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Abstract

A quantitative framework is developed to assess the resilience of an electric infrastructure system, including the
contributions of temporary service systems. The framework incorporates five dimensions of resilience — robustness,
resourcefulness, redundancy, rapidity, and readjust-ability — under various setups for supplementary generation. It
differentiates and prioritizes affected end-users. Notional examples illustrate the framework. The formula-based
framework demonstrates the resilience contribution of temporary distributed generation (DG) technologies, and shows
how differentiating among affected end-users supports the assessment of system resilience.
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1. Introduction

Recent natural disasters have shown the need for
stable energy service, particularly for modern
economies such as the United States [1]. The U.S.
electric infrastructure system contains more than 6,413
power plants providing service through approximately
six million miles of high-voltage transmission lines
extending across the United States and serving 300
million customers [2,3]. The energy infrastructure
system supports the other critical infrastructures; if
energy service is disrupted, other critical
infrastructures, including transportation, food, and
water, are affected [4]. Between 2003 and 2012, severe
weather caused 679 power outages nationwide with
annual costs between $18 billion and $33 billion [5].
Cyber attack is also a rising threat to the electric
infrastructure system [6].

The concept of resilience addresses system
failures with a focus on failure prevention and
recovery efforts. Resilience engineering (RE) is a
paradigm for system safety that focuses on providing
the capacity to proactively manage an incident, while
continuously monitoring system performance [7]. The
degree of system safety can change continuously over
time [8]. Furthermore, the RE views the safety of a
system as a characteristic of how the system performs
with a focus on the whole system, rather than its
individual components [9]. As RE has developed over
time, its focus is now on overall system performance,
rather than on properties of system components
[10,11]. The view of resilience in a system has shifted
from maintaining or regaining a stable state to the
ability of a system to sustain its required operation,
with continuous adaptation and adjustment of its
function prior, during, and following an incident [12].

To do so, a metric system is needed for the system
manager to evaluate the resilience capacity of a system,
and to compare among available options. From the
perspective of a variety of disciplines, the aggregated
properties of a resilient infrastructure design includes
one or more of the following abilities: the ability to
anticipate, to absorb changes, to resist, to adapt, to
recover (quickly), to reduce the chance of failure, to
provide minimum service while under stress, to
provide minimum service during changes in the
service level, and to sustain a shock [13-16].
Developing a resilient infrastructure system with a
desirable level of preparedness requires a metric
system that quantifies its ability to react to stresses that
challenge its performance.

Resilience metrics enable system designers and
strategy developers to evaluate and compare the
resilience capability of a system through monitoring
the performance level at different points in time, pre-
and post-incident. Bruneau et al. offered a broad
definition of resilience covering actions that reduce
losses from an incident, including the effects of
mitigation and recovery [17]. Then they proposed a
deterministic static metric that measures the loss of
service performance in the case of hazardous incidents
(i.e., earthquake) [18]. Henry and Ramirez-Marquez
present a time-dependent resilience metric that defines
resilience as the ratio of the performance recovery over
the total loss due to a disruptive incident [18].
Cimellaro et al. proposed a resilience metric based on
quality of service with a weighting factor that
represents the importance of pre- and post-incident
service qualities and control time [19].

While proposed metrics focus on the primary
system as the service provider, there are often ancillary
systems that provide service after an incident and
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during the recovery process. Emergency electricity
generators, which in this paper hereafter are called
distributed generation (DG) systems, act as temporary
energy-generation systems and substitute for grid
electricity. Beyond conventional emergency diesel
generators, the emergence of decentralized renewable
electricity generating systems, such as rooftop
photovoltaic systems, provide an alternative for grid
electricity [20,21]. The recent diffusion of electric
vehicles provides an additional option for emergency
source of electricity to a building or grid s[22]. These
temporary services have not been counted in previous
resilience metric systems [23].

Previous resilience metrics focus on overall
system performance ([17,18,24-26]). In practice, the
electrical infrastructure system operator may
recognize that critical end-users, such as hospitals,
transportation fuel-distribution systems, or financial
hub systems have needs and resilience requirements
that differ from those of routine end-users, such as
residential sectors. Generalizing affected end-users
into a single category limits the evaluation of
resilience to an overall average.

Here we develop a resilience assessment
framework for electric infrastructure systems, capable
of comparing different generation technology setups,
and differentiating among users affected by an
incident. Doing so enables us to include the resilience
contribution of temporary electricity generators, and to
evaluate the resilience of a system customized for its
end-user categories. The framework separately
evaluates five dimensions of resilience [13,17,27]:
robustness, redundancy, resourcefulness, rapidity, and
readjust-ability. The remainder of the paper is
organized as follows: Section 2 explains the concept
of resilience and the proposed formulations for a
resilience assessment, which we use to define the
framework in section 3. Section 4 illustrates the use of
our framework via two notional examples. Section 5
compares the results of the framework with a
previously proposed metric and discusses resilience
assessment with regard to end-users.

2. Methodological Background: State of
Knowledge Pertaining to Resilience
Assessment Models and Measurements

The core resilience objective of systems is to
withstand turbulence and rapidly return to a near pre-
incident service level [13,14,26,28]. The term
resilience was first proposed to describe the dynamic
capability of an ecological system to remain in
equilibrium under stress [29]. Resilience is defined as
the ability of a system to resist, absorb, and adapt to
disruptions and return to normal functionalities [13],
and resilience of the electric infrastructure system is a
part of the broader domain of engineered system

resilience [30]. System resilience can be addressed
from a range of perspectives, including socio-
ecological resilience [31], organizational resilience)
[32], and in the context of the broader psychological
and management aspects of system resilience [33].
This article focuses on providing a quantitative
framework for an infrastructure system. Youn et al.
defined engineering resilience as the sum of reliability
(i.e., the passive survival rate) and restoration (i.e., the
proactive survival rate) capacity. Bruneau et al.
expressed four dimensions of resilience for an
infrastructure system [17]: 1- robustness (the ability of
a system to prevent the dissemination of damage
during a hazardous incident), 2- rapidity (the speed of
a system to return to its original state), 3-
resourcefulness (the capability of a system to respond
to a hazardous incident and mobilize needed
resources/services), and 4- redundancy (the ability of
a system to provide service using other resources in
case of an incident). Later, the authors proposed a
deterministic static metric for the resilience that
examines loss of the community service in the case of
a hazardous incident (e.g., earthquake) [16].

Henry and Ramirez-Marquez developed a time
dependent metric that quantifies resilience as the ratio
of system performance to its performance loss [18].
They also proposed three main system states: 1-steady
state (before an incident occurs), 2-disrupted state
(after the disruptive incident occurs until the system
reaches a new steady state), and 3-stable recovered
state. Their proposed resilience metric does not
differentiate the end-user and incident types.
Cimellaro et al. proposed a resilience metric based on
the quality of service with a weighting factor that
represents the importance of pre- and post-incident
service qualities and control time [34]. Francis and
Bekera based their dynamic measurement metric on
three resilience capacities: 1-capacity of a system to
absorb the impact, 2-the ability of a system to adjust
to an undesirable situation by adapting, and 3-the
speed of recovery for [25].

While the above resilience assessment methods
are useful, they fall short in some areas. One is the
exclusion of emergency electricity generators capable
of providing temporary service to end-users. Another
is the limited evaluation of the capability of a system
to adapt, which we name readjust-ability. Third is the
limited categorization of end-users. To address these
factors, we present a quantitative resilience framework
tailored to an electric infrastructure system with
temporary electricity generators and a range of end-
user types.

3. Proposed Framework

Our framework starts with the resilience concepts
and frameworks discussed earlier and extends them to



address vulnerability differences across end-users and
the impacts of incident types on system performance.
The time dimension, emphasized in previous
frameworks and the DHS protection plan, is an
important factor in evaluating resilience in the
proposed model [1,35].

We divide end-users into three categories
(priority, urgent, and routine). In Figure 1, the three
performance-time charts represent the performance
levels for each end-user category. Performance level is
defined as the percentage of end-users who have
access to the service. The DG systems provide service
during normal system operation or may provide
service only after an incident and during the recovery
process. We denote the electricity provided by DG
systems as Fpg in Figure 1.

Performance-level, the y-axis in Figure 1, is
defined as the fraction of electricity demand delivered
to the customers. Henry and Ramirez-Marquez
suggested dividing the performance-time chart into
multiple time segments, to enhance the expression of
the resilience and recovery process [18]. We divide the
timeframe into two main phases: pre- and post-
incident. An incident is an event that causes damage
to a system and the service level drops from the pre-
incident performance level (F;) to a lower disrupted
level (Fg4). Unlike previous models, our model has an
additional input value, representing the service
provided by DG systems (Fpg) after the incident.
Because the DG systems maintain a minimum post-
incident service level (Fpg), the affected elements can
still function to some level, even when the primary
system is down. We express the post-incident recovery
process with respect to each end-user group. In Figure
1, ty tyand t,represent the incremental recovery
durations for the priority, urgent, and routine demand
groups, respectively.

3.1. Demand Types

We define Routine consumption as all electricity
demand not recognized as critical infrastructure
according to Presidential Policy Directive 21 [36]; this
consists mainly of residential demand. Within critical
infrastructures, as defined by the U.S. Department of
Homeland and Security [37], we define Priority
sectors as end-users that require continuous access to
electricity to avoid a major loss of life or economic
impacts, for instance to prevent a nuclear meltdown or
to operate medical equipment (Table 1).

We define the Urgent sectors as those that require
electric power to operate and avoid major loss of life
or economic impact, but they can tolerate interruptions
or intermittent power. For instance, water services
may be delivered for only a portion of the day without
a significant loss of life while electricity infrastructure
is in a recovery mode. Depending on the specific

infrastructure system of a given location, the
categorization may vary. For instance, in a financial
hub, the financial services infrastructure may have a
higher priority than the defense industrial base.

Table 1 — Demand-type categorization.

System component

Priority Urgent Routine
Nuclear Reactors, Water and . .
. Wastewater Residential
Materials, and Waste
Systems
Emergency Services Transportation Other
Systems
£ | Healthcare and Food and
S | Public Health Agriculture
% Energy Chemical
g Defence Industrial Information
o | Base Technology
a L Government
2 | Communications .
5 Facilities
= Commercial
ﬁ” Faf:i'lities
Critical
Manufacturing
Financial
Services
Dams

To reflect the consequence of an incident on each
demand type, we separate the performance-time chart
into three charts. The cumulative performance level of
these three charts represents the system performance
level. In Figure 1, the provided service for each user
group is illustrated by F?: priority; F*: urgent,; and F’:
routine, and the overall system performance level is
the sum. Although these three charts represent pre- and
post-incident performance in a general format, an
incident may only impact one or two demand
categories. An example of such a case is a targeted
cyber-attack against the wrgent demand category.
Alternatively, an incident such as a natural disaster
may have a similar negative impact on all demand
categories. After an incident, and during the recovery
process, a system may allocate all of its resources to
one end-user category at each time-frame (i.e., first
urgent category and then priority category), or the
resources may be distributed among all three end-user
types. The three key points in the performance-time
chart (Figure 1) are:

Fstart (Fs) - the stable system performance level just
before the incident,

Fpisrupted (Fa) - the stable performance level
immediately after the incident (disrupted), and




Frinisn (Fg) - the performance level at the new
stable level. The recovery reaches its final stage,
and the system satisfies the required service.

For each end-user group, three control points Fq,
Fy, and F3 define when the recovery process
completes for the first, second, and third end-user
types, respectively. The presented order of the three
control points (F1, F, and F3) illustrated in Figure 1
may differ by system or incident. After the Tohoku
earthquake and tsunami in Japan in 2011 the recovery
process of the Daiichi nuclear power plant (priority
category) took much longer than the other demand
categories [38].

While in Figure 1, the system performance-levels
(control points), are connected with lines to provide a
visual aid, in a real-world scenario, system
performance is not necessarily linear. This does not
affect the computation of the resilience capacity,
because in the proposed framework the values of
system performance at each control point are required
as the input variables. This approach is also employed
in the previous studies discussed in the literature
review section.

3.2. Resilience Metric

We apply the concept of resilience with four
dimensions: robustness, redundancy, resourcefulness,
and rapidity plus the adaptation capacity of the system
to its new environment, post-incident, which we call
the readjust-ability capacity. The performance levels
and the associated time-stamps are the input variables
for the resilience measurement formulas. Based on
which demand category the DG systems serve, their
capacity is divided into priority (F (p”l%lty )), urgent (
FOrgent)y "and routine (FOREne)).

Let R1 represent robustness, R2 redundancy, R3
resourcefulness, R4 rapidity, and R5 readjust-ability,
we define the resilience (R) as the weighted average of
these five resiliency dimensions (Equation (1)). The
weights can provide system-specific requirements. If
all resilience dimensions are equally important, the
weighted average can be then simplified to an average
of the five dimensions. All five resilience dimensions
are unit-less and bound to zero. The upper bound of all
five dimensions (robustness, resourcefulness, and
rapidity) is 1.

The system robustness (R1), presented by
Equation (2), is a characteristic of a system during the
incident, and it defines how much a system can absorb
turbulence and continue to deliver stable service.
Throughout an incident, a robust system absorbs all
the negative shocks and maintain an optimum service
level, at which Fs = Fz and R1 = 1. To formulate the
robustness capacity of a system, we modified the
sigmoid function — a monotonic function — to bound
between 0 and 1.

Equation (3) defines the system redundancy
capacity (R2) as the ratio of DG systems’ capacity
(temporarily resources) to the grid capacity (primary
system during normal operation). The capacity of the
DG system can range between zero and total
consumption of end-users in each category. We also
assume the service (electricity) provided by the DG
system has the same characteristics as the primary
service provided by the electric infrastructure system.
This assumption is necessary to have a unitless value
for R2, bounded between 0 and 1.

The third dimension of the resilience capacity,
resourcefulness (R3), is computed based on how,
during the recovery process, the system mobilizes its
resources to serve the end-users’ needed-service based
on their priority category (end-user type) (Equation
(4)). A resourceful system, through its recovery
process, mobilizes all of its resources to restore the
required services for the end-users at the highest
priority category. The formulation defines the resource
mobilization capability as the ability of the system to
mobilize its resources for recovery according to the
priority list. If end-users in the first category (priority)
are not impacted by the mishap (F§ = Ff), R31should
be excluded from the calculation of resourcefulness
capacity. The same rule governs for the exclusion of R
3, in the case of the second category (urgent) does not
experience a power outage (Fs=FY). The upper
boundary of the resourcefulness capacity (R3 =1)
represents a system that allocates its resources to
recover the service for the end-users at the highest
priority list. The lower bound of the resourcefulness
capacity (R3 =0) represents a system with poor
resource  allocation and inefficient service
mobilization.
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reaches the system performance-level prior to the
incident, for that group of users. We define slack time
ts separately for each end-user type, as the maximum
allowance time for a system to perform recovery
process, without major consequence due to lack of the
electricity power. The time scale Yy defines how
sensitive the end-users in each category are to power
loss. We explain the effect of time-scale (y) on the
rapidity capacity in the sensitivity analysis section.
The coefficient in the weighted average is defined
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based on the end-users in each category. Some factors
to determine this weight coefficient are fatalities,
financial loss, and negative environmental impacts.
The upper bound of the rapidity capacity represents a
well-prepared system with a rapid inflow of resources.
Such a system has an instant recovery. A slower initial
recovery shows that the system lacks optimal recovery
actions, and if the recovery process takes twice the
slack time or longer, the system does not have a
rapidity capacity. An intense and widespread
hazardous incident may delay the start of the recovery
and create a shortage of support of recovery services.
An example is the Nisqually Earthquake in the
Olympia-Seattle area [39].

The last dimension of the resilience capacity,
readjust-ability (F5), represents the capacity of a
system to plan, prepare, and implement an adaptation
plan after an incident occurs. The readjust-ability
capacity shows the capability of the system to adapt in
a situation in which it cannot absorb a stress, and is a
complementary process to the mitigation [40].

3.3. Sensitivity analysis

To determine the impact of each variable in the
proposed metric of the resilience in a system, we run a
sensitivity analysis on our proposed metric.
Immediately prior to the incident, the system
performance is set to 100% as the reference point.
Figure 2 illustrates a summary of the ranges of the first
three capacity factors, with respect to change in input
variables. Assuming prior to the incident the system
has a non-zero performance level, a case of blackout
represents no robustness capacity. At the upper bound,
if the system can absorb the shock from an incident
without deviating from its original performance level,
the robustness capacity is 100%. The proposed
formulation does not suggest a one-to-one relation
between proportion of power lost and robustness. This
is aligned with the concept of resilience, that is to
design a system with some level of resistance to a
mishap but avoid over spending money and workforce
to resist against any mishaps. At the upper bound, the
system will penalize less if it fails to provide electricity
to only a small fraction of end-users. At the lower
boundary, in which the system provides service to a
low number of end-users, the proposed formulation
suggests the system has almost no robustness capacity.

The sensitivity assessment for redundancy, based
on the assumption the electricity provided by the DG
systems is a perfect substitute for grid electricity, is
linear with a one-to-one relation of the sources of
electricity. This model includes DG systems that
generate reliable and steady electricity during the
recovery process. This can be achieved by coupling
PV systems with a storage system, or for diesel

generators adequate fuel provided by reserve fuel
tanks.

Resourcefulness is at its highest level (R3=1)
when all the required resources for conducting the
recovery process are allocated to end-users at the
highest category. At the lower boundaries, a system
allocates most of its resources for the recovery of its
lower priorities end-users.

1

Robustness (R1)
(=] (=1} (=] (=]
to o~ o oo

o

0 10 20 30 40 50 60 70 80 90 100
System performance post-incident (F ) - Fs = 100

Redundancy (R2)

e e 2 2 =
[ - [+ [ (=1
(=] (=} < =] =}

g
=3
S

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

F/Fpe: Ratio of service provided by the temporary systems to
the primary system.

Resourcefulness (R3)

o o o o =
[ ® o
(=) o o (=) o

o
=3
=]

0% 10% 20% 30% 40% 350% 60% 70% 80% 90% 100%
Ratio of the aggregated performance gained by end-user categories at the
lower priority list to the gained performance of the highest ranked end-
user category.

Figure 2 - Sensitivity analysis: robustness, resourcefulness,
and redundancy.

Readjust-ability value depends on the ratio of
performance-level after the recovery process finish to
its value prior to a major incident. If the performance-
level prior to an incident be at 100%, the maximum
value of Readjust-ability capacity is 1, in which the
recovery brings back the system to 100% level. In a
special case, if the electric infrastructure system
performs above 100% level at the end of the recovery
process, defining a case in which either the recovery
process consists of the repair of the existing system
and expansion of service to new areas and end users,
Readjust-ability capacity (R5) can reach a value higher
than 1. However, in such a case the new system does



not have the same characteristics, such as end-user
types and population and service coverage. as the
original system. To overcome this issue, any
expansion of the system during a recovery process is
excluded from the analysis, and the fifth dimension of
the resilience (R5) is also bounded to one. However,
the initial performance-level cannot be zero, meaning
the grid prior to an incident should provide electricity
to some end-users. Figure 3 illustrates how changes in
performance-level after the recovery (F), affect the
Readjust-ability capacity.

Finally, in Figure 4 the sensitivity analysis of the
rapidity dimension shows if a system recovers
immediately, it has the highest level of rapidity
capacity (R4 = 1). While the slack time is defined as
the allowable time to recover, the recovery process
time equal to the slack time results in rapidity capacity
equal to 50%. This means if a recovery process takes
as much time as the maximum allowable pre-defined
allowable recovery duration, the R4=0.5, our system
provides an average recovery capacity. If the recovery
process lasts two times the slack time or longer, the
system has low rapidity capacity.

Readjust-ability
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Figure 3 - Sensitivity analysis: readjust-ability.
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The time scale, ., controls the slope of the
sensitivity curve, and is defined based on the
vulnerability of end-users to power outage. The scale
factor provides an additional customization capability
in the proposed formulation. It differentiates among
different proportion of end-users in each category.
Refer to section 3.1 (Demand types) each end-user
category consists of a range of end-users. Considering
two regions, each with equal total nominal electricity
consumptions in the urgent category (Table 1).
Assume in one region, a high proportion of
consumption be allocated to the food and agricultural
industries, such as rural areas dominated by
agricultural industries, and in the other region a higher
proportion of consumption be allocated to financial
industries, such as a business district in an urban area.
These two regions, despite having same total
electricity consumption, differ in their sensitivity to
the duration of power-loss (recovery duration). A
lower scale factor (J=0.5) represents a system with
end-users who are more vulnerable to power loss. In
this scenario, if the recovery time exceeds the slack
time, end-users are not able to tolerate and the rapidity
capacity drops to zero. Scalar factor with higher values
(0=2) represents a scenario, in which the end-users
can tolerate a longer recovery duration, without
financial or fatality consequences.

In all cases, the upper bound of the Rapidity
dimension is bounded to one, expressing a system with
immediate recovery. Such a system provides an instant
recovery and brings the system performance-level
back to the pre-incident level.



4. Notional examples

Through two notional examples, we demonstrate
the proposed framework. The first notional example,
the blackout example, shows how the framework
captures the contribution of DG systems to improve
the resilience capacity. The result is compared with a
previously proposed metric system. The second
notional example, targeted end-users example,
illustrates how separating end-users by type enables
more specific investigation of the resilience capacity
of a system.

While these are fictional examples, the aftermath
of recent hurricanes shows there exists a potential risk
of blackout in large scale in the U.S.

Figure 5 illustrates hurricane Florence’s path and
the impacted areas, which caused a power outage for
890,000 customers in 2017 [41].

4.1. Blackout example

Table 2 illustrates three scenarios of the first
example. The initial system performance level in all
scenarios is set to 100%, which indicates the grid
system provides electricity service to all end-users.
Scenario blackout can be a representative of urban
areas in the coastal line, which are directly impacted
by hurricane Florence. Scenario partial blackout can
demonstrate those areas with RADII 34 (

Figure 5) in which power outage affects only a
portion of end-users.

The first scenario (Blackout) in this example
represents a complete interruption of power generation
and distribution. There is no active DG system
available in this scenario. While the second scenario
also represents a power blackout, there are several DG
systems that are spread equally across the end-user
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categories, which generate electricity with the
accumulated generation equal to 30% of the total
initial needed electricity. The third scenario represents
a partial blackout, in which the grid system loses 70%
of its performance level with no active DG systems.
The recovery process in the two blackout scenarios is
assumed to be similar. The recovery process in the
partial blackout scenario, compared with the first two
scenarios, takes 30% less time.

Table 2 — Notional blackout-example scenarios.

Scenarios
1 11 11T
Blackout + Partial
Blackout DG systems Blackout
P st 100% 100% 70%
0ss
DG 0% 30% 0%
systems*
* capacity as the % of primary system capacity

The remaining input variables are provided in the
Appendix 1. We assume the recovery process in the
partial blackout is 20% faster than the complete
blackout scenario. In this example, we make the
following simplifying assumptions:

- In all three scenarios, the system after the
recovery process returns to 100% performance-
level.

- The weighted factors for all the computation are
equal to 1.

- The capacity of DG systems is equal among the
end-users.
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Figure 5 - Hurricane Florence and impacted areas.
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Figure 6 — Results: blackout example.

We develop an application (Toolkit for Resilience
Measurement: TIM) to facilitate the computation of
the resilience and its dimensions (Appendix II). The
TIM software was developed as an enhancement to the
proposed metric system, and facilitate the computation
of the resilience capacity of a system. This tool uses
only the explained framework and formulation to
generate the results. Employing the TIM, we compute
the results for each scenario. Figure 6 illustrates the
calculated resilience capacities. The blackout scenario
shows the poorest resilience capacity, although the
system shows some level of resiliency. This is due to
a fast recovery process and ability to recover 100%
and provide electricity to all end-users when the
recovery process is complete.

The results of the second scenario show how the
DG systems, by providing electricity up to 30% of the
capacity of the grid, can improve resilience capacity
by 10%. However, the DG systems only increase the
redundancy dimension and have no effect on the other
dimensions. Unlike the first two scenarios in which the
system shows no Robustness capacity (blackout), the
system under the third scenario (partial blackout)
shows some level of Robustness. The resilience
capacity of the system in the third scenario is slightly
less than the second scenario; even though the system
has some level of Robustness and recovers faster than
the second scenario.

The fatality and cost impact of power failures adds
another angle to the resilience assessment of a system.
To address this, we introduce weight factors for each
end-user groups and each resilience dimension. These
weight factors can be calculated based on the results
from a lifecycle cost analysis of both system
components and consequences of a power outage.

A comparison between the method presented by
Francis and Bekera (2014), and the method developed
here is shown in Table 3. In the case of a blackout,
even for a short time, the proposed metric provides
informative results by computing the resilience
dimensions (7able 3). In addition to presenting a
metric to assess the resilience capacity of a system,
Francis and Bekera propose a probabilistic approach
to compute the probability of hurricane occurrence,
which prior to computing the resilience dimensions
can also be applied to the framework proposed in this
study.

Table 3 — Results: comparison between metric
frameworks.

Resilience Capacity
Blackout + Partial

Blackout DG systems Blackout
Propoged 100% 100% 70%
metric
Francis and 0 9 7
Bekera [25] 0% 0% >

4.2. Incident-based example

Not only should an electric infrastructure system
be enhanced with a level of resilience against natural
disasters, but also it needs to be resilient against
focused incidents with high intensity and small
effective range. The second notional example
demonstrates how separating the end-users by type
results in an informative assessment of resilience for a
targeted incident. In this example, two scenarios are
compared: 1- a targeted incident which impacts the
priority end-user category with minimal damage to
end-users in the other categories, and 2- scattered
incidents which damage all types of end-users. In this
example, we assume the share of end-user
consumption out of total grid capacity is 20% for
priority, 40% for urgent and 40% for routine
categories.

Table 4 — Notional incident-based scenarios.

Scenarios

T Targeted Scattered

ype incident incident
Priority 100% 25%
Power Urgent 12.5% 25%
outage Routine 25% 50%
DG Priority% 50% 50%
systems* Urgent 50% 50%
Routine 20% 20%

* capacity as the % of the consumption in each category

In the targeted incident scenario, the incident



causes complete power outage for the priority end-
users, and the DG systems provide up to 50% of the
required electricity to the end-users in this category. In
this scenario, a small percentage of other end-users,
mainly those adjacent to the incident, lose power. In
the second scenario, scattered incidents, a partial
power outage occurs for all customers. The DG
systems have the same capacity in both scenarios.
Table 4 outlines the power outage DG systems’
capacity for both scenarios.

While the power outage for each end-user category
is not similar, the power outage of the grid system in
both systems is equal to 35% (Table 5). If a framework
only computes the resilience capacity based on the
system performance level, the results for the
robustness dimension will be equal for both scenarios.

Table 5 — System power outage: incident based
example.

Scenarios

Type Targeted Scattered

incident incident
Consumption | Priority% 20% 20%
asa Urgent 40% 40%
proportion of | p e 40% 40%

grid capacity

Power Priority% 20% 5%
outage as a Urgent 5% 10%
proportion of Routine 10% 20%
grid capacity Sum 35% 35%

To illustrate application of the framework, we
make some assumptions for this example. In the
targeted scenario, we assume the system will partially
recover up to 90% in the priority category due to the
high intensity of the incident. In case of a high
intensity incident, inability to conduct the recovery in
the contaminated areas may prevent the recovery
process to bring the system performance-level back to
its pre-incident level. We assume the recovery process
for the other two categories, urgent and routine, starts
at the same time as the priority category. Appendix 11
provides a detailed list of input variables for this
example.

The scattered scenario represents a range of
random incidents in which power outage spreads
across all end-users. This scenario can represent a
natural disaster such as Hurricane Maria. In 2017,

Hurricane Maria caused the largest blackout in the U.S.

history, leaving more than 1.5 million residents in
Puerto Rico without power [42,43]. In this example,
we applied weight factors, according to the end-user
categories: priority = 3, urgent =2, and routine =1. In
a real world scenario, the weight factors could be
developed from of a life cycle cost analysis and risk
assessment.

For consistency between the two scenarios, the
recovery process time is calculated based on a similar
rate of recovery per unit of time for each end-user type
(Table 6). In the targeted-incident scenario, the
recovery processes for all end-users start at a same
time after the incident. The recovery process in the
second scenario is a consecutive process based on the
prioritization of end-users by type. The total recovery
process time in the first scenario is 40 (units of time),
because the recovery process is started at the same
time, it is equal to the longest recovery process. The
recovery process time in the second scenario is 30
(units of time), the sum the recovery processes for each
end-user category. Appendix I presents the inputs in
this scenario.

Table 6 — Recovery rate.

End-user category

Priority Urgent Routine
Rate

(unit of time per

1% recovery of 2 ! 05

grid capacity)

Recovery time (unit of time)

Targeted incident 40 5 5
Scattered incident 10 10 10

Employing the TIM, we compute the resilience
capacities of the two scenarios. Figure 7 illustrates the
results. The system under the scattered incident shows
a higher resilience capacity. This is due to a
combination of factors. The targeted-incident scenario
has a lowest robustness capacity. The higher weight-
factor for the priority end-users magnifies the
importance of this category in the computation of
resilience dimensions. Both scenarios have alike DG
capacity, which results in equal redundancy capacity
in both scenarios. The resourcefulness capacity in the
targeted-incident scenario is much lower than the
scattered-incident scenario, because the system
allocate its resources to the recovery process of all
end-users concurrently. In a real-world scenario, this
may slow down the rate of recovery, which we ignored
in this example. The lower rapidity capacity in the
targeted-incident example is due to the higher
recovery time for the priority end-users. The readjust-
ability capacity in the targeted scenario is less than 1,
because the system could not reach a 100%
performance level at the end of the recovery process.
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Figure 7 - Results — incident-based example.

Employing the previously proposed metrics of
resilience, the resilience capacity of both scenarios
would have a similar result. This is because in both
scenarios the system loses 35% of its capacity. Also,
while the overall recovery time in the targeted-incident
scenario is 30% higher than the scattered-incident
scenario, the low slack-time minimizes the impact of
this difference on the results of the rapidity capacity.

Employing the proposed framework provides
insight into the resilience of the system. The low
resilience score in the targeted-incident scenario may
lead the decision makers to provide higher capacity
dedicated emergency generators a for the priority end-
users, in addition to an onside repair facility to boost
the recovery process. Furthermore, a micro smart-grid
system enhanced with damage detection features can
improve the rapidity and resourcefulness capacities. In
the scattered-incident scenario, the system shows a
low redundancy capacity. The adoption of EVs and PV
systems provides potential for increasing alternative
electricity generation after the incident and during the
Tecovery process.

5. Conclusion

The electric infrastructure system faces many
natural and man-made threats. To maintain a stable
flow of service, electric infrastructure must be resilient
and able to reduce its vulnerability to hazardous
incidents. This paper develops a quantitative method
of examining the resilience capacity of an electric
infrastructure system that includes ancillary service
providers and different customer types. Through two

examples, we show how the proposed framework
evaluates the resilience capacity. The proposed
framework allows policy makers and system designers
to evaluate and improve the resilience capacity of an
electric infrastructure system based on system specific
characteristics.

Evaluation of the resilience capacity is one step
toward improving resilience. Additional steps can
evaluate how each component of the system can
contribute to improving the resilience capacity. This
study introduces new avenues to improve resilience
capacity through the adoption of decentralized
renewable technologies such as PV systems. Future
work can consider extension of this approach to
additional infrastructure systems, and to broader
system contexts.. Furthermore, a complementary life-
cycle analysis has a merit in the resilience engineering
process, and expands the scope of the resilience
assessment framework. From the management
perspective, the first step of improving the resilience
capacity of a system is to measure the current state of
the system and define a goal for the desired resilience
capacity according to the needs of stakeholders. The
proposed framework provides a means to measure and
evaluate the resilience capacity of a system at each
point in time. Application experience and further
studies can illustrate how the resilience goals can be
defined, and propose actionable plans to achieve those
goals.
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Appendix I

Input variables: blackout example

The following table represent the input variables for the first example.

. Scenario
Description E“:::I:lesel Variables Blackout Blackout+ Partial
¥ ' DG systems  Blackout
priority Fp 100% 100% 100%
Performance level pre-incident urgent F& 100% 100% 100%
routine FJ 100% 100% 100%
Capacity of DG systems as a Foo 0 30% 0
percentage of the F,
Performance level after priority F¢ 0 0 30%
incident before the recovery urgent Fq" 0 0 30%
process routine Fsf 0 0 30%
< aT p 0 0 0
Performance level after the ﬁi g:;:y E“ }88;2 }88;2 }880;2
recovery process routine Fy 100% 100% 100%
Time scale factor 0 1 1 1
priority Aty 8 8 8
Slack time urgent Aty 24 24 24
routine Aty 120 120 120
priority Aty 6 6 4.8
Recovery duration urgent Aty 18 18 14.4
routine Aty 168 168 134.4
Input variables: incident-based example
The following table represent the input variables for the second example.
. End-user . Scenarios
Description type Variables Targeted incident  Scattered incident
] priority Fp 100% 100%
f:ﬁ;’;ﬁme level pre- urgent F® 100% 100%
routine FS 100% 100%
Capacity of DG systems as priority FDGE 503/0 SOE/O
a percentage of the F urgent Fpg >0% >0%
routine Fpo! 20% 20%
Performance level after priority Fqf 0% 75%
incident before the urgent Fg& 87.5% 75%
recovery process routine Fd& 75% 50%
] priority F& 90% 100%
g}eg‘i'gggf; Il)izi:sﬂe' urgent F® 100% 100%
routine P 100% 100%
Time scale factor O 2 2
priority ts1 10 10
Slack time urgent tsm 24 24
routine t5m 48 48
priority Aty 40 10
Recovery duration urgent Aty 5 10
routine Atm 5 10
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Appendix II - TIM application

To facilitate the computation of resilience, we developed the TIM (Toolkit for Resilience
Measurement) application. The proposed framework requires computation of five dimensions of
resilience for a system with 35 inputs. The TIM application only employs the proposed formulation to

compute the resilience capacity. A detailed explanation of each formula and input variables are presented

in section 3. TIM is a stand-alone executable application that is developed in two versions for Windows
and Maclintosh operating systems. Both versions shares a similar user interface (Figure II- 1).

To run TIM, there is no need to pre-install any other application. Users can enter all required input

variables into the TIM and get the results. TIM computes the resilience capacity of the system as well as

the fiv resilience dimensions. TIM is divided into three sections: input variables, results, and Other
features. This appendix provides a brief manual for using the TIM to compute the resilience dimensios

and capacity. Readers can access TIM via the Github depository at www.github.com/Sean-Toroghi/TIM.

# TIM v.2: Toolkit for Resilience Measurement

- a X

Input Resilience dimensions and capacity
Priority Urgent Routine Weiaht
PERFORMANCE-LEVEL(%) |2 s Factor Results _’l
P 0 0 0 Robustness (R1) | (1.0 Clickon Robustness
.
Before the incident (F_Start) d |
== ncident occurs =mmes A © 0 0 Redundancy (R2) I 10 Click on Redundancy
After the incident (F_Drcpped)E |
= 0 50 100 0 50 100 0 50 100 Resourcefulness (Rs)I \1 0 Click on Resourcefulness
Recovery process is finished E 0 0 0 Rapidity (R4) 10 Click on Rapidi
for the Priority group (F_1) 5 [ | | I pidity (R4) pidity
Recovery process is finished E 0 0 0 Readjust-ability (R5) I 1.0 Click on Readjust-ability
forthe Urgent group (F_2) + L L
H 0 0
Recovery process is finished = | Resilience (R} I Click on 'Resilience’
forthe Routine group F.3)3 "9~ 50 100 | o 50 100 | 0o 50 100
DISTRIBUTED GENERATION ',
SYSTEMS (F_DG) J 0 0 0 H
Capacity as % of consumption® —— L L 1- Blackout
= 0 50 100 0 50 100 0 50 100
2-Blackout+ DG
RECOVERY PROCESS d
Scalar factor B 10 [10 [10 3- Partial Blackout
Slacktime (Unitoftime) & 00 0.0 o
Duration (Unit of time) H 0.0 [oo [o.0
5- Scattered Incident
,:.l Priority Urgent Routine
Weight Factors - T | ’T | ’T Design and developed by Sean Toroghi (Sean.Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas
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[ ] ® TIM v.2: Toolkit for Resilience Measurement
Input Varlables Resllience dimensions and capacity
Priority Urgent Routine Welght Results
PERFORMANCE-LEVEL(%) 7 Factor
= 0 o o Robustness (R1) e Glick on Robustness
Before the Incident (F_Start) | | | (| (I
=mn INcident oCCUrs mesmmm H o o Redundancy (R2) 1.0 Chick on Redundancy
After the Incident (F_Dropped) || 11 [1F
=0 50 100 o 50 100 o 50 100 Resourcefulness (R3) 1.0 Cfick on Resaurcefulness
Recovery process |s finished E g o b Rapidity (R4) Click on Rapidity
1.0
for the Priority group (F_1) H ¥ [
= 0 o o just-abil lick an Readjust-abili
ey e H ‘ | Readjust-ability (RS) 10 Click on Readjust-ability
for the Urgent group (F_2) = L1 LI LI
.
R Is finished B g 0
ecovery process Is finishe = Resilience (R) e
for the Routine group (F_3) = |—|—| ‘—u |—|—|
1 0 80 100 o 80 100 o 50 100
e - o S Input ' Input Variables: Notional Examples
SYSTEMS (F_DG) w Varisbles >
Capacity as % of consumption = L1 L1 (L1 — 1~ Blackout
= 0 50 100 o 50 100 o 50 100
: 2- Blackout + DG
Load
RECOVERY PROCESS g
o 3- Partial Blackout
Scalar factor d 1.0 1.0 1.0 save
Slack ime (Unit of time) = 0.0 0.0 0.0 4- Targeted Incident
Duration (Unit of time) = 0.0 0.0 0.0
ey 5- Scattered Incident
- Priority Urgent Routine
Walght Faciors - ‘ | Design and developed by Sean Toroghi {Sean. Toroghi@Gmail.com}
0 1.0 1.0 1.8 Advisor: Dr. Valerie Thomas

Figure II- 1 - TIM user interface (Top: Windows Operation System, and Bottom: MacintoshOperation System,).

In the input variables section, users can enter the information required for computing the resilience
dimensions and capacity. Figure II- 2 illustrates the TIM interface with red dashed rectangles highlighting
the input section. The system performance level contains five variables in three groups. The performance-
level prior to an incident indicates the system performance level under normal operation conditions. The
performance level after the incident indicates the system performance level immediately after the incident
when it reaches a stable level. The recovery process has not yet started at this point. The three control
points, (F_1,F 2, and F_3) represent the system performance level for each end-user type at the time the
recovery process is finished for the priority, urgent, and routine categories, respectively. If there exist DG
systems in the region under investigation, the users can enter the capacity of the DG systems as a
percentage of consumption for each end-user category.

To compute the Rapidity capacity, users are required to enter the variables in the recovery process
section. The unit of time for the three variables in this section (tim scale factor, slack time, and duration of
the recovery process) should be consistent. Finally the weight factors for both the end-user types and
resilience dimensions provides the capability for user to apply any prioritization according to the results
of other complimentary analysis such as life-cycle cost analysis.
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# TIM v.2: Toolkit for Resilience Measurement - a X
Input Variables Resilience dii i pacity
Priority Urgent Routine Weiaht esults _7I
PERFORMANCE-LEVEL(%) _"'l customers customers customers Factor -
HE 0 0 Robustness (R1) 1.0 Click on Robustness
. . -
Before the incident (F_Start) = | | |
=umncident occurs memen 5 g 0 0 Redundancy (R2) 1.0 lick on Redundancy
After the incident (F_Dropped)E | | |
= 50 100 0 50 100 0 50 100 Resourcefulness (R3 ‘1 0 [Iick on Resourcefulness
Recovery process is finished . 0 0 0 - .
. Rapidity (R4, 1.0 lick on Rapidi
for the Priority group (F_1) & | | | pidty R4) =
Recovery process is finished E 0 0 0 Readjust-ability (R5) ‘1 0 lick on Readjust-ability
for the Urgent group (F_2) = LI_I LI_I
o © 0 0 n
Recovery process is finished . | | Resilience (R) Click on ‘Resilience’
forthe:Rouline group (F3) 3 o s o0 0 50 100 0 50 100
DISTRIBUTED GENERATION
SYSTEMS (F_DG) —I 0 0 0 H
Capacity as % of consumption ; u—l u—l LI_I 1- Blackout
- 0 50 100 0 50 100 0 50 100
2- Blackout+ DG
RECOVERY PROCESS -;I i
Scalar Facior . 10 ‘1 0 ‘1 0 3- Partial Blackout
i i i . 0.0 00 00
o | |
Duration (Unit of time) . 0.0 00 00
5- Scattered Incident
‘:.I Priority Urgent Routine
- - — Design and developed by Sean Toroghi (Sean Toroghi@Gmail.com)
Weight Factors | ‘
E 10 10 10 Advisor: Dr. Valerie Thomas

Figure II- 2 — TIM application: input variables.

To compute the results, users need to click on the associated buttons in the resilience dimensions and
capacity section, highlighted by the green dashed rectangle in Figure II- 3. The computation of results is
based on the formulation presented in this paper. Five buttons are allocated to compute the five resilience
dimensions, separately. The resilience (R) button computes the system resilience capacity and five
resilience dimensions together.

The TIM application is enhanced with some other features to facilitate and aid users’ interaction.
Users can reset the input variables to default values by clicking on the reset button. Also at any point,
users can save the input variables by clicking the save button and save the input data in the computer. The
user can later retrieve the saved data by clicking on the load button. Also, the input data of the notional
examples (the three scenarios of the first example and two scenarios of the second example) in this article
are provided through the “input variable: notional examples” section, in which the user can click on any
of the five buttons representing the associated scenario and the application will automatically change the
input variable to the ones used for that particular scenario. Figure II- 5 through II-8 illustrate the input
variables of the five scenarios. A brief description of each section is available to the users by clicking on
the question mark orange buttons.
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' TIM v.2: Toolkit for Resilience Measurement

— O X
J— I ] | I

Input Variables Resilience dimensions and capacity
Priority Urgent Routine Weiaht
Results ?
PERFORMANCE-LEVEL(%) _?I customers customers customers Factor St ;I
0 0 0 Robustness (R1) l 10 Cickon Robustness
Before the incident (F_Start) = [_| | i i
- -
==ui|ncidentoccurs ===s= & 0 0 Redundancy (R2) I 1.0 Click on Redundancy
After the incident (F_Dropped)i | | |
' 0 50 100 0 50 100 0 50 100 Resourcefulness (R3)I 1.0 Click on Resourcefulness
.
Recovery process is finished = 0 0 0 A I .
forthe Priorty group (F_1) é [ Rapidity (R4) 1.0 Click on Rapidity
Recovery process is finished E 0 0 0 Readjust-ability (R5) I 1.0 Click on Readjust-abilty
for the Urgent group (F_2) = |_|_[ LI_I |_|_|
0 0 0
Recovery process is finished E | | | Resilience (R) I Click on "Resilience’
for the Routine aeoup(e3) = aymmvoirTon 0 50 100 0 50 100
| || || |
DISTRIBUTED GENERATION
SYSTEMS (F_DG) -"I 0 0 0 E
Capacity as % of consumption ; |—|—| LI_I l_|_| 1- Blackout
- 0 50 100 0 50 100 0 50 100
2- Blackout + DG
RECOVERY PROCESS j m
Scalar factor . [10 [10 [10 m 3-Partial Blackout
i i i H 0.0 0.0 0.0
SESMDEMENL))  E | | I 4 TargetedIncident
Duration (Unit oftime) 0 0.0 0.0 00
5- Scattered Incident
‘.7.I Priority Urgent Routine - _
Weight Factors - ’T | ’T | ,T Design and developed by Sean Toroghi (Sean. Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas.

Figure II- 3 - TIMapplication: compute the results.

18



' TIM v.2: Toolkit for Resilience Measurement - m] X
Input Variables Resilience di and capaci
Priority Urgent Routine Weiaht
PERFORMANCE-LEVEL(%) ﬂ customers customers customers Factor Resuls —?I
E 100 100 100 Robustness (R1) | [1.0 0.0
Before the incident (F_Start) = | Bl ||| |
==ui |ncident occurs ===== 3 0 0 Redundancy (R2) |1.0 0.0
After the incident (F_Dropped) E | | |
0 50 100 0 50 100 0 50 100 Resourcefulness R)| 1.0 10
H
Recovery process is finished 3 100 0 0 Rapidity (R4 10
for the Priority group (F_1) = | | | | pidity (R4) h- L
.
Recovery process is finished E 100 100 0 Readjust-ability (R5) | 1.0 1.0
forthe Urgent group (F_2) = | S S
: 100 100 100
Recovery process is finished . [ | ‘ | Resilience (R) I 0.5252
forthe Routine group (F_3); * ¢ 59 100 0 50 100 0 50 100
DISTRIBUTED GENERATION
SYSTEMS (F_DG) - 0 0
Capacity as % of consumption | Ll_| |_|_| LLI 1- Blackout
= 0 50 100 0 50 100 0 50 100
2-Blackout + DG
RECOVERY PROCESS _-_;I i
Scalar factor . 1.0 1.0 1.0 3-Partial Blackout
i it of i E 8.0 240 120.0
ke S | | | 4-Targeted Incident
Duration (Unit of time) H IB.U \18.0 \168 0
5- Scattered Incident
:.I Priority Urgent Routine
= . Design and developed by Sean Toreghi (Sean.Toroghi@Gmail.com)
Weight Factors v 10 10 1.0

Advisor: Dr. Valerie Thomas

Figure II- 4 -TIM: input variables of the blackout scenario.

' TIM v.2: Toolkit for Resilience Measurement

- [m] X

Input Variables Resilience dimensions and capacity
Priority Urgent Routine Weiaht
Results 2
PERFORMANCE-LEVEL(%) 2 customers customers customers Factor —I
100 100 100 Robustness (R1) I 1.0 0.0
Before the incident (F_Start) = I | |1 1|1 |
==n1 ncident occurs sesss 3 0 0 Redundancy (R2) I ‘1.0 03
After the incident (F_Dropped): [_| | I I
= 0 50 100 0 50 100 0 50 100 Resourcefulness (R3)} [1.0 1.0
.
Recovery process is finished ® 100 0 0 Rapidi
. pidity (R4) I 10 06261
for the Priority group (F_1) = | | | L1 |
Recovery process is finished E 100 100 0 Readjust-ability (R5) I 1.0 1.0
for the Urgent group (F_2) E | _|_| \ _|_| I_|_|
C 100 100 100
Recovery process is finished E | ‘ | | | Resilience (R) I 05852
R IR I T 0 50 100 0 50 100
DISTRIBUTED GENERATION
SYSTEMS (F_DG) 30 30 30
Capacity as % of consumption ; LT | 1 1-Blackout
= 0 50 100 0 50 100 0 50 100
2-Blackout + DG
RECOVERY PROCESS d
Scalar factor . 1.0 1.0 3- Partial Blackout
lack ti it of ti E 240 120.0 )
SEE ,tlme (L'!m 0_1 s, " — | — 4- Targeted Incident
Duration (Unit of time) c 6.0 18.0 168.0
5- Scattered Incident
""'_I Priority Urgent Routine
Weight Factors - T IT 10 Design and developed by Sean Toroghi (Sean.Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas

Figure II- 5 - TIM: input variables of the blackout plus DG scenario.
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# TIM v.2: Toolkit for Resilience Measurement — O X
Input Resilience dimensions and capacity
Priority Urgent Routine Weiaht
PERFORMANCE-LEVEL(%) 2 customers customers customers Factor Results —?I
100 100 100 Robustness (R1) I 10 0.1768
Before the incident (F_Start) = | ] |1 ] || |
=== |ncident occurs seses 2 30 30 30 Redundancy (R2) |1.0 0.0
After the incident (F_Dropped)i [ | \ | [ |
: 0 50 100 0 50 100 0 50 100 R 1.0 1
Recovery process is finished . 100 0 0 _—
= Rapidity (R4 1.0
for the Priority group (F_1) 5 | | | | A S
H
Recovery process is finished E 100 100 0 Readjust-ability (R5) I 1.0 1.0
for the Urgent group (F_2) C _|J ‘ _I_] Ll_l
C 100 100 100 —
Recovery process is finished » i |1 il | Resilience (R) I 0.5661
for the Routine group (F_3)7 55y 100 0 50 100 0 50 100
DISTRIBUTED GENERATION >
SYSTEMS (F_DG) - 0 0
Capacity as % of consumption s —L1 L L 1- Blackout
= 0 50 100 0 50 100 0 50 100
2-Blackout + DG
RECOVERY PROCESS d i
Scalar factor . 1.0 1.0 1.0 3- Partial Blackout
i it of ti : 8.0 240 120.0
Slacktime (Unit oftime) | | | 4 Targeted Incident
Duration (Unit of time) c 438 144 134.4
5- Scattered Incident
Priority Urgent Routine
Weight Factors ‘:J ’T ’T ’T Design and developed by Sean Toroghi (Sean.Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas

Figure II- 6 - TIM: input variables of the partial blackout scenario.

# TIM v.2: Toolkit for Resilience Measurement — O X
Input Variables Resilience dim and capacity
Priority Urgent Routine Weiaht
PERFORMANCE-LEVEL(%} customers customers customers Factor Resulls -7I
: 100 100 100 Robustness (R1) I 10 04487
Before the incident (F_Start) = | 11 1|1 |
=== ncident occurs ===s= T 88 75 Redundancy (R2) I 1.0 04
After the incident (F_Dropped)i | [ | [ |
= 0 50 100 0 50 100 0 50 100 Resourcefulness (R3l| 10 0.2917
Recovery process is finished E 13 100 100 Rapidity (R4 T
for the Priority group (F_1) 5 | | [ ] |1 | —ID whied We
Recovery process is finished E 90 100 100 Readjust-ability (R5) I 1.0 0.9833
for the Urgent group (F_2) o ‘ _|_| ‘ _|_| | _|_|
H 90 100 100
Recovery process is finished ol | [ 11 | Resilience (R) I 05247
forthe Routine group F_3)7 ~ 9 50 100 0 50 100 0 50 100
DISTRIBUTED GENERATION
SYSTEMS (F_DG) - 50 50 20
Capacity as % of consumption | ‘ —‘—I ‘ —|—| | —|—| 1- Blackout
X 0 50 100 0 50 100 0 50 100
2-Blackout + DG
RECOVERYPROCESS 5| -
Scalar factor : 20 2.0 20 3- Partial Blackout
Slacktime (Unit of ime) & [10.0 240 48.0 -
H 4- Targeted Incident
Duration (Unit of time) o 40.0 50 50 J
5- Scattered Incident
5 Priority Urgent Routine
Weight Factors -A |3 0 ‘270 ‘1 0 Design and developed by Sean Toroghi (Sean.Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas

Figure II- 7- TIM: input variables of the targeted incident scenario.
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' TIM v.2: Toolkit for Resilience Measurement

Input Variables Resilience di and capacity
Priority Urgent Routine Weiaht
Results ?
PERFORMANCE-LEVEL(%) _’I customers customers customers Factor —l
100 100 100 Robustness (R1) | |10 0.7854
Before the incident (F_Start) » | | | |
=mui |ncident occurs seses O 75 75 50 Redundancy (R2) | 1.0 04
After the incident (F_Drnpped]i [ | | |
= 0 50 100 50 100 0 50 100 Resourcefulness (R3)I 1.0 10
H
Recovery process is finished = 100 75 50 -
H Rapidity (R4] | 1.0
for the Priority group (F_1) & | | | | P L) 0.7497
Recovery process is finished E 100 100 50 Readjust-ability (R5) | 1.0 1.0
for the Urgent group (F_2) = | | | |
= 100 100 100 -
Recovery process is finished o i i | Resilience (R) I 0.787
Fon e Routine group (=-3) %y ol o0 50 100 0 50 100
DISTRIBUTED GENERATION [ |
SYSTEMS (F_DG) ' 50 50
Capacity as % of consumption } E II 1- Blackout
: 0 50 100 50 100 Reset
2-Blackout + DG
RECOVERY PROCESS j
Scalar factor . 2.0 20 m 3- Partial Blackout
Slack time (Unit of time) 10.0 24.0 4-Targeted Incident
Duration (Unit of time) 0 10.0 10.0
- 5- Scattered Incident
Priority Urgent
Weight Factors ‘:.I W F 'T Design and developed by Sean Toroghi (Sean.Toroghi@Gmail.com)

Advisor: Dr. Valerie Thomas

Figure II- 8 TIM: input variables of the scattered incident scenario.
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