thread 3: Integration . 38

5.3 Database . 42

5.3.1 Database Structure . 42

5.3.2 Database Inserts . 44

5.3.3 Database Queries . 45

5.3.4 Design choices for database 46

vi

6 Experimental Evaluation 48

6.1 Experiment 1 . 48

6.1.1 Testing Procedure . 48

6.1.2 Results . 52

6.2 Experiment 2 . 55

6.2.1 Testing Procedure . 55

6.2.2 Results . 57

6.3 Experimental 3 . 60

6.4 General Storage Requirements . 61

6.5 Experimental Support . 62

7 Future Work 63

7.1 Implementation Improvements . 63

7.1.1 Sni↵ on Multiple Channels . 63

7.1.2 Decrypt MAC Frame Data . 64

7.1.3 Implement Disposal Module 65

7.1.4 Translate Code to C . 66

7.1.5 Conduct More Robust Testing 66

7.1.6 Modify Database . 67

7.2 Architecture Improvements . 68

7.2.1 Expand Router Functionality 68

7.2.2 Accommodate Other Applications 69

7.2.3 Support Other Protocols . 70

7.2.4 Incorporate Security as an Architecture Attribute 70

7.2.5 Optimize the Positioning of the Cubelets 71

8 Conclusion 72

vii

List of Tables

5.1 Inside-Outside Application Merged Data 42

6.1 Experiment 1 ML Model Metrics . 53

6.2 Experiment 2 Database Metrics . 61

viii

List of Figures

1.1 SPLICEcube System in a Home . 3

4.1 Conceptual Architecture . 15

4.2 Cubelet Architecture . 16

4.3 Cube Architecture . 18

5.1 Cubelet Prototype . 23

5.2 Cubelet Threads . 24

5.3 Data Link Layer . 25

5.4 802.11 MAC Frame Format . 26

5.5 MAC Header Format . 27

5.6 Cube Prototype . 34

5.7 Cube Threads . 36

5.8 Database Entity Relationship Diagram (ERD) 44

6.1 Experiment 1 Testing Site . 49

6.2 Experiment 1 Testing Site Setup . 50

6.3 Experiment 1 Query Time Result for Data Collection Run #1 54

6.4 Experiment 1 Query Time Result for Data Collection Run #2 54

6.5 Experiment 1 Query Time Result for Data Collection Run #3 55

6.6 Experiment 2 Query Time Result for the Home Site 57

ix

6.7 Experiment 2 Query Time Result for the Lab Site 58

6.8 Experiment 2 Insertion Time Result for the Home Site 59

6.9 Experiment 2 Insertion Time Result for the Lab Site 59

6.10 Experiment 3 Query Time Result . 60

x

Chapter 1

Introduction

With the explosion of the Internet of Things (IoT), more smart devices are rapidly

entering the home. Light bulbs regulate their brightness based on the available nat-

ural light or the current use of the room. TVs connect to the Internet to stream

video or music. Refrigerators monitor food quantities and maintain shopping lists.

Thermostats are equipped with Wi-Fi and allow residents to remotely control temper-

atures. Virtual assistants are networked and often perform tasks and answer questions

by accessing the Internet. Doorlocks recognize when residents are near and automat-

ically grant access to the home [22]. IoT is becoming a staple in many homes, and

almost half of U.S. households will use a smart home device by 2025 [25].

Smart devices in the home provide unprecedented convenience and comfort by

automating tasks and allowing remote access, but they also create a management

challenge for residents. Without a way to track and monitor the devices, residents

may be unaware of a device’s communication patterns or even its location in the home.

An adversary could plant a rogue device inside or near the home that eavesdrops on

conversations. A device that the resident initially installed in the home could be

compromised and communicating with external, malicious sources. To avoid these

security exploits, it is important for a resident to be able to easily access and monitor

1

1.1 Problem Statement Introduction

all the devices in the home.

Section 1.1

Problem Statement

There is currently no system to support residents who install a multitude of di↵erent

types of smart devices in their home, and who desire privacy, security, and usability.

To realize a vision of a manageable and secure smart home environment, we must

bring all the home’s smart devices under a secure and unified management interface,

that is underpinned by a scalable and extensible architecture.

Specifically, the implementation of such an architecture needs to be able to capture

network data across the smart home, parse the network data for desired information,

consolidate this information into a central repository, and allow applications to use

the stored information to securely manage the devices within the home. The number

and type of devices are expected to continue to increase within the smart home, so the

architecture should scale with network activity and be extensible to allow di↵erent

network technologies and di↵erent types of applications.

Section 1.2

Proposed Solution

We envision a system called the SPLICEcube (SPLICE = Security and Privacy in the

Lifecycle of IoT for Consumer Environments) whose goal is to detect smart devices,

locate them in three dimensions within the home, securely monitor their network

tra�c, and keep an inventory of devices and important device information throughout

the device’s lifecycle.

The SPLICEcube is composed of

2

1.2 Proposed Solution Introduction

• a main cube, a centralized hub that incorporates and expands on the function-

ality of the home router, and

• a database that holds network data, and

• a set of support cubelets to extend the range of the cube and to assist in gath-

ering network data in the home.

The SLPICEcube system can be deployed in a home, as shown in Figure 1.1.

Figure 1.1: SPLICEcube System in a Home. The cube and database are located
centrally, and the cubelets are dispersed throughout the home.

Our vision is for the SPLICEcube to be able to detect smart devices, securely

monitor their network tra�c, and keep an inventory of devices and important de-

vice information throughout the device’s lifecycle. To function as a home’s central

security and privacy controller and to manage devices throughout their lifecycles, the

SPLICEcube must have a comprehensive and robust array of capabilities.

To develop this broad array of capabilities, we envision the SPLICEcube to be able

to seamlessly incorporate intelligent research applications that tackle di↵erent tech-

3

1.2 Proposed Solution Introduction

nical questions and consequently expand the functionality of the system. Researchers

write these applications and work with the SPLICEcube developer to integrate the ap-

plications with the SPLICEcube. Smart-home residents who deploy the SPLICEcube

in their home then use these applications to secure and manage their smart-home

environment. Hence, we envision that the SPLICEcube serves as both a research

platform for researchers to test applications and an end-user platform for residents to

manage their smart home.

Below are some examples of applications that could be incorporated into the

SPLICEcube to enhance its functionality.

• Device Localization: an application to detect the physical location of a device

inside or near the home. Several research approaches exist that leverage di↵er-

ent characteristics of device transmissions to estimate location. For example,

Soltanaghaei et al. propose multipath triangulation, a method that extracts

features such as angle of arrival, angle of departure, and relative time of flight,

from multipath signals to help triangulate the position of the transmitter rela-

tive to the receiver [42]. In contrast, the Inside-Out Detection system proposed

by Gralla uses received signal strength indicator (RSSI) data from device Wi-

Fi transmissions to classify the device as inside or outside the boundary of a

residence [14].

• Network Anomaly Detection: this application recognizes if a device is deviating

from its expected behavior, such as if it is communicating with an unrecognized

cloud service. Two approaches to anomaly detection are learning-based and

specification-based. A learning-based approach sni↵s network tra�c, identifies

and extracts certain parameters, makes a model of (learns) the “normal” be-

havior, and finally compares the behavior of the running system with the one

defined by the model [12]. For example, IoTHound uses an unsupervised learn-

4

1.2 Proposed Solution Introduction

ing method to analyze properties of the network tra�c to 1) identify IoT device

types based on extracted data, and 2) detect deviations from normal network

behavior by monitoring over time [3]. In contrast, a specification-based approach

does not learn but instead uses specifications, parameters, and measurements

of the system, that are often stipulated by the manufacturer, to identify when a

system behaves unexpectedly [12]. Manufacturer Usage Description (MUD) is

an embedded software standard that allows IoT device manufacturers to define

device specifications, including the intended communication patterns for their

device when it connects to the network [23]. The BoDMitM (Botnet Detection

and Mitigation System For Home Router Based on Manufacture Usage Descrip-

tion), monitors network tra�c and forwards any tra�c that violates the device’s

MUD policies to an intrusion detection system, which subsequently attempts

to identify the attack vector [15].

• Device Firmware Update: a method to securely deploy new firmware on mul-

tiple, heterogeneous devices. Nilsson et al. present a wireless firmware update

protocol that provides data integrity, data authentication, data confidentiality,

and freshness and uses a single central unit to communicate with a number of

end nodes [32].

• Cube Interface Design: an application to make the cube interface user-friendly

and may include a front-end GUI and a mobile application.

There must be an architecture foundation that underpins the SPLICEcube and

facilitates the integration of these research applications. For example, to accom-

plish network anomaly detection, there must be a way for the system to establish a

baseline for device network activity (whether from network observations or from a

specification such as MUD) and then recognize anomalous behavior. To accomplish

device localization, there must be a way for the system to capture device activity and

5

1.3 Contributions Introduction

estimate physical distance to the device or leverage known observation locations to

implement triangulation or trilateration. Although the cube (as a central hub) and

cubelets (as sni↵ers) joint system is apt for exploring these technical questions, sev-

eral questions arise. What information should the cubelets capture? How should the

cubelets communicate with the cube? How often should this communication occur?

Should the cube analyze all information or should some intelligence be distributed to

the cubelets? In what format should information be stored?

To enable the SPLICEcube vision, we designed and built a general-purpose Wi-Fi

architecture and database for the SPLICEcube that also provides a foundation for

further research development.

Section 1.3

Contributions

The key contributions of this thesis are

• the development of a general-purpose Wi-Fi architecture and database that

underpins the SPLICEcube and facilitates the integration of intelligent research

applications, and

• a successful proof-of-concept use of the SPLICEcube architecture through the

integration of the Inside-Outside detection system, an application that classifies

an observed Wi-Fi device as being inside or outside the home.

6

Chapter 2

Background

Since the architecture proposed in this thesis is tailored to the smart home environ-

ment, it is important to have an understanding of home IoT, the key stakeholders

that interact with the SPLICEcube system, and the attributes that the architecture

must satisfy to be useful in a smart home context. We address these topics in this

chapter.

Section 2.1

Home IoT

We draw on Kotz and Peters’ following definitions of IoT, smart things, and smart

environment for the purposes of this thesis [21].

• “IoT refers to the Internet of Things, a vision in which everyday objects become

smart things through the inclusion of digital electronics and a network interface

that allows them to communicate with other Things and remote servers on the

Internet.”

• “Smart things typically have the ability to interact with their environment

through sensors and actuators. They vary in size, they may be stationary or

7

2.1 Home IoT Background

mobile, and they may or may not have a human user interface.” In this thesis,

we use smart device as a synonym for smart thing.

• “A smart environment is an environment involving a collection of smart things

that interact with the environment, with its human occupants, with each other,

and with remote services.” In this thesis, we focus on a smart home, a smart

environment that is used as a residence.

Incorporating smart devices in the home has benefits, but it also poses significant

privacy, security, and usability risks.

• Privacy: The home is inherently a private space where actions, conversations,

and living patterns are typically shielded from outsiders. Smart home devices

that can listen, record, remember habits, and communicate over the Internet

diminish the barrier between the inside of the home and the outside world.

These devices introduce many interfaces through which private information can

escape the home.

• Security: Having a large number and variety of devices makes it challenging for

a home resident to manage these devices. A lack of awareness about devices

can introduce security vulnerabilities. If a resident cannot remember or is not

alerted when a device is due for a firmware upgrade, an adversary could take

advantage of outdated components and hijack the device. If a device does be-

come compromised, an adversary could run bots or install a crypto-miner on

the device, causing it deviate from its regular communication patterns. Addi-

tionally, an adversary could install their own physical devices near the home

such as an access point that residents may unknowingly connect to, or a device

that eavesdrops on residents’ conversation or even records residents’ actions.

8

2.2 Key Stakeholders Background

• Usability: Introducing a diverse set of smart devices to the home also makes it

more di�cult for the resident to use the devices. Di↵erent devices may utilize

di↵erent communication protocols or have di↵erent configuration settings. To

harness the full functionality of devices and take full advantage of the benefits

that smart homes o↵er, a resident must be knowledgeable about the state of

the smart home and have complete control of the devices within it.

Section 2.2

Key Stakeholders

In this section, we define the key stakeholders that interact with the SPLICEcube

system.

• SPLICEcube developer: a person writing code to develop the SPLICEcube.

They have access to and can modify the code for any of the di↵erent components

of the SPLICEcube system.

• Researcher: a person who is working on a research application and wishes to

integrate the application into the SPLICEcube. They do not have access to any

SPLICEcube code and cannot modify any of the SPLICEcube system compo-

nents. They can communicate their research idea to the SPLICEcube devel-

oper, and the SPLICEcube developer can then modify the system to integrate

the application and subsequently allow the researcher to request network data

if necessary. Allowing only the SPLICEcube developer to access the code helps

maintain the integrity of the SPLICEcube system.

• Resident: a person living in a smart home. They do not have access to any

SPLICEcube code and cannot modify any of the SPLICEcube system compo-

nents. They can use applications that are already designed to work with the

9

2.3 Architecture Attributes Background

SPLICEcube to secure and manage their smart home environment.

Section 2.3

Architecture Attributes

The proposed architecture is designed for an evolving, general smart home space. To

deliver this vision, we define two attributes that the architecture must satisfy.

First, the architecture must be scalable to accommodate increased network traf-

fic and new devices. Di↵erent smart home environments may have di↵erent number

of existing devices, and the network tra�c will vary by home. Additionally, resi-

dents may want to add more devices after the SPLICEcube has been installed in the

home, which may further increase network tra�c. The architecture should be able to

accommodate various levels of network activity and e�ciently manage network data.

Second, the architecture must be extensible to support di↵erent applications and

technologies. Since the SPLICEcube serves as a platform for researchers to deploy

and test research applications and as a platform for residents to manage their smart

home, the SPLICEcube must be flexible enough to incorporate such applications

into its existing framework or be easily extended to accommodate the application.

An extensible architecture enables the exploration and customization we envision,

when the SPLICEcube is used as a research platform. We focused on designing a

Wi-Fi architecture due to the pervasiveness of Wi-Fi as a communication protocol.

However, we realize that devices in the home use other protocols such as Bluetooth,

Zigbee, or Z-Wave. Additionally, other newer IoT protocols that are currently in

development may become increasingly popular. Although our proposed architecture

does not currently support these protocols, it could be extended to support such

additional technologies.

10

Chapter 3

Related Work

In this chapter we describe existing work that is similar to the SPLICEcube and that

is available commercially or has been described in publically available literature.

Section 3.1

Commercial

Smart home platforms such as Samsung SmartThings [41], Google Home Assis-

tant [13], Amazon Alexa [1], and Apple HomeKit [4] let residents control smart-home

devices. These platforms, however, are mostly designed for residents to automate their

smart home and not for detailed network analysis. For example, these platforms allow

residents to remotely dim the smart lights or raise the smart thermostat’s tempera-

ture, but they do not alert the resident if the smart TV is deviating from its regular

communication behavior.

Commercial routers such as the Netgear Orbi meshWi-Fi system provide a friendly

web user interface that shows all the connected devices on the network and provides

some basic statistics about the network tra�c [31]. These products, however, do not

provide robust, comprehensive applications for detailed network analysis.

Several commercial security products are available, but they have limited capa-

11

3.2 Literature Related Work

bilities. Bitdefender BOX is a router designed to protect smart homes by blocking

malicious Internet tra�c; in e↵ect, it is a consumer-grade firewall intrusion detection

and prevention device [7]. The Bull-Guard Dojo claims to protect home connected

IoT devices in the home from malware, viruses, and cyberattacks while keeping pri-

vacy intact [9]. Its capabilities are unclear, but appear limited to firewall and anomaly

detection.

Section 3.2

Literature

We focus our literature search on home hubs and security managers designed to

improve security or privacy for smart-home IoT devices.

The Databox is a personal networked device installed in the home and can access

a user’s personal data from a variety of sources – online, mobile, IoT [2]. Its focus,

however, is not on securing and managing smart home devices; instead, its primary

purpose is to protect the privacy of the user by securing personal data.

The IoT Inspector is an open-source software that captures network tra�c and

provides visualizations of device activity [17, 19]. It is well-suited to analyze device

behavior and identify anomalous communication. It, however, does not have other

features that we envision for the SPLICEcube such as device localization and secure

device firmware upgrades.

The Home Manager is a software infrastructure tool that aims to provide usable

and secure management of cooperating IoT devices [6]. It has several capabilities in-

cluding detecting devices, controlling devices, and adding and removing devices from

the network. Its proposed architecture, however, is limited to Zigbee communication.

Additionally, the Home Manager does not store device data and does not provide

applications such as network anomaly detection that could perform analysis of device

12

3.2 Literature Related Work

behavior or communication patterns.

All the above tools mentioned are limited to their “out-of-the-box” functionality.

We found only one tool designed to allow integration of other research applications

for future development. Simpson et al. propose a central security manager that is

built on top of the smart home’s hub or gateway router [40]. The manager is aware

of the status of all devices in the home and of reported vulnerabilities. The authors

propose that additional modules can be built atop this manager to o↵er installation

of software updates, filter tra�c, and strengthen authentication for devices. The

manager, however, can only observe communication to and from devices on the home

network and does not capture tra�c that does not go through the router. Specifically,

it does not have helper devices (similar to the cubelets in the SPLICEcube system)

that can assist with network tra�c capture.

13

Chapter 4

Architecture

In this chapter we first provide a conceptual view of the proposed architecture that

describes how the various high-level components of the SPLICEcube system fit to-

gether. We follow with a detailed description of each component.

Section 4.1

Conceptual Architecture

The SPLICEcube system deploys within a smart home as an assembly of three com-

ponents: a set of cubelets, the cube, and the database, as shown in Figure 4.1. Each

cubelet captures Wi-Fi tra�c, parses the tra�c for relevant features, and sends the

extracted features to the cube. In addition to acting as the home’s internet router,

the cube receives the parsed network information from the cubelets and communi-

cates with the database to store the data as defined by the database schema. The

database holds the network data and can be queried by the cube if an application

requests data.

In the following sections of this chapter, we identify the requirements of each

component and explain how each component supports the scalability and extensibility

architecture attributes outlined in Section 2.3.

14

4.2 Cubelets Architecture

Figure 4.1: Conceptual Architecture. The SPLICEcube architecture consists of a
set of cubelets, the cube, and the database.

Section 4.2

Cubelets

As shown in Figure 4.2, each cubelet consists of three modules: capturer, parser, and

transmitter.

4.2.1. Capturer Module

A primary function of the cubelets is to detect devices that are inside or close to the

home. One of the ways to detect devices is to capture wireless tra�c with a wireless

network sni↵er. To accomplish this task, the cubelet must contain an interface that

is capable of sni�ng all Wi-Fi packets over-the-air. Although the interface will likely

only capture packets on one channel (unless channel hopping is implemented), we

envision the interface to be dual-band, i.e., capable of sni�ng on both the 2.4 GHz and

5 GHz Wi-Fi bands, so that the SPLICEcube developer can choose which channel(s)

to sni↵.

15

4.2 Cubelets Architecture

Figure 4.2: Cubelet Architecture. Each cubelet consists of the capturer, parser,
and transmitter modules.

4.2.2. Parser Module

A Wi-Fi frame contains a large amount of data, some of which may be unnecessary

to retain. The parser module parses each captured frame and extracts relevant fields.

4.2.3. Transmitter Module

The next step after the frame parsing and extraction is to send the collected informa-

tion to the cube for storage in a database. To support this communication, a cubelet

must contain a network interface that can send data over a network. This may be a

second Wi-Fi interface, or Ethernet, for example.

4.2.4. Support of Architecture Attributes

To facilitate scalability, we envision the cubelet’s modules to run concurrently. This

structure permits e�cient processing of network data even in busy network condi-

tions or with growing number of devices. For example, even if there is high network

activity and the parser module is busy parsing frames, the transmission module can

execute in parallel and will not be indefinitely blocked by the parser. To further pro-

mote scalability, we envision two separate network interfaces, one for the capture and

16

4.3 Cube Architecture

another for the transmission, to avoid time-sharing the network hardware. Although

the capture and the transmission could theoretically occur on the same interface,

separating them will allow the system to scale responsively by not missing packets

during capture, especially during high network activity.

To facilitate extensibility, we divide and encapsulate the cubelet tasks into dis-

crete modules. This division allows the SPLICEcube developer to undertake specific

modifications to modules without revising the entire architecture. For example, if the

SPLICEcube developer chooses to modify the module used to capture Wi-Fi packets,

they can do so without manipulating other modules. To further support extensibility,

additional modules can be added as functionality grows. For example, we can imagine

adding a module to the cubelet that captures Bluetooth tra�c, parses the data, and

transmits to the cube, without changing the overall SPLICEcube architecture.

Section 4.3

Cube

As shown in Figure 4.3, the cube consists of the following modules: router, reception,

storage, disposal, and integration.

4.3.1. Router Module

The cube acts as the home router and provides a Wi-Fi network for clients to join.

Currently, this is the only function of the router module in the proposed architecture,

but we discuss additional potential capabilities in Section 7.2.1. We envision each

cubelet and each home Wi-Fi device to be connected to the cube’s network. The Wi-

Fi network must be protected by a strong security protocol to protect the residents’

information on the network. Appropriate software is required to support routing.

17

4.3 Cube Architecture

Figure 4.3: Cube Architecture. The cube consists of the router, reception, storage,
disposal, and integration modules.

18

4.3 Cube Architecture

4.3.2. Reception Module

The cube receives parsed data from the cubelets. As mentioned, we envision this

cubelet-cube communication to occur over a network, so the cube must contain a

network interface to receive transmissions from the cubelets.

4.3.3. Storage Module

Once the cube receives a cubelet transmission, it must store the information for future

access. To store the data, the storage module communicates with a database that

holds all received network information. We discuss the database in further detail in

Section 4.4.

4.3.4. Disposal Module

Since storage on any device is finite, there must be a way to manage the database

size and archive old data. We envision the disposal module to periodically upload

some data from the database to cloud storage because storing data in the cloud is

inexpensive. The frequency of upload depends on the variables below.

• Device storage: If the device that hosts the database has more available storage,

then the database can store more data, and data can be migrated to the cloud

less frequently.

• Network conditions: If there is high network activity, then the database will fill

up more rapidly and data will need to be uploaded to the cloud more frequently.

• Application requirements: Certain applications may require data to be stored

locally for a certain amount of time, which will limit the upload frequency.

Once the data has been uploaded to the cloud, we envision that the disposal module

deletes this data from the database. To minimize cloud storage costs, the disposal

19

4.3 Cube Architecture

module can also be extended to permanently delete some data from the cloud once a

certain size threshold is exceeded.

4.3.5. Integration Module

As discussed in Section 1.2, one of the primary motivations of the SPLICEcube system

is to serve as a platform for research development. The vision is to let researchers

leverage the SPLICEcube’s general-purpose architecture to easily test their security

and privacy research applications in a real environment.

The integration module must have an API that applications can use to request

data. The applications may be running internally on the cube or remotely. If an appli-

cation is running remotely and requires access to data, we envision application-cube

communication to occur over a network (similar to cubelet-cube communication).

4.3.6. Support of Architecture Attributes

We envision the cube’s modules to run concurrently. A concurrent structure facilitates

scalability since the modules can run in parallel. For example, if the cube’s reception

module is busy receiving a large amount of data, the integration module can still

execute once the CPU switches threads, instead of waiting for the entire chunk of

data to be received.

Similar to how the cubelet’s modules can be extended, we encapsulate the cube’s

tasks into modules to promote extensibility, so that individual tasks can be modified

easily. For example, the SPLICEcube developer can modify the thread underpin-

ning the integration module to change the query parameters without impacting other

modules. Additionally, the goal is that this architecture is extensible to accommodate

other applications. Regardless of the research application, if the researcher needs to

access device network activity, they can simply request the information from the cube.

The cube can build the request into a query to extract the appropriate data from the

20

4.4 Database Architecture

database and send this data back to researcher’s application.

Section 4.4

Database

The database component is the central repository of parsed network activity. As

mentioned in Section 4.3, the cube writes to the database (via the storage module)

as it receives network data from the cubelets, and the cube also queries the database

(via the integration module) if an application requests network or device information.

To live on a resource-constrained device in a smart home setting, we envision

the database to be fast, self-contained and have a small memory footprint. Finally,

the database should be well-suited to hold network data, which we envision to be

structured with distinct fields.

4.4.1. Support of Architecture Attributes

The database will grow as network data is written to the database. To scale the

database and support this growth, we envision the database to be housed on a device

with enough flash memory to allow storage of the large quantity of network informa-

tion. We describe the storage requirements in more detail in Section 6.4. Regardless

of the amount of memory, the database will eventually grow to exceed the memory

capacity. As described in Section 4.3.4, we envision a data disposal module to contain

the database size and facilitate scalability.

The database is also extensible because the schema of the database can be modified

to accommodate di↵erent applications. The schema model depends directly on the

type of data that needs to be stored and that is required by an application. We

envision that the SPLICEcube developer may adjust the schema and add more tables

as appropriate.

21

Chapter 5

Implementation

In this section, we describe our implementation choices in building an initial pro-

totype for the proposed architecture. We discuss the cubelets, cube, and database

components and the modules within each component.

Section 5.1

Cubelets

In our implementation, there are three cubelets. Each cubelet is a Raspberry Pi 4

or Raspberry Pi 3 running Raspberry Pi OS. There is no specific reason why we

use di↵erent models of Raspberry Pi; we simply used what was available and any

Raspberry Pi model that satisfied the cubelet component architecture requirements

identified in Section 4.2 would have su�ced.

As shown in Figure 5.1, each cubelet contains a dual-band BrosTrend Wi-Fi

adapter [8] plugged into the Pi via USB to sni↵ Wi-Fi packets. Please see sec-

tion Section 4.2.1 for details about the use of the Wi-Fi adapter. Each cubelet also

contains an internal wireless interface (built into the Pi 3 and Pi 4) for transmitting

data to the cube via Wi-Fi. This interface supports both the 2.4 GHz and 5 GHz

Wi-Fi bands so it can associate to networks that operate on either frequency band.

22

5.1 Cubelets Implementation

Figure 5.1: Cubelet Prototype. The cubelet prototype consists of a Raspberry
Pi 3 or 4 and an external Wi-Fi adapter.

Each cubelet has three primary functions, which we separate into modules: Wi-

Fi frame detection (capturer module), Wi-Fi frame parsing (parser module), and

transmission to the cube (transmitter module). We create a separate thread for each

of these modules so that they can run concurrently, as shown in Figure 5.2.

23

5.1 Cubelets Implementation

Figure 5.2: Cubelet Threads. The executing threads of each cubelet are the cap-
turer thread, the parser thread, and the transmitter thread.

Over the course of the project, we revised the design of the cubelets functionality

to make the implementation scalable and extensible. Below we describe and justify

the design decisions for each module.

24

5.1 Cubelets Implementation

5.1.1. Thread 1: Capturer

Create sni�ng interface. As mentioned, we use an external dual-band Wi-Fi

adapter to sni↵ Wi-Fi packets in monitor mode. The built-in Wi-Fi interface on

the Raspberry Pi is only capable of capturing packets in managed mode. Sni�ng in

managed mode means that an interface can only receive packets sent to/from the

interface that is sni�ng. In contrast, sni�ng in monitor mode allows an interface to

sni↵ all packets over the air that are within range even if the packets are not from,

or addressed to, the interface. Since we would like to capture information from all

devices within range, monitor mode is the appropriate mode for sni�ng.

To capture network tra�c with the Raspberry Pi cubelet, we first set the mode

of the Wi-Fi adapter to monitor mode and then use tcpdump [45], a packet capture

program, to continuously capture Wi-Fi packets.

Capture 802.11 frames. The sni↵er operates at the Medium Access Control

(MAC) sublayer of the Data Link Layer (Layer 2) within the OSI model, as shown

in Figure 5.3. This means that the type of data the sni↵er captures are 802.11 MAC

frames.

Figure 5.3: Data Link Layer. The Data Link Layer consists of the LLC and MAC
sublayers [16].

As shown in Figure 5.4, each 802.11 MAC frame contains a MAC header, a frame

body, and a frame check sequence (FCS).

The MAC header is unencrypted; the frame body encapsulates all information

from higher layers (LLC sublayer, Network layer, Transport layer, Application Layer

25

5.1 Cubelets Implementation

Figure 5.4: 802.11 MAC Frame Format. A 802.11 MAC frame consists of the
MAC header, the frame body, and the frame check sequence [27].

etc.) and is typically encrypted; the FCS is an error-detecting code and is unen-

crypted. Additionally, the Wi-Fi adapter that we use to perform the frame capture

adds an unencrypted pseudo-header called “RadioTap” to each frame it captures. The

RadioTap [35] header is not part of the 802.11 frame structure, but it is a common

mechanism for drivers to supply additional information about received frames, such

as the channel frequency and data rate.

Write frames into named pipe. Thread 1 writes each captured frame directly

to a named pipe. By using a named pipe, Thread 1 can sni↵ and write to the pipe,

while Thread 2 simultaneously reads the bytes from the pipe for further analysis (see

Section 5.1.2).

Design Decisions for Capture Module.

(a) Sni�ng tool: We initially used Scapy [37], a Python packet manipulation pro-

gram, to sni↵ Wi-Fi packets. Scapy, however, is slow and misses packets when

network tra�c is high, so its lackluster (albeit convenient) performance neces-

sitated the switch to tcpdump.

(b) Named pipe: Thread 1 can write to the named pipe as Thread 2 reads from it.

A queue would also have allowed this FIFO functionality, but we choose to use

a named pipe because it is easy to redirect the output of tcpdump to a named

pipe. Please see Section 5.1.2 for additional justification of our decision choice.

26

5.1 Cubelets Implementation

5.1.2. Thread 2: Parser

Read frames from named pipe. As Thread 1 sni↵s frames and writes them to

the named pipe, Thread 2 reads each frame from the named pipe using a Python

library called dpkt [11]. Thread 2 utilizes the dpkt.pcap.Reader function to iterate

through each frame in the pipe and perform the parsing.

Parse frames and extract fields. For each frame, Thread 2 parses the Ra-

dioTap header and extracts the following fields: received signal strength indicator

(RSSI), channel frequency, and data rate. Then the thread parses the MAC header of

the 802.11 frame and extracts the following fields: source MAC address, destination

MAC address, frame type, frame subtype, fragment number, and sequence number.

Figure 5.5 shows the fields of a MAC header.

Figure 5.5: MAC Header Format. The MAC header is unencrypted and contains
several fields describing the frame information [28].

27

5.1 Cubelets Implementation

Thread 2 adds each extracted field, as a text string, to a Python list, and then

appends a delimiter character (|) to signify the end of the frame for future parsing.

Below is an example of a parsed frame. The timestamp field is not part of the ex-

tracted information, but it represents the time at which the dpkt.pcap.Reader function

reads the frame.

src mac, dst mac, timestamp, pkt type, pkt subtype, fragment,

sqn num, rssi, channel freq, rate, delimiter

[60f81da9236a,80cc9c2c84e8,2022.04.14.16.29.58.838484,0,8,15,4192,-45,

5240,48,|]

The fields we choose to extract only represent part of a Wi-Fi frame’s full in-

formation. For example, we extract the information required for the Inside-Outside

application (RSSI, timestamp, source MAC address, destination MAC address) and

several other fields that provide basic information about the frame. There are, how-

ever, many more fields contained within the unencrypted RadioTap and MAC headers,

and it is possible for the SPLICEcube developer to extend this work and extract more

information as necessary using the dpkt library.

As mentioned previously, the frame body of the 802.11 frame is typically en-

crypted, since the Wi-Fi network being used by the transmitting device is usually

protected with a password. The frame body encapsulates all the packet information

from higher layers, so it contains a lot of useful information about a device’s network

behavior (source and destination IP addresses, source and destination ports, etc.).

However, unlike the RadioTap header and MAC header, parsing the frame body re-

quires the data to be decrypted. This decryption process is left to future development,

but we give several suggestions about how to approach this problem in Section 7.1.2.

28

5.1 Cubelets Implementation

Add extracted information to thread-safe queue. Thread 2 appends the list

to a thread-safe queue. So, each item in the queue is a list containing the contents (as

a text string) of a single parsed and extracted Wi-Fi frame. Thread 3 then reads this

FIFO queue and collects the queue items to transmit to the cube (see Section 5.1.3).

Design Decisions for Parser Module.

(a) Packet reading: We experimented with di↵erent tools such as PyShark [34],

Pcapreader [38], and rdpcap [38], but these were too slow in parsing the vast

volume of data being captured in monitor mode. dpkt proved to be the fastest

parsing tool; speed in parsing is important to avoid bottlenecks that may occur

during high network activity. dpkt’s speed ensures that the architecture can

scale appropriately even with a large number of devices in the home. dpkt is

also robust enough to fully dissect a Wi-Fi frame since it has parsing support

for all packet layers. This extensibility is important because the SPLICEcube

developer should be able to extract more bits of data from a frame, if required

by a future research application that is being integrated into SPLICEcube.

(b) Named pipe vs. queue: Thread 1 writes sni↵ed frames into a named pipe,

but Thread 2 writes the extracted frame information into a thread-safe queue.

Named pipes and queues are both FIFO and provide an avenue for transfer of

data between threads, so one might question the choice of one over the other.

A named pipe is accessed as a regular file. The dpkt reader (which reads frames

from the named pipe) requires a file as input, so it makes sense to use a named

pipe. The extracted frame information could have been written into a named

pipe; using a queue was simply an easy choice for an initial implementation.

29

5.1 Cubelets Implementation

5.1.3. Thread 3: Transmitter

Dequeue items from queue. As Thread 2 adds the extracted fields to the thread-

safe queue, Thread 3 periodically dequeues items from the queue.

Transmit items to queue. Thread 3 transmits to the cube via Wi-Fi. There are

two conditions under which Thread 3 transmits the current contents of the queue by

dequeuing items. The first condition is if the queue reaches a “maximum size”, which

we define as a parameter and which can be modified by the SPLICEcube developer.

The second condition is if the queue has not reached the maximum size but a certain

amount of time, which we also define as a parameter and which can be modified by the

SPLICEcube developer, has elapsed since the cubelet transmitted to the cube. One

can imagine a scenario in which there is sparse network activity so the cubelets are

not capturing many frames and subsequently, each cubelet’s queue is being populated

slowly. If a cubelet has not communicated with the cube in the amount of time set

by the parameter, then the cubelet transmits the current contents of the queue to the

cube.

When one of the above conditions is met, each item in the queue, which is a list

containing the extracted information for a captured Wi-Fi frame, gets dequeued and

the contents of each list are concatenated together to form a long string. Below is an

example of two items in the queue and the “long string” of concatenated data after

both items get dequeued.

% queue containing two items

[[60f81da9236a,80cc9c2c84e8,2022.04.14.16.29.58.838484,0,8,15,4192,-45,

5240,48,|],[80cc9c2c84e8,18b43060d4a0,2022.04.14.16.29.58.841057,2,0,15,

24672,-53,5240,12,|]]

30

5.1 Cubelets Implementation

% string to be sent to cube (delimiter character separates each frame)

60f81da9236a,80cc9c2c84e8,2022.04.14.16.29.58.838484,0,8,15,4192,-45,

5240,48,|80cc9c2c84e8,18b43060d4a0,2022.04.14.16.29.58.841057,2,0,15,

24672,-53,5240,12,|

Then this string is encoded in a UTF-8 format and sent to the cube as a UDP

datagram. The maximum size of a single UDP datagram is 65,535 bytes (8 byte

UDP header + 65,527 bytes of data). And the actual limit for the data length,

which is imposed by the underlying IP protocol, is 65,507 bytes (65,535 bytes - 8

byte UDP header - 20 byte IP header). This means that if the length of the data

exceeds this maximum size, the data would get sent in chunks of 65,507 bytes. Since

the UDP protocol is “unreliable” and does not guarantee delivery, it is possible that

a datagram could be lost during transmission. To avoid losing 65,507 bytes worth

of network activity, we opt to instead divide the data into smaller datagrams. The

current datagram size in the program is set as a constant of 3000 bytes, but this

can easily be modified by the SPLICEcube developer. Having smaller datagrams

increases the overhead by increasing the number of transmissions but it minimizes

the loss of data in the event of UDP packet loss.

Further, we ensure that we send only as many complete frames that can fit in a

single datagram, given the datagram size set by the SPLICEcube developer. This

approach ensures that a parsed frame is not split across two transmissions. To avoid

IP layer fragmentation of the datagram, the SPLICEcube developer could limit the

datagram size to 1 MTU.

Design Decisions for Transmission Module.

(a) Wi-Fi transmission: We choose to use Wi-Fi for cubelet-cube communication

over a network because it enables wireless communication. Alternatives such

31

5.1 Cubelets Implementation

as Ethernet or powerline network could be used, but would require cables and

are not ideal for a smart home environment, especially if the resident wishes to

move cubelets to another location in the home.

(b) Transport layer protocol: Before UDP, we initially implemented the Message

Queuing Telemetry Transport (MQTT) protocol [29], a messaging protocol

based on a publisher-subscriber model. MQTT is lightweight, e�cient, and

is built for small, resource-constrained clients. It can scale to connect with

millions of IoT devices, it is built on top of the TCP/IP stack and has reliable

message delivery, and it enables security by allowing encryption of messages and

authentication of clients. In our implementation, the cubelets acted as publish-

ers and published their parsed frames. The cube’s router module acted as the

broker and forwarded the published data to the database, which acted as the

subscriber.

Although the MQTT protocol is convenient and provides certain advantages, it

is primarily used by IoT devices to transmit relatively small-sized messages (a

few hundred bytes) and is not designed for the large volume of network data

that a cubelet must transmit to the cube. In fact, we were unable to send data

of more than a few thousand bytes via MQTT.

Additionally, some of MQTT’s features are unnecessary for our purpose. MQTT

relies on the TCP protocol for data transmission. TCP’s reliable message deliv-

ery is unnecessary for cubelet-cube communication. Most devices emit packets

frequently and the cubelets are continuously monitoring network activity. A

dropped transmission from a cubelet to the cube is not necessarily consequen-

tial. Acknowledgement or retransmission of the data is typically unnecessary

and wasteful of bandwidth.

On the other hand, UDP does not provide reliable delivery, does not encrypt

32

5.2 Cube Implementation

messages, does not guarantee in-order sequence of delivery, and has a small

header size. As a low-overhead protocol, UDP is more suitable for cubelet-cube

communication.

(c) Encryption: In our implementation, the cubelet transmissions occur over the

cube’s Wi-Fi network, which is protected by Wi-Fi Protected Access Version 2

(WPA2), a strong wireless security protocol [48] that provides confidentiality,

integrity, and authenticity. Hence, the extracted information of each sni↵ed

Wi-Fi frame, which becomes the frame body in a cubelet-cube transmission, is

already encrypted via WPA2 and does not require additional encryption. An

adversary would need to 1) know the password of the cube’s Wi-Fi network

and 2) capture the handshake between the cubelet and the cube during the

cubelet’s initial association with the network, to be able to decrypt the cubelet

transmissions.

Section 5.2

Cube

In our prototype, we implement the cube’s router module on one device and the other

three cube modules (reception, storage, disposal, and integration) on another device.

As shown in Figure 5.6, both devices together make up the cube, but for clarity, we

henceforth refer to the device hosting the router module as the router device and the

device hosting the other four cube modules as the collector device.

The collector device is a Raspberry Pi 3B+ running Raspberry Pi OS. The col-

lector contains the reception module and its internal wireless interface (built into the

Pi 3B+), is used to receive cubelet transmissions over Wi-Fi. This interface sup-

ports both the 2.4 GHz and 5 GHz Wi-Fi bands so it can associate to networks that

operate on either frequency. The collector also hosts the database; we discuss the

33

5.2 Cube Implementation

implementation of this structure in more detail in Section 5.3.1. The router device is

a Raspberry Pi 4 running OpenWrt, which is an open-source software primarily used

on embedded devices to route network tra�c [33]. The router’s network is protected

by WPA2, and the collector is connected to the router’s network.

Figure 5.6: Cube Prototype. The cube prototype consists of the router device and
the collector device. Each of these devices is a Raspberry Pi 3 or 4.

We use two di↵erent devices because OpenWrt is tailored specifically to provide

router functionality, so it has limited storage and a limited package system that makes

it di�cult to install certain packages (Git, SQLite3, etc.). On the other hand, Rasp-

berry Pi OS is a robust distribution and o↵ers many packages for easy development.

There is no specific reason why we use di↵erent Pi models (Pi 3B+ vs. Pi 4) for the

34

5.2 Cube Implementation

two devices. We simply used what was available, and any Raspberry Pi model that

supports the cube component architecture requirements would have su�ced.

In a real deployment, we could imagine two separate pieces of hardware for the

router and the collector, but perhaps contained within the same physical enclosure.

So, the user would just see one box (the cube), but inside there would be two moth-

erboards to accommodate the separate functions.

The router device requires an Internet connection to be functional. This means

that the WAN interface (USB port) of the Raspberry Pi router must be connected

to an Ethernet port to provide an Internet connection. There are several options to

acquire an Internet connection via Ethernet – one can connect the Pi to an existing

home router, to a wall/floor Ethernet port (which is, in turn, connected to a router), or

to the Internet service provider (ISP) modem. The WAN interface then dynamically

receives an IP address from the ISP. The LAN interface of the cube router is set

to be on a separate subnet (we set a static IP address of 192.168.9.1), so that all

Wi-Fi clients that connect to the cube’s network receive an IP address on this subnet

via OpenWrt’s DHCP implementation. In a real deployment, we can imagine that

the cube router would be the true home router. In our prototype, we create our

own router with OpenWrt and deploy a separate Wi-Fi network instead of using an

existing home router and its existing network, to avoid interference with existing

infrastructure. Additionally, setting up a separate Wi-Fi network for the cube gives

us more flexibility for testing since we can control what devices are connected to the

cube’s network at all times.

Besides acting as a router, the cube has four primary functions: receiving parsed

data from cubelets (reception module), communicating with the database to store

the parsed data (storage module), transferring data from the database to the cloud

(disposal), and communicating with the database to retrieve necessary information

35

5.2 Cube Implementation

Figure 5.7: Cube Threads. The executing threads of the cube are the reception
thread, the storage thread, and the integration thread.

for applications requesting network data (integration module).

We implemented three modules (reception, storage, and integration), and left the

disposal module for future work. As shown in Figure 5.7, we create a separate thread

for each of these three modules so that they can run concurrently. Note that these

threads run on the collector device.

As with the cubelets, we iteratively revised the design of the cube’s functionality

to make the implementation scalable and extensible. Below we describe and justify

the design decisions for each implemented module.

5.2.1. Thread 1: Reception

Receive parsed frame data from cubelets. We use a single thread (Thread 1)

to receive data from all the cubelets via an open UDP socket. It is possible that

a cubelet transmission arrives while Thread 1 is still in the process of receiving a

previous transmission. The datagram of the more recent transmission will simply

be placed in the OS receive bu↵er until the next call to ‘recvfrom()’, at which point

36

5.2 Cube Implementation

Thread 1 will read the entire datagram from the bu↵er.

If the receive bu↵er on the socket is full when a datagram arrives, this datagram

will be dropped.

Add received data to thread-safe queue. When Thread 1 receives a message

from a cubelet, it appends the message and the IP address of the transmitting cubelet

as a tuple to a thread-safe queue.

Design Choices for Reception Module.

(a) One thread for reception: As mentioned, it is possible that a datagram arrives

while the receive bu↵er on the thread’s socket is full, which would cause the

datagram to be dropped. Implementing a separate thread to receive from each

transmitting cubelet could minimize the dropped datagrams since each thread’s

receive bu↵er would fill up less frequently. We, however, choose not to imple-

ment multiple reception threads because a dropped datagram is not normally

consequential. Since devices emit packets frequently and cubelets transmit to

the cube frequently, the loss of a single datagram is not significant given the

vast amount of network activity.

5.2.2. Thread 2: Storage

Dequeue items from queue. As Thread 1 receives datagrams and adds them

to the queue, Thread 2 continuously dequeues items from the queue to store in the

database. Each item is a string containing multiple frames’ extracted Wi-Fi informa-

tion. Below is an example of a queue item containing 3 frames.

% datagram containing 3 frames

3656eec73483,ffffffffffff,2022.04.14.16.45.35.331970,0,8,15,12304,-72,

5240,12,|4056eec73483,ffffffffffff,2022.04.14.16.45.35.332500,0,8,1,

37

5.2 Cube Implementation

28736,-73,5240,12,|

When Thread 2 removes an item from the queue, it parses the item to separate

each frame. The thread also parses each frame to separate the di↵erent Wi-Fi fields.

Insert items into database’s tables. A SQL statement inserts all the frames’

information into the database according to the database schema. See Section 5.3.2

for details regarding the database insert operation.

Design Choices for Storage Module.

(a) Queue: A queue is FIFO, allows multiple thread access, and was an easy choice

for an initial implementation. A named pipe could also have been used.

5.2.3. Thread 3: Integration

In our current implementation, we focus the integration module functionality on

accommodating the Inside-Outside application. We chose the Inside-Outside appli-

cation [14] as the first application to intgerate with the SPLICEcube system because

we thought it would be a valuable addition to the SPLICEcube as a security research

application. Additionally, this project is internal to our lab at Dartmouth College,

so we had convenient access to the project code and resources.

Gralla’s Inside-Outside application uses machine-learning algorithms to detect

whether a target device is physically located inside or outside the house [14]. The

system consists of three (or more) observers that act as Wi-Fi sni↵ers and a home hub

that processes the collected data. The observers measure the received signal strength

indicator (RSSI) for frames received from the target device. The observers send their

observations to the home hub, which uses the RSSI data to train a classifier.

The SPLICEcube system is generally well-suited to integrate the Inside-Outside

application. The cubelets act as observers, sni�ng real Wi-Fi frames that have been

38

5.2 Cube Implementation

transmitted by home devices and extracting RSSI (among other fields) from the

frames. The cubelets periodically transmit the extracted information to the cube’s

collector. The collector acts as the home hub, storing the received information in the

database.

Let us now imagine that a researcher wants to run the Inside-Outside application

on their machine to detect whether a particular target device is inside or outside the

home at some given time. To accomplish this, the Inside-Out application must be

able to communicate with the SPLICEcube remotely. The cube’s integration module

handles this communication, as described below.

Receive query request from application. The application establishes a TCP

connection with the cube’s collector device and sends a query consisting of some

parameters. Thread 3 on the collector accepts the TCP connection and receives the

application query. The Inside-Outside application requires the following parameters

to classify a device as inside or outside the house: a list of MAC addresses of the

target devices, a list of the cubelet/observer IP addresses to consider, the end time,

and the start time. Below is a code excerpt showing the parameters sent by the

Inside-Outside application.

mac_list = ["60f81da9236a"]

cubelet_list = ["192.168.9.130", "192.168.9.203", "192.168.9.219"]

end_time = datetime.utcnow().strftime("%Y.%m.%d.%H.%M.%S.%f")

start_time = (datetime.strptime(end_time,

"%Y.%m.%d.%H.%M.%S.%f") - timedelta(seconds=TIME_WINDOW)).strftime(

"%Y.%m.%d.%H.%M.%S.%f")

One challenge is to ensure that each frame that is emitted by the target device is

associated with a fixed location. This association is necessary because it is important

39

5.2 Cube Implementation

to know which cubelets observed frames from a particular transmission location, and

which cubelets missed those frames. Cubelets farther from the target’s location will

observe a low RSSI value or miss more frames emitted by the target when it is

in that same location, due to attenuation of the Wi-Fi signal. Our Inside-Outside

experimental setup relies on observed RSSI data from di↵erent transmission locations

to train its machine-learning model.

One potential method to ensure that cubelets receive a frame associated with a

fixed location is to keep track of the timestamps at which a frame is received by a

cubelet. If multiple cubelets receive a frame at the exact same time, then it means

that these cubelets received that frame from the same transmission location. This

method, however, requires high granularity of the timestamps and precise clock syn-

chronization among all the cubelets. Another potential method to align frames is to

use a frame feature (or a combination of frame features) that uniquely distinguishes

each frame. In the end, however, we decided that it is not necessary to verify that

multiple cubelets see the same frame each time. If the time window of detection is

small enough, then we can assume that the target device did not move in that window

and that each frame received by the cubelets in that time window has been transmit-

ted from the same location. The application currently requests a time window of 15

seconds, i.e., the time di↵erence between the start time and the end time parameters

is 15 seconds. In our experiment, we ensure that the target device is stationary in

this time window. In future work, shorter time windows and non-stationary devices

may be explored.

The researcher can provide any number of target devices and any number of

cubelets as parameters to the Inside-Outside application. For example, the researcher

may want to consider the impact that using only two observers has on the classifica-

tion of the physical location of the target. So, the researcher would provide the IP

40

5.2 Cube Implementation

addresses of only two cubelets in their query.

Query database to extract relevant data. Thread 3 builds a database query

based on the sent parameters and queries the database to extract the RSSI values

from the appropriate frames stored in the database. See Section 5.3.2 for details

regarding the database query operation.

It is possible that one or more cubelets observe fewer than 50 frames from the tar-

get in the specified time window. Thread 3 extracts from the database the maximum

number of frames (up to 50) that any of the cubelets observed in the time window. If

any of the other cubelets did not receive this same number of frames in the window,

then Thread 3 fills in an RSSI value of -100 for the frames that they missed. A more

negative value corresponds to a lower signal strength, so recording a value of -100

means that the cubelet missed some frames in the specified time window that were,

however, picked up by another cubelet. Let us say that in a time window of 15 sec-

onds, cubelet A observes 30 frames from target X, cubelet B observes 20 frames from

target X, and cubelet C observes 10 frames from target X. The maximum number of

frames observed by any of the three cubelets is 30. Since cubelets B and C missed

some frames, Thread 3 records an RSSI value of -100 for the last 10 frames that

cubelet B missed and for the last 20 frames that cubelet C missed. This padding

means that the -100 is not necessarily aligned with the corresponding frames from

other cubelets. Although we decided that it is not necessary to match the same frame

across cubelets because we assume that the target device did not move in the given

time window, future work may use frame features such as frame length or FCS as

clues to match frames across cubelets.

Send extracted data back to application. After padding the missing frames

with -100 as necessary, Thread 3 then sends back the list of RSSI values for each

41

5.3 Database Implementation

cubelet to the Inside-Outside application. The application then populates a table

such that each row of the file corresponds to one frame and each column corresponds

to the measurements of one cubelet, as shown in Table 5.1.

ID RSSI 1 RSSI 2 RSSI 3

1 -89 -45 -47

2 -100 -47 -44

3 -100 -51 -45

4 -100 -43 -46

Table 5.1: Merged Data Format in the Inside-Outside Application

The application then uses this data to train a machine-learning model that clas-

sifies the RSSI measurements.

Design Choices for Integration Module.

(a) Communication protocol: Contrary to the UDP connection used for cubelet-

collector communication, we chose to use the TCP protocol for application-

collector communication to ensure reliable delivery for the query request. In

case the request gets dropped, retrying is important so that the application can

obtain the information it needs.

Section 5.3

Database

In our implementation, the collector device hosts the database. We chose to use a

SQLite3 database, and we justify this design decision in Section 5.3.4.

5.3.1. Database Structure

In our implementation, there are currently four database tables that contain the

parsed network data. We choose this table schema to reflect the four major entities

42

5.3 Database Implementation

that the data contains. Below we list the four database tables and delineate the

structure of the tables with an Entity Relationship Diagram (ERD).

(a) devices table: holds the MAC addresses of all seen devices and their corre-

sponding manufacturers. “Seen devices” refers to devices whose emitted Wi-Fi

frames have been captured by a cubelet. The device manufacturer is found by

looking up the OUI ID (first six bytes of the MAC address) in a local text file

that lists the headquarter location of common device manufacturers.

(b) manufacturers table: holds the name of all seen device manufacturers and their

corresponding headquarters. The headquarters column is simply a placeholder

template for other columns that may be implemented in the future. The head-

quarters is found by referencing a local text file that lists the headquarter loca-

tions of common device manufacturers.

(c) cubelets table: holds the IP addresses of cubelets and their locations within the

home.

(d) frames table: holds the data transmitted by the cubelets (source device MAC

address, destination device MAC addresses, timestamp, packet type, packet

subtype, fragment number, sequence number, RSSI, channel frequency, and

rate) and some additional fields (source device manufacturer, destination device

manufacturer, and IP address of transmitting cubelet).

As shown in the ERD in Figure 5.8, each table has a primary key and the ta-

bles are linked to each other through foreign keys to enable SQL join statements.

The current table design provides a template for future development. For example,

the manufacturers table may not be particularly useful today, but there may be a

future research application that groups network tra�c by manufacturer to baseline

device network activity based on the manufacturer. Further, the table design itself

43

5.3 Database Implementation

Figure 5.8: Database Entity Relationship Diagram (ERD). The ERD consists
of four tables: devices, manufacturers, cubelets, and frames.

is extensible to support the storage of additional data for a new network technology

or a new research application. For example, if cubelet functionality is expanded to

capture Bluetooth tra�c, the SPLICEcube developer could add more database tables

to store Bluetooth data.

The frames table contains an index on the timestamp field, so that it is easy to

find the transmissions in a given time window. This is an integral part of the query

used by the Inside-Outside application, so finding transmissions quickly based on

timestamps makes query retrieval time much faster. As other research applications

are added, more indices may be added to the tables accordingly.

5.3.2. Database Inserts

Section 5.2.2 describes how the storage module within the cube’s collector device

dissects a cubelet transmission to separate each frame in the datagram. A SQL insert

44

5.3 Database Implementation

statement then writes the information in each frame into the di↵erent database tables

according to the database schema.

Instead of individually inserting the information within each frame information as

a row in a table, we implement the SQLite ‘executemany()’ method, which expedites

the process since it can add multiple rows in a single transaction. The SQLite ‘IN-

SERT OR IGNORE ’ statement is used to discard an entry if the primary key already

exists in the table. This prevents duplicate device MAC addresses in the devices ta-

ble, duplicate manufacturer names in the manufacturers table, duplicate cubelet IP

addresses in the cubelets table, and duplicate frames in the frames table. Below we

depict the statements used for insertion. Each ‘?’ symbol represents a field of the

table row that is being populated.

self.cursor.executemany(‘INSERT OR IGNORE INTO devices

VALUES(?, ?);’, devices_list)

self.cursor.executemany(‘INSERT OR IGNORE INTO manufacturers

VALUES(?, ?);’, manu_list)

self.cursor.executemany(‘INSERT OR IGNORE INTO cubelets

VALUES(?, ?);’, cubelets_list)

self.cursor.executemany(‘INSERT OR IGNORE INTO INTO frames

VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);’, frames_list)

5.3.3. Database Queries

Section 5.2.3 describes how the integration module within the collector processes an

application query request. A SQL select statement then queries the database to

extract information from the frames that match the query criteria.

45

5.3 Database Implementation

The example code below shows the query that extracts RSSI values for the Inside-

Outside application, when supplied a target device MAC address, a cubelet IP ad-

dress, and a time window.

self.cursor.execute("SELECT rssi FROM frames WHERE src_mac = ? AND

cubelet_ip = ? AND timestamp >= ? AND timestamp <= ?", (mac, cubelet,

start_time, end_time))

5.3.4. Design choices for database

(a) SQLite3: SQLite is a relational database, as opposed to a NoSQL database. A

relational database is well-suited to store structured data [44] such as captured

network data. A relational database also preserves the distinct relationships

within the decomposed network data.

SQLite is a file-based database, as opposed to a database engine. In a database

engine such as MySQL, there is a Relational Database Management Server

(RDBMS) that sits between the clients and the database and manages file

I/O, client connections, query optimization, query processing, and caching [20].

MySQL provides more functionality than SQLite such as authentication of users,

support for more data types, and increased scalability. However, MySQL has

a large memory footprint and contains a multitude of files [47]. In contrast,

SQLite has a low-memory footprint and is an embedded database so it can live

on its host device as a single file [47]. Since the SPLICEcube database may live

on a resource-constrained device in a smart home, a fast and lightweight setup

is more appropriate [43].

SQLite is also low overhead for the SPLICEcube developer since it is easy to

install and requires minimal administration [47]. SQLite’s simplicity makes it

a convenient choice for an initial implementation of the architecture.

46

5.3 Database Implementation

Finally, SQLite supports unlimited number of simultaneous readers, but it only

allows one writer at any instant in time [5], which is well-suited for the SPLICE-

cube system. The collector’s information storage module is the only entity that

writes to the database. In our current implementation of the proposed archi-

tecture, there is only one thread within the collector’s integration module that

can read from the database, so only one application can request network data

at a time. The SPLICEcube developer, however, could add more threads to

the integration module to support multiple applications requesting data at the

same time.

47

Chapter 6

Experimental Evaluation

Below we discuss two di↵erent experiments to evaluate our implementation.

Section 6.1

Experiment 1: Testing the System with the

Inside-Outside Application

Section 5.2.3 describes how we incorporate the Inside-Outside application into our

implementation of the SPLICEcube architecture. Below we discuss deploying this

combined system in a real home and evaluate its performance.

6.1.1. Testing Procedure

Setup. The experiment was conducted in a residential house, as shown in Figure 6.1.

None of the sides of the house were connected to any other buildings.

We used the following devices in this experiment:

(a) Cube, consisting of the router device and the collector device

(b) Three cubelets

(c) Target device (we used a Macbook Pro laptop)

48

6.1 Experiment 1 Experimental Evaluation

Figure 6.1: Experiment 1 Testing Site. A residential house was used as a smart
home environment.

(d) Device running Inside-Outside application (we used a laptop). We call this

device the application device.

To setup the cube, we connected the cube router to the existing home router’s

Ethernet port and placed the collector adjacent to it. We placed the cube on the first

floor in a central location of the house to maximize network coverage. We placed each

of the three cubelets in a di↵erent corner of the first floor of the house and made sure

they were connected to the cube’s Wi-Fi network. Finally, we placed the application

device inside the house and ensured it was connected to the cube’s network, as shown

in Figure 6.2.

The experiment consisted of three data collection runs. The first run collected data

when the target was placed at 30 di↵erent positions inside the house on the first floor.

The second run collected data when the target was placed at 15 di↵erent positions

inside the house on the second floor. The third run collected data when the target was

placed at 50 di↵erent positions outside the house. As shown in Figure 6.2 we created a

49

6.1 Experiment 1 Experimental Evaluation

map of the transmission locations (the positions where the target device was placed)

based on the home’s floor plan. Each transmission location was about 1.5 m apart

from each other. We also had the target device actively playing a few YouTube videos

to ensure that it would generate some network tra�c.

Figure 6.2: Experiment 1 Testing Site Setup. The house floor plan shows the
location of the system components and the target’s transmission locations. R rep-
resents the location of the cube’s router device. C represents the location of the
cube’s collector device. C1, C2, and C3 represent the locations of the cubelets. The
yellow squares represent the transmissions locations on the first floor of the inside of
the house. The blue squares represent the transmission locations on the second floor
of the inside of the house. The green squares represent the transmission locations
outside the house.

Execution.

(a) We began operating the system. We started with the first data collection run –

the first floor of the house (denoted by the yellow squares in Figure 6.2).

50

6.1 Experiment 1 Experimental Evaluation

(b) We placed the target in the first transmission location of the current data col-

lection run.

(c) We waited for approximately 1 minute with the target in this transmission

location. The waiting period was to ensure that 1) the target device had enough

time to emit Wi-Fi frames so the cubelets can capture some network activity

from the target in its current location and 2) the cubelets had enough time to

transmit their recently captured information to the collector.

(d) We sent a query request specifying the necessary parameters (the target MAC

address, the IP addresses of the three cubelets, and a 15 second time win-

dow) from the Inside-Outside application to the collector, as described in Sec-

tion 5.2.3.

Since there were three cubelets in this experiment, the collector queried the

database three times to extract the RSSI values for the frames observed by

each of the three cubelets separately. For each query, the collector retrieved

the RSSI values from the 50 (or the maximum number available) most recent

frames that were observed by the specified cubelet and were transmitted by

the target within the 15 seconds prior to the time of query. The collector then

sent back the list of RSSI values for each cubelet to the application, and this

data was populated into a .csv file on the application device, as described in

Section 5.2.3.

(e) We then moved the target to the next transmission position and repeated steps

c-d for all the transmission locations of this data collection run.

(f) We then repeated steps b-e for the next data collection run – the second floor

of the house (denoted by the blue squares in Figure 6.2).

51

6.1 Experiment 1 Experimental Evaluation

(g) We then repeated steps b-e for the third data collection run – outside the house

(denoted by the green squares in Figure 6.2).

At the end of the three runs, the application device contained three .csv files, one

for each data collection run. We used this data to train and test the Inside-Outside

machine-learning model that classifies the RSSI measurements.

6.1.2. Results

Proof-of-concept. This experiment validates our prototype implementation and

demonstrates a successful proof-of-concept use of the SPLICEcube architecture. The

cubelets, cube, and database components worked in accordance with the proposed

architecture in a real home environment.

ML model results. The Inside-Outside application uses three supervised machine-

learning classifiers: Decision Tree (DT), K-Nearest Neighbors (KNN), and Random

Forest (RF). Additionally, the application uses 5-fold cross-validation to evaluate each

classifier. We do not detail the machine-learning classifiers and evaluation methods

because they are specific to the application and out of scope of the contributions of

this thesis. We simply use the model as a black box to demonstrate an end-to-end

integration of the Inside-Outside application with our SPLICEcube implementation.

Below we present some of the model’s output metrics to illustrate the success of our

system.

Table 6.1 shows each classifier’s performance in predicting the target device’s

location when it was located inside the house. The Random Forest classifier performs

the best across all the metrics for both data collection samples and shows promising

results in classifying a device as inside or outside the home.

52

6.1 Experiment 1 Experimental Evaluation

Location of Samples Classifer Accuracy Precision Recall F1 Score

First floor
(inside)

DT 0.913 0.897 0.867 0.881

KNN 0.763 0.677 0.700 0.686

RF 0.925 0.875 0.933 0.903

Second floor
(inside)

DT 0.877 0.769 0.667 0.714

KNN 0.862 0.688 0.733 0.710

RF 0.969 1.000 0.867 0.929

Table 6.1: Inside-Outside ML model accuracy, precision, recall, and F1 scores

Query time. It is important that query time stays low as the database grows in

size. If the execution time of a database query becomes a bottleneck, the application

will receive delayed responses after sending a query request to the collector.

To measure this, we logged the query retrieval time and the corresponding database

size for each request sent in the experiment. As mentioned, for each received query

request, the collector queries the database three times to extract the RSSI values for

the frames observed by each of the three cubelets separately. We sum up the three

query times to obtain the total query time for a request. As shown in Figure 6.3, Fig-

ure 6.4, and Figure 6.5, there is no correlation between query time and the database

size in any of the three data collection runs. The total query time remains under 1

second for every query request. We do not define a goal query time since di↵erent

applications may require query responses within di↵erent time frames.

Because we placed an index on the timestamp field of the frames table, and each

query extracts a constant number of RSSI values in a specified time window, query

time should theoretically not increase significantly. The results of this experiment

validate this theory and confirm that the index on the timestamp field of the frames

table in the database is working correctly. We hypothesize that the spikes in query

time, visible in Figure 6.3, Figure 6.4, and Figure 6.5, are the result of the database

reorganizing the index due to the addition of new data, as it processes a query. We

53

6.1 Experiment 1 Experimental Evaluation

test and validate this hypothesis in Section 6.3.

Figure 6.3: Experiment 1 Query Time Result for Data Collection Run #1.
This graph shows total query time vs. database size for data collection run #1 (first
floor of house).

Figure 6.4: Experiment 1 Query Time Result for Data Collection Run #2.
This graph shows total query time vs. database size for data collection run #2 (second
floor of house).

54

6.2 Experiment 2 Experimental Evaluation

Figure 6.5: Experiment 1 Query Time Result for Data Collection Run #3.
This graph shows total query time vs. database size for data collection run #3
(outside house).

Section 6.2

Experiment 2: Testing the System with

Controlled Tests

To test our implementation more extensively and gather more system metrics, we

also ran some controlled tests. These controlled tests were meant to let the system

run for a long period of time and periodically observe certain metrics as the system

collects and stores network data.

6.2.1. Testing Procedure

Setup. We used the following devices in this experiment:

(a) Cube, consisting of the router device and the collector device

(b) Three cubelets

55

6.2 Experiment 2 Experimental Evaluation

(c) Device running Inside-Outside application (we used a laptop). We call this

device the application device.

In contrast with Experiment 1 (Section 6.1), there was no specific target in this

experiment.

We ran this experiment at two di↵erent sites. The first site was the same res-

idential house used in Experiment 1. The second site was a lab in the Center for

Engineering & Computer Science at Dartmouth College. Since a computer lab and a

residential home are di↵erent environments and contain di↵erent number of devices,

we chose to test both these locations to observe the di↵erence in the database size

and resulting insertion time and query time metrics as the system collected network

data.

We followed the same system setup as described in Experiment 1 by ensuring that

the cube router had Internet access, the cubelets were spread out across the testing

site, and the cubelets and application device were connected to the cube’s network.

Execution.

(a) We began operating the system so it was capturing, sending, storing, etc. We

made sure that the database was empty before starting the experiment.

(b) We sent a query request specifying the necessary parameters (the target MAC

address, the IP addresses of the three cubelets, and a 15 second time window)

from the Inside-Outside application to the collector, as described in Section

5.2.3. We arbitrarily selected one device on the home Wi-Fi network and used

its MAC address as the target MAC address parameter.

(c) We logged the database insertion time of all the frames in a single cubelet

transmission (one datagram sent from a cubelet to the cube). We chose not to

56

6.2 Experiment 2 Experimental Evaluation

log the insertion time for every cubelet transmission because it would add a lot

more overhead to the system and could distort our results.

(d) We repeated steps b and c about every 30 minutes, for a total of 4 hours.

6.2.2. Results

Query time. Similar to Experiment 1, there was no correlation between query time

and database size in both the home and lab tests (see Figure 6.6 and Figure 6.7). The

database grew to about 1 GB in both tests. Apart from the initial spike in Figure 6.6,

the query time stays relatively constant, confirming that the index on the timestamp

field of the frames table is functioning correctly. The total query time represents the

sum of the duration of the three queries that the collector undertakes for a single

application query request. Once again, we hypothesize that the occasional spikes

in query time, visible in Figure 6.6 and Figure 6.7, are the result of the database

reorganizing the index due to the addition of new data, as it processes a query. We

test and validate this hypothesis in Section 6.3.

Figure 6.6: Experiment 2 Query Time Result for the Home Site. This graph
shows the total query time vs. database size for the home testing site.

57

6.2 Experiment 2 Experimental Evaluation

Figure 6.7: Experiment 2 Query Time Result for the Lab Site. This graph
shows the total query time vs. database size for the lab testing site.

Insertion time. Figure 6.8 and Figure 6.9 show the insertion time for a single

cubelet datagram at di↵erent points in the home experiment and lab experiment,

respectively. The insertion times stay low (less than 0.015 seconds) and relatively

constant even as the database grows in size. The amount of data being inserted into

the database each time was about 3000 bytes since we set the size of a cubelet-cube

transmission datagram to be 3000 bytes, as described in Section 5.1.3.

58

6.2 Experiment 2 Experimental Evaluation

Figure 6.8: Experiment 2 Insertion Time Result for the Home Site. This
graph shows the insertion time vs. database size for the home testing site.

Figure 6.9: Experiment 2 Insertion Time Result for the Lab Site. This graph
shows the insertion time vs. database size for the lab testing site.

59

6.3 Experimental 3 Experimental Evaluation

Section 6.3

Experiment 3: Testing Query Time with a

Constant Database Size

We hypothesize that the spikes in query time in Experiment 1 and Experiment 2 are

because the database is reorganizing the index due to the addition of new data, as

it processes a query. To test this hypothesis, we query the database while keeping

the database size constant. In other words, the cubelets are not transmitting to the

cube, and the cube is not adding any new data to the database. The database size

is about 1 GB. We remotely query the database 20 times from an application device

over the span of about 13 minutes, with varying amounts of time between each query.

We see in Figure 6.10 that the query times remain low and average about 0.055

seconds over the 20 trials. We can infer that there are no spikes in query time because

there is no addition of data, so the database does not need to rearrange the index.

Figure 6.10: Experiment 2 Query Time Result. This graph shows the query
times when the 1 GB database stays at a constant size.

60

6.4 General Storage Requirements Experimental Evaluation

Section 6.4

General Storage Requirements

Table 6.2 shows some final statistics of the database after 4 hours of recording data

at each testing site.

Testing Site Total Records Total Size

Smart Home 4,737,225 953 MB

Computer Lab 5,161,737 1032 MB

Table 6.2: Database metrics after 4 hours of system operation

We see that for both testing sites, the database reached a size of about 1000 MB

(1 GB) after four hours of operation. In this experiment, the database was housed

on a Raspberry Pi with a 32 GB Samsung EVO Select microSD memory card [39]. If

we assume that the network conditions were to remain constant and that the other

programs on the Pi take up negligible memory, we can extrapolate and say that it

would take about 128 hours (a little over five days) for the database to completely fill

up the disk space. We envision that before reaching this storage threshold, the data

disposal module would transfer older data to the cloud and subsequently delete this

data from the database to free up space.

This experiment illustrates the general database storage requirements for two dif-

ferent network environments. Although the frequency of data uploads to the cloud

depends on the network conditions, this experiment provides the SPLICEcube devel-

oper insight to better manage the database storage requirement for a given amount

of device storage.

It is interesting that the amount of network data observed in a freestanding res-

idential house was about the same as that observed in a busy computer lab in a

period of four hours. One possible explanation is that the access points in the house

61

6.5 Experimental Support Experimental Evaluation

had lower beacon intervals than the access points in the lab, which would mean that

the access points in the house sent out beacon frames more frequently. More testing

would be helpful to further understand the network conditions for both the testing

sites.

Section 6.5

Experimental Support of Architecture Attributes

These experiments showcase that the architecture underpinning the SPLICEcube is

scalable and extensible. In Experiment 1 and Experiment 2, we modified the integra-

tion module on the collector to enable three di↵erent queries for a single application

request, as required by the Inside-Outside application. Similarly, if other applications

were to be added, the architecture could be extended such that the SPLICEcube de-

veloper could tailor the collector to accommodate these applications as necessary.

Additionally, in Experiment 2, there were di↵erent number of devices and di↵erent

network tra�c at the two testing sites, yet insertion and query times remained rela-

tively stable, illustrating the scalability of the system.

62

Chapter 7

Future Work

The proposed architecture that underpins the SPLICEcube solution aims to be a

scalable and extensible framework to facilitate smart-home management, and our

current implementation serves as an initial prototype for this architecture. Below we

suggest several improvements to both the initial prototype implementation and the

overall architecture.

Section 7.1

Implementation Improvements

This section describes areas of future work to improve the current implementation of

the prototype.

7.1.1. Sni↵ on Multiple Channels

Each cubelet currently has one interface dedicated to sni�ng and sni↵s on a single

channel. Capturing tra�c on multiple channels is important in gathering a more

comprehensive sample of frames from the network and potentially detecting the pres-

ence of a rogue access point [10]. One approach is to add additional interfaces that

capture Wi-Fi packets on di↵erent channels across both bands of the Wi-Fi frequency

63

7.1 Implementation Improvements Future Work

spectrum. Another approach is to enable channel hopping on an interface so that the

sni↵er visits each channel periodically. An intelligent hopping strategy and an opti-

mal hopping interval duration is important in maximizing packet collection and device

detection. Looping too slowly could result in missed information on other channels.

Looping too fast could result in extra overhead and delay due to excessive channel

switching. One possible option is to always monitor the router channel, and then

e�ciently switch through the other channels. Deshpande et al. proposes a method

in which measurement applications can dynamically modify the sampling strategy to

refocus the monitoring system on certain types of tra�c [10].

7.1.2. Decrypt MAC Frame Data

We discuss in Section 5.1.2 that our implementation can currently extract only the

RadioTap header and the MAC header from a layer 2 MAC frame. This is because

the home Wi-Fi devices are transmitting on the cube’s network, which is protected

by WPA2 in our implementation, so the frame body of the MAC frame is encrypted.

Since the frame body encapsulates all the information from the layers above, de-

crypting it would yield useful, higher-level information about a device’s transmis-

sions. Below we have outlined the decryption process for WPA2 tra�c and suggested

a potential approach.

Pre-Shared Key (PSK). To decrypt the layer 2 frame body of a device trans-

mission, we first must know the password of the Wi-Fi network to which the device

is connected. The Wi-Fi password is known as the Pre-Shared Key (PSK). In our

implementation, the home Wi-Fi devices are connected to the cube’s network, and

the SPLICEcube developer would typically know the cube network’s Wi-Fi password.

As a result, we can only decrypt transmissions from devices that are connected to

the cube’s network. Transmissions from devices that are connected to some other

64

7.1 Implementation Improvements Future Work

password-protected Wi-Fi network cannot be decrypted since we do not know the

password of these networks.

Capturing Four-Way Handshake. Additionally, we must be able to capture

the four-way handshake that occurs when a device attempts to connect to the cube’s

network. The four-way handshake involves the exchange of random data, the authen-

ticator nonce and supplicant nonce, between the client and the access point (AP)

every time a client associates [46].

In our implementation, the cubelets could be used to capture the key exchange

since they are actively sni�ng. Whatever device is responsible for decrypting the

frame body must then have access to this key. For example, if the cubelets are

responsible for decrypting, then each cubelet must store the key for the duration of a

client’s connection to the network. Alternatively, the cube’s collector device could be

responsible for decrypting; as in, the cubelets could capture and transmit the data

to the collector in its encrypted form, and then the collector could decrypt it before

storing in the database. In this case, the collector would need access to the key. The

design decisions are left to the discretion of the SPLICEcube developer.

It is possible that a cubelet misses capturing the handshake when the client first

joins the network. In this case, we can implement a deauthentication attack to inter-

rupt the connection between the client and the router [36]. The cube or a cubelet

can send a deauthentication frame to the client device that forces the device to dis-

associate from the network. We can then have the client join the network again and

capture the subsequent handshake.

7.1.3. Implement Disposal Module

In Section 4.3.4 of the proposed architecture, we envision a data disposal module in

the cube to contain the database size. Although we did not implement this module

65

7.1 Implementation Improvements Future Work

in our prototype, here is one potential approach.

The disposal module on the collector device could periodically check for data that

was written to the database prior to a certain time threshold. The module could then

use the SQLite dump utility to write this outdated data into a text file. Then the

module could upload this file to cloud storage and subsequently access the database

again to delete the data that has been migrated to the cloud.

7.1.4. Translate Code to C

All of the current code is written in Python, but it can be rewritten in C to increase

the speed of the programs and maximize e�ciency. Python was a reasonable choice

for an initial implementation because it has low development cost and is easy to revise

if a design decision needs modification. For future iterations of the implementation,

it could make sense to write the lower-level capabilities such as sni�ng, parsing,

transmission, reception, and database extraction in C. The presentation layer for

a GUI or front-end application may be written in a higher-level language at the

discretion of the SPLICEcube developer.

Although the architecture components will remain the same, some implementation

choices will need to be revised. For example, the current method for parsing Wi-Fi

frames utilizes the dpkt Python library which will need to be replaced if the code is

translated to C. The advantage is that C does have similar libraries for parsing, such

as libwifi [24], so the concept of extracting relevant features from the frames should

translate seamlessly.

7.1.5. Conduct More Robust Testing

Although the current experiments provide insight into the operation of the SPLICE-

cube system, further testing, such as observing the query and insertion times over a

longer period of time and more trials, could enhance our understanding of the current

66

7.1 Implementation Improvements Future Work

implementation.

One key metric that the current evaluation does not acknowledge is the through-

put of data in the cubelet-cube transmissions. The approximate bytes sent per trans-

mission and the approximate number of transmissions per minute could be helpful

metrics. The cubelet-cube transmissions occur on the cube’s Wi-Fi network and add

additional overhead to the network. To avoid a congested network, it is important to

ensure that these transmissions do not consume excessive bandwidth.

To detect devices and keep an accurate log of device network information, the

cubelets must be able to maximize capture performance and successful transmission

to the cube. If the cubelets cannot capture su�cient frames, they will miss device

activity. If the cubelets-cube transmissions get dropped frequently, the cube will not

receive data about device activity. The current evaluation does not measure capture

or transmission performance. We could evaluate capture performance by comparing

the cubelets’ captures with a high-performance, high-speed sni↵er. A simple test

to observe the number of frames captured by both systems over the span of a day

could provide insight into the cubelets’ capturing ability. Additionally, we could

evaluate cubelet transmission performance by adding a sequence number to each

UDP datagram sent to the cube, allowing us to observe the number of successful

transmissions and detect which datagrams were dropped.

7.1.6. Modify Database

In Section 5.3.4, we discussed that we chose to use SQLite, a file-based database,

as opposed to a database engine such as MySQL. SQLite was an easy initial im-

plementation choice and its low-memory footprint makes it well-suited to live on a

resource-constrained device in a smart home. MySQL would provide more function-

ality because it requires a Relational Database Management Server (RDBMS) that

sits between the clients and the database and manages file I/O, client connections,

67

7.2 Architecture Improvements Future Work

query optimization, query processing, and caching [20].

Additionally, MySQL is widely used for online transactional processing (OLTP) [30].

An OLTP-based database includes 1) frequent data modification, 2) high volume of

concurrent users accessing data, 3) simple transactions, and 4) indexed data sets for

fast search, query, and retrieval [26]. An OLTP-based database is well-suited for the

SPLICEcube system: 1) there is frequent addition of network data to the SPLICEcube

database, 2) there may be multiple applications (represented by multiple threads in

the integration module) requesting data, 3) the SPLICEcube database operations are

relatively simple (inserts and simple queries), and 4) query response time is important

so that the application can receive its requested data quickly.

We leave such database design decisions to the future SPLICEcube developer, but

introduce MySQL as a potential alternative database.

Section 7.2

Architecture Improvements

This section describes areas of future work to improve the overall proposed architec-

ture.

7.2.1. Expand Router Functionality

The proposed architecture does not specify additional capabilities for the router be-

sides its routing functionality. Future iterations of the architecture could expand the

functionality of the cube’s router to allow the cube to also sni↵ frames. Indeed, be-

cause the router already receives frames from the home Wi-Fi clients, it could parse

the frames it is already handling and record the relevant features in the database.

The cubelets are still needed because we want more than one observation point. By

using the router as an additional observation location, we could gain more information

68

7.2 Architecture Improvements Future Work

about frames, which could be useful for applications such as device localization or

authentication.

7.2.2. Accommodate Other Applications

Although the Inside-Outside detection application, a type of device localization appli-

cation, was successfully integrated into the SPLICEcube, there are many opportuni-

ties for other research applications to be integrated into the SPLICEcube to enhance

its robustness as the home’s central security and privacy controller. Some ideas of ap-

plications discussed in section Section 1.2 were device localization, network anomaly

detection, device firmware update, and cube interface design. The architecture may

need to be expanded to accommodate such other applications. Modifications are in-

evitable, but the current architecture provides the foundation for further development

to support the integration of other applications.

For example, the SPLICEcube is well-suited to accommodate a learning-based

network anomaly detection system that sni↵s network tra�c, extracts certain param-

eters, and learns the “normal” behavior, to subsequently detect unexpected behavior.

However, the architecture may need to be extended to fully integrate such an appli-

cation. For example, IoTHound, a learning-based network anomaly detection system

mentioned in Section 1.2, employs a data aggregation method to segment the observed

network tra�c into time windows before feature extraction because having a single

data point for each observed packet becomes a computational burden and because

one single packet is usually not indicative of an IoT device behavior [3]. Although

the database in our proposed architecture would allow the IoTHound application to

retrieve necessary features from the stored network data, the database may need to

be extended to allow for data aggregation before extracting the features.

Additionally, a device firmware update process, such as one proposed by Nilsson

et al. in which the cube downloads new firmware and securely deploys it on a home

69

7.2 Architecture Improvements Future Work

device [32], will require a path of communication from the cube to the device. The

extensible nature of the architecture allows this expansion, and we envision adding

another module to the cube to handle this communication.

7.2.3. Support Other Protocols

Currently, the SPLICEcube architecture only supports Wi-Fi but can be expanded

to support other protocols such as Bluetooth and Zigbee. For example, a Bluetooth

sni�ng interface can be added to each cubelet to allow detection of Bluetooth frames

emitted by Bluetooth devices. We envision a separate module to handle Bluetooth

frame capture. A Bluetooth parsing tool would be required to parse the Bluetooth and

frames and extract relevant information. We envision a separate module to handle

Bluetooth frame parsing. The cubelet’s transmission and the cube’s reception of the

parsed Bluetooth frames could occur within the existing transmission and reception

modules, respectively. Additional tables may be required in the database to store the

Bluetooth data in an organized and e�cient way.

Supporting more protocols will allow the capture and storage of tra�c from a

wider range of smart devices in the home that may communicate using protocols other

than Wi-Fi. Applications such as device localization or network anomaly detection

can then be used to secure and manage these non-Wi-Fi devices.

7.2.4. Incorporate Security as an Architecture Attribute

In addition to being scalable and extensible, the envisioned architecture must also

be secure. It is possible that an adversary targets the SPLICEcube system to gain

access to the home’s private information, so the SPLICEcube architecture must be

designed to protect against security exploits.

Communication channels that connect the SPLICEcube components must be se-

cure. In our current implementation of the architecture, the application-cube and

70

7.2 Architecture Improvements Future Work

cubelet-cube communication occurs over the cube’s network which is protected by

WPA2. If a future SPLICEcube developer chooses to modify the communication

protocol, they must think about how to maintain the confidentiality, integrity, and

authentication of the transmitted data.

There must be a robust method to authenticate the devices and services that

communicate with the cube and ensure the integrity of information added to the

database. Any device on the cube’s network can currently send information to the

cube that could subsequently be stored in the database. More protective measures

are needed to disallow such communication.

7.2.5. Optimize the Positioning of the Cubelets

The current architecture stipulates the use of multiple cubelets and expects the

cubelets to be dispersed around the smart home to provide several observation points

during network data capture. An extension of the architecture could be to explore

the optimal number of cubelets and the optimal positions for the cubelets to maxi-

mize coverage. Farkas et al. propose an algorithm to find the optimal number and

placement of WLAN access points for indoor positioning [18]. Similar work could be

done to find the optimal setup for the cubelets.

71

Chapter 8

Conclusion

To realize the vision of a manageable and secure smart-home environment, we propose

a system called the SPLICEcube, which consists of the cube, cubelets, and database.

The cube acts as a router and central hub, the cubelets extend network coverage and

assist in gathering network data, and the database stores network data.

In this thesis, we design a scalable and extensible Wi-Fi architecture and database

that underpins the SPLICEcube. The architecture facilitates intelligent research ap-

plications to be integrated into the SPLICEcube to expand the functionality of the

system. The architecture is designed to capture network data across the smart home,

parse the network data for desired information, consolidate this information into a

central repository, and allow applications to use the stored information to securely

manage the devices within the home.

We built a prototype implementation of the proposed architecture and integrated

the Inside-Outside research application with our implementation. We tested our im-

plementation by deploying the SPLICEcube system in a real environment to demon-

strate a successful proof-of-concept use of the SPLICEcube architecture. The inte-

grated Inside-Outside application operated successfully and showed promising results

in classifying home devices as inside or outside the home.

72

Conclusion Conclusion

The SPLICEcube system can serve as a platform for researchers to test research

applications that a resident within a smart home may then use to secure and manage

their smart home. Our implementation may become obsolete as technology evolves,

but we envision the proposed SPLICEcube architecture to remain a scalable and

extensive framework for identifying, securing, and managing smart devices.

73

Bibliography

[1] Amazon. Amazon Alexa. Online at https://alexa.amazon.com/spa/index.html#

new-oobe, visited May 2022.

[2] Y. Amar, H. Haddadi, and R. Mortier. Privacy-Aware Infrastructure for Man-

aging Personal Data. In Proceedings of the Annual Conference of the ACM Spe-

cial Interest Group on Data Communication on the applications, technologies,

architectures, and protocols for computer communication (SIGCOMM), pages

571–572. ACM, 2016. DOI 10.1145/2934872.2959054.

[3] P. Anantharaman, L. Song, I. Agadakos, G. Ciocarlie, B. Copos, U. Lindqvist,

and M. Locasto. IoTHound: environment-agnostic device identification and mon-

itoring. In Proceedings of the International Conference on the Internet of Things

(IoT), pages 1–9. ACM, 2020. DOI 10.1145/3410992.3410993.

[4] Apple. Apple Home. Online at https://www.apple.com/ios/home/, visited Apr.

2022.

[5] Appropriate Uses for SQLite. Online at https://www.sqlite.org/whentouse.html,

visited Apr. 2022.

[6] F. L. Bellifemine, C. Borean, G. Dini, P. Perazzo, and M. Tiloca. A Home

Manager Application for ZigBee Smart Home Networks. In Proceedings of the

International Workshop on Networks of Cooperating Objects, 2010.

74

BIBLIOGRAPHY

[7] Bitdefender. Online at https://www.bitdefender.com/smart-home/#box

section, visited Apr. 2022.

[8] BrosTrend 650Mbps Linux WiFi Adapter. Online at https://www.brostrend.

com/collections/linux-wifi-adapter/products/ac5l, visited Apr. 2022.

[9] Bullguard. Online at https://www.bullguard.com, visited Apr. 2022.

[10] U. Deshpande, C. McDonald, and D. Kotz. Refocusing in 802.11 Wireless Mea-

surement. In Proceedings of the Passive and Active Measurement Conference

(PAM), volume 4979 of Lecture Notes in Computer Science, pages 142–151.

Springer-Verlag, April 2008. DOI 10.1007/978-3-540-79232-1 15.

[11] dpkt. Online at https://dpkt.readthedocs.io/en/latest/, visited Apr. 2022.

[12] D. Fauri, D. dos Santos, E. Costante, J. Hartog, S. Etalle, and S. Tonetta. From

System Specification to Anomaly Detection (and back). In Proceedings of the

ACM Workshop on Cyber-Physical Systems Security and Privacy (CPS-SPC),

pages 13–24, 2017. DOI 10.1145/3140241.3140250.

[13] Google. Google Assistant. Online at https://assistant.google.com, visited May

2022.

[14] P. Gralla, Dartmouth College. An inside vs. outside classification system for Wi-

Fi IoT devices, 2021. Online at https://digitalcommons.dartmouth.edu/senior

theses/215/.

[15] H. J. Hadi, S. M. Sajjad, and K. un Nisa. BoDMitM: Botnet Detection and

Mitigation System for Home Router Base on MUD. In International Conference

on Frontiers of Information Technology (FIT), pages 1390–1394. IEEE, 2019.

DOI 10.1109/FIT47737.2019.00035.

75

BIBLIOGRAPHY

[16] M. Haenggi. 802.11 Data Link Layer. Online at https://www3.nd.edu/

⇠mhaenggi/NET/wireless/802.11b/Data\%20Link\%20Layer.htm, visited Apr.

2022.

[17] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster. IoT Inspector:

Crowdsourcing Labeled Network Tra�c from Smart Home Devices at Scale. In

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies, pages 1–21. ACM, 2020. DOI 10.1145/3397333.

[18] Á. Huszák, G. Gódor, and K. Farkas. Investigation of wlan access point place-

ment for indoor positioning. In Information and Communication Technologies,

pages 350–361. Springer, 2012. DOI https://doi.org/10.1007/978-3-642-32808-4

32.

[19] IoT Inspector, Apr. 2022. Online at https://inspector.engineering.nyu.edu.

[20] Jay A. Kreibich. Using sqlite. Online at https://www.oreilly.com/library/

view/using-sqlite/9781449394592/ch01s01.html#:⇠:text=Unlike%20most%

20RDBMS%20products%2C%20SQLite,makes%20up%20the%20database%

20engine, visited Apr. 2022.

[21] D. Kotz and T. Peters. Challenges to ensuring human safety throughout the

life-cycle of Smart Environments. In Proceedings of the ACM Workshop on the

Internet of Safe Things (SafeThings), pages 1–7. ACM, 2017. DOI 10.1145/

3137003.3137012.

[22] V. Kumar. How is Smart Home Now Becoming a Reality? Online at https:

//industrywired.com/how-is-smart-home-now-becoming-a-reality/, visited Apr.

2022.

76

BIBLIOGRAPHY

[23] V. Kumar. What is MUD? Online at https://developer.cisco.com/docs/mud/

#!what-is-mud/what-is-mud, visited Apr. 2022.

[24] libwifi - An 802.11 Frame Parsing and Generation library written in C. Online

at https://libwifi.so, visited Apr. 2022.

[25] J. Lis. Smart Home Forecast 2021. Online at https://www.investopedia.com/

terms/s/smart-home.asp, visited Apr. 2022.

[26] B. Lutkevich. OLTP (online transaction processing). Online at https://www.

techtarget.com/searchdatacenter/definition/OLTP, visited May 2022.

[27] WLAN MAC protocol, WLAN MAC frame format, 802.11 Wi-Fi MAC. On-

line at https://www.rfwireless-world.com/Articles/WLAN-MAC-layer-protocol.

html, visited Apr. 2022.

[28] 802.11 MAC Frame Generation. Online at https://www.mathworks.com/help/

wlan/ug/802-11-mac-frame-generation.html, visited Apr. 2022.

[29] MQTT: The Standard for IoT Messaging. Online at https://mqtt.org, visited

Apr. 2022.

[30] MySQL: Get the best insights from your data, faster than ever. Online at https:

//www.stitchdata.com/resources/mysql, visited May 2022.

[31] Netgear. Netgear Orbi. Online at https://www.netgear.com/home/wifi/mesh/

orbi/?cid=us-best-wifi6-srch-cpc&utm source=search&utm medium=cpc&

utm campaign=us-best-wifi6-srch-cpc, visited Apr. 2022.

[32] D. K. Nilsson and U. E. Larson. Secure Firmware Updates over the Air in In-

telligent Vehicles. In IEEE International Conference on Communications Work-

77

BIBLIOGRAPHY

shops, pages 380–384, Munich, Germany, 2008. IEEE. DOI 10.1109/ICCW.2008.

78.

[33] OpenWrt. Online at https://openwrt.org, visited Apr. 2022.

[34] PyShark. Online at https://pypi.org/project/pyshark/, visited Apr. 2022.

[35] Radiotap. Online at https://www.radiotap.org, visited Apr. 2022.

[36] A. Rodriguez. Deauthentication Attacks with Python. Online at https:

//python.plainenglish.io/deauthentication-attacks-with-python-aa5cc6eeb331,

visited May 2022.

[37] Scapy. Online at https://scapy.net, visited Apr. 2022.

[38] scapy.utils. Online at https://scapy.readthedocs.io/en/latest/api/scapy.utils.

html, visited Apr. 2022.

[39] Samsung. EVO Select microSD Memory Card 32 GB. Online at

https://www.samsung.com/us/computing/memory-storage/memory-cards/

microsdhc-evo-select-memory-card-w--adapter-32gb--2017-model--mb-me32ga-am/,

visited May 2022.

[40] A. K. Simpson, F. Roesner, and T. Kohno. Securing vulnerable home IoT devices

with an in-hub security manager. In 2017 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops),

pages 551–556. IEEE, 2017. DOI 10.1109/PERCOMW.2017.7917622.

[41] Samsung. SmartThings. Online at https://www.smartthings.com, visited Apr.

2022.

78

BIBLIOGRAPHY

[42] E. Soltanaghaei, A. Kalyanaraman, and K. Whitehouse. Multipath Triangu-

lation: Decimeter-level WiFi Localization and Orientation with a Single Un-

aided Receiver. In Proceedings of the ACM Symposium on Mobile Comput-

ing Systems and Applications (MobiSys), pages 376–388. ACM, 2018. DOI

10.1145/3210240.3210347.

[43] SQLite. Online at https://devopedia.org/sqlite, visited Apr. 2022.

[44] IBM. Structured vs. Unstructured Data: What’s the Di↵erence? On-

line at https://www.ibm.com/cloud/blog/structured-vs-unstructured-data, vis-

ited Apr. 2022.

[45] TCPDUMP & LIBPCAP. Online at https://www.tcpdump.org, visited May

2022.

[46] D. White. Wifi Hacking & WPA/2 PSK tra�c decryption. Online at https://

sensepost.com/blog/2013/wifi-hacking-wpa\%2F2-psk-tra�c-decryption/, vis-

ited Apr. 2022.

[47] M. Wolfe. MySQL vs. SQLite. Online at https://towardsdatascience.com/

mysql-vs-sqlite-ba40997d88c5, visited Apr. 2022.

[48] Wi-Fi Security: WEP vs WPA or WPA2. Online at https://www.avast.com/

c-wep-vs-wpa-or-wpa2, visited Apr. 2022.

79

	SPLICEcube Architecture: An Extensible Wi-Fi Monitoring Architecture for Smart-Home Networks
	Recommended Citation

	tmp.1652643619.pdf.Z6EpO

