
Online Graph-Guided Inference Using Ensemble
Gaussian Processes of Egonet Features

Konstantinos D. Polyzos, Qin Lu, and Georgios B. Giannakis

Department of Electrical and Computer Engineering, University of Minnesota, USA

Abstract—Graph-guided semi-supervised learning (SSL) and
inference has emerged as an attractive research field thanks
to its documented impact in a gamut of application domains,
including transportation and power networks, biological, social,
environmental, and financial ones. Distinct from SSL approaches
that yield point estimates of the variables to be inferred, the
present work puts forth a Bayesian interval learning framework
that utilizes Gaussian processes (GPs) to allow for uncertainty
quantification – a key component in safety-critical applications.
An ensemble (E) of GPs is employed to offer an expressive
model of the learning function that is updated incrementally
as nodal observations become available – what caters also for
delay-sensitive settings. For the first time in graph-guided SSL
and inference, egonet features per node are utilized as input to the
EGP learning function to account for higher order interactions
than the one-hop connectivity of each node. Further enhancing
these attributes through random features that encrypt sensitive
information per node offers scalability and privacy for the EGP-
based learning approach. Numerical tests on real and synthetic
datasets corroborate the effectiveness of the novel method.

Index Terms—Gaussian processes, ensemble learning, online
learning, egonet features, semi-supervised learning over graphs

I. INTRODUCTION

In the last decade, graph-guided semi-supervised learning
(SSL) has gained popularity because of its impact in a
number of network science applications, including biological,
social, as well as transportation networks to list a few [6].
Scarcity in nodal samples emanating from privacy concerns
or sampling costs, gives rise to the SSL task that aims at
reconstructing unobserved nodal values based on these limited
nodal observations. For instance, in a social network with
nodes representing users and edges their relations, a user may
be disinclined to reveal private information such as political
beliefs, salary, or age.

Several deterministic SSL approaches capitalize on the
notion of ‘smoothness,’ which intuitively suggests that neigh-
boring nodes should have similar nodal values. Such smooth-
ness is manifested via graph kernels [9], [29], [23], [14],
[13], [12], Gauss-Markov random fields [34], or, low-rank
parametric models [27]. Other existing approaches rely on
‘graph bandlimitedness’ [24], sparsity, or, overcomplete dic-
tionaries [5]. In recent years, graph neural network-based
approaches, which generalize convolution operators to graph-
structured data, have also gained popularity because of their
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appealing performance in certain domains; see, e.g., [7],
[11], [33]. Albeit interesting, the aforementioned approaches
require storing the connectivity patterns of all nodes. To deal
with this limitation, a recent multi-kernel online approach
reconstructs nodal values relying on their one-hop connec-
tivity vectors [26]. The per-node one-hop connectivity vector
reveals relational information between the node itself and
its direct neighbors, which may have limited representational
power, and can compromise prediction performance. In addi-
tion, although scalable in computational and storage demand,
deterministic SSL approaches, including [26], do not quantify
the associated uncertainty, which is instrumental especially in
settings, where safety is a prime concern.

Gaussian processes (GPs) offer a nonparametric Bayesian
model, where the sought learning function is viewed as
random, and can be fully characterized by its probability
density function (pdf) [22]. In the graph-guided SSL context,
GPs have been adopted through graph kernels that hinge on
the entire adjacency matrix; see, e.g. [17], [4], [28], [32],
[31]. These typically batch approaches though require storing
relational information of the entire graph, which may become
prohibitive for large networks. Most recently, an online and
scalable GP development has been devised in [19] that relies
on the per-node one-hop connectivity vector, but does not
account for interactions beyond the single-hop ones.

Contributions. In this work, we put forth a Bayesian graph-
guided SSL approach that relies on GPs and offers extra
uncertainty quantification, which is of paramount importance
in safety-critical applications. Accounting for higher order
interactions compared to the per-node one-hop connectivity
vector adopted in [19], [26], the proposed framework lever-
ages the so-termed egonet features to form the input vector
of the learning function. Although the notion of “egonet” has
been utilized in several graph-related tasks, such as anomaly
detection [2] and community detection [25], this is the first
time egonets are employed in the SSL context. Capitalizing
on random features to effect scalability and preserve privacy,
an ensemble (E) of graph-adaptive GP experts is adopted
to learn a more expressive function incrementally, where
nodal values are predicted and processed in a streaming
fashion to significantly save data storage, especially for larger
networks. Meanwhile, the proposed framework adapts to the
appropriate EGP kernels on-the-fly bypassing the need for a
pre-selected kernel and offline training as in conventional GPs.
Experiments conducted on real and synthetic graph datasets
demonstrate the effectiveness of the advocated EGP approach.
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II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a graph G := {V,A}, where the vertex set
V := {1, . . . , N} collects all N nodes, and the N × N
adjacency matrix A captures the nodal connectivity patterns.
The (n, n′)th entry of A, namely ann′ := A(n, n′), represents
the weighted link connecting nodes n and n′. A real-valued
function or signal on the graph is given by the mapping
f : V → R with fn denoting the true feature value at node
n, which is then mapped to the observed nodal value yn. For
example, fn could represent the annual income or political
alignment of user n in a social network.

Given G and a subset of nodal observations {yn, n ∈ O},
where O collects the indices of measured nodes, SSL aims
at predicting nodal values (or labels) of unobserved nodes
{yn, n ∈ U}, where U := V \ O. This extrapolation task
can be performed either in a typical batch setting, or, in
an online incremental mode, where past observations yn :=
[y1, . . . , yn]> are used to form the predictor ŷn+1, before
the new datum yn+1 becomes available, and subsequently
yn+1 is processed to aid future predictions. Unlike batch
approaches, the incremental scheme significantly saves data
storage especially for large networks, and is well motivated
in delay-sensitive applications, as well as in cases where
the data are non-stationary or adversarially chosen. This
incremental setting has been considered in [26] and [19],
where fn is mapped from node n’s one-hop connectivity
vector an := A(:, n) that can have limited expressiveness.
Accounting for higher-order interactions relative to an, the
present work advocates the novel adoption of the so-termed
“egonet” of each node in order to form the input vector.

A. Nodal egonet features

The egonet of node n is defined as the subgraph that
consists of node n itself, its direct neighbors, and all the
edges connecting them from the original edge set. Let Aego

n

denote the adjacency matrix that describes the egonet of node
n, where all entries concerning nodes that do not belong to
the egonet are set to 0. An illustrative example of a node’s
egonet is provided in Fig. 1. Relying on Aego

n , the per-node
“egonet feature” vector xego

n will be constructed to summarize
characteristics about node n’s egonet. In the present work,
xego
n is chosen to capture the importance of all existing nodes

in the egonet through the notion of “vertex centrality” [8].
The simplest form of vertex centrality is the degree dn of
node n, which is defined as dn :=

∑N
n′=1 Aego

n (n′, n). Further
measuring the significance of a node based on the impact of its
neighbors yields the well-known eigenvector centrality, whose
value for node m is given by

cnEi(m) = α
∑

m′∈Nnm

cnEi(m
′) (1)

where Nn
m contains all existing neighbors of node m in egonet

Aego
n . If the values of eigenvector centrality across all N

nodes are collected in cnEi := [cnEi(1), . . . , cnEi(N)]>, it can
be readily seen that cnEi and α can be obtained by solving

Fig. 1: Egonet of the red node consists of itself, its one-hop
neighbors (blue nodes), and all edges connecting them.

the eigendecomposition problem1 Aego
n cEi = α−1cEi, where

α−1 is selected to be the largest eigenvalue of Aego
n and cnEi

is the associated eigenvector [3]. Note that besides the degree
and the eigenvector centrality, the egonet feature vector xego

n

can comprise additional characteristics of the egonet Aego
n ,

including edge centrality, the clustering coefficient or the
network cohesion, to list a few; refer to [8, Chapter 5] for
an overview of these metrics.

B. GP-based learning over graphs

With the egonet feature vector xego
n at hand, the afore-

mentioned extrapolation task will be addressed via Gaus-
sian processes (GPs) that are attractive because they offer
non-parametric function estimates with quantifiable uncer-
tainty [22]. Different from deterministic approaches, such as
[26], the unknown f is modeled as random with a GP prior as
f ∼ GP(0, κ(xego,x′

ego
)), where κ(·, ·) is a positive-definite

kernel function that measures pairwise similarity between
xego and x′

ego. This means that for any number of inputs
Xn :=

[
xego

1 , . . . ,xego
n

]
, the prior pdf of the n × 1 function

evaluations fn := [f(xego
1 ), . . . , f(xego

n )]> is jointly Gaussian

p(fn; Xn) = N (fn; 0n,Kn) ∀n (2)

where Kn is the n×n covariance matrix whose (i, j)th entry
is [Kn]ij = cov(f(xego

i ), f(xego
j )) := κ(xego

i ,xego
j ).

Nodal observations yn := [y1, . . . , yn]> are related to
the function evaluations fn via the conditional likelihood
p(yn|fn; Xn) =

∏n
n′=1 p(yn′ |f(xego

n′ )), that is presumed
factorable over the per-datum likelihoods p(yn′ |f(xego

n′ )) =
N (yn′ ; f(xego

n′ ), σ2
ε) with known variance σ2

ε . This factor-
ization certainly holds when yn = fn + εn, and noise
εn ∼ N (0, σ2

ε) is uncorrelated across nodes.
The GP prior and Gaussian likelihood yield the following

Gaussian pdf for yn and observation yn+1 of a new node with
egonet features xego

n+1 [22][
yn
yn+1

]
∼N

0n+1,

[
Kn+σ2

εIn kn+1

k>n+1 κ(xego
n+1,x

ego
n+1)+σ2

ε

]
1Targeting at a positive definite matrix, Aego

n A
ego>
n can alternatively be

used to form the eigenvector centrality based egonet feature vector.
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where kn+1 := [κ(xego
1 ,xego

n+1), . . . , κ(xego
n ,xego

n+1)]>, and In
is the n×n identity matrix. Hence, the predictive pdf of yn+1

conditioned on yn is

p(yn+1|yn; Xn+1) = N (yn+1; ŷn+1|n, σ
2
n+1|n)

where bold n marks that all n data are used to form

ŷn+1|n = k>n+1(Kn + σ2
εIn)−1yn (3a)

σ2
n+1|n =κ(xego

n+1,x
ego
n+1)−k>n+1(Kn+σ2

εIn)−1kn+1+σ
2
ε .

(3b)

Note that the mean (3a) provides a point prediction of yn+1

and the variance (3b) quantifies the associated uncertainty of
this prediction.

Albeit interesting, this extrapolation approach requires in-
version of an n × n kernel matrix, which incurs complexity
O(n3), rendering it non-scalable for large values of n. In
addition, the performance of the GP-based predictor in (3a)
relies on the preselected kernel κ, which calls for offline model
training. In the rest of the paper, a scalable approach will
be developed and assessed. Its upshot is that it can adapt
to the appropriate kernel on-the-fly as graph data arrive in a
streaming fashion, thus bypassing the need for both offline
kernel pre-selection and data storage.

III. INCREMENTAL GRAPH-GUIDED EGP LEARNING

Aiming to enrich the function space and adapt kernel(s) on-
the-fly, we employ an ensemble of M GP experts [16], [18],
[15], each relying on a unique kernel, chosen from a known
dictionary K := {κ1, . . . , κM}. With per-node egonet features
as input, each expert m postulates a GP prior on f , denoted
as f |m ∼ GP(0, κm(xego,x′

ego
)), which means that the per-

expert prior pdf of fn is p(fn|m; Xn) = N (fn; 0n,K
m
n ) (cf.

(2)). Considering all M experts, the ensemble (E) GP prior
gives rise to the following Gaussian mixture (GM) pdf

p(fn; Xn) =
M∑
m=1

wmN (fn; 0n,K
m
n ) ,

M∑
m=1

wm = 1 (4)

where the weights {wm}Mm=1 (wm ∈ [0, 1]) can be viewed
as probabilities capturing the significance of the GP experts
in the EGP meta-learner. Considering an incremental setting,
where nodal observations arrive in a streaming fashion, these
weights are adapted as wmn := Pr(m|yn; Xn).

In the remainder of this section, we introduce our EGP
approach to incremental graph-guided learning, where each
GP expert is endowed with scalability using an approximate
parametric so-termed random feature model.

A. Random feature approximation for scalability

Existing scalable GP-based approaches rely on structured
approximants of the kernel matrix; see, e.g., [30], [10]. In
this work, each expert m leverages a shift-invariant kernel
κm(x,x′) to construct a low-rank approximant of Km

n . If
κ̄m := κm/σ2

θm denotes the standardized version of κm with

σ2
θm such that κ̄m(0) = 1, then the inverse Fourier transform

of κ̄m yields

κ̄m(x,x′) = κ̄m(x− x′) =

∫
πmκ̄ (v)ejv

>(x−x′)dv

:= Eπmκ̄
[
ejv

>(x−x′)
]

(5)

where πmκ̄ is the power spectral density, which is normalized
in order to integrate to 1, so that it can be viewed as a
pdf. Upon drawing D vectors {vmi }Di=1 independently from
πmκ̄ , κ̄m(x,x′) can be approximated by the sample average
ˇ̄κm(x,x′) = D−1

∑D
i=1 cos(vm>i (x− x′)), where the imag-

inary part of (5) vanishes because κ̄m is real [21].
Let us now define the 2D× 1 random feature (RF) vector

φmv (x) := (6)
1√
D

[
sin(vm>1 x), cos(vm>1 x), . . . , sin(vm>D x), cos(vm>D x)

]>
based on which ˇ̄κm can be re-written as ˇ̄κm(x,x′) =
φm>v (x)φmv (x′), and hence each expert m will rely on
the random linear approximant f̌ that obeys the generative
parametric model

p(f̌(xego)|θm,m) = δ(f̌(xego)− φm>v (xego)θm) (7a)

θm ∼ N (θ; 02D, σ
2
θmI2D) . (7b)

It can be readily seen that the prior pdf of f̌ is now
p(̌fn|m; Xn) = N (̌fn; 0n, Ǩ

m
n ), where Ǩm

n = σ2
θmΦm

n Φm>
n

(with Φm
n :=

[
φmv (xego

1 ),. . .,φmv (xego
n )
]>

) has rank 2D when
n > 2D, which renders it a low-rank approximant of Km

n .
Based on the parametric form of f̌ in (7a), the per-expert

likelihood is also parameterized by θm as

p(yn|θm,m; xego
n ) = N (yn;φ>v (xego

n )θm, σ2
ε) (8)

which, along with the Gaussian prior (7b), yield the posterior

p(θm|yn,m; Xn) = N (θm; θ̂mn ,Σ
m
n ) (9)

that is subsequently utilized by expert m to form her/his
own prediction. Next, we will show how incremental learning
updates {θ̂mn ,Σm

n }m, and {wmn }m in a data-adaptive fashion,
as each new node is considered by our SSL setup.

B. Incremental learning with prediction and correction

Different from [19], the novel graph-guided EGP approach
here relies on the per-node egonet features instead of the one-
hop connectivity pattern. Abbreviated hereafter as “GradEGP-
ego,” it proceeds in two steps per node, namely prediction and
correction.
Prediction. Before taking into account the nodal value of node
n+ 1, expert m constructs the RF vector φmv (xego

n+1) via (6),
and predicts the pdf of yn+1 via the known posterior (9) as

p(yn+1|yn,m; Xn+1)

=

∫
p(yn+1|θm,m; xego

n+1)p(θm|yn,m; Xn)dθm

= N (yn+1; ŷmn+1|n, (σ
m
n+1|n)2) (10)

where the predicted mean and variance are
ŷmn+1|n = φm>v (xego

n+1)θ̂mn (11a)

(σmn+1|n)2 = φm>v (xego
n+1)Σm

n φmv (xego
n+1) + σ2

ε . (11b)
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Fig. 2: nMSE performance on (a) “Synthetic SBM;” and (b) “Network delay” datasets.

Fig. 3: Uncertainty quantification performance of GradEGP on (a) “Synthetic SBM;” and (b) “Network delay” datasets. Blue
lines denote the prediction, black lines the true values, and red lines ±σ confidence intervals.

Accounting for all M experts, the EGP meta-learner predicts
the ensemble pdf of yn+1, which is given by the GM

p(yn+1|yn; Xn+1)=
M∑
m=1

p(yn+1|yn,m; Xn+1)p(m|yn; Xn)

=
M∑
m=1

wmn N (yn+1; ŷmn+1|n, (σ
m
n+1|n)2) . (12)

Thus, the minimum mean-square error (MMSE) predictor of
yn+1 along with its corresponding variance are given by

ŷn+1|n =

M∑
m=1

wmn ŷ
m
n+1|n (13a)

σ2
n+1|n =

M∑
m=1

wmn [(σmn+1|n)2+(ŷn+1|n−ŷmn+1|n)2] . (13b)

Note that the subscript “n+1|n” differs from “n+1|n” in the
left-hand side of (3), in the sense that the batch GP predictor
requires storing the past observations contained in yn.

Correction. With the arrival of yn+1, expert m updates the
weight wmn via Bayes’ rule as

wmn+1 = Pr(m|yn+1; Xn+1)=
wmn p(yn+1|yn,m; Xn+1)

p(yn+1|yn; Xn+1)

=
wmn N (yn+1; ŷmn+1|n, (σ

m
n+1|n)2)∑M

m′=1 w
m′
n N (yn+1; ŷm

′

n+1|n, (σ
m′

n+1|n)2)
. (14)

Also, the posterior of θm is propagated via Bayes’ rule

p(θm|yn+1,m;Xn+1)=
p(θm|yn,m;Xn)p(yn+1|θm,m; xego

n+1)

p(yn+1|yn,m; Xn+1)

= N (θm; θ̂mn+1,Σ
m
n+1) (15)

where
θ̂mn+1 = θ̂mn +(σmn+1|n)−2Σm

n φmv (xego
n+1)(yn+1−ŷmn+1|n)

Σm
n+1 = Σm

n −(σmn+1|n)−2Σm
n φmv (xego

n+1)φm>v (xego
n+1)Σm

n .

With per-node egonet features available, the proposed
GradEGP-ego incurs per-iteration complexity O(M((2D)2+
2DN)), which means that besides offering a richer function
space, GradEGP-ego is also scalable.
Remark (Privacy consideration). The per-expert prediction
and correction steps do not entail direct access to the per-node
egonet feature vector xego

n , but instead capitalize on the RF
vector which can be viewed as an encryption of the original
input vector. Hence, similar to [26], the advocated GradEGP-
ego preserves privacy of nodal information in the graph.

IV. NUMERICAL TESTS

In order to assess the merits of the novel GradEGP-ego, we
conducted tests using both synthetic and real datasets, whose
parameters are given next.
Synthetic dataset. A synthetic graph with N = 100 nodes is
constructed based on the stochastic block model consisting of
C = 10 communities, as in e.g., [20]. The targeted nodal
values are given by the eigenvector corresponding to the
lowest nonzero eigenvalue of the graph Laplacian matrix.
Network delay dataset. The measured delays of N = 70
paths are considered, each connecting two of 9 end-nodes on
the Internet2backbone [1]. A symmetric graph is constructed
based on the common links between any two paths, and the
sought nodal values are delays experienced on these paths.

The proposed GradEGP-ego approach is compared with its
precursor GradEGP in [19] that capitalizes on the per-node
one-hop connectivity vector, as well as with three kernel-based
approaches, namely GradRaker [26], kernel ridge regression
(KRR) [23], and the conventional GP (cf. (3)). The per-node
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egonet feature vector is formed by the node’s degree and the
eigenvector centrality vector cnEi obtained from Aego>

n Aego
n , as

dicussed in Sec. II-A. Furthermore, we combined our per-node
egonet features with Gradraker and vanilla GP, to obtain what
we abbreviate as “Gradraker-ego” and “GP-ego,” respectively.
For all RF-based approaches, we select D = 50, and the
kernel dictionary consisting of 11 radial basis functions with
characteristic length scales {10k}6k=−4. For the vanilla GP,
we used the best-performing kernel from the EGP prior.

As figure of merit, we used the normalized mean-square
error nMSEn := n−1

∑n
n′=1(yn′ − ŷn′|n′−1)2/s2

y , where s2
y

denotes the sample variance of yN . As evidenced by Fig. 2,
the novel GradEGP-ego consistently outperforms all other
alternatives in terms of nMSE, which demonstrates the impact
of leveraging higher-order interactions via egonet features.
It is worth mentioning that the use of egonet features can
also boost the prediction performance of plain-vanilla GP and
Gradraker as corroborated by Fig. 2a). Further, the superior
performance of EGP based approaches, namely GradEGP-
ego and GradEGP, over the batch conventional single-expert
GP highlights the benefits of ensembles that can efficiently
combine the GP experts by properly adjusting their weights
for each prediction. Besides prediction of the nodal values, the
novel GradEGP-ego framework additionally offers uncertainty
quantification through σ confidence intervals as depicted in
Fig. 3, where it is intuitive that the prediction uncertainty
deteriorates as the number of observations increases.

V. CONCLUSIONS

An ensemble of Gaussian process models was considered
in this contribution for graph-guided semi-supervised learning
with quantifiable uncertainty. For the first time, the per-node
egonet features were adopted as input to the learning function
in order to markedly boost the prediction performance by
accounting for higher-order node interactions. Leveraging
random features for scalability and privacy, an incremental
setting was developed to predict the sought nodal values
in a streaming fashion, significantly saving data storage.
Numerical tests showcased the merits of the proposed method.
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