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Dicke Superradiance in Ordered Lattices: Dimensionality Matters
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Dicke superradiance in ordered atomic arrays is a phenomenon where atomic synchronization gives rise
to a burst in photon emission. This superradiant burst only occurs if there is one—or just a few—dominant
decay channels. For a fixed atom number, this happens only below a critical interatomic distance. Here we
show that array dimensionality is the determinant factor that drives superradiance. In two-dimensional (2D) and
three-dimensional (3D) arrays, superradiance occurs due to constructive interference, which grows stronger with
atom number. This leads to a critical distance that scales sublogarithmically with atom number in 2D, and as a
power law in 3D. In one-dimensional arrays, superradiance occurs due to destructive interference that effectively
switches off certain decay channels, yielding a critical distance that saturates with atom number. Our results
provide a guide to explore many-body decay in state-of-the art experimental setups.
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I. INTRODUCTION

Collective emission has been a fundamental problem in
quantum optics since the notion was introduced by Dicke in
1954 [1]. Dicke realized that nearby atoms must interact via
shared electromagnetic field modes, fundamentally altering
their optical properties. He considered the case of a fully
excited ensemble of emitters located at a single point. In
stark contrast to the exponentially decaying pulse emitted by
independent (i.e., far-separated) entities, emitters at a point
synchronize, locking in phase as they decay, and emitting a
short burst of light that initially rises in intensity [1–4] [see
Fig. 1(a)]. This “superradiant burst” has become a hallmark
of collective phenomena in quantum optics and has been
observed in a variety of physical systems [5–11]. Gener-
ally, experiments are performed in dense disordered systems,
where interparticle separations can be very small, or in a
cavity, where the restriction of the field to a single confined
mode emulates the condition of atoms at a point.

In extended ordered arrays in free space, the geometry
and dimensionality of the lattice define the atomic decay
properties due to position-dependent dipole-dipole interac-
tions. For example, in ordered arrays with subwavelength
interatomic separation, subradiant states with an extremely
enhanced lifetime emerge [12–14]. These can be used to guide
light as “atomic waveguides” [15–17] or “atomic dielectrics”
[18–21], and to improve the fidelity of protocols for quantum
information storage [16,22,23] and metrology [24,25], among
other applications. Arranging single atoms in ordered pat-
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terns has become an experimental reality [26–34]. Interatomic
separations in these platforms can be small enough that the
optical response is strongly modified by photon interference
effects. Predictions that a two-dimensional array acts as an
atomically thin mirror have been demonstrated [35–37], and
site-dependent frequency shifts due to dipole-dipole interac-
tions have been measured [38].

The role of geometry in many-body (i.e., many-photon,
or “Dicke”) superradiance has not yet been completely elu-
cidated. The introduction of spatially varying dipole-dipole
interactions to Dicke’s original model causes position-
dependent frequency shifts that lead to dephasing, damping
superradiance [39,40]. This is significant in disordered sys-
tems, and points to the key role of geometry, as it determines
the spatial pattern of these frequency shifts [41–43]. However,
dephasing is reduced in large ordered arrays, as the frequency
shifts are predominantly homogeneous [3,4,40]. In such sys-
tems, the primary source of dephasing is competition between
multiple decay channels [44,45].

Here, we study the onset of superradiance in lattices
of different dimensionalities. To do so, we harness a tech-
nique derived in our previous work [45]. It enables us to
deduce the minimal conditions for Dicke superradiance with-
out calculating the full dynamical evolution of the system,
simply by analyzing the statistics of the first two emitted
photons [45]. We analytically and numerically demonstrate
that the microscopic origin of superradiance is highly de-
pendent on the array dimensionality. For two-dimensional
(2D) and three-dimensional (3D) arrays, it occurs because
of constructive interference. In one-dimensional (1D) arrays,
it is due to destructive interference. In contrast to Dicke’s
original work, which assumes that all atoms are confined
to a volume of dimensions much smaller than the transi-
tion wavelength, we show that superradiance survives in
(high-dimensional) arrays where the smallest interparticle dis-
tance is larger than a wavelength. The distance increases
with atom number, sublogarithmically in 2D and as a power
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FIG. 1. (a) Schematic of Dicke superradiance, which results from atomic correlations and leads to a burst in the emitted intensity, in
contrast to the monotonic decay from uncorrelated atoms. In ordered arrays, the interatomic distance controls the crossover between the two
regimes. Atoms are modeled as two-level systems with transition frequency ω0 between excited and ground states and spontaneous emission
rate �0. (b)–(d) Collective decay rates (top) and their variance (bottom) as a function of interatomic distance d for atomic arrays of different
dimensions. (b) N = 25 atoms form a 1D array, and the transition polarization is perpendicular to the chain. (c) N = 52 = 25 atoms form a 2D
lattice with polarization axis out of plane. (d) N = 33 = 27 atoms are arranged in a 3D lattice, with the polarization axis aligned with one of
the main axes of the array.

law in 3D. In contrast, it saturates to a certain bound in
1D arrays.

II. METHODS

We consider ordered arrays of N two-level atoms of res-
onance frequency ω0, resonance wavelength λ0 = 2πc/ω0,
and spontaneous emission rate �0 [see Fig. 1(a)] arranged
at positions {ri} with d the smallest interatomic distance in
the set {|ri − r j |}. The atoms interact via the electromagnetic
field, which is traced out using a Born-Markov approxima-
tion [46,47]. The atomic density matrix, ρ = |ψ〉 〈ψ |, evolves
according to the master equation

ρ̇ = − i

h̄
[H, ρ] +

N∑
ν=1

�ν

2
(2ÔνρÔ†

ν − ρÔ†
νÔν − Ô†

νÔνρ).

(1)
In the above expression, the Hamiltonian is given by

H = h̄
N∑
i=1

ω0σ̂
i
ee + h̄

N∑
i, j=1

Ji j σ̂ i
egσ̂

j
ge, (2)

where σ̂ i
ge = |gi〉 〈ei| is the atomic lowering operator for atom

i, with |gi〉 and |ei〉 the atomic ground and excited state, re-
spectively. The Lindblad operator has been diagonalized into
the action of N collective jump operators, {Ôν} with decay
rates {�ν} [48,49], found as the eigenstates and eigenvalues
of the dissipative interaction matrix � with elements �i j . The
coherent and dissipative interaction rates read

Ji j − i
�i j

2
= −μ0ω

2
0

h̄
℘∗ · G0(ri, r j, ω0) ·℘, (3)

where ℘ is the dipole matrix element of the atomic transition
and G0(ri, r j, ω0) is the propagator of the electromagnetic
field between points ri and r j . Each jump operator represents
the emission of a photon into a particular decay channel
(with some specific far-field profile). Jump operators act on

all atoms, and can be expressed as superpositions of atomic
lowering operators, Ôν = ∑N

i=1 αν,iσ̂
i
ge, where αν,i represents

some spatial profile over the ensemble.
We define the minimal condition for Dicke superradiance

to have the first photon enhance the subsequent one or, equiv-
alently, to have a greater than unity second-order correlation
function at t = 0 (following our previous work [45]). The
correlation function can be calculated exactly for an initially
fully inverted state and yields a condition on the variance of
the set of decay rates [45], i.e.,

Var

( {�ν}
�0

)
≡ 1

N

N∑
ν=1

(
�2

ν

�2
0

− 1

)
> 1. (4)

The problem of identifying the minimal conditions for a
superradiant burst is thus reduced to finding the eigenvalues
of the dissipative interaction matrix, an operation that scales
polynomially with atom number. Taking advantage of the
symmetries of the problem, we calculate the variance of the
decay rates without diagonalizing the matrix, requiring only
O(N ) steps (see Appendix A). This allows us to study arrays
of N � 107 atoms.

For infinite ordered arrays, we calculate the variance by
making the prescription

N∑
ν=1

→ N

(
d

2π

)n ∫
dk, (5)

where n is the number of dimensions of the array and k is an
n-dimensional vector. We find the condition for a superradiant
burst in the limit N → ∞ to be

1

2

(
d

2π

)n ∫ (
�(k)

�0

)2

dk > 1. (6)

As d increases, the decay rates cluster around the single-
atom decay rate �0, decreasing the variance. Figures 1(b)–
1(d) show the decay rates as a function of interatomic
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distance d , for all array dimensionalities showing “revivals”
or “geometric resonances” at particular distances due to long-
range interactions arising from 1/r terms in the Green’s
tensor [50,51], which prevent the variance from decreasing
monotonically with d . This means that establishing regions
of superradiance is nontrivial. As d is increased, superra-
diance can be lost, but then reestablished by a geometric
resonance [45]. Here, we define dcritical as the distance at
which Var({�ν}/�0) = 1 (there can thus be multiple values
for dcritical for a given array).

III. 1D ARRAYS

The critical distance in large 1D arrays saturates to
d1D

critical � 0.3λ0, as we demonstrate below. Jump opera-
tors in infinite 1D arrays can be written as spin waves
Ôkz = 1/

√
N

∑N
i=1 e

ikzzi σ̂ i
ge, where we assume the array to lie

along the z axis. In the above expression, kz is the wave vector
and zi are the atomic positions. As N → ∞, the finite set
{kz} becomes a continuum. The decay rates can be calculated
analytically for a perfect array by taking the Fourier transform
of the imaginary part of the Green’s function [16], and read

�1D,‖(kz )

�0
= 3π

2k0d

∑
gz

(
1 − (kz + gz )

2

k2
0

)
, (7a)

�1D,⊥(kz )

�0
= 3π

4k0d

∑
gz

(
1 + (kz + gz )

2

k2
0

)
. (7b)

The summations run over reciprocal lattice vectors
gz = 2πn/d, ∀n ∈ Z that satisfy the condition |gz + kz| �
k0 = ω0/c. These reciprocal lattice vectors correspond to scat-
tering processes outside the first Brillouin zone. A process
at kz + gz corresponds to a discrete number of additional
oscillations between sites. Therefore the processes are locally
equivalent and can be folded back onto the first Brillouin zone.
The sum is restricted to modes that lie inside the light cone.
As shown in Fig. 2(a), for |kz| > k0, no value of gz satisfies
the above condition, and modes are completely dark.

In the N → ∞ limit, the condition for superradiance in 1D
is recast as ∫

�2
1D(kz )

�2
0

dkz >
4π

d
. (8)

Integrating over the first Brillouin zone, the critical distances
for both polarizations are found to be

d1D,‖
critical = 3

10
λ0 = 0.3λ0, (9a)

d1D,⊥
critical = 21

80
λ0 = 0.2625λ0. (9b)

We demonstrate in Appendix B that the condition for super-
radiance is only met within the first Brillouin zone. These are
therefore hard bounds on Dicke superradiance for 1D arrays.

The values of dcritical derived in the infinite limit are cor-
roborated by numerical calculations in finite arrays, as shown
in Fig. 2(b). The critical distance saturates to the analytical
solution even for modest atom numbers. Parallel polariza-
tion produces higher values of dcritical because some operators
within the light cone are highly subradiant, which, due to the
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FIG. 2. The critical distance (beyond which there is no Dicke
superradiance) saturates with atom number in 1D. (a) Decay rates in
the first Brillouin zone, for both polarizations (parallel, in blue; and
perpendicular, in green) for an infinite 1D array of d = 0.2λ0. The
shaded region represents the light cone, where modes are radiative.
(b) Scaling of the critical distance with atom number. Dashed lines
show the analytical result for dcritical obtained for infinite arrays [see
Eq. (9)].

fixed trace of �, produces more superradiant operators and
increases the variance [see Fig. 2(a)].

IV. 2D ARRAYS

One-dimensional arrays are unique, as superradiance for
two dimensions and above occurs for any distance in the
thermodynamic limit. For 2D arrays as N → ∞, the spatial
profiles of the jump operators admit a description in terms
of plane waves, i.e., Ôk = 1/

√
N

∑N
i=1 e

ik·ri σ̂ i
ge, where k is

a two-component wave vector that lives in the plane of the
array. As in 1D, decay rates can be found analytically [16]:

�2D,⊥(k)

�0
= 3π

k3
0d

2

∑
g

|k + g|2√
k2

0 − |k + g|2
, (10a)

�2D,‖(k)

�0
= 3π

k3
0d

2

∑
g

k2
0 − |(k + g) ·℘|2√

k2
0 − |k + g|2

, (10b)
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FIG. 3. The critical distance increases with atom number in 2D. (a) Scaling of the critical distance with atom number for square 2D arrays
for three polarizations (circular in the plane of the array, in blue; linear in the plane of the array, in purple; and out-of-plane, in red). The
solid lines show guides to the eye following the analytical expression for an infinite array, i.e., Eq. (13) with only two free parameters. We set
the parameter C = 2/15 for the in-plane circular polarization below d < 0.5λ0, and it remains fixed for all other lines. We set the parameter
B = 4 for perpendicular polarization and take zero for the others. The coefficients a and b are b = 1/8 for circular in-plane polarization and
b = 3/16 for linear in-plane polarization, with a = 1 for both. For out-of-plane polarization a = 0 and b = 1/2. (b) Maximum critical distance
as a function of polarization angle, for in-plane (purple) and out-of-plane (green) polarization, for N = 102 = 100 atoms. (c) Scaling of the
critical distance with atom number for square (purple crosses), rhombic (orange circles), and triangular (teal stars) lattices. Inset: Maximum
critical distance for N = 502 = 2500 atoms in a 2D lattice as a function of lattice angle. In both plots, atoms are polarized out of plane.

where the summations run over all reciprocal lattice vectors
g = {2πn/d, 2πm/d}, ∀n,m ∈ Z that satisfy |k + g| � k0.

The condition for a superradiant burst in 2D is∫
�2

2D(k)

�2
0

dk >
8π2

d2
. (11)

In the first Brillouin zone, the integral of the square of the
decay rates for out-of-plane polarization is∫ (

�2D,⊥(k)

�0

)2

dk = 9π2

k6
0d

4

∫ 2π

0
dθ

∫ k0

0

k5

k2
0 − k2

dk, (12)

which diverges logarithmically as k → k0. The same is true
for the integral for in-plane polarization. While we only per-
form the integral in the first Brillouin zone here, an identical
divergence occurs for |k + g| → k0 in whichever Brillouin
zones that condition is met. We isolate the divergence by
integrating up to k0(1 − ε), where ε → 0 is a small devi-
ation from k = k0. A large finite array of atom number N
samples each dimension of the first Brillouin zone with fre-
quency N1/n, with n being the array dimensionality. By taking
ε = Cλ0/d

√
N (with C being a constant), we show analyti-

cally in Appendix B that for large N the critical distance in
2D scales as

d2D
critical � λ0

√
α + β lnN, (13)

where α = 9(a − 3b− 2b ln 2C + B)/32π and β = 9b/32π

are reduced constants that depend on the polarization via a
and b, the sampling constantC that depends only on the lattice
geometry, and a factor B that depends on the set of relevant
reciprocal lattice vectors (see Appendix B for the detailed
expression). This result agrees with numerical findings, as
shown in Fig. 3(a).

We have demonstrated that in 2D the critical distance
scales sublogarithmically with the atom number. This, how-
ever, should not be understood as having superradiance for
any distance for infinite arrays, as multiple approximations
our model relies on break down in this limit. For instance,

the derivation of the master equation [Eq. (1)] is done un-
der the Born-Markov approximation, which assumes that the
maximum interatomic distance is small enough that one can
ignore the propagation time of photons between atoms. As
Nd → ∞, this approximation fails. Nevertheless, the critical
distance for any large number of atoms will be significantly
higher than in 1D.

While numerical calculations confirm the sub-logarithmic
scaling of dcritical, Fig. 3(a) shows that the maximum critical
distance does not increase smoothly. This is due to the geo-
metric resonances discussed above, which produce revivals in
the variance and disconnected regions of superradiance [45].
Atoms with in-plane polarization produce smaller values of
dcritical because for the linear case far-field emission is for-
bidden in one direction in the plane, and in the circular case
it is reduced in both. The 1/r terms are less significant, di-
minishing revivals in the variance and slowing the growth
of maximum dcritical with N . This is evident in Fig. 3(a),
where the discontinuity for the in-plane polarized case is much
smaller in size and occurs at much higher N than for the
out-of-plane polarized case.

As the polarization vector is rotated towards the plane,
there is a sudden drop in the maximum dcritical, as the revivals
in the variance diminish until they can no longer sustain a
superradiant burst, as shown in Fig. 3(b). Rotating the polar-
ization in plane yields little change, as the choice of axis is
unimportant for large arrays.

As shown in Fig. 3(c), the geometry of the lattice has only
a minor impact on the critical distance. For large N , a trian-
gular lattice maximizes dcritical, as this geometry minimizes all
periodic distances between neighboring atoms. However, the
scaling appears to be the same in all cases. The number of
discontinuities in the maximum dcritical changes with geome-
try. For a square lattice, there are two discontinuities in the
region d ∈ [0.5λ0, λ0]: one associated to the nearest-neighbor
distance, and one for the diagonal displacement across the
unit cell. For a rhombic lattice, there are three discontinuities,
as the diagonal displacements are different. For a triangular
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FIG. 4. The maximum critical distances diverges as a power law
in 3D, as shown for atoms arranged in cubic (purple) and tetrahe-
dral (turquoise) lattices. In both cases, the transition polarization is
parallel to that of the main axes of the array. The line represents the
best fits to the function dcritical/λ0 = qN p, with q = {0.255, 0.268}
and p = {0.178, 0.180} for the cubic and the tetrahedral geometries,
respectively.

lattice, there is only one, as all distances of the unit cell are
the same.

V. 3D ARRAYS

Infinite 3D arrays are fundamentally different, in that they
cannot radiate to far field. However, a regularization factor
i�k2

0 , with � → 0+, is required to avoid a divergence in the
Green’s function at |k + g| = k0 [20,52]. This leads to decay
rates of the form

�3D(k)

�0
= 6π

k0d3

∑
g

�
(
k2

0 − |(k + g) ·℘|)(
k2

0 − |k + g|2)2 + �2k4
0

, (14)

where the summation runs over all reciprocal lattice vectors
g = {2πn/d, 2πm/d, 2π l/d}, ∀n,m, l ∈ Z that satisfy |k +
g| � k0.

We analytically find that dcritical diverges as N1/6 for 3D
arrays (see Appendix B). This agrees with the numerical find-
ings, as shown in Fig. 4. As in 2D, the optimal geometry
appears to be the one that optimizes packing efficiency and
thus minimizes all displacement vectors. Here, this is the
tetrahedral lattice, for which dcritical ≈ 2.3λ0 for a N = 503

array. As in 2D, there does not seem to be any saturation of
dcritical as N → ∞, indicating a divergent critical distance in
3D.

VI. CONCLUSIONS

Array dimensionality determines the physical origin of
Dicke superradiance. In 1D, superradiance occurs due to de-
structive interference, which produces dark decay channels
with a very suppressed radiative decay. The bright chan-
nels have decay rates that are not large and do not increase
with atom number (as shown in Fig. 5), as there are not

FIG. 5. The largest decay rate saturates in 1D, and grows with N
in 2D and 3D. Scaling of the largest decay rate in different dimen-
sionalities with d = 0.5λ0. In all cases, atoms are polarized along
one of the axes of the array and the lines of best fit are based on finite
samplings of the infinite expressions. The scalings are ∼(1 − c/N2

1D)
in 1D, ∼√

N1D in 2D, and ∼N1D in 3D, with N1D = N1/n being the
number of atoms along each dimension and c being a constant.

enough atoms in a chain to produce robust constructive in-
terference. In 2D and above, superradiance occurs because of
constructive interference, which results in large decay rates for
channels with wave vectors |k| � k0 (which grow with atom
number, as shown in Fig. 5). Destructive interference is not
behind Dicke superradiance in high dimensions because there
are no dark decay rates beyond a certain distance, in contrast
to superradiance, which occurs for any distance if the array is
large enough. While Dicke superradiance is a transient phe-
nomenon, there are similarities with phase transitions in that
long-range order emerges for high dimensionalities, and 2D
is a “lower critical dimension” (1D should not display Dicke
superradiance, but there is “residual” superradiance because
of destructive interference).

Finally, we note that our method is limited to identify-
ing the minimal conditions for the presence of a burst, but
not the properties of the burst. Information about, for ex-
ample, the scaling of the peak emission requires a different
approach [53,54]. We also consider only the total photon
emission (i.e., integrating the radiation over all directions). As
we discuss in Ref. [45], the critical distance may be higher
if the emitted light is measured only in particular directions.
Our algebraic technique has been recently adapted for that
purpose [55].

In conclusion, we have shown that superradiant bursts can
exist well beyond the regime first considered by Dicke. By
calculating the maximum interatomic distance at which a
superradiant burst occurs, we find that superradiance persists
to much larger distances in higher-dimensional arrays, as it
occurs due to constructive interference processes. Current
state-of-the-art optical tweezer array and optical lattice ex-
periments already operate well below these bounds [37,38],
and superradiance could thus be observed in such systems.
Arrays of solid-state emitters hosted in 2D materials [56–58]
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or in bulk crystals [59,60] can also be employed to explore
this physics. Our theoretical methods can be applied to studies
of collective emission with atoms with more complex level
structure [61–63], and atoms coupled to other reservoirs, such
as nanophotonic structures [64,65].

Note added. Recently, we became aware of related work by
F. Robicheaux [55].
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APPENDIX A: CALCULATING THE VARIANCE
OF THE DECAY RATES IN O(N) STEPS

Here we present the algorithm that allows us to find the
variance of the decay rates in O(N ) steps, instead of the
O(N3) scaling that would result from employing common
algorithms to find the eigenvalues of an N × N matrix. Let
A be the normalized matrix �/�0 with components Ai j and
eigenvalues {λi}. The matrix A inherits symmetry properties
from the Green’s tensor. Due to reciprocity, Gαβ (ri, r j, ω0) =
Gβα (r j, ri, ω0) and since all atoms share a common quan-
tization axis, α = β for all i, j. Therefore, A is real and
symmetric. The diagonal elements of � correspond to the
single-atom decay rate (�ii = �0) such that

Tr A =
N∑
i=1

λi = N. (A1)

Let D be the diagonalization of A such that A = PDP−1 (the
spectral theorem ensures A can be diagonalized as it is real
and symmetric), with D being a diagonal matrix with diagonal
elements λ1, . . . , λN . Therefore,

D2 =
⎛
⎝λ2

1
. . .

λ2
N

⎞
⎠, (A2)

with the trace of D2 being all we need to obtain the variance.
Since

A2 = PDP−1PDP−1 = PD2P−1, (A3)

we only need to calculate the trace of A2, since Tr A2 = Tr D2.
Multiplying matrices is computationally costly, but we can
avoid that operation by realizing that

Tr A2 =
N∑
i=1

(
N∑
j=1

Ai jA ji

)
=

N∑
i, j=1

A2
i j, (A4)

as A is real and symmetric. The sum of squared decay rates is
then

N∑
ν=1

(
�ν

�0

)2

=
N∑

i, j=1

(
�i j

�0

)2

= N + 2
N∑

i=1, j>i

(
�i j

�0

)

= N + 2
∑

β

nβ

(
�β

�0

)2

, (A5)

where we sum over all different displacement vectors {sβ}, �β

is the dissipative interaction rate between atoms separated by
displacement vector sβ , and nβ is the number of repetitions of
sβ in the array. For arbitrary geometries (where all vectors are
unique), this scales as O(N2). However, in ordered arrays, the
multiplicity of most displacement vectors is larger than one
(for example, in a 1D array, s2 ≡ r1,3 = r2,4 = −r5,3 = . . .).
This reduces the complexity of calculating the sum of squared
decay rates to the number of different displacement vectors.

In ordered arrays, the sum in β has O(N ) terms and the
variance is calculated in O(N ) steps. The atoms occupy a
grid such that all displacement vectors can be expressed as
integer numbers of discrete steps in each dimension. To this
end, we define a dimensionless vector dβ = {aβ, bβ, cβ} with
aβ, bβ, cβ such that sβ = aβ ŝ1 + bβ ŝ2 + cβ ŝ3 with ŝ1,2,3 the
three vectors that describe the unit cell. We define N1D as the
number of atoms along a one-dimensional slice in the array: in
1D N1D = N and bβ = cβ = 0, in 2D N1D = √

N and cβ = 0,
and in 3D N1D = N1/3.

Counting in 1D. All displacement vectors can be identified
by considering one end atom. The shortest displacement vec-
tor is that of nearest neighbors: |dβ | = 1. This appears N − 1
times, as r1,2 = r2,3 = · · · = rN−1,N . The largest displace-
ment vector is that between the two end atoms, |dβ | = N − 1,
which appears only once. More generally, a displacement
vector of aβ is repeated nβ = N1D − aβ times.

Counting in 2D. All displacement vectors can be identi-
fied by considering two adjacent corners. The displacement
vectors between the first corner and all other atoms pro-
vides all displacement vectors of the form dβ = {aβ, bβ} with
0 � aβ, bβ � N1D − 1 [excluding {0, 0}, which are counted in
the factor of N in Eq. (A5)]. However, this does not include
vectors where aβ (or equivalently bβ ) are negative. For ex-
ample, in Fig. 6, displacements from the bottom left corner
yield dα and dγ , but they do not include dξ . To complete
the set of possible displacement vectors we require those
given by a second corner: dβ = {aβ,−bβ} (or equivalently
dβ = {−aβ, bβ}, depending on the choice of corner) with
1 � aβ, bβ � N1D − 1. Note that here aβ, bβ �= 0, since those
vectors are already included in those defined by the first cor-
ner. To count repetitions, we note that, as in 1D, a vector which
covers aβ sites in the first dimension fits N1D − aβ times. The
same holds for the second dimension so the total repetitions is

nβ = (N1D − aβ )(N1D − bβ ). (A6)

Counting in 3D. All displacement vectors can be identified
by considering the four corners of one face. As in 2D, the
first corner provides all displacement vectors of the form
dβ = {aβ, bβ, cβ} with 0 � aβ, bβ, cβ � N1D − 1 (again ex-
cluding {0, 0, 0}). The other three corners provide the rest
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FIG. 6. Schematic of different displacement vectors in a square
lattice.

of the set, with care being taken to not repeat vectors. The
number of repetitions is then

nβ = (N1D − aβ )(N1D − bβ )(N1D − cβ ). (A7)

APPENDIX B: CALCULATIONS FOR INFINITE ARRAYS

The analytical expressions for the decay rates for infinite
1D, 2D, and 3D arrays are required to understand the behav-
ior of large atomic arrays. The spectral representation of the
dyadic Green’s function is found as the solution of the Fourier
transform of the electromagnetic wave equation [66]

G̃0(k, r′) = k2
01 − k ⊗ k

k2
0

(|k|2 − k2
0

)e−ik·r′
, (B1)

from which one readily finds

G0(r, r′) = 1

(2π )3

∫ +∞

−∞

k2
01 − k ⊗ k

k2
0

(|k|2 − k2
0

)e−ik·(r−r′ )dk. (B2)

For 1D and 2D, we choose kx as a preferred direction per-
pendicular to the array. By virtue of Jordan’s lemma and
Cauchy’s theorem, we can integrate the kx dependence ac-
counting for the residue contributions at the poles ±k0x, where

k0x =
√
k2

0 − k2
y − k2

z and find

G0(r, r′) = i

8π2k2
0

∫ +∞

−∞

k2
01 − k̄ ⊗ k̄

k0x
eiks (rs−r′

s )+ik0x |x|dks,

(B3)
where ks = kyŷ + kzẑ, rs = yŷ + zẑ, and k̄ = ks +
sgn(x)k0xx̂. We set both the 1D chain and the 2D array
at the plane x = 0 and evaluate the Green’s function at
atomic positions (with x = 0). Making use of the Dirac delta
representation in n dimensions,

∑
ri∈lattice

eik·ri =
(

2π

d

)n ∑
g∈reciprocal

lattice

δ(D)(k − g), (B4)

it is possible to express G̃0(k) as a sum over reciprocal lattice
vectors g. For a 1D chain along the ẑ axis, we obtain

G̃0(k) = i

8π2

2π

k2
0d

∑
gz

∫ ∞

−∞

k2
01 − k̄1 ⊗ k̄1

k1x
dky, (B5)

where k1x =
√
k2

0 − k2
y − (kz + gz )2 and k̄1 = sgn(x)k1xx̂ +

kyŷ + (kz + gz )ẑ. In the case of a 2D square lattice

G̃0(k) = i

8π2

(
2π

k0d

)2 ∑
g

k2
01 − k̄2 ⊗ k̄2

k2x
, (B6)

where k2x=
√
k2

0 −(ky+gy)2−(kz+gz )2 and k̄2=sgn(x)k2xx̂ +
(ky + gy)ŷ + (kz + gz )ẑ. For the 3D lattice we can directly use
the Dirac delta representation from Eq. (B2) to find

G̃0(k) = 1

k2
0d

3

∑
g

k2
01 − (k + g) ⊗ (k + g)

|k + g|2 − k2
0 + i�k2

0

, (B7)

where we have introduced the regularization factor i�k2
0 to

avoid the divergence at |k + g| = k0, with � → 0+. Then, the
collective decay rates can be evaluated as

�k

�0
= 6π

k0
℘∗ · ImG̃0(k) ·℘, (B8)

leading to the expressions provided in the main text.
As expected, for all dimensionalities

∫
BZ1

�(k)

�0
dk =

(
2π

d

)n

, (B9)

where n is the dimension of the array.

1. 1D arrays with d < 0.5λ0

Here, we consider a 1D array with d/λ0 < 0.5, where all
nonzero decay rates are contained within the first Brillouin
zone and the only nonzero term in the sum is gz = 0. Perform-
ing the integrals in k space for both polarizations, we find

∫
BZ1

(
�1D,⊥(kz )

�0

)2

dkz = 21

40k0

(
2π

d

)2

, (B10a)

∫
BZ1

(
�1D,‖(kz )

�0

)2

dkz = 3

5k0

(
2π

d

)2

. (B10b)

The condition for a minimum burst yields the critical dis-
tances of Eq. (9) in the main text.

2. 1D arrays with d > 0.5λ0

Here we demonstrate that the critical distances that we
have found in the previous section are the only possible
ones. For 0.5 < d/λ0 < 1, there are three possible values of
gz = {−2π/d, 0, 2π/d} that contribute to the decay rates. The
integrals of the square of the decay rates for both polarizations
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yield ∫
BZ1

(
�1D,⊥(kz )

�0

)2

dkz = 9π2

16k2
0d

2

∫ π/d

−π/d

∑
gz

(
1 + (kz + gz )

2

k2
0

)2

+
∑
gz,g′

z
gz �=g′

z

(
1 + (kz + gz )

2

k2
0

)(
1 + (kz + g′

z )
2

k2
0

)
dkz

= 2π2

k0d2

(
−3λ5

0

5d5
− 3λ3

0

d3
+ 6λ2

0

d2
− 9λ0

2d
+ 63

20

)
, (B11a)

∫
BZ1

(
�1D,‖(kz )

�0

)2

dkz = 2π2

k0d2

(
−12λ5

0

5d5
+ 12λ3

0

d3
− 12λ2

0

d2
− 18

5

)
. (B11b)

These expressions do not satisfy the minimal condition for
a superradiant burst [i.e., Eq. (6)] anywhere in the region
0.5 < d/λ0 < 1.

For larger interatomic separations, we can upper bound the
integral to prove that the variance is smaller than unity always.
For perpendicular polarization we bound the double sum by

∑
gz,g′

z

(
1 + (kz + gz )

2

k2
0

)(
1 + (kz + g′

z )
2

k2
0

)

<
∑
gz

(
1 + (kz + gz )

2

k2
0

)2

+ 2Ngz

(
1 + (kz + gz )

2

k2
0

)2

,

(B12)

where Ngz is a natural number such that gz = ±Ngz2π/d . The
inequality is produced by upper bounding each of the products
in the sum as the square of whichever term is larger. This
allows us to bound the integral as∫

BZ1

(
�1D,⊥(kz )

�0

)2

dkz <
21π2

5k0d2
+ 63π

48d
, (B13)

which satisfies the condition for a superradiant burst for
d/λ0 < 0.7814. Since we have already shown that the super-
radiant burst cannot be exhibited for 1D arrays with 0.2625 <

d/λ0 < 1, this means that d < 0.2625λ0 is the only region in
which a superradiant burst can be produced.

Similarly, for parallel polarization we bound the integral by∫
BZ1

(
�1D,‖(kz )

�0

)2

dkz <
24π2

5k0d2
+ 3π

4d
, (B14)

which satisfies the condition for a superradiant burst if d/λ0 <

0.8571. Again, we have shown previously that a superradiant
burst cannot be produced for 0.3 < d/λ0 < 1 such that d <

0.3λ0 is the only region in which a superradiant burst can be
produced.

3. 2D arrays with d < 0.5λ0

For 2D arrays with d < 0.5λ0, the nonzero decay rates
entirely lie within the first Brillouin zone and the only possi-
ble terms are those where g = {0, 0}. Performing the integral
yields∫

BZ1

(
�2D(k)

�0

)2

dk = 9πλ2
0

4d4

(
a + 4b

k4
0

∫ k0

0

k5

k2
0 − k2

dk

)
,

(B15)

where a and b depend on the polarization. For perpen-
dicular polarization a = 0 and b = 1/2, for in-plane linear
polarization a = 1 and b = 3/16, and for in-plane circular
polarization a = 1 and b = 1/8. The integral is performed
over all nonzero decay rates, which form a disk, Dk0 , centered
on zero with radius k0. The integral diverges as |k| → k0, but
we characterize the scaling of the divergence with atom num-
ber. We isolate the divergence by integrating up to k0(1 − ε),
where ε → 0 represents a small deviation from k = k0:

1

k4
0

∫ k0

0

k5

k2
0 − k2

dk = lim
ε→0

∫ 1−ε

0

x5

1 − x2
dx

= lim
ε→0

−ε4

4
+ ε3 − 2ε2 + ε − 3

4

− 1

2
ln (2ε − ε2). (B16)

A finite array approximately samples each dimension of the
Brillouin zone with spacing 1/

√
N , so ε = Cλ0/d

√
N , with

C being a constant. By considering the condition given in
Eq. (6), we find that dcritical satisfies the transcendental equa-
tion

9λ2
0

16πd2

{
a + 4b

[
− C4λ4

0

4d4N2
+ C3λ3

0

d3N3/2
− 2C2λ2

0

d2N
+C

λ0

d
√
N

− 3

4
+ 1

2
ln

(
1

C

d2N/λ2
0

2d
√
N/λ0 −C

)]}
− 2 = 0. (B17)

In the limit N → ∞, 1/
√
Nd → 0, the condition can be ap-

proximated as

d2D
critical � 3λ0

4
√

2π

√
a − 3b− 2b ln 2C + b lnN, (B18)

where we also assume ln d/λ0 � lnN .

4. 2D arrays with d > 0.5λ0

For d > 0.5λ0, there are several values of g that can sat-
isfy |k + g| � k0, and the integral of the squared decay rates
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becomes(
�2D,⊥(k)

�0

)2

= 9π2

k6
0d

4

⎛
⎝∑

g

|k + g|2√
k2

0 − |k + g|2

⎞
⎠

⎛
⎝∑

g′

|k + g′|2√
k2

0 − |k + g′|2

⎞
⎠

= 9π2

k6
0d

4

⎛
⎝∑

g=g′

|k + g|2√
k2

0 − |k + g|2
|k + g′|2√

k2
0 − |k + g′|2

+
∑

g′,g �=g′

|k + g|2√
k2

0 − |k + g|2
|k + g′|2√

k2
0 − |k + g′|2

⎞
⎠. (B19)

The first of these terms is exactly equivalent to that with
g = g′ = {0, 0}, and so is integrated in the same manner as
above. The second term has a convergent integral as both
terms cannot generally diverge when g �= g′. The only excep-
tion to this is a finite set of terms that have zero measure when
integrated over the first Brillouin zone. When integrated, the
first term will give the same result as for d < 0.5λ0 and the
second term will be a function of interatomic distance, B(d ).
However, B(d ) varies slowly with d for each possible set of
relevant reciprocal lattice vectors, and so can be considered

a constant in the intervals between additional values of g
becoming relevant. The same process can be done for all
polarizations, yielding the final result

d2D
critical � 3λ0

4
√

2π

√
a − 3b− 2b ln 2C + B + b lnN . (B20)

5. 3D arrays with d < 0.5λ0

For 3D arrays with d < 0.5λ0, we have

∫
BZ1

(
�3D(k)

�0

)2

dk = 36π2

k2
0d

6

∫ ∞

0

∫ π

0

∫ 2π

0

�2(k2
0 − k2 cos2 θ )

2[(
k2

0 − k2
)2 + �2k4

0

]2 k
2 sin θ dφ dθ dk

= 36π2

k2
0d

6

∫ ∞

0
�2 4πk4

0k
2 − 8πk2

0k
4/3 + 4πk6/5[(

k2
0 − k2

)2 + �2k4
0

]2 dk =
(

2π

d

)3 18

k3
0d

3

∫ ∞

0
�2 x

2 − 2x4/3 + x6/5

[(1 − x2)2 + �2]2
dx

=
(

2π

d

)3 18

k3
0d

3
[H�(+∞) − H�(1+) + H�(1−) − H�(0)]. (B21)

In this case, the integral diverges at x = 1 in the limit � → 0. The function H�(x) is defined as

H�(x) = − 1

120

(6�2 − 16)x3 − (14�2 − 16)x

�2 + (x2 − 1)2
+ 1

120

√
i

� − i

(
9�2 − 2i� + 8 − i

16

�

)
arctan

(
x

√
i

� − i

)
+ c.c. (B22)

such that H�(0) = 0 and

H�(+∞) = − 1

120

(
i
8π

�
+ i�π − 4π − 9

2
π�2

)(√
i

� − i
−

√ −i

� + i

)
, (B23)

which has a null real part and a divergent imaginary part when � → 0. For H�(1−) − H�(1+), the second term is zero and the
first term is divergent for � → 0. Therefore, the divergence of the integral arises from the first polynomial part of H�(x). Setting
1+ = 1 + ε and 1− = 1 − ε, the real part of the integral is∫

BZ1

(
�k

�0

)2

dk =
(

2π

d

)3 3

20k3
0d

3

(
1

ε
+ 1

2(ε + 2)
+ 1

2(ε − 2)

)
�

(
2π

d

)3 3

20k3
0d

3

1

ε
. (B24)

The sampling of the reciprocal space by a finite ar-
ray is proportional to the cubic root of N . Therefore, ε =
Cλ0/dN1/3. We thus find

dcritical � λ0

√
3

320π3C
N1/6 ∼ AN1/6. (B25)

6. 3D arrays with d > 0.5λ0

For d > 0.5λ0, the square of the sum over reciprocal lat-
tices is separated into two terms. As in 2D, the term where
g = g′ is exactly equivalent to the case when d < 0.5λ0 and
so diverges as a power law with N . The term with g �= g′ is a
convergent integral and simply adds up to a constant B̃, which

is the approximation of the slow varying function B̃(d ). Using
the condition given in Eq. (6), dcritical is the solution to the
following equation for large N values

3λ3
0

160π3d3

(
N1/3d

Cλ0
+ B̃

)
− 2 = 0, (B26)

which is a third degree polynomial with a known real root that
can be approximated to give the scaling of dcritical with atom
number as

dcritical ∼ ĀN1/6 + B̄. (B27)

where Ā, B̄ depend on the set of relevant reciprocal lattice
vectors.
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