
This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 1013–1018 |  1013

Cite this: Soft Matter, 2022,

18, 1013

Understanding topological defects in fluidized dry
active nematics†

Bryce Palmer,‡a Sheng Chen, ‡ab Patrick Govan, c Wen Yand and
Tong Gao *ae

Dense assemblies of self-propelling rods (SPRs) may exhibit fascinating collective behaviors and

anomalous physical properties that are far away from equilibrium. Using large-scale Brownian dynamics

simulations, we investigate the dynamics of disclination defects in 2D fluidized swarming motions of

dense dry SPRs (i.e., without hydrodynamic effects) that form notable local positional topological

structures that are reminiscent of smectic order. We find the deformations of smectic-like rod layers can

create unique polar structures that lead to slow translations and rotations of �1/2-order defects, which

are fundamentally different from the fast streaming defect motions observed in wet active matter. We

measure and characterize the statistical properties of topological defects and reveal their connections

with the coherent structures. Furthermore, we construct a bottom-up active-liquid-crystal model to

analyze the instability of polar lanes, which effectively leads to defect formation between interlocked

polar lanes and serves as the origin of the large-scale swarming motions.

1 Introduction

Collective dynamics of densely packed, self-propelling rods
(SPRs), such as swarming of bacteria1–3 and motor-driven
biopolymers,4,5 can exhibit anomalous out-of-equilibrium phy-
sical properties. Of particular interest is understanding the so-
called ‘‘active nematics’’ that feature fascinating orientational
orders such as motile disclination defects.6–8 In addition, the
polar motions of aggregating SPRs may lead to eminent posi-
tional orders by breaking translational symmetry.9–11 Com-
pared to orientational orders that typically have myriad
shapes and sizes, positional orders manifest as simple layered
structures (e.g., smectic order) with a thickness of approxi-
mately one rod length. They are seldom found in wet systems
wherein hydrodynamic effects bend and break alignment
structures4,12 and suppress phase transitions towards forming
positional structures. Intriguing positional orders and struc-
tures are more often seen in dry SPR assemblies such as gliding

bacteria colonies,13–15 where the short-range driving forces
arise from friction, collision, or thermal fluctuations.

While understanding orientational orders and their non-
equilibrium transitions have been the focus of extensive stu-
dies, far less is known about positional orders. Quasi-steady,
smectic-like patterns were created using phenomenological
(e.g., Vicsek-type) continuum models;16–20 however, these
models cannot accurately resolve the nonlinear, anisotropic
many-body collisions that essentially drive the phase transi-
tions. On the other hand, direct particle simulations can reveal
microscopic details, but performing large-scale simulations
often requires scalable algorithms that simultaneously resolve
collisions and thermal fluctuations. Their high computational
cost significantly prevents particle simulations from being used
in cross-scale studies. Although several simulation studies of
dense SPRs captured the formation of various intriguing orien-
tational and positional orders,21–25 there is a lack of physical
understanding of their formation mechanisms and their pre-
cise connections with the emergent coherent structures.

In this work, we combine large-scale Brownian dynamics
(BD) simulations and continuum modeling to uncover the
dynamics and behaviors of topological defects in a ‘‘fluidized’’
state of active nematics composed of dense SPRs that undergo
persistent swarming motions. Moreover, we capture the multi-
scale origin of the unstable dynamics and their quantitative
relations between the defect dynamics. The paper is organized
as follows. Section 2 is dedicated to the discrete particle
simulations of SPRs in a periodic domain where we system-
atically explore the parameter space to examine the longtime
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dynamics. We identify and present typical defect dynamics,
together with particle statistics. In Section 3, we perform
stability analysis for a mean-field continuummodel to illustrate
the underlying mechanisms for polar-lane break up which
eventually leads to defect formation. Finally, we summarize
and draw conclusions in Section 4.

2 BD particle simulation

In BD particle simulations, we consider each rod to have a
spherocylinder shape with length c and width b, and specified
constant speed u0 in the orientation direction p. To characterize
the rod activity, here we define a dimensionless Péclet number

Pe ¼
u0Zk‘

kBT
(Z8 is the parallel drag coefficient). We initially

distribute a monolayer of N = 105–106 rods homogeneously
across across a 200c � 200c planar domain with periodic
boundary conditions. As rods start moving and interact, we
solve the normal contact forces between frictionless rod-rod
collisions at each time step using a geometrical constraint
optimization method (see details in ref. 26), without employing
any phenomenological (e.g., Lennard-Jones or Weeks–Chand-
ler–Andersen) potentials.

We have explored the parameter space by systematically
varying Pe, the aspect ratio g = c/b, and the area fraction
f = N/L2(pb2/4 + cb) and successfully resolved various types of
collective motions, ranging from isolated clusters and homo-
geneous chaos to stable crystals.21,27,28 Among them, the intri-
guing fluidized states (see Movie S1, ESI†) are robustly captured
for dense SPRs (60% o f o 85%) with a finite aspect ratio
(6 o g o 30) and high activity (Pe 4 20), independent of the
initial configurations (e.g., either isotropic or nematically
aligned). As highlighted in Fig. 1(a), we observe that the local
positional structures exhibit both Smectic A and Smectic C-like
orders, respectively corresponding to straight band and curved
arch that are formed by interconnected rod layers with a
thickness approximately one rod length. Meanwhile, aggrega-
tion of SPRs can cause large density fluctuations, leading to
depleted zones with only a few isolated rods while the rod
concentration in dense clusters remains approximately
uniform.

Next, we reconstruct velocity u, director n, and polarity q
vector fields on a uniform grid from the discrete particle data
using the k-nearest neighbors algorithm29. We have success-
fully captured various types of defect motions, such as genera-
tion and annihilation, across the computation domain. The
zoom-in views in Fig. 1(b and c) exhibit details of nematic and
polar structures associated with the motile �1/2-order disclina-
tion defects with sizes of multiple rod lengths, much larger
than dislocations which are typically about one rod length. As
shown in panels (b–d), the director field reveals a comet-like
+1/2-order defect which typically carries curly bands that wrap
around straight layers in the middle; while an inverted-Y
shaped �1/2-order defect shown in panels (e–g) often sits
between two adjacent polar groups that slide relative to each

other. Moreover, panels(c) and (f) clearly show that the velocity
vector field (green arrows) is highly correlated with the polarity
field (black arrows), suggesting that the SPRs move approxi-
mately in the local alignment direction.

It has been well understood that in wet matter, defect
motions may lead to coherent structures in the ambient flows.
For example, a ‘‘streaming’’ +1/2-order defect, once born, will
induce a localized jet in the direction of defect motion, between
two oppositely signed vortices.7,12,15,30,31 Nevertheless, as illu-
strated by the schematic on the right of Fig. 1(a), without
hydrodynamic coupling with fluid flows, dry �1/2-order defects
may keep rotating as the rod layers located along the symmetry
axes (marked by dashed grey lines) continuously tilt when being
pushed by the surrounding polar bands or clusters, creating
swirling velocity fields similar to Fig. 1(c and f). Indeed, as two
examples shown in Fig. 2(a and b) where defect annihilation
occurs respectively in the bulk and at the boundary, we clearly
see rotational motions of both �1/2-order defects when track-
ing the movements of defect symmetry axes (marked by yellow
lines). Also, intriguingly, Movies S2 and S3 (ESI†) show that
defect annihilation ends when the rod layers in the middle are
eventually ‘‘released’’ due to uncurling of the traveling arch.

We then compute the global statistical properties of the
defects and the corresponding velocity and orientation fields.
As illustrated in Fig. 3(a), we identify �1/2 defects via discrete

Fig. 1 BD simulations reveal rich topological structures (Pe = 68, f = 78%,
g = 10). (a) Examples of curved arches and depleted zones in a 30c � 15c
sub-domain. Schematics on the right: velocity distributions around �1/2-
order defects. (b–g) Zoom-in views of a +1/2 – (b–d) and a �1/2 – order
(e–g) defect. (c and f) Polarity q (black) and velocity u (green) vector fields
superposed on the polar-order parameter |q|. (d and g) Nematic director
field n superposed on the orientational-order parameter.
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contour integral of the director field.32,33 By tracking their
trajectories (marked by light green and purple lines) and

symmetry axes (marked by dark green and purple lines), we
obtain the distributions of the magnitude of defects’ transla-
tional (V) and rotational (O) velocities as shown in panel (b). We
find that, in contrast to the fast streaming behaviors in wet
systems, here the +1/2-order defect moves as slowly as the �1/2-
order defect, with the most probable speed only about 0.3 (the
single rod moving speed is 1). The +1/2-order defects only move
and rotate slightly faster than the � 1/2 �order ones because
the polar, commet-like shape is less stable than the inverted-Y
shape with its threefold symmetry. In panel (c), we calculate the
two-point correlation function g(r) for the defect core positions
for the (+1/2, +1/2), (�1/2, �1/2), and (+1/2, �1/2) pairs. It is
seen that the defects of the same charge are statistically
separated by greater than 10 rod lengths, while the
oppositely-charged pairs may stay much closer due to genera-
tion and annihilation, as suggested by the peak around r = 2 on
the g(+1/2,�1/2) curve.

Furthermore, we examine the statistical measurements of
the swarming motions in the assembly and seek their connec-
tions with the topological defects. As shown in Fig. 3(d) where
horizontally-aligned rods are distributed homogeneously at
t = 0, defects start forming immediately after the system’s mean

enstropy oh i ¼ 1

2
r� uj j2

� �
(h i represents a spatial average)

reaches the maximum, corresponding to the strong shearing
motions between interlocked polar lanes (see Movie S1, ESI†).
At quasi-steady states when t 4 0.6, both the defect numbers
and hoi plateau. The spatial correlation functions for the
ensemble-averaged center-of-mass (C.O.M.) velocity (Cuu) and
orientation (Cpp) of rods show a cut-off dimensionless length
around 10, suggesting that the characteristic size of bulk ‘‘flow’’
is consistent with the separation distance between defects of
the same charge shown in panel(c). In addition, in panel(f) we
calculate the spectrums for the ensemble-averaged kinetic
energy (Ek) and enstropy (Eo). Interestingly, on the length scale
2p/k close to the single-rod length, both measurements exhibit
an asymptotic scaling close to k�4, which hence suggests a
similar trend for Ek but a faster decay for Eo when compared to
those reported in 2D wet systems.34,35

To unveil the origins of the quasi-steady fluidized motions
and to find their connections with the defect dynamics, we take
a close look at the defect generation process. As shown in
Fig. 4(a and b), generation of a pair of �1/2-order defects
typically occurs in between two oppositely oriented polar lanes
with nematically aligned SPRs and move approximately unidir-
ectionally. The process starts as a few misaligned rod layers
rotate to become almost perpendicular to the lane and then
propagate away, which was also mentioned by ref. 22. The
moving front of this group keeps pushing the neighboring lane
to form a curly arch, while the bottom continuously merges
with the SPRs that run in the opposite direction, which even-
tually leads to the formation of a pair of �1/2-order defects (see
Movie S4, ESI†). The two newly-born defects will start rotating
after separation, seemingly being ripped apart by the shearing
motions between the two lanes.

Fig. 2 Sequential snapshots of nematic director fields highlight defects’
rotational motions (Pe = 68, f = 78%, g = 10). (a) Annihilation of a pair of
�1/2-order defects. (b) Annihilation of a +1/2-order defect at the bound-
ary. The yellow lines mark the defects’ symmetry axes.

Fig. 3 Global statistical measurements (Pe = 68, f = 78%, g = 10).
(a) Defect trajectories superposed on the director field. (b) Rotational (O)
and translational (V) velocity magnitude distribution of �1/2-order defects.
(c) Two-point correlation function for defect core positions. (d) Time
evolution of mean enstrophy hoi and defect numbers. (e) Rod C.O.M.
velocity (Cuu) and orientation (Cpp) spatial correlation functions. (f) Kinetic-
energy (Ek) and enstropy (Eo) spectrums.
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3 Continuum model

Evidently, the observed defect dynamics originate from the
deformation and breakup of polar lanes. To gain further
quantitative understandings, we construct a minimal conti-
nuum dry model for interactions between a polar lane wherein
rods are sharply aligned in direction q1 and another small polar
cluster pointing in direction q2, where q1,2 are two unit vectors
(see schematic in Fig. 5(a)). We emphasize that although this
phenomena is somewhat reminiscent of the classical Kelvin–
Helmholtz instability occurring between two fluids, here we are
not intended to make connections to any phenomenological
hydrodynamic models.

To begin with, we employ a probability distribution function
(PDF) C(x, p, t) in terms of the rod’s C.O.M. position x and
orientation p. The PDF satisfies the Smoluchowski equation36

@C
@t

þr � _xCð Þ þ rp � _pCð Þ ¼ 0 (1)

where r is the regular spacial gradient operator and rp =
(I � pp)�q/qp is the orientational gradient operator on the unit
sphere. The two conformational fluxes :

x and :
p using local

slender-body theory as

:
x = p � dr(lnC), (2)

:
p = �rpUs, (3)

where d is an effectively translational diffusion coefficient. Here
Us = �z(D: pp) is the so-called Maier–Saupe potential that
effectively produces a mean-field torque to enforce local align-
ment, with z a strength coefficient and D ¼

Ð
pppCdp the

second-moment tensor37. Eqn (2) and (3) state that an indivi-
dual SPR can move along the p-direction when subject to
thermal fluctuations and can simultaneously rotate to align
with the neighboring rods via steric interactions. Note that we
also neglect the rotational diffusion by assuming the steric
interactions dominate the rod’s rotation in dense assemblies.

We assume a bi-directional form of C for a main group of
sharply aligned rods pointing in the q1-direction and a small
polar cluster pointing in the q2-direction, such that

C(x, p, t) = c1(x, t)d(p � q1) + c2(x, t)d(p � q2) (4)

where c1 4 c2, and d is a Dirac delta function. Hence the Maier–
Saupe potential can be written as

D = c1q1q1 + c2q2q2. (5)

which is then substituted into eqn (3) to calculate the zeroth
and the first moment of eqn (1). After performing integration
by parts on two hemispheres in the p space, it is straightfor-
ward to derive the coarse-grained equations for concentration
c1,2 and polarity vector q1,2

38

@c1
@t

þr � c1q1ð Þ ¼ dDc1; (6)

@c2
@t

þr � c2q2ð Þ ¼ dDc2; (7)

@q1
@t

þ q1 � rq1 � 2zc2 q1 � q2ð Þ q2 � q1 q1 � q2ð Þ½ � ¼ dDq1; (8)

@q2
@t

þ q2 � rq2 � 2zc1 q1 � q2ð Þ q1 � q2 q1 � q2ð Þ½ � ¼ dDq2: (9)

To perform linear stability analysis, we adopt asymptotic
expansions about the base-state equilibrium solutions, denoted
by superscript ‘‘(0)’’,

c1;2 ¼ c
ð0Þ
1;2 þ ec

0
1;2; (10)

q1;2 ¼ q
ð0Þ
1;2 þ eq

0
1;2; (11)

Fig. 4 Sequential snapshots of (a) the director field and (b) rendered
images of rod distribution in a polar lane that bends and break (Pe = 68,
f = 78%, g = 10).

Fig. 5 The real part of the growth rate Re(s1) as a function of the wave-
angle y (a) and wavenumber k (b) for the perpendicular case (case I), when
varying z and fixing c(0)1 = 0.9, c(0)2 = 0.1, d = 0.005. In panel (b), we fix the
wave-angle yc = 3p/4.
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where perturbation variables are denoted by superscript ‘‘0’’.
At the zeroth order O(1), it is easy show that the admissible
equilibrium solutions are

c(0)1 = 1 � c(0)2 = const, q(0)1 = êx, q(0)2 = êy, (case I) (12)

and

c(0)1 = 1 � c(0)2 = const, q(0)1 = êx, q(0)2 = �êx, (case II) (13)

At the order of O(e), we adopt a plane-wave decomposition and
express the disturbance solutions as c0(x, t) = c̃(k) exp(ik�x + st)
and q0(x, t) = q̃(k) exp(ik�x + rt) with wave-vector k = k(cos y,
sin y) and wave-angle y A [0, p) measured with respect to q(0)1 .
This leads to a linear system from which we can solve the
eigenvalue problems to obtain the real part of the growth rate
Re(r1) for the polar lane. For case I where two near-
perpendicular groups interact, the growth rate being analyti-
cally derived as

s1¼z� ikffiffiffi
2

p sin yþp
4

� �
�dk2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� ikffiffiffi

2
p sin yþp

4

� �� �2
þk2

2
sin 2yð Þþ2izk cos yð Þcð0Þ1 þsin yð Þcð0Þ2

h is
:

(14)

As shown in Fig. 5, we fix q(0)1 = êx to be horizontal and d = 0.005,
and then vary z over a wide range (O(10�1) � O(102)). We find
instabilities can occur (i.e., Re(s1) 4 0) when q(0)2 points
vertically, which is consistent with the numerical observations
in Fig. 4, where the small group always moves approximately
perpendicular to the polar lane. As shown in Fig. 5(a), the real
part Re(s1) of eqn (14) reaches the maximum value at the
critical wave-angle yc = 3p/4. When fixing y = yc, the corres-
ponding Re(s1) � k curves are shown panel (b). When z is
specified, the instability appears to be of finite-wavelength,
with the maximum Re(s1) occurring at a critical wavenumber
kc 4 0. When choosing z close to 0.3 (measured for dense
passive Brownian rods with a finite aspect ratio39), we measure
kc to be approximately 1 (i.e., one rod length) with the char-
acteristic length scale cc = 2p/kc about 6, close to the measured
characteristic length about 10 in Fig. 3(c and e). Moreover, the
model predicts that instabilities can be significantly sup-
pressed when z - 0 or z - N. Since zmeasures the combined
effects of aspect ratio g and concentration f,37,39 our analysis
essentially indicates that such fluidized states won’t occur for
dilute and short-rod assemblies where the dynamics tend to be
more homogeneous, nor do they happen for densely-packed
assemblies of high aspect-ratio SPRs wherein polar lanes are
much more stable, corresponding to large kc and hence cc { 1.
These findings agree with numerical results from previous
studies.23,27 For case II where two groups are approximately
anti-parallel, the growth rate can be derived as

s1¼�z�dk2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�k2cos2 yð Þ�2ikz c

ð0Þ
1 �c

ð0Þ
2

� �
cos yð Þ

r
; (15)

which directly shows Re(s1) r 0, and hence suggests that the
cases of two anti-parallel groups are always stable.

4 Conclusion

To summarize, we use large-scale BD simulations to resolve
fluidized swarming motions of dense dry SPR assemblies. We
demonstrate that, even without hydrodynamic effects, local
interactions of active smectic-like structures may deform the
orientation field in a long-range fashion, leading to rich defect
dynamics and large-scale swarming motions. In particular, we
find the �1/2-order defects in dry matter are born between two
relative sliding polar lanes and exhibit significant rotations
afterwards, owing to their unique polar structures. We expect
these findings to provide new insights into the multiscale
origin of dynamics in non-equilibrium soft condensed systems.
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