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Abstract—Despite its successes in various machine learning
and data science tasks, crowdsourcing can be susceptible to
attacks from dedicated adversaries. This work investigates the
effects of adversaries on crowdsourced classification, under the
popular Dawid and Skene model. The adversaries are allowed to
deviate arbitrarily from the considered crowdsourcing model,
and may potentially cooperate. To address this scenario, we
develop an approach that leverages the structure of second-order
moments of annotator responses, to identify large numbers of
adversaries, and mitigate their impact on the crowdsourcing
task. The potential of the proposed approach is empirically
demonstrated on synthetic and real crowdsourcing datasets.

Index Terms—Crowdsourcing, Classification, Adversaries, En-
semble learning.

I. INTRODUCTION

Crowdsourcing has emerged as a powerful paradigm for

tackling various machine learning, data mining, and data

science tasks. Crowdsourcing, via services such as Amazon’s

Mechanical Turk [8] enlists inexpensive crowds of human

workers, or annotators, to accomplish any given task. The

focus of much research on crowdsourcing is centered on prop-

erly aggregating the noisy annotator labels, to obtain results

as close to the ground-truth as possible. This is challenging

due to the sparsity of annotator responses and the variabil-

ity in annotator ability and effort. To add insult to injury,

crowdsourcing is vulnerable to attacks by determined and

coordinated adversaries, which provide erroneous responses

aiming to reduce the performance of the overall system, or

cause misclassification of specific data.

This paper puts forth a novel method for detecting arbitrary

adversaries in crowdsourced classification. As a first step,

we first analyze the structure of the correlation matrix of

annotator responses, under the popular Dawid and Skene

model. Afterwards, a subspace clustering-based approach is

developed to split annotators into two groups. Honest and

adversarial annotator groups are then distinguished by utilizing

some additional side information. In this work, two types of

side information are considered: a.) Knowledge of one trusted

annotator, or b.) the assumption that the majority (> 50%)

of annotators are honest. Finally, a heuristic approach to pru-

dently aggregate annotator responses is provided. Compared to

other state-of-the-art approaches, the proposed method is based

on the more general Dawid and Skene model, and can handle

a potentially much larger number of adversaries. Additional

Work in this paper was supported by NSF grants 1901134, 2126052,
2128593 and ARO-STIR grant 00093896.

details and experiments can be found in the long version of

this paper [18]1.

Notation. Unless otherwise noted, lowercase bold letters, x,

denote column vectors, uppercase bold letters, X, represent

matrices, and calligraphic uppercase letters, X , stand for sets.

The (i, j)th entry of matrix X is denoted by [X]ij ; vec(X)
denotes a vector consisting of the stacked columns of X. The

Frobenius and nuclear norms of a matrix X are denoted by

‖X‖F and ‖X‖∗ respectively. The rank of a matrix X is

denoted by rank(X) and diag(x) denotes a diagonal matrix

with the vector x on its diagonal. tr(X) denotes the trace

of matrix X, that is the sum of the values on its diagonal.

Pr denotes probability, or the probability mass function;

∼ denotes ”distributed as;” � represents transpose; card(A)
denotes the cardinality, i.e. the number of elements, of set A;

E[·] denotes expectation, and 1(A) is the indicator function

for the event A, that takes value 1 when A occurs, and 0
otherwise.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N independent and identi-

cally distributed (i.i.d.) data {xn}Nn=1 each belonging to one

of K possible classes with corresponding labels {yn}Nn=1,

e.g. yn = k if xn belongs to class k. Class prior proba-

bilities are collected in π := [π1, . . . , πK ]� = [Pr(yn =
1), . . . ,Pr(yn = K)]�. An ensemble of M annotators or

workers observe {xn}Nn=1, and provide noisy estimates of

labels, with gm(xn) ∈ {1, . . . ,K} denoting the label as-

signed to the n-th datum by annotator m. When an annotator

does not provide a response for a datum xn, we encode

this by gm(xn) = 0. Given only the annotator responses

{gm(xn),m = 1, . . . ,M}Nn=1, crowdsourced classification
seeks to properly aggregate information contained in annotator

responses and estimate the ground-truth labels of the data

y := [y1, . . . , yN ]�.

The Dawid and Skene (DS) model [2] asserts that annotators

have constant behavior and are conditionally independent

given the (unknown) true label of a datum yn, that is their

errors are independent. Note that, this is reminiscent of a

Naive Bayes model, conditioned on the true labels yn. An

annotators response gm(xn) for a datum xn, depends only on

that datum and only through its label yn. Further, under the

Dawid and Skene model annotators are characterized by a so-

called confusion matrix, that captures the statistical behavior

of an annotator when presented with a datum from each class.

1http://arxiv.org/abs/2110.04117
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For an annotator m the K ×K confusion matrix is denoted

by Hm, and has entries hm,k,c := [Hm]k,c = Pr(gm(xn) =
k|yn = c). Clearly, entries of Hm are non-negative and its

columns sum up to 1. Since responses of different annotators

per datum n are presumed conditionally independent, given the

ground-truth label yn, the joint pmf of annotator responses for

datum xn is Pr (g1(xn) = k1, . . . , gM (xn) = kM |yn = c) =∏M
m=1 Pr (gM (xn) = km|yn = c) =

∏M
m=1 hm,km,c.

If annotator confusion matrices and class priors are known,

the label of datum n can be estimated using a maximum

a posteriori (MAP) classifier, as ŷn = argmax
c∈{1,...,K}

log πc +∑M
m=1 log(hm,gm(xn),c) ,where we used the conditional in-

dependence of the annotators, and the monotonicity of the

logarithm. In realistic crowdsourcing scenaria, however, con-

fusion matrices {Hm}Mm=1 and class priors π are unknown

and have to be estimated.

A. Crowdsourcing with adversaries

Suppose now, that a subset H ⊆ M = {1, . . . ,M}, of

MH := card(H) annotators are honest, and a subset A ⊂M,

of MA := card(A) are adversaries. The adversaries in A
also observe the data {xn}Nn=1 and seek to undermine the

crowdsourcing task. In order to ensure robust estimation of

the ground-truth labels, one has to detect the presence of
these adversaries and take mitigating steps. The following

assumptions hold throughout the rest of the paper:

• Assumption 1. Honest annotators adhere to the Dawid

and Skene model; that is, given the ground-truth label yn
of a datum xn, the responses of annotators are condi-

tionally independent. Additionally, honest annotators are

better than random.

• Assumption 2. The number of honest annotators card(H)
is strictly greater than K2, and they are distinct.

• Assumption 3. Adversarial annotators observe {xn}Nn=1

and deviate arbitrarily from the Dawid and Skene model.

Under the aforementioned assumptions, in this work we

seek to identify adversarial annotators and if possible mitigate
their impact on the crowdsourcing classification task, using

only the available annotator responses.

Assumption 1 is fairly standard in crowdsourcing and en-

ables estimating annotator parameters and label aggregation.

As will be shown later, Assumption 2 is necessary in this

context for distinguishing honest annotators from adversaries.

Further, this assumption also indicates that the proposed

approach can, in principle, tolerate up to MA = M − K2

adversaries, which depending on M and K, may be much

larger than the M/2 number of adversaries that is allowed

by competing alternatives. Nevertheless, the number of tol-

erated adversaries will depend on the additional information

employed in Sec. IV. Assumption 3 implies that adversaries

take into consideration only the data, and not the responses

of honest annotators. It does not place any further restriction

on the behavior of the adversaries, and suggests that their

behavior is captured by an unknown conditional pmf pA :=

∏N
n=1 Pr

(
{gm(xn) = km,n}m∈A

∣∣∣∣∣{yn′ = kn′}Nn′=1

)
. Note

here that adversaries are not necessarily conditionally indepen-

dent with each other, and their responses may depend on all

observed data. However, since they only observe the available

data, they are considered conditionally independent from the

honest workers.

B. Prior art

The simplest method for aggregating crowdsourced labels

is majority voting, where the estimated label for a specific

data point is the one most annotators agree on. This however,

assumes that all annotators are of equal ability, which is,

in many cases, unrealistic. The seminal paper of Dawid and

Skene [2] proposed the aforementioned model and introduced

an expectation maximization (EM) algorithm for estimating

annotator confusion matrices and class priors, that is guaran-

teed to converge to a local optimum. Recent spectral methods

use second- and third-order moments of annotator responses to

infer confusion matrices and are often used to initialize the EM

algorithm [6], [17], [23]. Other works, advocate simpler, but

less expressive models, such as the ”one-coin” model, where

each annotator is characterized by a single parameter [4]. The

work of [11] considered crowdsourced classification under the

one-coin model as a rank-one matrix completion problem.

Regarding adversarial attacks in crowdsourcing, [13] modi-

fied the EM algorithm of [2] to detect and eliminate spammers

during the label aggregation phase, whereas [16] proposed a

spectral algorithm for detecting spammers before the aggre-

gation phase. In the binary classification setting, [7] proposed

a penalty based algorithm for detecting adversaries, and [9]

considers arbitrary adversaries under the one-coin model. Re-

cently, [10] introduced a rank-1 matrix completion algorithm

for aggregating labels in the presence of adversaries, under

the one-coin model. However, the three aforementioned works

assumed that most annotators (> 50%) are honest. Compared

to current adversarial crowdsourcing approaches, this work

introduces an algorithm that is based on the general Dawid

and Skene model, and can potentially detect a large number

of adversaries.

III. ANNOTATOR CORRELATION

Based on the Dawid and Skene model of Sec. II, we will first

examine the structure of the second-order moments of honest

and adversarial annotator responses. As annotator responses

are categorical variables, the measure of correlation considered

here is the probability of agreement, or agreement rate between

two annotators σm,m′ := Pr(gm(xn) = gm′(xn)),m,m′ ∈
M. For the remainder of this section, we will also assume

without loss of generality, that the first MH annotators are

honest, and the remaining are adversarial.

A. Correlation of honest annotators

Let gm(xn) denote the response of annotator m when ob-

serving datum xn, in “one-hot” format, that is, if gm(xn) = k
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then gm(xn) = ek, where ek denotes the canonical K × 1
vector that has a one in its’ k-th entry and zeroes elsewhere.

Invoking the law of total probability, the assumed con-

ditional independence of annotators, and the definitions of

Sec. II, the K ×K co-occurrence matrix between annotators

m,m′ ∈ H is [17]

Rm,m′ := E[gm(xn)gm′(xn)] = Hmdiag(π)H�m′ . (1)

From Rm,m′ , the probability of agreement σm,m′ between

annotators m,m′ ∈ H is

σm,m′ = tr (Rm,m′) = tr
(
Hmdiag(π)H�m′

)
(2)

= vec(diag(π)1/2H�m)�vec(diag(π)1/2H�m′) = v�mvm′

where we have used the properties of the trace and vm :=
vec(diag(π)1/2H�m) is a K2× 1 vector. Eq. 2 in turn implies

that the MH×MH agreement matrix between honest annota-

tors ΣH, with entries [ΣH]m,m′ = σm,m′ ,m,m′ ∈ H has a

low-rank plus diagonal form ΣH = CH + IH = V�V+ IH,
where IH denotes the identity matrix of appropriate dimen-

sion, CH := V�V, and V := [v1, . . . ,vMH ] is a K2 ×M
matrix. Finally, Assumption 2 asserts that rank(CH) = K2.

B. Correlation between honest and adversarial annotators

As mentioned in Sec. II-A the behavior of adversarial

annotators is captured by an unknown joint pmf pA. Despite

pA being unknown, the conditional independence between the

group of adversaries and honest annotators enables charac-

terization of their cross-moments. Based on this conditional

independence [cf. Sec.II-A], the co-occurrence matrix between

an honest annotator m ∈ H and an adversary m′ ∈ A is

Rm,m′ = E[gm(xn)gm′(xn)] = Hmdiag(π)H̃�m′ . (3)

where we have used the law of total probability, the fact

that data are i.i.d., and defined h̃m,k,n := [H̃m]k,n =∑
c−n

Pr(gm(xn) = k|y = c)
∏

j �=n Pr(yj = cj). In addition,

c−n is an N − 1× 1 vector containing {cj}Nj=1 except cn. It

is worth noting that, for the purposes of this work, we are not

interested in estimating H̃m, but are merely employing them

to discover the properties of the annotator agreement matrix.

Then, (3) yields σm,m′ between an honest annotator

m ∈ H and an adversarial one m′ ∈ A as σm,m′ =

tr
(
Hmdiag(π)H̃�m′

)
= v�mũm′ , with vm as defined in Sec.

III-A and ũm′ := vec
(

diag(π)1/2H̃�m′
)

. The agreement

rate between all honest and adversarial annotators is then

captured in the MH×MA matrix CH,A = C�A,H, with entries

[CH,A]m,m′ = v�mũm′ for m ∈ H,m′ ∈ A. Thus, CH,A =
V�Ũ, where Ũ := [ũ1, . . . , ũMA ], and rank(CH,A) ≤ K2.

Bringing it all together, the M × M agreement matrix

between all annotators, honest and adversarial, Σ has the

following block form

Σ = C+ I =

[
CH CH,A
CA,H CA

]
+

[
IH

IA

]
(4)

where the MA × MA matrix CA denotes the correlation

between adversaries, IA is a MA ×MA identity matrix, and

I is a M × M identity matrix. Note that [CH,CH,A]� =

[V�V,V�Ũ]� =
(
V�[V, Ũ]

)�
. Thus, the MH columns of

C corresponding to honest workers will be of rank K2, as long

as rank([V, Ũ]) = K2. Finally, since rank
(
[CH,CH,A]�

) ≤
K2, C is a rank deficient matrix.

IV. IDENTIFYING ADVERSARIES

In this section, we will take advantage of the structure

of the annotator agreement matrix, specifically C [cf. (4)],

in order to develop a method to distinguish honest workers

from adversaries in crowdsourcing. In a nutshell, the proposed

method seeks annotators whose agreement matrix fits the low-

rank model discussed in the previous section. These annotators

are deemed honest, while the rest are considered adversaries.

A. Estimating C

Given the M ×M empirical agreement matrix Σ̂, we can

decouple the diagonal matrix I and the rank deficient matrix

C, using robust principal component analysis (RPCA [1]) or

robust matrix completion (RMC [14]) methods, that is

{Ĉ, Ŝ} =argmin
C,S

‖C‖∗ + λ‖vec(S)‖1 (5)

subject to Ω ◦ Σ̂ = Ω ◦ (C+ S)

where S is a sparse M×M matrix, λ > 0, Ω is a binary M×
M matrix, whose entries are equal to 1 if the corresponding

entry of Σ̂ is observed and 0 otherwise, and ◦ denotes the

Hadamard (element-wise) matrix product. The parameter λ
trades off the low rank of C and the sparsity of S, and here it

is set to λ = 1/
√
αM, where α is the percentage of observed

entries in Σ̂ [1]. As the identity matrix I [cf. (4)] generally

does not adhere to the low rank structure of C, we expect it

to be captured in S. Additionally, S may capture any spurious

correlations between annotators. The optimization problem in

(5) is a convex problem that can be solved using off-the-shelf

solvers, such as CVX [5].

B. Clustering annotators

With Ĉ at hand, we now turn our attention to the task

of detecting adversarial annotators. This task is equivalent to

detecting the honest annotators, by identifying the columns

of C corresponding to honest workers. Recall that, under

Assumption 2 [CH,CH,A]�, will form a low dimensional

subspace of dimension at most K2. This prompts us to look

into subspace clustering approaches, which are designed to

group data drawn from a union of subspaces [19], to segment

the annotators into two groups. In this work, we opt for the

Elastic Net subspace clustering algorithm [22], which solves

the following optimization problem

min
Z
‖Ĉ− ĈZ‖2F + ρ

(
ρ2‖vec(Z)‖1 + 1− ρ2

2
‖Z‖2F

)
, (6)

where Z is a M × M coefficient matrix that captures the

subspace structure of the columns of Ĉ, and ρ, ρ2 > 0. After

obtaining Z from (6), spectral clustering [20] is performed on

|Z|+ |Z�|, with | · | denoting element-wise absolute value, to
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Algorithm 1 Crowdsourcing with adversaries

1: Input: Annotator correlation matrix Σ̂, number of classes

K, ρ.

2: Output: ŷ, estimated annotator groups Ĥ, Â
3: Extract Ĉ from Σ̂ using (5).

4: Cluster annotators by solving (6), obtain two groups of

annotator indices C1, C2.
5: Determine sets of honest Ĥ and adversarial workers Â =
M\ Ĥ using side information [cf. Sec. IV-B].

6: Aggregate labels of adversaries {gm(xn)}Nn=1,m∈Â. De-

note fused labels as {t̂n}Nn=1.

7: Aggregate labels of honest workers and fused adversary

labels {gm(xn)}Nn=1,m∈Ĥ ∪ {t̂n}Nn=1 to form the final

estimated data labels {ŷn}Nn=1.

obtain cluster assignments. Here, ρ2 = 0.95 and ρ is tuned to

find the cluster closest to a rank K2 subspace.

Let C1 and C2 denote the annotator indices corresponding

to the two clusters that resulted from subspace clustering of

Ĉ. In order to categorize the two formed annotator groups

into honest Ĥ and adversarial Â, some additional information

is required. This information may be similar to what most

prior works consider, that is, most annotators (> 50%) are

honest [7], [9], [10]. In such a case, the annotators deemed

as honest are the ones forming the largest group, and are

collected in Ĥ. The annotators deemed as adversaries are

collected in Â = M \ Ĥ. Such an approach can tolerate up

to 0.5M adversaries. Another type of side information, may

be knowledge that one (or more) specific annotator mH is

trusted, or honest. In this case, the set of annotators deemed

as honest is the one that contains the index mH . This type of

side information has the potential to allow for greater numbers

of adversaries if annotators are grouped correctly. Both types

of side information mentioned here will be tested in Sec. V.

C. Aggregating labels

Upon grouping annotators into honest and adversarial the

final step involves aggregating the noisy labels. To extract

any label information that may be present in the adversarial

responses, a two-step heuristic label aggregation approach is

outlined below.

First, responses from annotators deemed adversarial (with

indices in Â) are aggregated using standard crowdsourcing

techniques, e.g. the EM algorithm of [2]. This yields the

aggregated labels {t̂n}Nn=1, with t̂n ∈ {1, . . . ,K}. This step

approximates the unknown pmf of adversaries as a Dawid

and Skene model, and condenses their effect into the esti-

mated t̂n’s. Second, to produce the final aggregated labels

the responses of annotators deemed honest (with indices in

Ĥ) alongside {t̂n}Nn=1, from the first step, are aggregated

using standard crowdsourcing algorithms, to produce the final

estimated labels {ŷn}Nn=1. In order to minimize the effect of

misclassified annotators from the clustering stage, estimated

labels are provided for data that have received a response

from at least K different annotators. The entire algorithm for

detecting adversaries and aggregating labels is tabulated in

Alg. 1.

V. NUMERICAL TESTS

The performance of the proposed algorithm is validated

in this section using synthetic and real datasets. Alg. 1 is

compared against majority voting, denoted as MV, the EM

algorithm of [2], denoted as DS, the matrix completion method

for one-coin models of [11], denoted as PGD, and the state-of-

the-art method for adversarial crowdsourcing of [10], denoted

as MMSR. For these numerical tests, Alg. 1 uses DS at the

aggregation stage. When considering that most annotators are

honest, we will denote our approach as Alg. 1 - H + DS,

whereas when we consider one trusted annotator, we will

denote our approach as Alg. 1 - TA + DS. For Alg. 1 - TA
+ DS one randomly chosen honest worker is deemed trusted.

The parameter ρ of Alg. 1 is selected using grid search [cf.

Sec. IV-B] from the set {1.1, 2, 5, 10, 20, 100, 500, 800, 1000}.
In all cases, DS is initialized using MV. All algorithms are

compared in terms of classification accuracy, that is, the per-

centage of correctly classified data: Accuracy = 1
N

∑
1(ŷn =

yn). For the synthetic data tests, Alg. 1 is also evaluated

on the performance of detecting adversaries, in terms of

sensitivity (a.k.a. true positive rate, or recall) and specificity

(true negative rate) [12], as well as clustering accuracy, that is,

how accurately the groups of annotators are recovered. All al-

gorithms were evaluated using MATLAB, all results represent

the averages of 20 runs, and shaded areas indicate standard

deviation around the average. Adversaries adopt strategies

similar to the ones used in the numerical tests of [10].

Per run, MA = �Mpadv� annotators are randomly selected

to act as adversaries, with padv denoting the percentage of

adversaries. A percentage of pcorr data are randomly selected

to be corrupted by the adversaries. Adversaries provide the

same wrong response for the corrupted data, and for the

remaining 1−pcorr percentage of data they provide the ground-

truth label.

A. Synthetic data

Here, a synthetic dataset with M = 60 annotators, K = 3
classes and N = 5, 000 data points was randomly generated;

labels y were drawn i.i.d. from π = 1/K1, and honest

annotator confusion matrices {Hm} were randomly generated

to satisfy Assumption 1. Using these confusion matrices

honest annotator responses were generated, i.e. if yn = k
gm(xn) is drawn according to the k-th column of Hm. All

annotators (honest and adversarial) provide responses for data

with probability pobs = 0.2. Fig. 1 shows the results for this

synthetic dataset as the percentage of adversaries padv varies.

In this figure, the percentage of corrupted data is pcorr = 0.5.
As the number of adversaries increases, overall classification

performance drops. The classification accuracy DS and PGD
drops quickly to 0.5, whereas MV and MMSR decline more

gracefully, and provide better classification performance than

DS and PGD up until 50% of the annotators are adversaries.
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Fig. 1. Results for a synthetic dataset with varying percentage of adversaries

For up to padv = 0.5, Alg. 1 - H is the more robust of

all algorithms. Impressively Alg. 1 - TA outperforms other

algorithms for most percentages of adversaries, even though

only one annotator is known a priori to be honest. Fig.2

shows results for the same dataset, but now the percentage

of adversaries is fixed padv = 0.3, and the percentage of

corrupted data pcorr varies. As the number of corrupted data

increases, the performance of DS and MV decreases, while

interestingly the performance of MMSR increases after approx-

imately 60% are corrupted. We conjecture that large numbers

of corrupted data, under this adversarial model, enable their

detection, as their corresponding correlation increases. The

performance of Alg. 1 remains almost constant throughout,

with both variants achieving high classification accuracy. In

both scenaria, increasing number of adversaries and increasing

number of corrupted data, adversaries are almost perfectly

detected.

B. Real data

Further tests were conducted on real crowdsourcing

datasets, namely the Bluebird [21] (N = 108,M = 39,K =
2), RTE [15] (N = 800,M = 164,K = 2), and Dog [3]

(N = 807,M = 109,K = 5) datasets. Following the
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Fig. 2. Results for a synthetic dataset with varying percentage of corrupted
data

numerical test strategy of [10], for all datasets, the percentage

of corrupted data is fixed to pcorr = 0.9, and we vary the

number of adversaries. Further, annotators that provided the

same response for all data were removed from the datasets.

Fig. 3 shows the classification accuracy, as the number of

adversaries increases. Adversaries provide responses for data

with probability pobs = 0.3. Trends similar to those of the

synthetic data tests can be observed. MV, DS, and PGD
tolerate very few adversaries before starting to lose accuracy,

in all datasets. MMSR outperforms the non-adversarially robust

methods for approximately up to padv = 0.5. Both variants

of Alg. 1 achieve high classification accuracy, with Alg. 1 -
TA outperforming all other algorithms for the range of padv
considered. Alg. 1 - H performs similarly to Alg. 1 - TA for up

to padv = 0.5, as expected, and exhibits higher classification

accuracy than MMSR in most cases. This is probably due to

the use of the Dawid and Skene model in the derivation of

Alg. 1 instead of the one-coin model used in MMSR.

VI. CONCLUSIONS

This paper investigated crowdsourcing under adversarial

attacks. A subspace clustering based algorithm was developed

to detect adversaries and perform label aggregation, and its

performance was evaluated on synthetic and real data.

Future research will involve theoretical analysis of the

proposed method, alongside algorithms that can handle more

advanced adversaries, enhanced label aggregation methods

in the presence of adversaries, and online variants of the

algorithm to handle streaming annotators and data.
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Fig. 3. Classification results for real crowdsourcing datasets with varying
percentage of adversaries
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