
lable at ScienceDirect

Forensic Science International: Digital Investigation 37 (2021) 301190
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2021 USA - Proceedings of the Twenty First Annual DFRWS USA
Duck Hunt: Memory forensics of USB attack platforms

Tyler Thomas*, Mathew Piscitelli, Bhavik Ashok Nahar, Ibrahim Baggili
Connecticut Institute of Technology, Samuel S. Bergami Jr. Cybersecurity Center, USA
a r t i c l e i n f o

Article history:

Keywords:
Memory forensics
Volatility
Bash Bunny
Rubber Ducky
USB Devices
Network devices
* Corresponding author.
E-mail addresses: tthom10@unh.newhaven.edu

newhaven.edu (M. Piscitelli), bnaha1@unh.newhaven
newhaven.edu (I. Baggili).

https://doi.org/10.1016/j.fsidi.2021.301190
2666-2817/© 2021 The Authors. Published by Elsevier
a b s t r a c t

To explore the memory forensic artifacts generated by USB-based attack platforms, we analyzed two of
the most popular commercially available devices, Hak5's USB Rubber Ducky and Bash Bunny. We present
two open source Volatility plugins, usbhunt and dhcphunt, which extract artifacts generated by these USB
attacks fromWindows 10 system memory images. Such artifacts include driver-related diagnostic events,
unique device identifiers, and DHCP client logs. Our tools are capable of extracting metadata-rich
Windows diagnostic events generated by any USB device. The device identifiers presented in this
work may also be used to definitively detect device usage. Likewise, the DHCP logs we carve from
memory may be useful in the forensic analysis of other network-connected peripherals. We also quantify
how long these artifacts remain recoverable in memory. Our experiments demonstrated that some In-
dicators of Compromise (IOCs) remain in memory for at least 24 h.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

USB-based attacks present a new and unique challenge to
cyberforensics investigators. They allow an attack to be carried out
inconspicuously after a compromise of physical security. After a
breach in physical security, an attack can be carried out by simply
plugging the device into the victim machine. Additionally, the de-
vices are designed to limit the amount of information left on the
disk by operating entirely within memory. This introduces a unique
challenge because memory forensics, while potentially yielding
evidence not found on disks, has its own limitations. Devices that
are specifically designed to carry out such attacks are readily
available on the market. Their availability and low price point
provide low-skill attackers with a straightforward and economical
method for conducting targeted attacks.

Contrary to the perception of USB-based attacks being low-
profile, these devices do leave evidence. All programs must run in
memory and therefore every action the USB device invokes the host
system to carry out happens entirely in memory. Additionally, the
device drivers must interact with the host Operating System (OS) in
order for communication to take place. This activity also has the
potential to generate evidence in both volatile memory and disk.
(T. Thomas), mpisc1@unh.
.edu (B.A. Nahar), ibaggili@

Ltd. This is an open access article u
These memory-based artifacts may remain extractable for an
extended period of time after the attack is over and even after the
device is unplugged.

Our objective was to explore the types of Indicators of
Compromise (IOC) present on victim machines after attacks by
consumer USB attack platforms. Additionally, in order to determine
the viability of using these IOCs in the real world, we also quantify
how long these IOCs remain in a recoverable state.

In this work, we summarize digital artifacts in volatile memory
generated by the two most popular USB-based attack platforms on
the market, the Bash Bunny and the USB Rubber Ducky. We mea-
sure how long these artifacts remain in memory and how they
change over time in relation to user activity. Finally, we present
tools and methods for recovering the digital evidence generated by
these devices from post-mortem memory dumps in the form of
open source1 plugins for the Volatility Framework. Our plugins are
not specific to the examined devices, and may also be useful in the
analysis of other devices and applications.We present the following
contributions:

C To the best of our knowledge, this is the primary account of
memory forensic analysis of USB-based attack platforms.

C We share methods for detecting Rubber Ducky and Bash
Bunny use in Windows 10 memory dumps, which have
broader impact on peripheral device forensics.
1 https://github.com/unhcfreg/DuckHunt.

nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tthom10@unh.newhaven.edu
mailto:mpisc1@unh.newhaven.edu
mailto:mpisc1@unh.newhaven.edu
mailto:bnaha1@unh.newhaven.edu
mailto:ibaggili@newhaven.edu
mailto:ibaggili@newhaven.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301190&domain=pdf
https://github.com/unhcfreg/DuckHunt
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301190
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301190


T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
C We present usbhunt, a Volatility plugin using a novel tech-
nique for memory-based USB device detection using Win-
dows 10 telemetry data.

C We present dhcphunt, a Volatility plugin using a novel
technique for memory-based DHCP log data recovery from
the Windows netsh utility.

C We share our artifact findings in the Artifact Genome Project
(Grajeda et al., 2018).

In Section 2 we provide an overview of necessary background
information including how these devices interact with the Win-
dows OS, as well as a brief overview of existing work in memory
and USB forensics. Section 3 details our processes and methods for
artifact discovery and tool creation. Sections 4 and 5 present and
discuss our findings. We describe paths forward in Section 6 and
conclude with Section 7.

2. Background information and related work

2.1. Definition of a USB-Based attack platform

Fig. 1 illustrates how a USB-based attack platform interfaces
with the victim machine to carry out its attack. First, the physical
security of the target machine is compromised such that a USB
device may be inserted and recognized by the OS. Once the device
has been connected to the system, it will expand its functionality by
spoofing one or more trusted or known device types, such as a
serial, storage, Human Interface Device (HID) keyboard, or Remote
Network Driver Interface Specification (RNDIS) Ethernet gadget.
The attacker device uses the spoofed virtual media to conduct the
malicious activity on the victim machine or network. Examples of
common objectives include: reconnaissance, exfiltration of data,
and delivering and executing a payload. After carrying out the
malicious activity, the device is unplugged from the victimmachine
allowing the attacker to leave the area. The attack is completed
with minimal interaction with the target machine.

2.2. Why does this pose a unique threat?

The aforementioned approach is appealing to attackers for a
variety of reasons. Foremost, plugging a USB device into a machine
Fig. 1. USB thre

2

and waiting is a non-intrusive and inconspicuous action that is not
likely to attract attention. Additionally, the entire process may be
automated and executed with minimal user interaction. Finally, the
attacker footprint can theoretically be minimized by utilizing the
device as an external computing resource and executing parts of
the malicious code on the USB device rather than the host system.

In achieving this level of automation and self containment, an
attacker is able to keep the number of operations and amount of
time required to complete an attack at an absolute minimum. This
speed and efficiency allows the attacker to craft payloads to operate
in ways that attempt to circumvent traditional forensic methods.
For example, a payload may exfiltrate passwords directly to the
device via a TCP/IP connection over an RNDIS Ethernet interface.
Thereby, credentials are exfiltrated via a network connection
without generating traffic on the local network. Because of the
unique capabilities of these devices, it is necessary for researchers
to devise forensic techniques able to detect their use regardless of
the anti-forensic techniques they might employ.

2.3. Existing methods for USB attack platform detection

(Nissim et al., 2017) and (Tian et al., 2018) present a compre-
hensive overview of USB-based attacks. The devices investigated in
this work operate primarily by spoofing HID peripherals, RNDIS
Ethernet gadgets, and mass storage devices.

Themajority of existing research on detectionmethods is timing
based. By observing typical human typing patterns, it is possible to
use an anomaly based approach for detecting spoofed HID's
(Barbhuiya et al., 2012; Neuner et al., 2018). This approach lever-
ages the significant body of work on using keystroke dynamics for
biometric authentication (Bergadano et al., 2002; Monrose and
Rubin, 1997; Monrose and Aviel, 2000).

The anomaly detection model presented by (Amin et al., 2019)
takes into account not only the USB packet timing, but several other
factors including the content of the packets andmetadata related to
the transfer. Most notably (Farhi et al., 2019), took a radically
different approach by demonstrating that temporal anomaly
detection methods can be fooled. The authors then implemented a
side channel analysis detection method taking into account power
usage, keystroke sound, and error correction idiosyncrasies to
produce a significantly more robust detection mechanism.
at model.



2 https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload—reverse-
shell.

3 https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload—Data-
Exfiltration—Backdoor.

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
As demonstrated by (Farhi et al., 2019), if a model can learn how
a person types to detect anomalies or verify their identity, then a
model can learn how to impersonate that person's keystroke dy-
namics to defeat it.

Outside of keystroke dynamics analysis, other work on real time
prevention and detection of USB device activity has been focused
on packet analysis and establishing secure and trusted devices
(Tian et al., 2016; Benadjila et al., 2019). (Huang et al., 2019) pre-
sented a method for detecting potentially malicious devices by
analyzingWindows event logs. Our work takes a different approach
by inspecting the latent forensic artifacts generated in memory by
these devices.

2.4. Memory forensics

Since the domain began to gain notoriety after the 2005 Digital
Forensics Workshop (DFRWS) forensics challenge, memory foren-
sics has established itself as a valuable tool for forensic pro-
fessionals (DFRWS, 2005).

Memory analysis tools for Windows and Mac OSX operating
systems, such as the Volatility Framework, have advanced rapidly
in their ability to traverse process management data structures
(Case et al., 2020; Dolan-Gavitt, 2008; Schuster, 2008; Sylve et al.,
2016). Likewise, acquisition methods have improved to combat
anti-forensic countermeasures (Lee et al., 2016; Johannes and
Cohen, 2013; V€omel and Felix, 2011).

While the most significant progress has been made at the sys-
tems level, there has been little work conducted at the application
level. (Case and Golden, 2017) discussed the capability gap in
memory analysis techniques for userland based malware detection.
Expanding upon this, we posit that robust userland memory
analysis would further aid forensic investigators by providing them
access to data that might not otherwise be available with tradi-
tional network for filesystem forensics. Analysis by (ChowBen et al.,
2004) demonstrated that poor coding practices can lead to sensi-
tive application data remaining in memory for an extended period
of time.

The greatest challenge in making tools that recover forensic
artifacts from application memory is that most applications differ
wildly in their implementations and runtime environments.
Because of this, such tools are typically highly specialized and must
overcome significant technical challenges in reverse engineering
and traversing closed source data structures, such as presented by
(Casey et al., 2019).

Creating an additional layer of abstraction between the raw
process memory and the analyst or tool developer may be a solu-
tion. (Adam et al., 2017) and (Ali-Gombe et al., 2019) demonstrated
that Java objects could be reconstructed, in some cases even after
they were garbage collected. Tools that take advantage of the pre-
dictable object structure inmanagedmemory runtimes such as Java
and JavaScript show promise in furthering the state of application
based userland memory forensics.

3. Methodology

3.1. Scenario creation

Adversarial activity carried out with the two USB devices was
simulated on the lab machine using publicly-available payloads
provided by Hak5 (Payload, 2020; Hak5, 2020).

All adversarial activity was conducted within a VMWare
Workstation Pro virtual machine running Windows 10. A complete
apparatus of the hardware and software utilized in this phase can
be seen in Table 1.

Although several Hak5-created payloads were used throughout
3

testing to ensure that artifacts left by several payloads did not differ,
the majority of data collection was performed after running one
payload on each device. Reverse shell2 and document exfiltration3

payloads were used for the Bash Bunny and Rubber Ducky
respectively.

Both payloads are written in proprietary scripting languages
that automate keystrokes. Injected keystrokes open a PowerShell
terminal and rapidly type commands into the terminal window to
carry out the attack.

Once scenario creation concluded, systemmemory images were
obtained by pausing the virtual machine and copying the.vmem file
from the virtual machine directory. VMWare for Linux uses this file
to maintain a snapshot of the emulated physical memory so that
the state may be restored at a later time. It is important to note that
virtual machine suspension is implemented differently on Win-
dows systems, requiring the user to manually create a snapshot in
order for such a file to be generated. This is noteworthy because this
slight change will have effects on tooling attempting to automate
the data collection process.

3.2. Obtaining signatures

Once it was understood how the devices interfaced with the OS,
initial memory analysis was conductedwith simple string searches.
System memory images were obtained and analyzed to serve as a
starting point for identifying IOC signatures and potential data
structures for extraction.

The Unix strings utility was used with the -td option to extract
strings from the image and record the offset in a Volatility-
compatible format. The resultant string file was searched with
the grep utility to find known strings related to device activity.
Namely, the search strings included: the IP addresses related to the
reverse shell attacks, permutations of the strings “Rubber Ducky”
and “Bash Bunny”, and the USB vendor and product ID codes of the
devices.

These searches yielded a large number of results, which were
then fed into the Volatility strings plugin to determine the process
spaces and memory addresses at which they were located. The
memory regions surrounding the search hits were manually
inspected with the volshell plugin to determine if they were con-
tained within an immediately apparent data structure.

The vast majority of hits were found in free space and did not
belong to a process, or were preceded and followed by seemingly
random bytes. These hits would be useful in detecting device uti-
lization, but do not provide any additional information related to
the time or nature of activity conducted with the device. However,
some hits, particularly those within two svchost processes,
appeared to be contained within a predictable structure and viable
for extraction. Sections 3.3.1 and 3.3.2 detail the process by which
these structures are identified, traversed, and extracted to obtain
forensically relevant data related to actions taken by the devices.

3.3. Plugin development

The strings described in the aforementioned signatures can be
used as IOCs to detect Rubber Ducky or Bash Bunny usage on a
given system. Part of our contribution is the presentation of these
strings as YARA rules to be used to rapidly determine if a USB
Rubber Ducky or Bash Bunny was recently connected to a computer

https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---reverse-shell
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---reverse-shell
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---Data-Exfiltration---Backdoor
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload---Data-Exfiltration---Backdoor


Table 1
Workstation details.

System Details Software Details

Device Details Software Version

Processor Intel Core i7-8750H VMWare Workstation Pro 15.5.1
System Type 64-bit OS, x64 processor Volatility 2.6
Virtual Memory (VRAM) 2.00 GB Windows 10 1903_18362
Bash Bunny Firmware v1.6
Rubber Ducky Firmware v1.0

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
suspected of being compromised. This initial signature detection
may serve to inform a deeper investigation into what actions may
have been carried out with the device.
3.3.1. usbhunt
While reviewing the string hit results discussed in Section 3.2, it

was noted that several instances of the USB vendor and product ID
were contained within large JSON structures. Further review of the
JSON structures indicated that they were recording Microsoft
telemetry and diagnostic data in an svchost process. A full list of
required Microsoft diagnostic events can be found on Microsoft's
website.4

After reviewing the list telemetry events Microsoft requires to
be enabled, it was determined that the events most related to USB
device activity were Windows.Kernel.DeviceConfig.DeviceConfig and
Windows.Inventory.Core.InventoryDevicePnpAdd. These events are in
no way specific to the Bash Bunny or Rubber Ducky. In theory, they
will be generated by any USB device.

According to the Microsoft documentation, the DeviceConfig
event “provides information about drivers for a driver installation
that took place within the kernel.” (Windows 10 and version 1909,
1909) Because this event is related to driver installation, the event
should theoretically only be present in memory the first time the
device is plugged in and the drivers are installed. In our testing, this
was in fact the case and the events were not generated by subse-
quent attacks.

The second diagnostic event of note, InventoryDevicePnpAdd is
described in the Microsoft documentation as containing: “basic
metadata about a PNP device and its associated driver to help keep
Windows up to date. This information is used to assess if the PNP
device and driver will remain compatible when upgrading Win-
dows.” (Windows 10 and version 1909, 1909) This event is gener-
ated whenever a new virtual device is created by the OS. Because
this event is not related to the initial installation of drivers, it was
found to be in memory after rebooting the system and carrying out
subsequent attacks.

Both the DeviceConfig and InventoryDevicePnpAdd event JSON
structures contained timestamps related to device connectivity and
other metadata of forensic relevance, the specifics of which will be
discussed in Section 4.

We created usbhunt, a Volatility plugin for extracting these
structures from Windows 10 memory dumps and presenting them
to the command line. The tool works by locating the start address of
potential JSON event structures using YARA scans. Once a candidate
structure has been detected, they are serialized using the JSON
extraction process detailed in Algorithm 1. It is not enough to
simply serialize the structure with a standard JSON string pro-
cessing library because the structure may be damaged or truncated
if it is partially overwritten.

The JSON processing algorithm was implemented as a
4 https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-
diagnostic-events-and-fields-1903.

4

Deterministic Finite Automaton (DFA) state machine. It consists of a
series of states, beginning with a starting state. The algorithm it-
erates over the data and conducts the operation relevant to the
current state context. The state is then changed dependent upon
conditional evaluations of the previous state. Once the ending state
is reached, the JSON has been fully repaired and is capable of being
parsed as a Python dictionary. This algorithm operates in O(n) time.

Due to the nature of the state machine, any valid input will
produce a valid output. In the case of this work, a valid input is
defined as a JSON structurewhich was overwritten at the beginning
(pre-truncated) or at the end (post-truncated). This work does not
cover the cases in which the data was intact at the beginning and
end, but overwritten in the middle. Fig. 2 shows the state flow for
the JSON reconstruction algorithm.

Algorithm 1. JSON Reconstruction

3.3.2. dhcphunt
While searching for instances of the IP address connected to

with the reverse shell payload, some search hits appeared to be
highly regular and predictable strings with a structure similar to
network logs. Further analysis demonstrated that the these logs
were containedwithin an svchost process responsible for providing
data to the netsh Windows utility.

Our second Volatility plugin, dhcphunt, extracts these logs and
presents them in the command line. The majority of these logs are
related to DHCP client activity. All log entries begin with a time-
stamp and a static and predictable string that precedes the variable
data. Similar to the extraction process for usbhunt, the first step in
extracting netsh log data is conducting YARA scans to determine the
start address of the extractable string.

https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1903
https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1903


Fig. 2. JSON reconstruction state machine diagram.

5 https://github.com/unhcfreg/DuckHunt.

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
Once the log entry is located, it can be extracted by reading a
fixed number of bytes before and after the target string. This can be
used to effectively reconstruct the full timeline of events presented
in the netsh utility. Basic string formatting operations are per-
formed to ensure that the string is not corrupted and does not
contain any unprintable characters.

3.4. Data collection and visualization

In order to determine how long these structures were present
and whether or not they could be reliably expected to be in
memory, we utilized an existing memory acquisition and visuali-
zation framework presented in (Tyler et al., 2020).

Using a combination of Bash scripting and Volatility plugins,
system memory images were acquired and analyzed at regular
intervals after adversarial activity was simulated on the experi-
mental virtual machine. For each memory image, a CSV file was
generated that contained extracted data structures, IOCs, and their
address offsets.

This process was carried out several times for the Bash Bunny
using a reverse shell payload, and for the Rubber Ducky using a
document exfiltration payload. Collection took place over a 24 h
period. The interval between acquisitions varied between one and
2 min, depending on how long the Volatility analysis and CSV
generation took from the previous iteration.

The CSVs generated by the collection tooling was then fed into
the second half of the framework in order to gain insights into data
lifetime and availability. The visualization framework was used to
illustrate two variables in relation to time: artifact presence, and
artifact integrity. The former, shown in Figs. 3 and 4, calculates how
many artifacts of each type were in memory at each time interval
over the course of the data collection. The latter determines how
long artifacts remain in memory before they are overwritten, and
calculates the degree to which they are corrupted over time. The
analysis and ramifications of this data are discussed in detail in
Sections 4 and 5.

4. Findings

Example output from our dhcphunt tool can be seen in Fig. 5. The
5

tools are invoked as standard Volatility plugins and do not accept
any command line arguments. Likewise, example JSON structures
extracted by usbhunt can be seen in Listings 1 and 2. These exam-
ples are not the complete JSON structures found in memory.
Redundant and forensically irrelevant data was redacted for
brevity.

4.1. Indicators of compromise

Several byte sequences uncovered during the course of this
analysis can be used as indicators that a USB Rubber Ducky or Bash
Bunny was used against a system. Table 2 details these indicators.

Every USB device has a vendor and product identification code
that is used by OSs to identity the manufacturer and product to
know what drivers are necessary to interact with the device. In the
case of the Bash Bunny, F000 is used as a vendor ID and FF03 as a
product ID. There is no vendor registered with this ID meaning that
any devices utilizing it can be viewed with suspicion. The string in
Table 2 shows how these ID's appear in system memory. The
presence of these ID's is indicative of Bash Bunny activity on a
system.

Conversely, the Rubber Ducky attempts to obfuscate its USB ID
by using the vendor and product ID's of 05AC and 0220 respec-
tively. This ID combination is registered by Apple as an HID
keyboard. While the Rubber Ducky does not use a suspicious USB
ID, the device instance ID and hardware ID it provides to Windows
contains the conspicuous sub-string “Ducky__Storage”. While the
Apple HID USB ID is not itself suspicious, these two indicators taken
together can be used to infer Rubber Ducky usage.

Likewise, the PowerShell payloads executed by both USB devices
were found in clear text in memory after the attacks. We provide a
complete list of these IOCs in our publicly shared Github re-
pository5 in the form of YARA rules.

4.2. In-memory DHCP logs

The DHCP logs introduced in Section 3.3.2 and extracted with
our dhcphunt plugin contain timestamps and information related to
the local DHCP client instance. This information is relevant because
some devices spoof RNDIS Ethernet gadgets and obtain IP ad-
dresses. This can be used to detect such activity.

A full list of the logmessages our plugin extracts are enumerated
in Table 3. This is by no means a complete list of all possible log
messages in the svchost, but only the ones that contained IP ad-
dresses and were deemed to be most relevant to the current
application. Compiling a complete list would prove difficult as
Microsoft does not provide documentation.

In the case of both the USB Rubber Ducky and the Bash Bunny,
multiple instances of these logs were present in memory
throughout the duration of the experiment. This is indicative that
the logs are not deallocated while the system process is running.
From a forensic perspective, the artifacts being contained in system
processes and not being tied to peripheral hardware or running
third-party software is an ideal scenario. However, it was noted that
as new logs were generated, existing logs were overwritten. While
DHCP client log data can expected to be in memory at any given
time, the amount of time that individual log events are retained in
memory varies from several minutes to many hours.

The DeviceConfig and InventoryDevicePnpAdd diagnostic telem-
etry events are generated by driver installation and device con-
nectivity respectively. The events are stored in an svchost process in
a JSON-formatted UTF-8 encoded string. The JSON structures

https://github.com/unhcfreg/DuckHunt


Fig. 3. Rubber ducky - artifacts in memory over time.

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
contain large amounts of meta-data related to the device including
time stamps and driver versions. See Table 4 for a full itemization of
6

the forensically relevant data contained within these structures.



Fig. 5. dhcphunt Example Output.

Table 2
Indicators of compromise.

Device Type Example

Bash Bunny Reverse Shell Payload Q STRING “powershell -W Hidden n“Remove-ItemProperty …

Rubber Ducky USB ID VID_05AC&PID_0220
Bash Bunny USB ID VID_F000&PID_FF03
Rubber Ducky Device Instance Id USBSTORnnDISK&Ven_ATMEL&Prod_Ducky_Storage
Rubber Ducky Hardware Identifier USBSTORnnDiskATMEL___Ducky_Storage___1.00

Fig. 4. Bash bunny - artifacts in memory over time.

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
Table 3
DHCP Client Logs Extracted by dhcphunt

DHCP Log Messages

Recieving (sic) a DHCP message on …

ACK of … from …

DhcpSetIpRoute: ADD: Dest ¼ …

Adding the address of …
Successfully Plumbed the address: …

7

4.3. Windows diagnostic events

Some notable data points include: the time the event was
generated, driver installation timestamp and version, the Globally
Unique Identifier (GUID) of the user account that the event was
generated by, USB vendor and product ID, and the GUID of the
“container” the virtual USB device belongs to.

The container GUID is used to identify the physical device that
the virtual USB devices belong to. This is relevant because some
USB attack platforms, namely the Bash Bunny, are able to spoof
multiple logical USB devices. In the case of the reverse shell Bash



Table 4
Relevant Windows Diagnostic Event fields.

Field Description

DeviceConfig
d time Timestamp of event creation
d ext.user.localId GUID of user
d data.DriverInfName Device driver
d data.InstallDate Driver installation date
d data.DeviceInstanceId Device vendor and product ID
InventoryDevicePnpAdd
d time Timestamp of event creation
d device.user.localId GUID of user
d data.HWID.Value Device vendor and product ID
d data.containerId Parent device container ID
d data.Description Vendor supplied description
d data.Manufacturer Vendor supplied manufacturer
d data.Model Vendor supplied model information
d data.Inf Device driver
d data.Provider Driver provider

T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
Bunny payload carried out during scenario creation, the device
spoofs an RNDIS Ethernet gadget and an HID keyboard simulta-
neously to send keystrokes and create a TCP/IP connection to the
device. The container ID can be used by an investigator to link these
two logical devices. Further discussion on the relevance of these
fields is explored Section 5.
Figs. 3 and 4 provide a visual representation of how long these
events persist in memory in an extractable form. An overview of
artifact memory persistence is discussed in Section 5.
8

4.4. Evidence of payloads

The Rubber Ducky's PowerShell payload was found in memory
in its entirety as part of a DOS command. The string found in
memory was part of the Ducky Script text, rather than logged
PowerShell. This is supported by the presence of a Ducky Script
variable, in this case “{BACKSLASH}”.

Similarly, the reverse shell PowerShell payload executed by the
Bash Bunny was also retrieved from memory in its entirety. In this
case, two versions were found: both the line of code written in the
Bash Bunny's scripting language which wrapped the PowerShell,
and the standalone PowerShell which was executed on the Win-
dows machine. The former is recognizable by the scripting com-
mand “Q STRING” followed by the quoted PowerShell script block.
Notably, in memory dumps taken immediately after the attack was
carried out, the payloads were present in their entirety.

Our investigation did not focus on artifacts generated by specific
payloads, as their behavior varies dramatically. However, Hak5
makes many payloads publicly available and the scripts are present
in memory after an attack. Therefore, by compiling a list of known
payloads, our YARA rules can be used to detect common payload
execution on a system.
5. Discussion

The diagnostic events extracted by usbhunt are agnostic to OS
structures and memory context. In other words, it does not matter



T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
if the Virtual Address Descriptor (VAD) that originally contained the
string still belongs to the process. If the memory regions that
contained the strings have not been overwritten by another pro-
cess, the diagnostic structures are still extractable. This is especially
useful given that anti-forensic countermeasures can be taken by an
attacker to clear the event viewer and Windows registry. Even if an
attacker attempts to cover their tracks in this way, the diagnostic
events may still be present in memory.

The DeviceConfig and InventoryDevicePnpAdd diagnostic events
share common fields; however, InventoryDevicePnpAdd contains
significantly more device metadata. Both events contain the vendor
and product ID, GUID of the user account that was responsible for
the event, and time of event creation. With these pieces of meta-
data a forensic investigator is capable of answering three critical
questions: (1) What device was plugged in? (2) Who plugged it in?
(3) When was it plugged in? Additionally, the name of the device
driver is also included in both events, which can be used to make
inferences on the capabilities and nature of the connected device.

Several fields are unique to InventoryDevicePnpAdd. Namely, the
container ID, description, manufacturer, model, and driver pro-
vider. The container ID is useful in associating virtual devices
belonging to a common physical device. The description, manu-
facturer, andmodel are all provided by the device and can therefore
not be reliably used to detect a potentially malicious device as they
can be altered. However, the Rubber Ducky makes no attempt at
hiding its identity by spoofing these fields by presenting itself as
“AMTEL Ducky Storage USB Device”.

The only field that is unique to the DeviceConfig event is the
driver installation timestamp. This is potentially useful for an
investigator if they are trying to determine the time and date the
device was plugged in for the first time.

Analysis of the data collected in our experiment revealed that
these diagnostic fields are present for a significant amount of time.
While the InventoryDevicePnpAdd events remained in memory for
just under an hour in the case of the USB Rubber Ducky (Fig. 3), the
same events generated by the Bash Bunny were present for over
11 h (Fig. 4). Therefore, the information discussed above, including
identifiers and forensically-relevant timestamps, could feasibly be
extracted from memory if the host is accessed within a reasonable
time frame.

We posit that the presence of events in memory for the Rubber
Ducky dropped quicker than that of the Bash Bunny due to
implementation differences between the devices. The Rubber
Ducky only utilizes a single logical HID, while the Bash Bunny
created two logical devices. This resulted in significantly more
events being generated and therefore remained in memory for a
longer period.

Furthermore, our time series data has shown that the unique
identifiers for both devices discussed in Section 4.1 remain in
memory in some capacity for at least 24 h (second plot of Figs. 3 and
4). Therefore, in a forensic context, should investigators gain access
to a device compromised by a USB attack before it is power cycled,
it is highly likely that these identifiers could be extracted. It is worth
noting that the actual duration they remain in memory could be
significantly longer, but our work was limited to the duration of the
experiment. Moreover, we posit that while the exact identifiers
tracked in our work pertain to the USB Rubber Ducky and Bash
Bunny, the lifetime of any USB device's hardware identifier and
device instance ID should be similar.

We also measured the degree to which these artifacts are
overwritten in memory over time. In the case of the indicators of
compromise (Device Instance ID, Hardware Identifier, USB IDs) and
the Windows diagnostic events, they remained perfectly intact
without any corruption for as long as they remained in memory. As
such, when extracted, they would be in their unmodified original
9

form and would be forensically valid. This is likely do to their
storage in OS processes which remain active until a power cycle
occurs. On the other hand, DHCP client logs were highly volatile. As
evidenced by Figs. 3 and 4, new log events are consistently being
generated throughout the course of data collection as normal DHCP
client activity resumes.

It is also worth noting that the pattern of DHCP log events
generated after disconnection differ significantly between the de-
vices. The Bash Bunny trial resulted in substantially more “ACK”
messages being present in memory. Rerunning the tests several
times for both devices resulted in the pattern being replicated. The
potential implications of this are discussed in Section 6.

6. Future work

Since our Volatility plugins are not specific to the devices
investigated in this work, they can be used in the memory forensic
analysis of other devices or applications. The plugin leveraging
device driver diagnostics, usbhunt, can detect the use of any USB
peripheral and extract metadata related to its usage, even if anti-
forensic countermeasures are taken to prevent traditional
forensic analysis using the registry and event viewer. Because of
this unique capability, the tool may be useful in the forensic anal-
ysis of other USB devices. Likewise, the DHCP client log extraction
plugin, dhcphunt, can be useful in the analysis of network traffic
regardless of the applications or devices generating it.

While the scope of our experiment was limited to 24 h and did
not involve constant user activity, an expanded trial would provide
insight into how USB artifacts persist in memory. A test conducted
over multiple days and employing simulated user actions, such as
automated web browsing, might better demonstrate the extract-
ability of this data in a real-world scenario. Moreover, because our
plugins were tested on VMEM files, it may be worthwhile to run an
experiment with memory dumps obtained via alternative acquisi-
tion methods, such as DumpIt or NotMyFault.

While DeviceConfig and InventoryDevicePnpAdd are the only
diagnostic events relevant to the analysis of USB devices, there may
be promise in using diagnostic events to extract metadata related to
other devices and system activity. The Microsoft documentation for
the required diagnostic events is extensive and can be explored as a
potential starting point for future research. Additionally, Microsoft
only provides documentation for events that cannot be disabled.
There are an unknown number of optional diagnostic events that
are undocumented. If fully enumerated, these events may poten-
tially provide a wealth of forensically relevant data. It is well un-
derstood that Microsoft records a large amount of information
related to user and system activity. Researchers and investigators
may be able to leverage this to collect evidence from system
memory images that may not be accessible via traditional forensic
techniques.

A discrepancy exists between the USB Rubber Ducky and Bash
Bunny in their ratios of network log artifacts. The Rubber Ducky,
lacking an RNDIS Ethernet gadget, generated significantly more
“Recieving” (sic) events than “ACK” events. Conversely, the Bash
Bunny, which contains an Ethernet gadget, produced slightly more
“ACK” events than “recieving” events. We speculate that patterns in
these network event logs could be used to identify an unknown
device. A sound method of fingerprinting devices based on these
patterns may help with forensic analysis if an unknown device has
spoofed its unique identifiers.

7. Conclusion

By leveraging Windows telemetry diagnostic events, it is
possible to collect large amounts of metadata related to USB device



T. Thomas, M. Piscitelli, B.A. Nahar et al. Forensic Science International: Digital Investigation 37 (2021) 301190
usage up to 11 h after the disconnection of the device. Carving these
events from images of physical memory allows for their recovery,
even in the event of anti-forensic countermeasures attempting to
prevent traditional methods of USB detection.

Moreover, specific malicious devices, such as the Bash Bunny
and Rubber Ducky, can be fingerprinted by analyzing the latent
artifacts present in memory after their use. These can then be used
to scan systemmemory images for IOCs. In our testing, the artifacts
generated by both devices stayed in memory for over 24 h, the
duration of the testing period, andmay potentially be present for as
long as the system remains powered on.

Additionally, scripts carried out by the aforementioned devices
can be found in plaintext in their entirety in memory after the at-
tacks were performed and the USB device was disconnected. In
conjunction with the indicators of compromise and diagnostic
events, these artifacts can be used to paint a complete picture of the
nature of the USB device.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1921813. Any opinions, find-
ings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

Adam, Pridgen, Garfinkel, Simson, Dan, S., Wallach, 2017. Picking up the trash:
exploiting generational gc for memory analysis. Digit. Invest. 20, S20eS28.
https://doi.org/10.1016/j.diin.2017.01.002. ISSN 1742-2876, DFRWS 2017 Europe.

Ali-Gombe, Aisha, Sudhakaran, Sneha, Case, Andrew, Richard III, Golden G.,
September 2019. Droidscraper: a tool for android in-memory object recovery
and reconstruction. In: 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). USENIX Association, Chaoyang District,
Beijing, ISBN 978-1-939133-07-6, pp. 547e559. https://www.usenix.org/
conference/raid2019/presentation/ali-gombe.

Amin, Kharraz, Daley, Brandon L., Baker, Graham Z., Robertson, William,
Kirda, Engin, September 2019. USBESAFE: an end-point solution to protect
against usb-based attacks. In: 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019). USENIX Association, Chaoyang
District, Beijing, ISBN 978-1-939133-07-6, pp. 89e103. https://www.usenix.org/
conference/raid2019/presentation/kharraz.

Barbhuiya, Ferdous A., Saikia, Tonmoy, Nandi, Sukumar, 2012. An anomaly based
approach for hid attack detection using keystroke dynamics. In: Yang, Xiang,
Lopez, Javier, Jay Kuo, C.-C., Zhou, Wanlei (Eds.), Cyberspace Safety and Security.
Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-35362-8,
pp. 139e152.

Benadjila, Ryad, Michelizza, Arnauld, Renard, Mathieu, Thierry, Philippe,
Trebuchet, Philippe, 2019. Wookey: designing a trusted and efficient usb device.
In: Proceedings of the 35th Annual Computer Security Applications Conference,
ACSAC ’19. Association for Computing Machinery, New York, NY, USA, ISBN
9781450376280, pp. 673e686. https://doi.org/10.1145/3359789.3359802.

Bergadano, Francesco, Gunetti, Daniele, Picardi, Claudia, 2002. User authentication
through keystroke dynamics. ACM Trans. Inf. Syst. Secur. 5 (4), 367e397.

Case, Andrew, Golden, G., 2017. Richard. Memory forensics: the path forward. Digit.
Invest. 20, 23e33. https://doi.org/10.1016/j.diin.2016.12.004. ISSN 1742-2876,
Special Issue on Volatile Memory Analysis.

Case, Andrew, Ryan, D Maggio, Manna, Modhuparna, Richard III, Golden G., 2020.
Memory analysis of macos page queues. Forensic Sci. Int.: Digit. Invest. 33,
301004.

Casey, Peter, Lindsay-Decusati, Rebecca, Baggili, Ibrahim, Frank, Breitinger, 2019.
Inception: Virtual Space in Memory Space in Real Space.
10
Chow, Jim, Ben, Pfaff, Garfinkel, Tal, Kevin, Christopher, Rosenblum, Mendel, 2004.
Understanding data lifetime via whole system simulation. In: USENIX Security
Symposium, pp. 321e336.

DFRWS, 2005. Digital Forensics Research Workshop: Forensics Challenge 2005.
http://old.dfrws.org/2005/challenge/.

Dolan-Gavitt, Brendan, 2008. Forensic analysis of the windows registry in memory.
Digit. Invest. 5, S26eS32. https://doi.org/10.1016/j.diin.2008.05.003. ISSN 1742-
2876, The Proceedings of the Eighth Annual DFRWS Conference.

Farhi, Nitzan, Nissim, Nir, Elovici, Yuval, 2019. Malboard: a novel user keystroke
impersonation attack and trusted detection framework based on side-channel
analysis. Comput. Secur. 85, 240e269.

Grajeda, Cinthya, Sanchez, Laura, Baggili, Ibrahim, Clark, Devon, Frank, Breitinger,
2018. Experience constructing the artifact genome project (agp): managing the
domain's knowledge one artifact at a time. Digit. Invest. 26 (S47 e S58) https://
doi.org/10.1016/j.diin.2018.04.021. ISSN 1742-2876.

Hak5, 2020. Usb rubber ducky. https://github.com/hak5darren/USB-Rubber-Ducky/
wiki/Payloads.

Huang, Chia-Yu, Lee, Hahn-Ming, Wang, Jiunn-Chin, Mao, Ching-Hao, 2019. Iden-
tifying hid-based attacks through process event graph using guilt-by-
association analysis. In: Proceedings of the 3rd International Conference on
Cryptography, Security and Privacy, ICCSP ’19. Association for Computing Ma-
chinery, New York, NY, USA, ISBN 9781450366182, pp. 273e278. https://doi.org/
10.1145/3309074.3309080.

Tian, Dave (Jing), Scaife, Nolen, Bates, Adam, Butler, Kevin, Traynor, Patrick, August
2016. Making USB great again with USBFILTER. In: 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, Austin, TX, ISBN 978-1-
931971-32-4, pp. 415e430. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/tian.

Johannes, Stüttgen, Cohen, Michael, 2013. Anti-forensic resilient memory acquisi-
tion. Digit. Invest. 10, S105eS115. https://doi.org/10.1016/j.diin.2013.06.012.
ISSN 1742-2876. http://www.sciencedirect.com/science/article/pii/
S1742287613000583 (The Proceedings of the Thirteenth Annual DFRWS
Conference).

Lee, Kyoungho, Hwang, Hyunuk, Kim, Kibom, Noh, BongNam, 2016. Robust boot-
strapping memory analysis against anti-forensics. Digit. Invest. 18, S23eS32.
https://doi.org/10.1016/j.diin.2016.04.009. ISSN 1742-2876.

Monrose, Fabian, Rubin, Aviel, 1997. Authentication via keystroke dynamics. In:
Proceedings of the 4th ACM Conference on Computer and Communications
Security, pp. 48e56.

Monrose, Fabian, Aviel, D Rubin, 2000. Keystroke dynamics as a biometric for
authentication. Future Generat. Comput. Syst. 16 (4), 351e359.

Neuner, Sebastian, Voyiatzis, Artemios G., Fotopoulos, Spiros, Mulliner, Collin,
Weippl, Edgar R., 2018. Usblock: blocking usb-based keypress injection attacks.
In: IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, pp. 278e295.

Nissim, Nir, Ran, Yahalom, Elovici, Yuval, 2017. Usb-based attacks. Comput. Secur.
70, 675e688. https://doi.org/10.1016/j.cose.2017.08.002. ISSN 0167-4048.
http://www.sciencedirect.com/science/article/pii/S0167404817301578.

Payload, Hak5., 2020. Library for the bash bunny by hak5. https://github.com/hak5/
bashbunny-payloads.

Schuster, Andreas, 2008. The impact of microsoft windows pool allocation strate-
gies on memory forensics. Digit. Invest. 5, S58eS64. https://doi.org/10.1016/
j.diin.2008.05.007. ISSN 1742-2876, The Proceedings of the Eighth Annual
DFRWS Conference.

Sylve, Joe T., Marziale, Vico, Richard, Golden G., 2016. Pool tag quick scanning for
windows memory analysis. Digit. Invest. 16, S25eS32. https://doi.org/10.1016/
j.diin.2016.01.005. DFRWS 2016 Europe. ISSN 1742-2876.

Tian, Jing, Scaife, Nolen, Kumar, Deepak, Bailey, Michael, Adam, Bates, Sok, Kevin
Butler., 2018. Plug & pray” todayeunderstanding usb insecurity in versions 1
through c. In: 2018 IEEE Symposium on Security and Privacy (SP), Pages
1032e1047. IEEE.

Tyler, Thomas, Piscitelli, Mathew, Shavrov, Ilya, Baggili, Ibrahim, 2020. Memory
foreshadow: memory forensics of hardware cryptocurrency walletsea tool and
visualization framework. Forensic Sci. Int.: Digit. Invest. 33, 301002.

V€omel, Stefan, Felix, C., 2011. Freiling. A survey of main memory acquisition and
analysis techniques for the windows operating system. Digit. Invest. 8 (1),
3e22. https://doi.org/10.1016/j.diin.2011.06.002. ISSN 1742-2876.

Windows 10, version 1909 and windows 10. version 1903 required windows
diagnostic events and fields. https://docs.microsoft.com/en-us/windows/
privacy/basic-level-windows-diagnostic-events-and-fields-1903. Accessed:
2021-02-6.

https://doi.org/10.1016/j.diin.2017.01.002
https://www.usenix.org/conference/raid2019/presentation/ali-gombe
https://www.usenix.org/conference/raid2019/presentation/ali-gombe
https://www.usenix.org/conference/raid2019/presentation/kharraz
https://www.usenix.org/conference/raid2019/presentation/kharraz
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref4
https://doi.org/10.1145/3359789.3359802
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref6
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref6
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref6
https://doi.org/10.1016/j.diin.2016.12.004
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref8
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref8
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref8
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref9
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref9
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref10
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref10
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref10
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref10
http://old.dfrws.org/2005/challenge/
https://doi.org/10.1016/j.diin.2008.05.003
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref13
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref13
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref13
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref13
https://doi.org/10.1016/j.diin.2018.04.021
https://doi.org/10.1016/j.diin.2018.04.021
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://doi.org/10.1145/3309074.3309080
https://doi.org/10.1145/3309074.3309080
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tian
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tian
https://doi.org/10.1016/j.diin.2013.06.012
http://www.sciencedirect.com/science/article/pii/S1742287613000583
http://www.sciencedirect.com/science/article/pii/S1742287613000583
https://doi.org/10.1016/j.diin.2016.04.009
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref20
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref20
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref20
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref20
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref21
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref21
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref21
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref22
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref22
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref22
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref22
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref22
https://doi.org/10.1016/j.cose.2017.08.002
http://www.sciencedirect.com/science/article/pii/S0167404817301578
https://github.com/hak5/bashbunny-payloads
https://github.com/hak5/bashbunny-payloads
https://doi.org/10.1016/j.diin.2008.05.007
https://doi.org/10.1016/j.diin.2008.05.007
https://doi.org/10.1016/j.diin.2016.01.005. DFRWS 2016 Europe
https://doi.org/10.1016/j.diin.2016.01.005. DFRWS 2016 Europe
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref27
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref28
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref28
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref28
http://refhub.elsevier.com/S2666-2817(21)00098-6/sref28
https://doi.org/10.1016/j.diin.2011.06.002
https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1903
https://docs.microsoft.com/en-us/windows/privacy/basic-level-windows-diagnostic-events-and-fields-1903

	Duck Hunt: Memory forensics of USB attack platforms
	1. Introduction
	2. Background information and related work
	2.1. Definition of a USB-Based attack platform
	2.2. Why does this pose a unique threat?
	2.3. Existing methods for USB attack platform detection
	2.4. Memory forensics

	3. Methodology
	3.1. Scenario creation
	3.2. Obtaining signatures
	3.3. Plugin development
	3.3.1. usbhunt
	3.3.2. dhcphunt

	3.4. Data collection and visualization

	4. Findings
	4.1. Indicators of compromise
	4.2. In-memory DHCP logs
	4.3. Windows diagnostic events
	4.4. Evidence of payloads

	5. Discussion
	6. Future work
	7. Conclusion
	Acknowledgements
	References


