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Abstract—Despite its successes in various machine learning
and data science tasks, crowdsourcing can be susceptible to
attacks from dedicated adversaries. This work investigates the
effects of adversaries on crowdsourced classification, under the
popular Dawid and Skene model. The adversaries are allowed to
deviate arbitrarily from the considered crowdsourcing model,
and may potentially cooperate. To address this scenario, we
develop an approach that leverages the structure of second-order
moments of annotator responses, to identify large numbers of
adversaries, and mitigate their impact on the crowdsourcing
task. The potential of the proposed approach is empirically
demonstrated on synthetic and real crowdsourcing datasets.

Index Terms—Crowdsourcing, Classification, Adversaries, En-
semble learning.

I. INTRODUCTION

Crowdsourcing has emerged as a powerful paradigm for
tackling various machine learning, data mining, and data
science tasks. Crowdsourcing, via services such as Amazon’s
Mechanical Turk [8] enlists inexpensive crowds of human
workers, or annotators, to accomplish any given task. The
focus of much research on crowdsourcing is centered on prop-
erly aggregating the noisy annotator labels, to obtain results
as close to the ground-truth as possible. This is challenging

details and experiments can be found in the long version of
this paper [18]'.

Notation. Unless otherwise noted, lowercase bold letters, x,
denote column vectors, uppercase bold letters, X, represent
matrices, and calligraphic uppercase letters, X', stand for sets.
The (4,7)th entry of matrix X is denoted by [X];;; vec(X)
denotes a vector consisting of the stacked columns of X. The
Frobenius and nuclear norms of a matrix X are denoted by
IX]||7 and ||X]||. respectively. The rank of a matrix X is
denoted by rank(X) and diag(x) denotes a diagonal matrix
with the vector x on its diagonal. tr(X) denotes the trace
of matrix X, that is the sum of the values on its diagonal.
Pr denotes probability, or the probability mass function;
~ denotes “distributed as;” T represents transpose; card(.A)
denotes the cardinality, i.e. the number of elements, of set A;
E[-] denotes expectation, and 1(.A) is the indicator function
for the event A, that takes value 1 when A occurs, and 0
otherwise.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N independent and identi-
cally distributed (i.i.d.) data {z, }_, each belonging to one
of K possible classes with corresponding labels {y,}N_;,

due to the sparsity of annotator responses and the variabil- e.g. y, = k if x, belongs to class k. Class prior proba-
ity in annotator ability and effort. To add insult to injury, bilities are collected in 7« := [my,...,7x|" = [Pr(y, =
crowdsourcing is vulnerable to attacks by determined and 1),...,Pr(y, = K)]'. An ensemble of M annotators or

coordinated adversaries, which provide erroneous responses
aiming to reduce the performance of the overall system, or
cause misclassification of specific data.

This paper puts forth a novel method for detecting arbitrary
adversaries in crowdsourced classification. As a first step,
we first analyze the structure of the correlation matrix of
annotator responses, under the popular Dawid and Skene
model. Afterwards, a subspace clustering-based approach is
developed to split annotators into two groups. Honest and
adversarial annotator groups are then distinguished by utilizing
some additional side information. In this work, two types of
side information are considered: a.) Knowledge of one trusted
annotator, or b.) the assumption that the majority (> 50%)
of annotators are honest. Finally, a heuristic approach to pru-
dently aggregate annotator responses is provided. Compared to
other state-of-the-art approaches, the proposed method is based
on the more general Dawid and Skene model, and can handle
a potentially much larger number of adversaries. Additional

Work in this paper was supported by NSF grants 1901134, 2126052,
2128593 and ARO-STIR grant 00093896.

workers observe {x,}_;, and provide noisy estimates of
labels, with g¢,,(z,) € {1,...,K} denoting the label as-
signed to the n-th datum by annotator . When an annotator
does not provide a response for a datum z,, we encode
this by g, (x,) = 0. Given only the annotator responses
{gm(xn),m = 1,...,M}N_,, crowdsourced classification
seeks to properly aggregate information contained in annotator
responses and estimate the ground-truth labels of the data
y = [ylv' . ’?JN}T-

The Dawid and Skene (DS) model [2] asserts that annotators
have constant behavior and are conditionally independent
given the (unknown) true label of a datum y,, that is their
errors are independent. Note that, this is reminiscent of a
Naive Bayes model, conditioned on the true labels y,. An
annotators response g, (z,) for a datum x,,, depends only on
that datum and only through its label y,,. Further, under the
Dawid and Skene model annotators are characterized by a so-
called confusion matrix, that captures the statistical behavior
of an annotator when presented with a datum from each class.
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For an annotator m the K x K confusion matrix is denoted
by H,,, and has entries Ay, k. := [Hulge = Pr(gm(zn)
kly, = c). Clearly, entries of H,, are non-negative and its
columns sum up to 1. Since responses of different annotators
per datum n are presumed conditionally independent, given the
ground-truth label y,,, the joint pmf of annotator responses for
datum z,, is Pr(g1(zn) = k1,...,90m(2n) = knplyn =¢) =
M M
[Ln=1 Pr(gm(zn) = kmlyn = ) = [Ln=y hmokn -
If annotator confusion matrices and class priors are known,
the label of datum n can be estimated using a maximum

a posteriori (MAP) classifier, as ¢, = argmax logm,. +
ce{l,...,.K}

foil 10g(Am,g,, (z),c) -Where we used the conidi.tional in-
dependence of the annotators, and the monotonicity of the
logarithm. In realistic crowdsourcing scenaria, however, con-
fusion matrices {H,,}*_, and class priors 7 are unknown
and have to be estimated.

A. Crowdsourcing with adversaries

Suppose now, that a subset H C M = {1,..., M}, of
My, := card(#) annotators are honest, and a subset A C M,
of M4 := card(A) are adversaries. The adversaries in A
also observe the data {z,})_; and seek to undermine the
crowdsourcing task. In order to ensure robust estimation of
the ground-truth labels, one has to detect the presence of
these adversaries and take mitigating steps. The following
assumptions hold throughout the rest of the paper:

o Assumption 1. Honest annotators adhere to the Dawid
and Skene model; that is, given the ground-truth label y,,
of a datum z,, the responses of annotators are condi-
tionally independent. Additionally, honest annotators are
better than random.

Assumption 2. The number of honest annotators card(#)
is strictly greater than K2, and they are distinct.
Assumption 3. Adversarial annotators observe {x,}N_;
and deviate arbitrarily from the Dawid and Skene model.

Under the aforementioned assumptions, in this work we
seek to identify adversarial annotators and if possible mitigate
their impact on the crowdsourcing classification task, using
only the available annotator responses.

Assumption 1 is fairly standard in crowdsourcing and en-
ables estimating annotator parameters and label aggregation.
As will be shown later, Assumption 2 is necessary in this
context for distinguishing honest annotators from adversaries.
Further, this assumption also indicates that the proposed
approach can, in principle, tolerate up to M4 = M — K?
adversaries, which depending on M and K, may be much
larger than the M /2 number of adversaries that is allowed
by competing alternatives. Nevertheless, the number of tol-
erated adversaries will depend on the additional information
employed in Sec. IV. Assumption 3 implies that adversaries
take into consideration only the data, and not the responses
of honest annotators. It does not place any further restriction
on the behavior of the adversaries, and suggests that their
behavior is captured by an unknown conditional pmf p 4 :=
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Hivzl Pr <{gm($n) = km,n}mEA {yn' = kn’}»,]:f/=1> Note

here that adversaries are not necessarily conditionally indepen-
dent with each other, and their responses may depend on all
observed data. However, since they only observe the available
data, they are considered conditionally independent from the
honest workers.

B. Prior art

The simplest method for aggregating crowdsourced labels
is majority voting, where the estimated label for a specific
data point is the one most annotators agree on. This however,
assumes that all annotators are of equal ability, which is,
in many cases, unrealistic. The seminal paper of Dawid and
Skene [2] proposed the aforementioned model and introduced
an expectation maximization (EM) algorithm for estimating
annotator confusion matrices and class priors, that is guaran-
teed to converge to a local optimum. Recent spectral methods
use second- and third-order moments of annotator responses to
infer confusion matrices and are often used to initialize the EM
algorithm [6], [17], [23]. Other works, advocate simpler, but
less expressive models, such as the “one-coin” model, where
each annotator is characterized by a single parameter [4]. The
work of [11] considered crowdsourced classification under the
one-coin model as a rank-one matrix completion problem.

Regarding adversarial attacks in crowdsourcing, [13] modi-
fied the EM algorithm of [2] to detect and eliminate spammers
during the label aggregation phase, whereas [16] proposed a
spectral algorithm for detecting spammers before the aggre-
gation phase. In the binary classification setting, [7] proposed
a penalty based algorithm for detecting adversaries, and [9]
considers arbitrary adversaries under the one-coin model. Re-
cently, [10] introduced a rank-1 matrix completion algorithm
for aggregating labels in the presence of adversaries, under
the one-coin model. However, the three aforementioned works
assumed that most annotators (> 50%) are honest. Compared
to current adversarial crowdsourcing approaches, this work
introduces an algorithm that is based on the general Dawid
and Skene model, and can potentially detect a large number
of adversaries.

III. ANNOTATOR CORRELATION

Based on the Dawid and Skene model of Sec. II, we will first
examine the structure of the second-order moments of honest
and adversarial annotator responses. As annotator responses
are categorical variables, the measure of correlation considered
here is the probability of agreement, or agreement rate between
two annotators oy, = Pr(gm(z,) = gm/(xn)),m,m' €
M. For the remainder of this section, we will also assume
without loss of generality, that the first My annotators are
honest, and the remaining are adversarial.

A. Correlation of honest annotators

Let g, (x,) denote the response of annotator m when ob-
serving datum x,,, in “one-hot” format, that is, if g, (z,,) = k
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then g,,,(z,) = ey, where e denotes the canonical K x 1
vector that has a one in its’ k-th entry and zeroes elsewhere.

Invoking the law of total probability, the assumed con-
ditional independence of annotators, and the definitions of
Sec. II, the K x K co-occurrence matrix between annotators
m,m’ € H is [17]

R = Elgm (2)8m (7)) = Hypdiag(m)H,. (1)

From R,, ., the probability of agreement o, ., between
annotators m, m’ € H is

Om,m =t (R m/) = tr (Hmdiag(ﬂ')H;ﬂ)

2
= vec(diag(m)'/?H, ) Tvec(diag(w)'/?H,. ) T

=,,Um/

where we have used the properties of the trace and v, :=
vec(diag(m)'/?H,! ) is a K2 x 1 vector. Eq. 2 in turn implies
that the My x My, agreement matrix between honest annota-
tors Xy, with entries [Xy]m m/ = Om,m,m,m’ € H has a
low-rank plus diagonal form 3y, = Cy + 1y = VTV + 1y,
where Iy denotes the identity matrix of appropriate dimen-
sion, Cy := V'V, and V := [vy,...,vp,,] isa K2 x M
matrix. Finally, Assumption 2 asserts that rank(Cy) = K2.

B. Correlation between honest and adversarial annotators

As mentioned in Sec. II-A the behavior of adversarial
annotators is captured by an unknown joint pmf p 4. Despite
p.4 being unknown, the conditional independence between the
group of adversaries and honest annotators enables charac-
terization of their cross-moments. Based on this conditional
independence [cf. Sec.II-A], the co-occurrence matrix between
an honest annotator m € H and an adversary m’ € A is

Rm,m’ = E[gm(l"rl,)gnl’(l"rl,)] = Hmdlag(ﬂ')ﬁ;’ (3)

where we have used the law of total probability, the fact
that data are ii.d., and defined izmk,n = [I:Im]k.’n =
>, Pr(gm(zn) = kly = ) [],, Pr(y; = ¢;). In addition,
c_p isan N —1 x 1 vector containing {cj}jyzl except ¢,. It
is worth noting that, for the purposes of this work, we are not
interested in estimating H,,, but are merely employing them
to discover the properties of the annotator agreement matrix.

Then, (3) yields oy, between an honest annotator
m € 7 and an adversarial one m’ € A as op =

tr (Hmdiag(n)fl;,) = v, Uy, With v, as defined in Sec.

II-A and 1, := vec (diag(m)/ 2I;Ijn,). The agreement
rate between all honest and adversarial annotators is then
captured in the My x M 4 matrix Cy 4 = C;‘H, with entries
[Cralm,m :~v;ﬁm/ for m € H,m' € A. Thus, Cy 4 =
VU, where U := [ay,...,ur,], and rank(Cy 4) < K2.

Bringing it all together, the M x M agreement matrix
between all annotators, honest and adversarial, 3 has the

Caa

following block form
Iy
& ] @

where the M4 x M4 matrix C4 denotes the correlation
between adversaries, I 4 is a M 4 x M 4 identity matrix, and

Cy

Y=C+1I=
|:CA,H
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Iis a M x M identity matrix. Note that [Cy, Cy 4] "
N N\T

VTV,VTO|T = (VT[V, U]) . Thus, the My, columns of

C corresponding to honest workers will be of rank K 2, as long

as rank([V,U]) = K2. Finally, since rank ([CH, CH,A]T) <

K?, C is a rank deficient matrix.

IV. IDENTIFYING ADVERSARIES

In this section, we will take advantage of the structure
of the annotator agreement matrix, specifically C [cf. (4)],
in order to develop a method to distinguish honest workers
from adversaries in crowdsourcing. In a nutshell, the proposed
method seeks annotators whose agreement matrix fits the low-
rank model discussed in the previous section. These annotators
are deemed honest, while the rest are considered adversaries.

A. Estimating C

Given the M x M empirical agreement matrix f], we can
decouple the diagonal matrix I and the rank deficient matrix
C, using robust principal component analysis (RPCA [1]) or
robust matrix completion (RMC [14]) methods, that is

{C.8} =argmin | C|.. + Avee(S)]1 )

subject to 203 = Qo (C+8)

where S is a sparse M x M matrix, A > 0, €2 is a binary M x
M matrix, whose entries are equal to 1 if the corresponding
entry of 3 is observed and 0 otherwise, and o denotes the
Hadamard (element-wise) matrix product. The parameter A
trades off the low rank of C and the sparsity of S, and here it
is set to A = 1/v/aM, where « is the percentage of observed
entries in 3 [1]. As the identity matrix I [cf. (4)] generally
does not adhere to the low rank structure of C, we expect it
to be captured in S. Additionally, S may capture any spurious
correlations between annotators. The optimization problem in
(5) is a convex problem that can be solved using off-the-shelf
solvers, such as CVX [5].

B. Clustering annotators

With C at hand, we now turn our attention to the task
of detecting adversarial annotators. This task is equivalent to
detecting the honest annotators, by identifying the columns
of C corresponding to honest workers. Recall that, under
Assumption 2 [Cqy, Cyy 4]", will form a low dimensional
subspace of dimension at most /& 2. This prompts us to look
into subspace clustering approaches, which are designed to
group data drawn from a union of subspaces [19], to segment
the annotators into two groups. In this work, we opt for the
Elastic Net subspace clustering algorithm [22], which solves
the following optimization problem

1—
2

P2

wgn € - Gzl + p (mlvec(z)ls + 52 121) . ©
where Z is a M x M coefficient matrix that captures the
subspace structure of the columns of C, and p, po > 0. After
obtaining Z from (6), spectral clustering [20] is performed on
|Z| +|Z 7|, with | - | denoting element-wise absolute value, to
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Algorithm 1 Crowdsourcing with adversaries

1: Input: Annotator correlation matrix ﬁ], number of classes
K, p.

2: Qutput: y, estimated annotator groups 7—1, A

3. Bxtract C from 3 using (5).

4: Cluster annotators by solving (6), obtain two groups of
annotator indices Cq,Cs.

5: Determine sets of honest 2 and adversarial workers A =
M\ A using side information [cf. Sec. IV-B].

6: Aggregate labels of adversaries {g,,(z,)}

R n=1,meA’
note fused labels as {t, }2_;.
7. Aggregate labels of honest workers and fused adversary

labels {gm (zy) nN:LmEﬁ U {t,})_, to form the final

estimated data labels {g,})_;.

De-

obtain cluster assignments. Here, po = 0.95 and p is tuned to
find the cluster closest to a rank K2 subspace.

Let C; and Cy denote the annotator indices corresponding
to the two clusters that resulted from subspace clustering of
C. In order to categorize the two formed annotator groups
into honest A and adversarial A, some additional information
is required. This information may be similar to what most
prior works consider, that is, most annotators (> 50%) are
honest [7], [9], [10]. In such a case, the annotators deemed
as honest are the ones forming the largest group, and are
collected in . The annotators deemed as adversaries are
collected in A = M \7:[ Such an approach can tolerate up
to 0.5M adversaries. Another type of side information, may
be knowledge that one (or more) specific annotator mpg is
trusted, or honest. In this case, the set of annotators deemed
as honest is the one that contains the index m . This type of
side information has the potential to allow for greater numbers
of adversaries if annotators are grouped correctly. Both types
of side information mentioned here will be tested in Sec. V.

C. Aggregating labels

Upon grouping annotators into honest and adversarial the
final step involves aggregating the noisy labels. To extract
any label information that may be present in the adversarial
responses, a two-step heuristic label aggregation approach is
outlined below.

First, responses from annotators deemed adversarial (with
indices in A) are aggregated using standard crowdsourcing
techniques, e.g. the EM algorithm of [2]. This yields the
aggregated labels {f, }\_,, with ¢, € {1,..., K}. This step
approximates the unknown pmf of adversaries as a Dawid
and Skene model, and condenses their effect into the esti-
mated #,’s. Second, to produce the final aggregated labels
the responses of annotators deemed honest (with indices in
H) alongside {f,}N_,, from the first step, are aggregated
using standard crowdsourcing algorithms, to produce the final
estimated labels {7, }2_,. In order to minimize the effect of
misclassified annotators from the clustering stage, estimated
labels are provided for data that have received a response

from at least K different annotators. The entire algorithm for
detecting adversaries and aggregating labels is tabulated in
Alg. 1.

V. NUMERICAL TESTS

The performance of the proposed algorithm is validated
in this section using synthetic and real datasets. Alg. 1 is
compared against majority voting, denoted as MV, the EM
algorithm of [2], denoted as DS, the matrix completion method
for one-coin models of [11], denoted as PGD, and the state-of-
the-art method for adversarial crowdsourcing of [10], denoted
as MMSR. For these numerical tests, Alg. 1 uses DS at the
aggregation stage. When considering that most annotators are
honest, we will denote our approach as Alg. 1 - H + DS,
whereas when we consider one trusted annotator, we will
denote our approach as Alg. I - TA + DS. For Alg. 1 - TA
+ DS one randomly chosen honest worker is deemed trusted.
The parameter p of Alg. 1 is selected using grid search [cf.
Sec. IV-B] from the set {1.1, 2, 5, 10, 20, 100, 500, 800, 1000}.
In all cases, DS is initialized using MV. All algorithms are
compared in terms of classification accuracy, that is, the per-
centage of correctly classified data: Accuracy = 3 > 1(§, =
yn). For the synthetic data tests, Alg. 1 is also evaluated
on the performance of detecting adversaries, in terms of
sensitivity (a.k.a. true positive rate, or recall) and specificity
(true negative rate) [12], as well as clustering accuracy, that is,
how accurately the groups of annotators are recovered. All al-
gorithms were evaluated using MATLAB, all results represent
the averages of 20 runs, and shaded areas indicate standard
deviation around the average. Adversaries adopt strategies
similar to the ones used in the numerical tests of [10].
Per run, M4 = |Mpaav| annotators are randomly selected
to act as adversaries, with p,q, denoting the percentage of
adversaries. A percentage of p.o, data are randomly selected
to be corrupted by the adversaries. Adversaries provide the
same wrong response for the corrupted data, and for the
remaining 1—p¢o,r percentage of data they provide the ground-
truth label.

A. Synthetic data

Here, a synthetic dataset with M/ = 60 annotators, K = 3
classes and N = 5,000 data points was randomly generated;
labels y were drawn iid. from w = 1/K1, and honest
annotator confusion matrices {H,,,} were randomly generated
to satisfy Assumption 1. Using these confusion matrices
honest annotator responses were generated, i.e. if y, = k
gm(2n) is drawn according to the k-th column of H,,. All
annotators (honest and adversarial) provide responses for data
with probability pops = 0.2. Fig. 1 shows the results for this
synthetic dataset as the percentage of adversaries p,q, varies.
In this figure, the percentage of corrupted data is peoyr = 0.5.
As the number of adversaries increases, overall classification
performance drops. The classification accuracy DS and PGD
drops quickly to 0.5, whereas MV and MMSR decline more
gracefully, and provide better classification performance than
DS and PGD up until 50% of the annotators are adversaries.

1376

Authorized licensed use limited to: University of Minnesota. Downloaded on November 17,2022 at 19:08:21 UTC from IEEE Xplore. Restrictions apply.



Alg. I - TA + DS
Alg. 1-H+DS

o
)

= ‘\
g 3
5
g o7
0.6
0.5
Il Il Il Il Il I}
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentage of adversaries
(a) Classification performance
13 «?’?@@ - L /e /)
|
|
|
/
0.8 ,"
|
|
/
/
|
0.6 |
/
/
|
0.4 /"
,* k= Sensitivity - Alg. 1 - H
02!/ —p— Specificity - Alg. 1 - H
’ -C> Sensitivity - Alg. 1 - TA
| Specificity - Alg. 1 - TA
: Clustering Accuracy
[§$ > e - -
01 02 03 04 05 05 d7r 08 dv 1

Percentage of adversaries
(b) Detection performance

Fig. 1. Results for a synthetic dataset with varying percentage of adversaries

For up to p,qy = 0.5, Alg. 1 - H is the more robust of
all algorithms. Impressively Alg. I - TA outperforms other
algorithms for most percentages of adversaries, even though
only one annotator is known a priori to be honest. Fig.2
shows results for the same dataset, but now the percentage
of adversaries is fixed p.qv = 0.3, and the percentage of
corrupted data pco,y varies. As the number of corrupted data
increases, the performance of DS and MV decreases, while
interestingly the performance of MMSR increases after approx-
imately 60% are corrupted. We conjecture that large numbers
of corrupted data, under this adversarial model, enable their
detection, as their corresponding correlation increases. The
performance of Alg. I remains almost constant throughout,
with both variants achieving high classification accuracy. In
both scenaria, increasing number of adversaries and increasing
number of corrupted data, adversaries are almost perfectly

detected.

B. Real data

Further tests were conducted on real crowdsourcing
datasets, namely the Bluebird [21] (N = 108, M = 39, K =
2), RTE [15] (N = 800, M = 164, K = 2), and Dog [3]
(N 807, M 109, K = b) datasets. Following the

1<,
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NI e _X
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O Alg. 1-TA + DS “
Alg. 1 - H + DS s
-X- MMSR A
0.2} <
DS
MV A
-A-PGD
‘ ‘ \ ‘ ‘ s
%1 02 03 04 05 06 07 05 09

Percentage of corrupted data

Fig. 2. Results for a synthetic dataset with varying percentage of corrupted

data

numerical test strategy of [10], for all datasets, the percentage
of corrupted data is fixed to peorr = 0.9, and we vary the
number of adversaries. Further, annotators that provided the
same response for all data were removed from the datasets.
Fig. 3 shows the classification accuracy, as the number of
adversaries increases. Adversaries provide responses for data
with probability pons = 0.3. Trends similar to those of the
synthetic data tests can be observed. MV, DS, and PGD
tolerate very few adversaries before starting to lose accuracy,
in all datasets. MMSR outperforms the non-adversarially robust
methods for approximately up to p,qy = 0.5. Both variants
of Alg. 1 achieve high classification accuracy, with Alg. 1 -
TA outperforming all other algorithms for the range of paqy
considered. Alg. I - H performs similarly to Alg. 1 - TA for up
to paav = 0.5, as expected, and exhibits higher classification
accuracy than MMSR in most cases. This is probably due to
the use of the Dawid and Skene model in the derivation of
Alg. 1 instead of the one-coin model used in MMSR.

VI. CONCLUSIONS

This paper investigated crowdsourcing under adversarial
attacks. A subspace clustering based algorithm was developed
to detect adversaries and perform label aggregation, and its
performance was evaluated on synthetic and real data.

Future research will involve theoretical analysis of the
proposed method, alongside algorithms that can handle more
advanced adversaries, enhanced label aggregation methods
in the presence of adversaries, and online variants of the
algorithm to handle streaming annotators and data.
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Fig. 3. Classification results for real crowdsourcing datasets with varying
percentage of adversaries
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