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Abstract
A quantitative framework is developed to assess the resilience of an electric infrastructure system, including the 

contributions of temporary service systems. The framework incorporates five dimensions of resilience – robustness, 
resourcefulness, redundancy, rapidity, and readjust-ability – under various setups for supplementary generation. It 
differentiates and prioritizes affected end-users. Notional examples illustrate the framework. The formula-based 
framework demonstrates the resilience contribution of temporary distributed generation (DG) technologies, and shows 
how differentiating among affected end-users supports the assessment of system resilience.
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1. Introduction 

Recent natural disasters have shown the need for 
stable energy service, particularly for modern 
economies such as the United States [1]. The U.S. 
electric infrastructure system contains more than 6,413 
power plants providing service through approximately 
six million miles of high-voltage transmission lines 
extending across the United States and serving 300 
million customers [2,3]. The energy infrastructure 
system supports the other critical infrastructures; if 
energy service is disrupted, other critical 
infrastructures, including transportation, food, and 
water, are affected [4]. Between 2003 and 2012, severe 
weather caused 679 power outages nationwide with 
annual costs between $18 billion and $33 billion [5]. 
Cyber attack is also a rising threat to the electric 
infrastructure system [6].

The concept of resilience addresses system 
failures with a focus on failure prevention and 
recovery efforts. Resilience engineering (RE) is a 
paradigm for system safety that focuses on providing 
the capacity to proactively manage an incident, while 
continuously monitoring system performance [7]. The 
degree of system safety can change continuously over 
time [8]. Furthermore, the RE views the safety of a 
system as a characteristic of how the system performs 
with a focus on the whole system, rather than its 
individual components [9]. As RE has developed over 
time, its focus is now on overall system performance, 
rather than on properties of system components 
[10,11]. The view of resilience in a system has shifted 
from maintaining or regaining a stable state to the 
ability of a system to sustain its required operation, 
with continuous adaptation and adjustment of its 
function prior, during, and following an incident [12]. 

To do so, a metric system is needed for the system 
manager to evaluate the resilience capacity of a system, 
and to compare among available options. From the 
perspective of a variety of disciplines, the aggregated 
properties of a resilient infrastructure design includes 
one or more of the following abilities: the ability to 
anticipate, to absorb changes, to resist, to adapt, to 
recover (quickly), to reduce the chance of failure, to 
provide minimum service while under stress, to 
provide minimum service during changes in the 
service level, and to sustain a shock [13–16]. 
Developing a resilient infrastructure system with a 
desirable level of preparedness requires a metric 
system that quantifies its ability to react to stresses that 
challenge its performance. 

Resilience metrics enable system designers and 
strategy developers to evaluate and compare the 
resilience capability of a system through monitoring 
the performance level at different points in time, pre- 
and post-incident. Bruneau et al. offered a broad 
definition of resilience covering actions that reduce 
losses from an incident, including the effects of 
mitigation and recovery [17]. Then they proposed a 
deterministic static metric that measures the loss of 
service performance in the case of hazardous incidents 
(i.e., earthquake) [18]. Henry and Ramirez-Marquez 
present a time-dependent resilience metric that defines 
resilience as the ratio of the performance recovery over 
the total loss due to a disruptive incident [18]. 
Cimellaro et al. proposed a resilience metric based on 
quality of service with a weighting factor that 
represents the importance of pre- and post-incident 
service qualities and control time [19].

While proposed metrics focus on the primary 
system as the service provider, there are often ancillary 
systems that provide service after an incident and 
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during the recovery process. Emergency electricity 
generators, which in this paper hereafter are called 
distributed generation (DG) systems, act as temporary 
energy-generation systems and substitute for grid 
electricity. Beyond conventional emergency diesel 
generators, the emergence of decentralized renewable 
electricity generating systems, such as rooftop 
photovoltaic systems, provide an alternative for grid 
electricity [20,21]. The recent diffusion of electric 
vehicles provides an additional option for emergency 
source of electricity to a building or grid s[22]. These 
temporary services have not been counted in previous 
resilience metric systems [23]. 

Previous resilience metrics focus on overall 
system performance ([17,18,24–26]). In practice, the 
electrical infrastructure system operator may 
recognize that critical end-users, such as hospitals, 
transportation fuel-distribution systems, or financial 
hub systems have needs and resilience requirements 
that differ from those of routine end-users, such as 
residential sectors. Generalizing affected end-users 
into a single category limits the evaluation of 
resilience to an overall average.

Here we develop a resilience assessment 
framework for electric infrastructure systems, capable 
of comparing different generation technology setups, 
and differentiating among users affected by an 
incident. Doing so enables us to include the resilience 
contribution of temporary electricity generators, and to 
evaluate the resilience of a system customized for its 
end-user categories. The framework separately 
evaluates five dimensions of resilience [13,17,27]: 
robustness, redundancy, resourcefulness, rapidity, and 
readjust-ability. The remainder of the paper is 
organized as follows: Section 2 explains the concept 
of resilience and the proposed formulations for a 
resilience assessment, which we use to define the 
framework in section 3. Section 4 illustrates the use of 
our framework via two notional examples. Section 5 
compares the results of the framework with a 
previously proposed metric and discusses resilience 
assessment with regard to end-users.

2. Methodological Background: State of 
Knowledge Pertaining to Resilience 
Assessment Models and Measurements

The core resilience objective of systems is to 
withstand turbulence and rapidly return to a near pre-
incident service level [13,14,26,28]. The term 
resilience was first proposed to describe the dynamic 
capability of an ecological system to remain in 
equilibrium under stress [29]. Resilience is defined as 
the ability of a system to resist, absorb, and adapt to 
disruptions and return to normal functionalities [13], 
and resilience of the electric infrastructure system is a 
part of the broader domain of engineered system 

resilience [30]. System resilience can be addressed 
from a range of perspectives, including socio-
ecological resilience [31], organizational resilience) 
[32], and  in the context of the broader psychological 
and management aspects of system resilience [33]. 
This article focuses on providing a quantitative 
framework for an infrastructure system. Youn et al. 
defined engineering resilience as the sum of reliability 
(i.e., the passive survival rate) and restoration (i.e., the 
proactive survival rate) capacity. Bruneau et al. 
expressed four dimensions of resilience for an 
infrastructure system [17]: 1- robustness (the ability of 
a system to prevent the dissemination of damage 
during a hazardous incident), 2- rapidity (the speed of 
a system to return to its original state), 3- 
resourcefulness (the capability of a system to respond 
to a hazardous incident and mobilize needed 
resources/services), and 4- redundancy (the ability of 
a system to provide service using other resources in 
case of an incident). Later, the authors proposed a 
deterministic static metric for the resilience that 
examines loss of the community service in the case of 
a hazardous incident (e.g., earthquake) [16]. 

Henry and Ramirez-Marquez developed a time 
dependent metric that quantifies resilience as the ratio 
of system performance to its performance loss [18]. 
They also proposed three main system states: 1-steady 
state (before an incident occurs), 2-disrupted state 
(after the disruptive incident occurs until the system 
reaches a new steady state), and 3-stable recovered 
state. Their proposed resilience metric does not 
differentiate the end-user and incident types. 
Cimellaro et al. proposed a resilience metric based on 
the quality of service with a weighting factor that 
represents the importance of pre- and post-incident 
service qualities and control time [34]. Francis and 
Bekera based their dynamic measurement metric on 
three resilience capacities: 1-capacity of a system to 
absorb the impact, 2-the ability of a system to adjust 
to an undesirable situation by adapting, and 3-the 
speed of recovery for [25]. 

While the above resilience assessment methods 
are useful, they fall short in some areas. One is the 
exclusion of emergency electricity generators capable 
of providing temporary service to end-users. Another 
is the limited evaluation of the capability of a system 
to adapt, which we name readjust-ability. Third is the 
limited categorization of end-users. To address these 
factors, we present a quantitative resilience framework 
tailored to an electric infrastructure system with 
temporary electricity generators and a range of end-
user types.

3. Proposed Framework

Our framework starts with the resilience concepts 
and frameworks discussed earlier and extends them to 
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address vulnerability differences across end-users and 
the impacts of incident types on system performance. 
The time dimension, emphasized in previous 
frameworks and the DHS protection plan, is an 
important factor in evaluating resilience in the 
proposed model [1,35]. 

We divide end-users into three categories 
(priority, urgent, and routine). In Figure 1, the three 
performance-time charts represent the performance 
levels for each end-user category. Performance level is 
defined as the percentage of end-users who have 
access to the service. The DG systems provide service 
during normal system operation or may provide 
service only after an incident and during the recovery 
process. We denote the electricity provided by DG 
systems as FDG in Figure 1.

Performance-level, the y-axis in Figure 1, is 
defined as the fraction of electricity demand delivered 
to the customers. Henry and Ramirez-Marquez 
suggested dividing the performance-time chart into 
multiple time segments, to enhance the expression of 
the resilience and recovery process [18]. We divide the 
timeframe into two main phases: pre- and post-
incident.  An incident is an event that causes damage 
to a system and the service level drops from the pre-
incident performance level (Fs) to a lower disrupted 
level (Fd). Unlike previous models, our model has an 
additional input value, representing the service 
provided by DG systems (FDG) after the incident. 
Because the DG systems maintain a minimum post-
incident service level (FDG), the affected elements can 
still function to some level, even when the primary 
system is down. We express the post-incident recovery 
process with respect to each end-user group. In Figure 
1, and represent the incremental recovery 𝑡𝑝, 𝑡𝑢, 𝑡𝑟 
durations for the priority, urgent, and routine demand 
groups, respectively. 

3.1. Demand Types

We define Routine consumption as all electricity 
demand not recognized as critical infrastructure 
according to Presidential Policy Directive 21 [36]; this 
consists mainly of residential demand.  Within critical 
infrastructures, as defined by the U.S. Department of 
Homeland and Security [37], we define Priority 
sectors as end-users that require continuous access to 
electricity to avoid a major loss of life or economic 
impacts, for instance to prevent a nuclear meltdown or 
to operate medical equipment (Table 1). 

We define the Urgent sectors as those that require 
electric power to operate and avoid major loss of life 
or economic impact, but they can tolerate interruptions 
or intermittent power. For instance, water services 
may be delivered for only a portion of the day without 
a significant loss of life while electricity infrastructure 
is in a recovery mode. Depending on the specific 

infrastructure system of a given location, the 
categorization may vary. For instance, in a financial 
hub, the financial services infrastructure may have a 
higher priority than  the defense industrial base.

Table 1 – Demand-type categorization.

 System component
 Priority Urgent Routine

Nuclear Reactors, 
Materials, and Waste

Water and 
Wastewater 
Systems

Residential

Emergency Services Transportation 
Systems Other

Healthcare and 
Public Health

Food and 
Agriculture  

Energy Chemical  
Defence Industrial 
Base

Information 
Technology  

Communications Government 
Facilities  

 
Commercial 
Facilities  

 
Critical 
Manufacturing  

 
Financial 
Services  

El
ec

tri
ci

ty
 D

em
an

d 
Se

ct
or

s

 Dams  

To reflect the consequence of an incident on each 
demand type, we separate the performance-time chart 
into three charts. The cumulative performance level of 
these three charts represents the system performance 
level. In Figure 1, the provided service for each user 
group is illustrated by Fp: priority; Fu: urgent; and Fr: 
routine, and the overall system performance level is 
the sum. Although these three charts represent pre- and 
post-incident performance in a general format, an 
incident may only impact one or two demand 
categories. An example of such a case is a targeted 
cyber-attack against the urgent demand category. 
Alternatively, an incident such as a natural disaster 
may have a similar negative impact on all demand 
categories.  After an incident, and during the recovery 
process, a system may allocate all of its resources to 
one end-user category at each time-frame (i.e., first 
urgent category and then priority category), or the 
resources may be distributed among all three end-user 
types. The three key points in the performance-time 
chart (Figure 1) are:

FStart (Fs) - the stable system performance level just 
before the incident,

FDisrupted (Fd) - the stable performance level 
immediately after the incident (disrupted), and 
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FFinish (FF) - the performance level at the new 
stable level. The recovery reaches its final stage, 
and the system satisfies the required service.

For each end-user group, three control points ,  𝐹1
, and  define when the recovery process 𝐹2 𝐹3

completes for the first, second, and third end-user 
types, respectively. The presented order of the three 
control points ( ) illustrated in Figure 1 𝐹1, 𝐹2, 𝑎𝑛𝑑 𝐹3
may differ by system or incident. After the Tōhoku 
earthquake and tsunami in Japan in 2011 the recovery 
process of the Daiichi nuclear power plant (priority 
category) took much longer than the other demand 
categories [38].

While in Figure 1, the system performance-levels 
(control points), are connected with lines to provide a 
visual aid, in a real-world scenario, system 
performance is not necessarily linear. This does not 
affect the computation of the resilience capacity, 
because in the proposed framework the values of 
system performance at each control point are required 
as the input variables. This approach is also employed 
in the previous studies discussed in the literature 
review section. 

3.2. Resilience Metric

We apply the concept of resilience with four 
dimensions: robustness, redundancy, resourcefulness, 
and rapidity  plus the adaptation capacity of the system 
to its new environment, post-incident, which we call 
the readjust-ability capacity. The performance levels 
and the associated time-stamps are the input variables 
for the resilience measurement formulas. Based on 
which demand category the DG systems serve, their 
capacity is divided into priority ( ), urgent (𝐹(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝐷𝐺
), and routine ( ).𝐹(𝑢𝑟𝑔𝑒𝑛𝑡)

𝐷𝐺 𝐹(𝑟𝑜𝑢𝑡𝑖𝑛𝑒)
𝐷𝐺

Let R1 represent robustness, R2 redundancy, R3 
resourcefulness, R4 rapidity, and R5 readjust-ability, 
we define the resilience (R) as the weighted average of 
these five resiliency dimensions (Equation (1)). The 
weights can provide system-specific requirements. If 
all resilience dimensions are equally important, the 
weighted average can be then simplified to an average 
of the five dimensions. All five resilience dimensions 
are unit-less and bound to zero. The upper bound of all 
five dimensions (robustness, resourcefulness, and 
rapidity) is 1. 

The system robustness ( , presented by 𝑅1)
Equation (2), is a characteristic of a system during the 
incident, and it defines how much a system can absorb 
turbulence and continue to deliver stable service. 
Throughout an incident, a robust system absorbs all 
the negative shocks and maintain an optimum service 
level, at which  and . To formulate the 𝐹𝑠 = 𝐹𝑑  𝑅1 = 1
robustness capacity of a system, we modified the 
sigmoid function – a monotonic function – to bound 
between 0 and 1. 

Equation (3) defines the system redundancy 
capacity (  as the ratio of DG systems’ capacity 𝑅2)
(temporarily resources) to the grid capacity (primary 
system during normal operation). The capacity of the 
DG system can range between zero and total 
consumption of end-users in each category. We also 
assume the service (electricity) provided by the DG 
system has the same characteristics as the primary 
service provided by the electric infrastructure system. 
This assumption is necessary to have a unitless value 
for R2, bounded between 0 and 1.

The third dimension of the resilience capacity, 
resourcefulness ( , is computed based on how, 𝑅3)
during the recovery process, the system mobilizes its 
resources to serve the end-users’ needed-service based 
on their priority category (end-user type) (Equation 
(4)). A resourceful system, through its recovery 
process, mobilizes all of its resources to restore the 
required services for the end-users at the highest 
priority category. The formulation defines the resource 
mobilization capability as the ability of the system to 
mobilize its resources for recovery according to the 
priority list. If end-users in the first category (priority) 
are not impacted by the mishap ( ), should 𝐹𝑝

𝑠 = 𝐹𝑝
𝑑 𝑅31

be excluded from the calculation of resourcefulness 
capacity. The same rule governs for the exclusion of 𝑅

 in the case of the second category (urgent) does not 32
experience a power outage ( ). The upper 𝐹𝑢

𝑠 = 𝐹𝑢
𝑑

boundary of the resourcefulness capacity ( ) 𝑅3 = 1
represents a system that allocates its resources to 
recover the service for the end-users at the highest 
priority list. The lower bound of the resourcefulness 
capacity ( ) represents a system with poor 𝑅3 = 0
resource allocation and inefficient service 
mobilization. 
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Figure 1 - Performance level over time: system, and demand types: priority, urgent, and routine.

𝑹𝒆𝒔𝒊𝒍𝒊𝒆𝒏𝒄𝒆(𝑹) =   𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑨𝒗𝒈. [ 𝐑𝟏, 𝐑𝟐, 𝐑𝟑,𝐑𝟒] (1)

𝑹𝟏 =   𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( 2

1 + 𝑒𝑥𝑝 (𝐹𝑠 ‒ 𝐹𝑑

𝐹𝑑 ))
𝑖

                 𝑖 = 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑢𝑟𝑔𝑒𝑛𝑡, 𝑟𝑜𝑢𝑡𝑖𝑛𝑒

(2)

𝑹𝟐 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐹𝐷𝐺 

𝐹𝑠 )
𝑖

                 𝑖 =  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑢𝑟𝑔𝑒𝑛𝑡 , 𝑟𝑜𝑢𝑖𝑡𝑛𝑒

(3)

𝑹𝟑 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔. (𝑅3𝑝, 𝑅3𝑢) (4)

𝑹𝟒 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 ( 1

1 + 𝑒𝑥𝑝 (∆𝑡𝑖 ‒ 𝑡𝛿𝑖

ɣ ))
𝑖

𝑖 =  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑢𝑟𝑔𝑒𝑛𝑡, 𝑟𝑜𝑢𝑡𝑖𝑛𝑒

(5)

𝑹𝟓 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔. (𝐹𝐹

𝐹𝑠)
𝑖

  𝑖 =  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 𝑢𝑟𝑔𝑒𝑛𝑡, 𝑟𝑜𝑢𝑡𝑖𝑛𝑒

(6)

where

 𝑅3𝑝 = max [1 ‒ (∆𝐹𝑢
𝐼 + ∆𝐹𝑟

𝐼

∆𝐹𝑝
𝐼

), 0 ]

 𝑅3𝑢 = 𝑚𝑎𝑥 [1 ‒ (∆𝐹𝑢
𝐼𝐼

∆𝐹𝑟
𝐼𝐼
), 0 ]  

 ∆𝐹𝑢
𝐼 =  𝐹𝑢

1 ‒ 𝐹𝑢
0

 ∆𝐹𝑝
𝐼 =  𝐹𝑝

1 ‒ 𝐹𝑝
0

 ∆𝐹𝑢
𝐼𝐼 =  𝐹𝑟

2 ‒ 𝐹𝑟
1
 ∆𝐹𝑟

𝐼 =   𝐹𝑟
1 ‒ 𝐹𝑟

0

 ∆𝐹𝑢
𝐼𝐼 = 𝐹𝑢

2 ‒ 𝐹𝑢
1

,   𝐹(𝑖)
0 =  𝐹(𝑖)

𝑑 +  𝐹 (𝑖)
𝐷𝐺 𝑖 = 𝑝,𝑢,𝑟

 ɣ: 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟, 
and 

  𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠{𝐹𝐷𝐺 =  ∑𝑖𝐹
𝑖

𝐷𝐺 
                    
𝐹𝑠 =  ∑𝑖𝐹

𝑖
𝑠 

. 𝑖 = 𝑝, 𝑢, 𝑎𝑛𝑑 𝑟

Rapidity  evaluates how fast the system (𝑅4)
recovers. The formulation (Equation (5)), separately 
assesses the rapidity for each end-user category and 
computes the overall rapidity capacity of the system as 
their weighted average. The variable represents the ∆𝑡𝑖 
recovery time for each group of end-users. The clock 
for the recovery process starts immediately after the 
incident occurs. However, based on the prioritization 
of end-users by the system manager, the resources are 
allocating to each category of end-users. The recovery 
process finishes when for each end-user, the system 
reaches the system performance-level prior to the 
incident, for that group of users. We define slack time 

 separately for each end-user type, as the maximum 𝑡𝛿
allowance time for a system to perform recovery 
process, without major consequence due to lack of the 
electricity power. The time scale  defines how ɣ
sensitive the end-users in each category are to power 
loss. We explain the effect of time-scale ( ) on the ɣ
rapidity capacity in the sensitivity analysis section. 
The coefficient in the weighted average is defined 
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based on the end-users in each category. Some factors 
to determine this weight coefficient are fatalities, 
financial loss, and negative environmental impacts. 
The upper bound of the rapidity capacity represents a 
well-prepared system with a rapid inflow of resources. 
Such a system has an instant recovery. A slower initial 
recovery shows that the system lacks optimal recovery 
actions, and if the recovery process takes twice the 
slack time or longer, the system does not have a 
rapidity capacity. An intense and widespread 
hazardous incident may delay the start of the recovery 
and create a shortage of support of recovery services. 
An example is the Nisqually Earthquake in the 
Olympia-Seattle area [39].

The last dimension of the resilience capacity, 
readjust-ability ( ), represents the capacity of a 𝐹5
system to plan, prepare, and implement an adaptation 
plan after an incident occurs. The readjust-ability 
capacity shows the capability of the system to adapt in 
a situation in which it cannot absorb a stress, and is a 
complementary process to the mitigation [40].

3.3. Sensitivity analysis

To determine the impact of each variable in the 
proposed metric of the resilience in a system, we run a 
sensitivity analysis on our proposed metric. 
Immediately prior to the incident, the system 
performance is set to 100% as the reference point. 
Figure 2 illustrates a summary of the ranges of the first 
three capacity factors, with respect to change in input 
variables. Assuming prior to the incident the system 
has a non-zero performance level, a case of blackout 
represents no robustness capacity. At the upper bound, 
if the system can absorb the shock from an incident 
without deviating from its original performance level, 
the robustness capacity is 100%. The proposed 
formulation does not suggest a one-to-one relation 
between proportion of power lost and robustness. This 
is aligned with the concept of resilience, that is to 
design a system with some level of resistance to a 
mishap but avoid over spending money and workforce 
to resist against any mishaps. At the upper bound, the 
system will penalize less if it fails to provide electricity 
to only a small fraction of end-users. At the lower 
boundary, in which the system provides service to a 
low number of end-users, the proposed formulation 
suggests the system has almost no robustness capacity. 

The sensitivity assessment for redundancy, based 
on the assumption the electricity provided by the DG 
systems is a perfect substitute for grid electricity, is 
linear with a one-to-one relation of the sources of 
electricity. This model includes DG systems that 
generate reliable and steady electricity during the 
recovery process. This can be achieved by coupling 
PV systems with a storage system, or for diesel 

generators adequate fuel provided by reserve fuel 
tanks. 

Resourcefulness is at its highest level (R3=1) 
when all the required resources for conducting the 
recovery process are allocated to end-users at the 
highest category. At the lower boundaries, a system 
allocates most of its resources for the recovery of its 
lower priorities end-users.

 

Figure 2 - Sensitivity analysis: robustness, resourcefulness, 
and redundancy. 

Readjust-ability value depends on the ratio of 
performance-level after the recovery process finish to 
its value prior to a major incident. If the performance-
level prior to an incident be at 100%, the maximum 
value of Readjust-ability capacity is 1, in which the 
recovery brings back the system to 100% level. In a 
special case, if the electric infrastructure system 
performs above 100% level at the end of the recovery 
process, defining a case in which either the recovery 
process consists of the repair of the existing system 
and expansion of service to new areas and end users, 
Readjust-ability capacity (R5) can reach a value higher 
than 1. However, in such a case the new system does 
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n ot h a v e t h e s a m e c h ar a ct eristi cs, s u c h as e n d- us er 
t y p es a n d p o p ul ati o n a n d s er vi c e c o v er a g e, as t h e 
ori gi n al s yst e m. T o o v er c o m e t his iss u e, a n y 
e x p a nsi o n of t h e s yst e m d uri n g a r e c o v er y pr o c ess is 
e x cl u d e d fr o m t h e a n al ysis, a n d t h e fift h di m e nsi o n of 
t h e r esili e n c e ( R 5) is als o b o u n d e d t o o n e. H o w e v er, 
t h e i niti al p erf or m a n c e-l e v el c a n n ot b e z er o, m e a ni n g 
t h e gri d pri or t o a n i n ci d e nt s h o ul d pr o vi d e el e ctri cit y 
t o s o m e e n d- us ers. Fi g ur e 3 ill ustr at es h o w c h a n g es i n 
p erf or m a n c e-l e v el aft er t h e r e c o v er y ( ), aff e ct t h e 𝐹 𝐹

R e a dj ust- a bilit y  c a p a cit y.
Fi n all y, i n Fi g ur e 4 t h e s e nsiti vit y a n al ysis of t h e 

r a pi dit y  di m e nsi o n s h o ws if a s yst e m r e c o v ers 
i m m e di at el y, it h as t h e hi g h est l e v el of r a pi dit y 
c a p a cit y ( R 4 = 1). W hil e t h e sl a c k ti m e is d efi n e d as 
t h e all o w a bl e ti m e t o r e c o v er, t h e r e c o v er y pr o c ess 
ti m e e q u al t o t h e sl a c k ti m e r es ults i n r a pi dit y  c a p a cit y 
e q u al t o 5 0 %. T his m e a ns if a r e c o v er y pr o c ess t a k es 
as m u c h ti m e as t h e m a xi m u m all o w a bl e pr e- d efi n e d 
all o w a bl e r e c o v er y d ur ati o n, t h e R 4 = 0. 5, o ur s yst e m 
pr o vi d es a n a v er a g e r e c o v er y c a p a cit y. If t h e r e c o v er y 
pr o c ess l asts t w o ti m es t h e sl a c k ti m e or l o n g er, t h e 
s yst e m h as l o w r a pi dit y c a p a cit y.

Fi g ur e 3 - S e nsiti vit y a n al ysis: r e a dj ust- a bilit y.

Fi g ur e 4 - S e nsiti vit y a n al ysis: r a pi dit y.

T h e ti m e s c al e, ɣ,  c o ntr ols t h e sl o p e of t h e 
s e nsiti vit y c ur v e, a n d is d efi n e d b as e d o n t h e 
v ul n er a bilit y of e n d- us ers t o p o w er o ut a g e. T h e s c al e 
f a ct or pr o vi d es a n a d diti o n al c ust o mi z ati o n c a p a bilit y 
i n t h e pr o p os e d f or m ul ati o n. It diff er e nti at es a m o n g 
diff er e nt pr o p orti o n of e n d- us ers i n e a c h c at e g or y. 
R ef er t o s e cti o n 3. 1 ( D e m a n d t y p es) e a c h e n d- us er 
c at e g or y c o nsists of a r a n g e of e n d- us ers. C o nsi d eri n g 
t w o r e gi o ns, e a c h wit h e q u al t ot al n o mi n al el e ctri cit y 
c o ns u m pti o ns i n t h e ur g e nt c at e g or y ( T a bl e 1). 
Ass u m e i n o n e r e gi o n, a hi g h pr o p orti o n of 
c o ns u m pti o n b e all o c at e d t o t h e f o o d a n d a gri c ult ur al 
i n d ustri es, s u c h as r ur al ar e as d o mi n at e d b y 
a gri c ult ur al i n d ustri es, a n d i n t h e ot h er r e gi o n a hi g h er 
pr o p orti o n of c o ns u m pti o n b e all o c at e d t o fi n a n ci al 
i n d ustri es, s u c h as a b usi n ess distri ct i n a n ur b a n ar e a. 
T h es e t w o r e gi o ns, d es pit e h a vi n g s a m e t ot al 
el e ctri cit y c o ns u m pti o n, diff er i n t h eir s e nsiti vit y t o 
t h e d ur ati o n of p o w er-l oss (r e c o v er y d ur ati o n). A 
l o w er s c al e f a ct or ( ɣ = 0. 5) r e pr es e nts a s yst e m wit h 
e n d- us ers w h o ar e m or e v ul n er a bl e t o p o w er l oss. I n 
t his s c e n ari o, if t h e r e c o v er y ti m e e x c e e ds t h e sl a c k 
ti m e, e n d- us ers ar e n ot a bl e t o t ol er at e a n d t h e r a pi dit y 
c a p a cit y dr o ps t o z er o. S c al ar f a ct or wit h hi g h er v al u es 
( ɣ = 2) r e pr es e nts a s c e n ari o, i n w hi c h t h e e n d- us ers 
c a n t ol er at e a l o n g er r e c o v er y d ur ati o n, wit h o ut 
fi n a n ci al or f at alit y c o ns e q u e n c es. 

I n all c as es, t h e u p p er b o u n d of t h e R a pi dit y  
di m e nsi o n is b o u n d e d t o o n e, e x pr essi n g a s yst e m wit h 
i m m e di at e r e c o v er y. S u c h a s yst e m pr o vi d es a n i nst a nt 
r e c o v er y a n d bri n gs t h e s yst e m p erf or m a n c e-l e v el 
b a c k t o t h e pr e-i n ci d e nt l e v el. 
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4. Notional examples

Through two notional examples, we demonstrate 
the proposed framework. The first notional example, 
the blackout example, shows how the framework 
captures the contribution of DG systems to improve 
the resilience capacity. The result is compared with a 
previously proposed metric system. The second 
notional example, targeted end-users example, 
illustrates how separating end-users by type enables 
more specific investigation of the resilience capacity 
of a system. 

While these are fictional examples, the aftermath 
of recent hurricanes shows there exists a potential risk 
of blackout in large scale in the U.S. 

Figure 5 illustrates hurricane Florence’s path and 
the impacted areas, which caused a power outage for 
890,000 customers in 2017 [41]. 

4.1. Blackout example

Table 2 illustrates three scenarios of the first 
example. The initial system performance level in all 
scenarios is set to 100%, which indicates the grid 
system provides electricity service to all end-users. 
Scenario blackout can be a representative of urban 
areas in the coastal line, which are directly impacted 
by hurricane Florence. Scenario partial blackout can 
demonstrate those areas with RADII 34 (

Figure 5) in which power outage affects only a 
portion of end-users. 

The first scenario (Blackout) in this example 
represents a complete interruption of power generation 
and distribution. There is no active DG system 
available in this scenario. While the second scenario 
also represents a power blackout, there are several DG 
systems that are spread equally across the end-user 

categories, which generate electricity with the 
accumulated generation equal to 30% of the total 
initial needed electricity. The third scenario represents 
a partial blackout, in which the grid system loses 70% 
of its performance level with no active DG systems. 
The recovery process in the two blackout scenarios is 
assumed to be similar. The recovery process in the 
partial blackout scenario, compared with the first two 
scenarios, takes 30% less time. 

Table 2 – Notional blackout-example scenarios.

 Scenarios
I II III

 Blackout Blackout + 
DG systems

Partial 
Blackout

Power 
loss 100% 100% 70%

DG 
systems*

0% 30% 0%

* capacity as  the % of primary system capacity

The remaining input variables are provided in the 
Appendix I. We assume the recovery process in the 
partial blackout is 20% faster than the complete 
blackout scenario. In this example, we make the 
following simplifying assumptions:
- In all three scenarios, the system after the 

recovery process returns to 100% performance-
level.

- The weighted factors for all the computation are 
equal to 1.

- The capacity of DG systems is equal among the 
end-users.

Figure 5 - Hurricane Florence and impacted areas.
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Figure 6 – Results: blackout example.

We develop an application (Toolkit for Resilience 
Measurement: TIM) to facilitate the computation of 
the resilience and its dimensions (Appendix II). The 
TIM software was developed as an enhancement to the 
proposed metric system, and facilitate the computation 
of the resilience capacity of a system. This tool uses 
only the explained framework and formulation to 
generate the results. Employing the TIM, we compute 
the results for each scenario. Figure 6 illustrates the 
calculated resilience capacities. The blackout scenario 
shows the poorest resilience capacity, although the 
system shows some level of resiliency. This is due to 
a fast recovery process and ability to recover 100% 
and provide electricity to all end-users when the 
recovery process is complete.

The results of the second scenario show how the 
DG systems, by providing electricity up to 30% of the 
capacity of the grid, can improve resilience capacity 
by 10%. However, the DG systems only increase the 
redundancy dimension and have no effect on the other 
dimensions. Unlike the first two scenarios in which the 
system shows no Robustness capacity (blackout), the 
system under the third scenario (partial blackout) 
shows some level of Robustness. The resilience 
capacity of the system in the third scenario is slightly 
less than the second scenario; even though the system 
has some level of Robustness and recovers faster than 
the second scenario. 

The fatality and cost impact of power failures adds 
another angle to the resilience assessment of a system. 
To address this, we introduce weight factors for each 
end-user groups and each resilience dimension. These 
weight factors can be calculated based on the results 
from a lifecycle cost analysis of both system 
components and consequences of a power outage.

A comparison between the method presented by 
Francis and Bekera (2014), and the method developed 
here is shown in Table 3. In the case of a blackout, 
even for a short time, the proposed metric provides 
informative results by computing the resilience 
dimensions (Table 3). In addition to presenting a 
metric to assess the resilience capacity of a system, 
Francis and Bekera propose a probabilistic approach 
to compute the probability of hurricane occurrence, 
which prior to computing the resilience dimensions 
can also be applied to the framework proposed in this 
study.

Table 3 – Results: comparison between metric 
frameworks.

 Resilience Capacity 

 Blackout Blackout + 
DG systems

Partial 
Blackout

Proposed 
metric 100% 100% 70%

Francis and 
Bekera [25] 0% 30% 0%

4.2. Incident-based example

Not only should an electric infrastructure system 
be enhanced with a level of resilience against natural 
disasters, but also it needs to be resilient against 
focused incidents with high intensity and small 
effective range. The second notional example 
demonstrates how separating the end-users by type 
results in an informative assessment of resilience for a 
targeted incident. In this example, two scenarios are 
compared: 1- a targeted incident which impacts the 
priority end-user category with minimal damage to 
end-users in the other categories, and 2- scattered 
incidents which damage all types of end-users. In this 
example, we assume the share of end-user 
consumption out of total grid capacity is 20% for 
priority, 40% for urgent and 40% for routine 
categories. 

Table 4 – Notional incident-based scenarios.

Scenarios

 Type Targeted 
incident

Scattered 
incident

Priority 100% 25%
Urgent 12.5% 25%
Routine 25% 50%

Power 
outage

Priority% 50% 50%
Urgent 50% 50%DG 

systems* Routine 20% 20%
* capacity as the % of the consumption in each category

In the targeted incident scenario, the incident 
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causes complete power outage for the priority end-
users, and the DG systems provide up to 50% of the 
required electricity to the end-users in this category. In 
this scenario, a small percentage of other end-users, 
mainly those adjacent to the incident, lose power. In 
the second scenario, scattered incidents, a partial 
power outage occurs for all customers. The DG 
systems have the same capacity in both scenarios. 
Table 4 outlines the power outage DG systems’ 
capacity for both scenarios.

While the power outage for each end-user category 
is not similar, the power outage of the grid system in 
both systems is equal to 35% (Table 5). If a framework 
only computes the resilience capacity based on the 
system performance level, the results for the 
robustness dimension will be equal for both scenarios.

Table 5 – System power outage: incident based 
example.

Scenarios

 Type Targeted 
incident

Scattered 
incident

Priority% 20% 20%
Urgent 40% 40%

Consumption 
as a 

proportion of 
grid capacity Routine 40% 40%

Priority% 20% 5%
Urgent 5% 10%
Routine 10% 20%

Power 
outage as a 

proportion of 
grid capacity Sum 35% 35%

To illustrate application of the framework, we 
make some assumptions for this example. In the 
targeted scenario, we assume the system will partially 
recover up to 90% in the priority category due to the 
high intensity of the incident. In case of a high 
intensity incident, inability to conduct the recovery in 
the contaminated areas may prevent the recovery 
process to bring the system performance-level back to 
its pre-incident level. We assume the recovery process 
for the other two categories, urgent and routine, starts 
at the same time as the priority category. Appendix II 
provides a detailed list of input variables for this 
example.

The scattered scenario represents a range of 
random incidents in which power outage spreads 
across all end-users. This scenario can represent a 
natural disaster such as Hurricane Maria. In 2017, 
Hurricane Maria caused the largest blackout in the U.S. 
history, leaving more than 1.5 million residents in 
Puerto Rico without power [42,43]. In this example, 
we applied weight factors, according to the end-user 
categories: priority = 3, urgent =2, and routine =1. In 
a real world scenario, the weight factors could be 
developed from of a life cycle cost analysis and risk 
assessment. 

For consistency between the two scenarios, the 
recovery process time is calculated based on a similar 
rate of recovery per unit of time for each end-user type 
(Table 6). In the targeted-incident scenario, the 
recovery processes for all end-users start at a same 
time after the incident. The recovery process in the 
second scenario is a consecutive process based on the 
prioritization of end-users by type. The total recovery 
process time in the first scenario is 40 (units of time), 
because the recovery process is started at the same 
time, it is equal to the longest recovery process. The 
recovery process time in the second scenario is 30 
(units of time), the sum the recovery processes for each 
end-user category. Appendix I presents the inputs in 
this scenario. 

Table 6 – Recovery rate.

End-user category
 Priority Urgent Routine

Rate 
(unit of time per 
1% recovery of 
grid capacity)

2 1 0.5

Recovery time (unit of time)

Targeted incident 40 5 5

Scattered incident 10 10 10

Employing the TIM, we compute the resilience 
capacities of the two scenarios. Figure 7 illustrates the 
results. The system under the scattered incident shows 
a higher resilience capacity. This is due to a 
combination of factors. The targeted-incident scenario 
has a lowest robustness capacity. The higher weight-
factor for the priority end-users magnifies the 
importance of this category in the computation of 
resilience dimensions. Both scenarios have alike DG 
capacity, which results in equal redundancy capacity 
in both scenarios. The resourcefulness capacity in the 
targeted-incident scenario is much lower than the 
scattered-incident scenario, because the system 
allocate its resources to the recovery process of all 
end-users concurrently. In a real-world scenario, this 
may slow down the rate of recovery, which we ignored 
in this example. The lower rapidity capacity in the 
targeted-incident example is due to the higher 
recovery time for the priority end-users. The readjust-
ability capacity in the targeted scenario is less than 1, 
because the system could not reach a 100% 
performance level at the end of the recovery process. 
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Figure 7 - Results – incident-based example.

Employing the previously proposed metrics of 
resilience, the resilience capacity of both scenarios 
would have a similar result. This is because in both 
scenarios the system loses 35% of its capacity. Also, 
while the overall recovery time in the targeted-incident 
scenario is 30% higher than the scattered-incident 
scenario, the low slack-time minimizes the impact of 
this difference on the results of the rapidity capacity. 

Employing the proposed framework provides 
insight into the resilience of the system. The low 
resilience score in the targeted-incident scenario may 
lead the decision makers to provide higher capacity 
dedicated emergency generators a for the priority end-
users, in addition to an onside repair facility to boost 
the recovery process. Furthermore, a micro smart-grid 
system enhanced with damage detection features can 
improve the rapidity and resourcefulness capacities. In 
the scattered-incident scenario, the system shows a 
low redundancy capacity. The adoption of EVs and PV 
systems provides potential for increasing alternative 
electricity generation after the incident and during the 
recovery process.

5. Conclusion

The electric infrastructure system faces many 
natural and man-made threats. To maintain a stable 
flow of service, electric infrastructure must be resilient 
and able to reduce its vulnerability to hazardous 
incidents. This paper develops a quantitative method 
of examining the resilience capacity of an electric 
infrastructure system that includes ancillary service 
providers and different customer types. Through two 

examples, we show how the proposed framework 
evaluates the resilience capacity. The proposed 
framework allows policy makers and system designers 
to evaluate and improve the resilience capacity of an 
electric infrastructure system based on system specific 
characteristics. 

Evaluation of the resilience capacity is one step 
toward improving resilience. Additional steps can 
evaluate how each component of the system can 
contribute to improving the resilience capacity. This 
study introduces new avenues to improve resilience 
capacity through the adoption of decentralized 
renewable technologies such as PV systems. Future 
work can consider extension of this approach to 
additional infrastructure systems, and to broader 
system contexts.. Furthermore, a complementary life-
cycle analysis has a merit in the resilience engineering 
process, and expands the scope of the resilience 
assessment framework. From the management 
perspective, the first step of improving the resilience 
capacity of a system is to measure the current state of 
the system and define a goal for the desired resilience 
capacity according to the needs of stakeholders. The 
proposed framework provides a means to measure and 
evaluate the resilience capacity of a system at each 
point in time. Application experience and further 
studies can illustrate how the resilience goals can be 
defined, and propose actionable plans to achieve those 
goals. 
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A p p e n di x I

I n p ut v a ri a bl es: bl a c k o ut e x a m pl e

T h e f oll o wi n g t a bl e r e pr es e nt t h e i n p ut v ari a bl es f or t h e first e x a m pl e.

S c e n a ri o
D es c ri pti o n

E n d- us e r 
t y p e

V a ri a bl es
Bl a c k o ut

Bl a c k o ut + 
D G s yst e ms

P a rti al 
Bl a c k o ut

pri orit y F s
p 1 0 0 % 1 0 0 % 1 0 0 %

ur g e nt F s
u 1 0 0 % 1 0 0 % 1 0 0 %P erf or m a n c e l e v el pr e-i n ci d e nt

r o uti n e F s
r 1 0 0 % 1 0 0 % 1 0 0 %

C a p a cit y of D G s yst e ms as a 
p er c e nt a g e of t h e F s

F D G 0 3 0 % 0

pri orit y F d
p 0 0 3 0 %

ur g e nt F d
u 0 0 3 0 %

P erf or m a n c e l e v el aft er 
i n ci d e nt b ef or e t h e r e c o v er y 
pr o c ess r o uti n e F d

r 0 0 3 0 %

pri orit y F F
p 1 0 0 % 1 0 0 % 1 0 0 %

ur g e nt F F
u 1 0 0 % 1 0 0 % 1 0 0 %

P erf or m a n c e l e v el aft er t h e 
r e c o v er y pr o c ess r o uti n e F F

r 1 0 0 % 1 0 0 % 1 0 0 %

Ti m e s c al e f a ct or ɣ 1 1 1
pri orit y Δt I 8 8 8
ur g e nt Δt II 2 4 2 4 2 4Sl a c k ti m e
r o uti n e Δt III 1 2 0 1 2 0 1 2 0
pri orit y Δt I 6 6 4. 8
ur g e nt Δt II 1 8 1 8 1 4. 4R e c o v er y d ur ati o n
r o uti n e Δt III 1 6 8 1 6 8 1 3 4. 4

I n p ut v a ri a bl es: i n ci d e nt- b as e d e x a m pl e

T h e f oll o wi n g t a bl e r e pr es e nt t h e i n p ut v ari a bl es f or t h e s e c o n d e x a m pl e.

S c e n a ri os
D es c ri pti o n

E n d- us e r 
t y p e

V a ri a bl es
T a r g et e d i n ci d e nt S c att e r e d i n ci d e nt

pri orit y F s
p 1 0 0 % 1 0 0 %

ur g e nt F s
u 1 0 0 % 1 0 0 %

P erf or m a n c e l e v el pr e-
i n ci d e nt

r o uti n e F s
r 1 0 0 % 1 0 0 %

pri orit y F D G
p 5 0 % 5 0 %

ur g e nt F D G
u 5 0 % 5 0 %

C a p a cit y of D G s yst e ms as 
a p er c e nt a g e of t h e F s

r o uti n e F D G
r 2 0 % 2 0 %

pri orit y F d
p 0 % 7 5 %

ur g e nt F d
u 8 7. 5 % 7 5 %

P erf or m a n c e l e v el aft er 
i n ci d e nt b ef or e t h e 
r e c o v er y pr o c ess r o uti n e F d

r 7 5 % 5 0 %
pri orit y F F

p 9 0 % 1 0 0 %
ur g e nt F F

u 1 0 0 % 1 0 0 %
P erf or m a n c e l e v el aft er 
t h e r e c o v er y pr o c ess

r o uti n e F F
r 1 0 0 % 1 0 0 %

Ti m e s c al e f a ct or ɣ 2 2
pri orit y tδI 1 0 1 0
ur g e nt tδII 2 4 2 4Sl a c k ti m e
r o uti n e tδIII 4 8 4 8
pri orit y Δt I 4 0 1 0
ur g e nt Δt II 5 1 0R e c o v er y d ur ati o n
r o uti n e Δt III 5 1 0
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Appendix II – TIM application

To facilitate the computation of resilience, we developed the TIM (Toolkit for Resilience 
Measurement) application. The proposed framework requires computation of five dimensions of 
resilience for a system with 35 inputs. The TIM application only employs the proposed formulation to 
compute the resilience capacity. A detailed explanation of each formula and input variables are presented 
in section 3. TIM is a stand-alone executable application that is developed in two versions for Windows 
and MacIintosh operating systems. Both versions shares a similar user interface (Figure II- 1). 

To run TIM, there is no need to pre-install any other application. Users can enter all required input 
variables into the TIM and get the results. TIM computes the resilience capacity of the system as well as 
the fiv resilience dimensions. TIM is divided into three sections: input variables, results, and Other 
features. This appendix provides a brief manual for using the TIM to compute the resilience dimensios 
and capacity. Readers can access TIM via the Github depository at www.github.com/Sean-Toroghi/TIM.

http://www.github.com/Sean-Toroghi/TIM
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Figure II- 1 - TIM user interface (Top: Windows Operation System, and Bottom: MacintoshOperation System).

In the input variables section, users can enter the information required for computing the resilience 
dimensions and capacity. Figure II- 2 illustrates the TIM interface with red dashed rectangles highlighting 
the input section. The system performance level contains five variables in three groups. The performance-
level prior to an incident indicates the system performance level under normal operation conditions. The 
performance level after the incident indicates the system performance level immediately after the incident 
when it reaches a stable level. The recovery process has not yet started at this point. The three control 
points, (F_1, F_2, and F_3) represent the system performance level for each end-user type at the time the 
recovery process is finished for the priority, urgent, and routine categories, respectively. If there exist DG 
systems in the region under investigation, the users can enter the capacity of the DG systems as a 
percentage of consumption for each end-user category. 

To compute the Rapidity capacity, users are required to enter the variables in the recovery process 
section. The unit of time for the three variables in this section (tim scale factor, slack time, and duration of 
the recovery process) should be consistent. Finally the weight factors for both the end-user types and 
resilience dimensions provides the capability for user to apply any prioritization according to the results 
of other complimentary analysis such as life-cycle cost analysis.
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Figure II- 2 – TIM application: input variables. 

To compute the results, users need to click on the associated buttons in the resilience dimensions and 
capacity section, highlighted by the green dashed rectangle in Figure II- 3. The computation of results is 
based on the formulation presented in this paper. Five buttons are allocated to compute the five resilience 
dimensions, separately. The resilience (R) button computes the system resilience capacity and five 
resilience dimensions together.

The TIM application is enhanced with some other features to facilitate and aid users’ interaction. 
Users can reset the input variables to default values by clicking on the reset button. Also at any point, 
users can save the input variables by clicking the save button and save the input data in the computer. The 
user can later retrieve the saved data by clicking on the load button. Also, the input data of the notional 
examples (the three scenarios of the first example and two scenarios of the second example) in this article 
are provided  through the “input variable: notional examples” section, in which the user can click on any 
of the five buttons representing the associated scenario and the application will automatically change the 
input variable to the ones used for that particular scenario. Figure II- 5 through II-8 illustrate the input 
variables of the five scenarios. A brief description of each section is available to the users by clicking on 
the question mark orange buttons.



18

Figure II- 3 - TIMapplication: compute the results.
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Figure II- 4 -TIM: input variables of the blackout scenario.

Figure II- 5 - TIM: input variables of the blackout plus DG scenario.
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Figure II- 6 - TIM: input variables of the partial blackout scenario.

Figure II- 7- TIM: input variables of the targeted incident scenario.
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Figure II- 8 TIM: input variables of the scattered incident scenario.




