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Abstract

®
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In the design of stellarators, energetic particle confinement is a critical point of concern which
remains challenging to study from a numerical point of view. Standard Monte Carlo (MC)
analyses are highly expensive because a large number of particle trajectories need to be
integrated over long time scales, and small time steps must be taken to accurately capture the
features of the wide variety of trajectories. Even when they are based on guiding center
trajectories, as opposed to full-orbit trajectories, these standard MC studies are too expensive
to be included in most stellarator optimization codes. We present the first multifidelity Monte
Carlo (MFMC) scheme for accelerating the estimation of energetic particle confinement in
stellarators. Our approach relies on a two-level hierarchy, in which a guiding center model
serves as the high-fidelity model, and a data-driven linear interpolant is leveraged as the
low-fidelity surrogate model. We apply MFMC to the study of energetic particle confinement
in a four-period quasi-helically symmetric stellarator, assessing various metrics of
confinement. Stemming from the very high computational efficiency of our surrogate model as
well as its sufficient correlation to the high-fidelity model, we obtain speedups of up to 10 with

MFEFMC compared to standard MC.

Keywords: stellarator, energetic particle confinement, Monte Carlo, variance reduction

(Some figures may appear in colour only in the online journal)

1. Introduction

In generic non-axisymmetric magnetic configurations, colli-
sionless particle orbits are not guaranteed to be confined [26].
Energetic particle confinement therefore is a key point of con-
cern for the design of tokamaks which have significant toroidal
ripple and of stellarators [4, 6,9, 18,22, 27, 34, 37]. In order to
design configurations which maximize energetic particle con-
finement, one must identify metrics which accurately capture
the level and quality of confinement, and are at the same time
as easy and as inexpensive to include in design optimization
codes as possible.

One can distinguish two distinct approaches to estimat-
ing energetic particle confinement. The first approach may be
viewed as a direct approach, or Monte Carlo (MC) approach.

* Author to whom any correspondence should be addressed.

1741-4326/22/076019+15$33.00

One launches an ensemble of energetic particles, follows their
individual orbits—usually their drift orbits—and then directly
calculates the fraction of particles which have been lost and the
time of flight of particles before being lost [1, 3, 5, 22, 27, 31,
39,49, 52, 58]. On the one hand, this method can be considered
as physically accurate, since it directly captures the effects on
confinement of the wide variety of orbits energetic particles
follow in nonaxisymmetric magnetic configurations. On the
other hand, the convergence of the MC estimator as a function
of the number of particles launched is slow, requiring a large
ensemble of particle trajectories for accurate estimations. This
means that for guiding center calculations this first method is
more time-consuming than most other calculations involved
in the design optimization of nonaxisymmetric equilibria, and
prohibitively expensive for full-orbit trajectories. Furthermore,
this method does not lend itself easily to the computation of
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derivatives of the metric with respect to magnetic field vari-
ations, which implies that it cannot be easily implemented in
gradient-based optimization schemes.

The second approach used for estimating the quality of
energetic particle confinement is deterministic and relies on
proxy functions with closed analytic forms, which can be
directly computed from the output of a nonaxisymmetric equi-
librium solver, and which have empirically been found to often
correlate well with energetic particle confinement. One may
for example make the approximation that good energetic par-
ticle confinement will be a direct consequence of good low
collisionality neoclassical transport properties, and thus char-
acterize the confinement performance through the evaluation
of the effective ripple e first introduced by Nemov et al
[40, 59]. In order to target energetic particle confinement more
directly, one may instead rely on another metric recently pro-
posed by Nemov, called the I'. metric [4,41]. . is better suited
for this purpose because it applies to fully collisionless orbits
and unlike e it is also strongly influenced by particles close
to the trapped/passing boundary, which often are the dominant
contribution to energetic particle losses [4, 5]. The benefits of
these proxy quantities for energetic particle confinement are
three folds. First, they are significantly less expensive com-
putationally than MC based solely on expensive, high-fidelity
simulations. Second, their closed analytic forms, which were
derived from physics principles, enable easier interpretation
of the numerical results and identification of trends. Third,
it may be easier to compute with high accuracy their deriva-
tives with respect to optimization parameters, as was recently
demonstrated [45].

Despite the advantages of the deterministic approach, its
application may remain limited to preliminary optimization
studies, because the currently used deterministic functions
have known limitations in their predictive capabilities [1]. In
the study of a vacuum quasi-helically symmetric configura-
tion, it was for example recently found that energetic particle
confinement could be anti-correlated with e, [4]: energetic
particle confinement was improved while at the same time
the €. metric increased. The I'. metric was found to be reli-
able in that same study [4], and a strong correlation between
alpha particle energy loss and I'; in the outer half of the
plasma was recently highlighted for a wide variety of stellara-
tor configurations [3]. However, that correlation is not perfect.
Stellarators with significantly different I'. values can have
comparable levels of energy loss, and stellarators with com-
parable I'; values can have significantly different levels of
energy loss. It therefore appears that for the goal of imple-
menting reliable and efficient energetic particle confinement
calculations in multi-objective optimization codes, it is neces-
sary to include high-fidelity simulations with lower costs than
adirect MC approach. This is precisely the purpose of this arti-
cle: we apply the multifidelity Monte Carlo (MFMC) method
[42, 47, 48] to reduce the variance of the MC estimator for
energetic particle confinement, and thus reduce the computa-
tional cost of such an estimator.

As we will explain in more detail in the main text, the
MFMC method is a strategy for variance reduction of MC
estimators based on control variates; see, e.g. [23, 38]. In

MFEFMC, the control variates are given by low-fidelity mod-
els, i.e. approximations of the high-fidelity physics model one
is interested in, which are carefully designed to satisfy two
key criteria: they have a high correlation with the high-fidelity
model, and they are significantly less expensive to evaluate
than the high-fidelity model. These criteria are required to
obtain variance reduction as shown in [42, 47, 48]. The MFMC
approach is well suited to situations in which scientists rely
on the MC method to propagate the uncertainty associated
with the initial conditions and with parameters defining the
model, as is precisely the case for the confinement of ener-
getic particles in nonaxisymmetric magnetic configurations.
The method and some of its close variants have recently been
applied for the first time to kinetic plasma models [15, 16, 29].
In[15, 16], the authors demonstrate that physics based reduced
models can be effectively used for variance reduction of the
MC estimator for the solution of the Boltzmann equation sub-
ject to uncertainty, in highly collisional plasmas not subject
to a far-field force field. In contrast, in [29], the authors rely
on data-driven low-fidelity models to reduce the variance of
their MC estimators for quantifying the uncertainty in kinetic
microturbulence. To the best of our knowledge, our article rep-
resents the first time the MFMC method is applied to the study
of energetic particle confinement in stellarators, and stellarator
performance in general. As in [29], we rely on a data-driven
low-fidelity model for MFMC based variance reduction,
since traditional sources of low-fidelity models are inappropri-
ate for our high-fidelity model. For example, our low-fidelity
model cannot just utilize simplified physics because our high-
fidelity model already is a reduced physics model, i.e. colli-
sionless guiding center trajectories, and we are not aware of
simpler physics based models which maintain a reasonably
high correlation with the high-fidelity model during the entire
energetic particle trajectory. We report that despite the large
variety of particle orbits depending on the initial conditions,
and despite the chaotic nature of the dynamics, our relatively
simple data-driven model—which can be trained with stan-
dard tools available in common scientific software packages in
Python and Matlab—can lead to significant variance reduction
in the MFMC framework, and corresponding speedup.

The structure of the article is as follows. In section 2, we
present our guiding center model for collisionless energetic
particle trajectories, and briefly discuss why numerical sim-
ulations based on this model are intrinsically expensive. In
section 3 we give a brief review of the standard MC approach
for estimating energetic particle confinement, which we con-
trast with our new MFMC approach in section 4. We describe
the set up for our numerical tests and demonstrate the speed-up
obtained with our MFMC method in these tests in section 5.
We summarize our work in section 6, where we also identify
some of its limitations, and suggest corresponding directions
for future work.

2. Energetic particle dynamics

The main purpose of our article is to demonstrate in a real-
istic setting the potential of the MFMC method to reduce the
variance of the commonly used MC estimators for energetic
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particle confinement, and thus to speed up the evaluation of
these estimators for optimization applications. For simplic-
ity, we will consider MC estimators based on collisionless
orbits, as is still often done in stellarator optimization studies
[4,5, 14, 17, 27]. Our MFMC approach will be directly appli-
cable to MC estimators based on single-particle orbits includ-
ing collisions as well [27, 31, 49]. In this section, we begin
by detailing the equations of motion we solve to compute the
trajectories of energetic particles. We then highlight certain
features of the model which underscore the expensive nature
behind simulating particle trajectories.

2.1. Guiding center trajectories

We consider the collisionless dynamics of 3.5 MeV alpha par-
ticles as the byproduct of deuterium—tritium fusion in a stel-
larator magnetic field. We assume the magnetic configuration
has nested flux surfaces which enables us to work in flux coor-
dinates: (s, 6, ¢) are the coordinates of our flux coordinate sys-
tem, where s € [0, 1] is the normalized flux surface label, 8 is a
poloidal angle, and ( is a toroidal angle. In this coordinate sys-
tem, we identify s = O with the magnetic axis and s = 1 with
the last closed flux surface.

We model the dynamics of energetic particles using the
guiding center equations [7, 11, 33] which arise from the
asymptotic decoupling of the fast gyromotion from the full-
orbit equations given by the Lorentz force. Our multi-fidelity
MC approach is in principle also applicable to MC estimators
based on full orbits of energetic particles. However, simulat-
ing such orbits on the desired long a-particle slowing down
time [34, 57] remains prohibitively expensive for optimization
studies on existing computing architectures. To highlight the
immediate relevance of our work for tokamak and stellarator
optimization studies, we thus chose to focus on drift orbits. The
guiding center equations can be expressed in terms of a four-
dimensional system of coupled ordinary differential equations
(ODEgs) for (r, v)), where r is the position of the guiding cen-
ter and v is the parallel velocity of the energetic particle. In
flux coordinates (s, ¢, ), the guiding center equations take the
form

ds _ 1 | BoOB . ByOB v OB
a -y | "Boo T "BacT B oo
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in the domain U x R where U C R? is the stellarator vol-
ume. In flux coordinates, U is represented by [0, 1] x
[0,27] x [0,27], where {s =0} x [0,27] x [0,27] is the
simple closed curve corresponding to the magnetic axis. The
terms (By, By, B;) and (B’,B%) are the covariant and con-
travariant components of the magnetic field B(r), B = |B(r)|,

and /g = det (d(?irC)) is the Jacobian of the transformation

from flux coordinates to Cartesian coordinates. Additionally,
w = v? /2B is the magnetic moment, which is conserved for
individual particles. For each particle it is chosen so that the
total initial kinetic energy matches that of a 3.5 MeV parti-
cle. Moreover, 2 = 2eB,/m is a characteristic gyrofrequency
for the alpha particles within the stellarator. Here By repre-
sents a characteristic field strength, which we take to be the
field strength at s = 0, # = 0, ¢ = 0. Given initial conditions,
we solve equations (1)—(4) up to Ty, and consider a particle
confined if s(r) < 1 for t < Tgna and lost otherwise.

Note that for stellarators, the functions
BS,BQ,BC,B(),BC, B, and \/g appearing on the right-hand
side of (1)—(4) are often only accessible as numerical outputs
of a 3D field solver (vacuum or finite pressure magnetohy-
drodynamics (MHD) solve) [28, 35, 53]. They are typically
represented by a double Fourier representation in (6, () with
an interpolant or spline in s for the coefficients, and are
accessed in the form:

£(5,0,0) = fum(s) cos(mb — n¢) or

£5,0.0 = fun(s)sin(mé — n).

m,n

&)

2.2. High expense of simulating energetic particle dynamics

Considering equations (1)—(4), one may at first wonder why
MC estimators need to be improved. Indeed, equations (1)—(4)
‘only’ is a four-dimensional system of coupled ODEs, and
since the equations are not modified by the presence of the
other energetic particles considered in the MC analysis, the
calculations are embarrassingly parallelizable. It would be nat-
ural to conclude that the slow convergence of MC estimators
can be easily offset by the relative ease of brute-force compu-
tations. We briefly review here why this is not the case, and
why direct computations of energetic particle losses remain
too expensive for many design optimization applications. The
reasons are intrinsically tied to the nature of the motion of ener-
getic particles in non-axisymmetric stellarator magnetic fields,
and to the vastly different time scales of interest.

As we discussed previously, energetic particle confinement
analyses require the simulation of their dynamics for a time at
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Figure 1. 3D trajectories and flux label vs time for trapped (top) and passing (bottom) particles launched from the same location. The flux
label for trapped and passing particles exhibit significantly different temporal and spatial scales.

least as long as their thermalization time [4, 32], after which
their orbits become comparable to those of the background
thermal ions. We note that thermalization is due to collisions,
which are absent in collisionless guiding center models for the
study of alpha particle confinement in stellarators, such as the
one we consider here. However, even for collisionless models,
thermalization time is still often used as a characteristic time
scale of interest to evaluate the confinement properties of a
given magnetic configuration. This energetic particle thermal-
ization time, corresponding to tens of thousands of toroidal
transits for passing particles [36], and thousands of bounces
for trapped particles, is significantly longer than the charac-
teristic time scales of their single-particle dynamics. Because
of the fast cross-field drift of the energetic particles and the
high sensitivity of the orbits to local variations of the magnetic
field, as illustrated in figure 1, the motion on these short time
scales needs to be resolved with high accuracy. One is therefore
faced with an intrinsically multi-scale problem, which is made
even more difficult by the chaotic nature of some of the par-
ticle trajectories [1]. Numerically, this means that short time
steps must be chosen when integrating equations (1)—(4) to
accurately resolve the dynamics on the short time scales. At

the same time, high order integration schemes must be imple-
mented, in order to prevent the numerical error from accu-
mulating on the long thermalization time scale. The design
of efficient and inexpensive numerical schemes satisfying this
stringent criteria remains an open problem in computational
science. Progress has been made for certain classes of multi-
scale problems [19, 20, 61], but the potential of these methods
to speed-up guiding center calculations for energetic particles
has not been proven. To this day, integrating equations (1)—(4)
with high accuracy on the long thermalization time scale for
a single energetic particle remains an intrinsically expensive
problem.

3. Estimating energetic particle losses with
standard Monte Carlo

In this section, we first explain how we mathemati-
cally treat the uncertainty concerning the initial conditions
required to compute the single particle motion according to
equations (1)—(4), corresponding to the uncertainty in the loca-
tion and velocity of the energetic particles at birth. We then
present three different quantities we consider in this article
to characterize energetic particle confinement. The first quan-
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tity is the energetic particle loss fraction, which is the stan-
dard figure of merit in optimization studies. The second and
third quantities are the mean loss time and the mean flux sur-
face position, which we motivate physically below. Finally, we
briefly review the direct approach based on the standard MC
method for estimating these quantities.

3.1. Uncertain initial conditions for guiding center dynamics

The energetic particles we consider are alpha particles,
born as byproducts of deuterium—tritium fusion reactions.
There is intrinsic uncertainty in where and in what direc-
tion the particles are emitted, as well as in their kinetic
energy at birth. This manifests as uncertainty in the ini-
tial conditions needed to solve the guiding center equations
(1)—(4).

In this work, we follow the standard practice of assum-
ing that all alpha particles are born with the same kinetic
energy of 3.5 MeV [1, 4, 27]. This is a simplification of
the actual alpha particle birth process. For accurate alpha
particle confinement results, one should in principle account
for the energy spread in the alpha birth energy, due to the
kinematics of the collision process [2, 8, 25, 62]. As we
make this simplifying assumption, only two sources of uncer-
tainty remain: the location of birth of alpha particles, and
the velocity direction at birth. We model this uncertainty
by imposing probability distributions on the initial position
Ry and initial parallel velocity V. Specifically, we model
alpha particles as being born uniformly in the stellarator
volume U:

Ry ~ Uniform (V). (6)

We choose this model for its simplicity. It is physically rel-
evant for flat density and temperature profiles, with a steep
pedestal at the edge. For standard density and temperature pro-
files peaked on axis, our model overestimates the production of
alpha particles at large radii. Consequently, the fraction of lost
alpha particles in our setup is likely higher than those soughtin
practice. The method based on MFMC that we present below
can be adapted to any choice of probability distribution for Ry,
and we will discuss later in this article the extent to which the
numerical results we present could be affected by the choice
of distribution. For the emission direction, we use the con-
vention that particles are born isotropically in velocity space
[1,4]:

Vo ~ Uniform (—Vimax, Vinax)s N

where V.« is the velocity of a particle with a kinetic energy
of 3.5 MeV.

3.2. Metrics of energetic particle confinement

In order to estimate energetic particle losses, we must propa-
gate the initial uncertainty through the guiding center dynam-
ics to classify which initial conditions lead to lost particles. Let
E denote the expectation under Ry and V. Particle loss is thus
measured by E [F'* (Ry, Vy)| where

1, il’lf{t 2 s(t; Ro, Vp) = 1} < Ttinal
F' (R, Vo) = {

0, otherwise

)

and s(t; Ry, V) comes from solving equations (1)—(4) using
the initial conditions (R, V). Details on how Ry is converted
to flux coordinates are discussed later in section 5. Since the
dynamics are deterministic, we can interpret F°*(Ry, V) as
a Bernoulli random variable which classifies whether or not
a particle crosses the last closed flux surface before 1 = Ty,
based on where and in what direction it is born.

F' often is the key figure of merit considered in alpha
particle confinement studies [1, 4, 27, 31, 34, 36, 37]. It cor-
responds to a discrete random variable. To demonstrate the
applicability of our method to figures of merit corresponding
to continuous random variables, we consider two other met-
rics which may be used for design optimization, and provide
insights on a stellarator’s efficacy in confining energetic parti-
cles. The first quantity of interest is the average time of loss of
energetic particles. Its value for design optimization and per-
formance analysis can be explained as follows. First, prompt
losses, corresponding to alpha particles lost after a few tran-
sits or bounces, before they have significantly slowed down,
lead to more damage to the first wall than slower losses. Sec-
ond, alpha particles need to be confined for long enough that
they heat the plasma as they slow down. Given two magnetic
configurations with the same loss fraction after an alpha parti-
cle slowing down time, the more desirable one is the one with
the longer mean time of loss. This figure of merit is also rele-
vant for assessing the validity of the assumptions and models
used for the analysis. If the order of magnitude of the mean
time of loss is comparable or only slightly smaller than the
alpha particle slowing down time, a large number of alpha par-
ticles remain confined long enough to be thermalized. Results
obtained by simulating mono-energetic collisionless guiding
center trajectories, as often done [1, 4, 27] and as we do for
illustrative purposes in this work, should then be confirmed
with codes including more detailed physics, and collisions in
particular [18, 49]. As we consider this figure of merit, we
however have to deal with a mathematical difficulty, associ-
ated with the fact that for fully confined alpha particles, the
time of loss is infinity. We circumvent this difficulty by defin-
ing a modified loss time, such that all particles are considered
‘lost’” by Tnar:

Fim™(Ry, Vo) := min (inf{t :s(t; Ry, Vo) = 1}, Tﬁna]) .9

Our second physical quantity of interest associated with
a continuous random variable is the mean flux surface loca-
tion of energetic particles. This quantity is not directly related
to alpha particle loss, but is a complementary measure of the
quality of energetic particle confinement. It provides physical
insights on why certain configurations have lower losses, as
well as information on the location of alpha power deposition.
We will thus consider the quantity:

F™ (1, Ry, Vo) == 5(t; Ro, Vo). (10)
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Therefore the mean modified loss time E [F™ (Ry, Vo) and
mean normalized flux surface label & [F flux (¢, Ry, Vo)] serve
as alternative statistical metrics for a stellarator’s effectiveness
in confining energetic particles in our study. For the remainder
of this article, we will take F to represent either F lost - pime
FuX at some fixed time 7.

3.3. Uncertainty propagation using Monte Carlo

Now that we have identified energetic particle loss, along with
two other metrics for energetic particle confinement, as an
expectation of a function F(Ry, V), it remains to accurately
estimate that expectation. A direct method for this is the MC
estimator, whereby we draw p i.i.d. samples {(RY, V{)}7_,
from (6) and (7) and then approximate E[F] by the unbiased
estimator

= IS prR® i
Fuyep = ;Z FRY, V). (11)

i=1

This standard MC approach is summarized in method 3.1.
Recall that the variance of a random variable F' is defined by
Var(F) = E[(F — E[F])*]. Since the MC estimator has vari-
ance Var(F)/p, it converges at the slow rate of 1/,/p with
respect to the root mean square error (RMSE). In order to com-
pute the MC estimator, we need to solve the guiding center
equations (1)—(4) a total of p times and then evaluate F using
those trajectories. Due to the high computational cost of simu-
lating guiding center trajectories of energetic particles over the
appropriate time scale, as explained in section 2.2, using the
MC estimator can rapidly become computationally intractable
for large p.

The large cost required to produce an accurate MC
estimator motivates us to aim for an estimator with lower
variance via variance reduction. Such a procedure would
lower the constant in front of 1/,/p, thereby yielding
a more accurate estimator for the same computational
effort.

Method 3.1. Monte Carlo estimator

(b) For each ¢ = 1,...

(c) Estimate E[F] by

(a) Draw p i.i.d. samples (R(l) V(l)) (R(()2),V(2)), .
,p, solve the guiding center equations (1)—(4) using expensive numerical
integration. Use the computed trajectories to evaluate F' (R(()l), VO(Z) )fori=1,...,p.

Fucyp = - ZF

(R, V) from (6)and (7).

Z) V(l) .

4. Estimating energetic particle confinement with
multifidelity Monte Carlo

Here, we first describe how one can leverage a surrogate model
to construct a control variate based multifidelity estimator with
smaller variance than the standard MC estimator. We then
discuss an approach to construct highly correlated surrogate
models for the analysis of energetic particle confinement.

4.1. Variance reduction with multifidelity Monte Carlo

Alongside the high-fidelity model F, which requires expen-
sive numerical integration to evaluate, suppose we also have a
low-fidelity, or surrogate, model G. In order to leverage G for
variance reduction we utilize a control variate based MFMC
method [48]. The MFMC estimator with computational budget
p is the unbiased estimator

F MFMC,p := Fycn + @ (aMC,m - aMC,n) , (12)

where « is a constant, n is the number of high-fidelity sam-
ples, and m is the number of low-fidelity samples. To minimize
the variance of the MFMC estimator, «, n, m can be optimally
chosen, and those choices satisfy

Var(F)

=p(F,G ,

@ = O\ )
m
p=n+—,
w

| wp(F,G)?
m=n 71_[)(1:,(;)2 (13)

where p(F, G) is the Pearson’s correlation coefficient between
the high-fidelity F and the surrogate G, which is defined by
Cou(F, G)
v/ Var(F)+/Var(G)
_ E[(F — E[FD(G — E[G]]
v/ Var(F)+/Var(G)

p(F,G) =

(14)
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and w is the ratio of cost of evaluating F to the cost of eval-
uating G. A practical implementation of this method is sum-
marized in method 4.1. The variance of the resulting optimal
MEMC estimator is given by

2
~ F,G)?
Var (FMFMC,p) = ( 1 —p(F,G)* + 1/ P(w)>

x Var (?7 MC,p) .

s)
In order to maximize the amount of variance reduction
MEMC provides compared to MC, the bracketed term in (15)
should be as small as possible. This means that we want the
surrogate G to be both highly correlated to F, as well as much
cheaper to evaluate than F. Although the MFMC estimator
still converges at the same slow rate of 1/,/p as the stan-
dard MC estimator, it can be more accurate with the same
computational budget provided a sufficiently correlated and

inexpensive surrogate.

Note that once one is given a surrogate G, the amount of
speedup provided by MFMC is constant. That is, the construc-
tion of G is done offline, separate from the online phase of
estimation. No matter how expensive the construction of G is
(which could require many samples of F for instance), once we
have that surrogate, the speedup from MFMC is guaranteed no
matter how large p is taken to be; see [46] for an extension of
MFMC that takes offline costs into account.

In the MFMC literature, the cost of sampling the ini-
tial uncertainty is not taken into account, as it is typically
assumed to be orders of magnitude cheaper than everything
else being considered. In practice, if sampling the input
uncertainty requires non-trivial cost, then a better definition
of the cost ratio w would be required as the current definition
only accounts for the cost of propagating the uncertainty
forward. While we do not account for this cost of input
uncertainty to make a fair budget comparison in our MFMC
experiments, we mention here the limits on implemen-
tation imposed by how the input uncertainty is sampled.

Method 4.1. Multifidelity Monte Carlo estimator

Evaluate G(R(()i), Vbi)) fori=1,...,m.

evaluations from (b).
(d) Estimate E[F] by

(a) Given p, compute n and m as in (13)!. Draw m iid. samples
1) @) (2) 1/(2) (m) y,(m)
(RO a% )’( 0 7% )7'“’( 0 70 )from (6)&[1(}1(7)
(b) For each i = 1,...,n, solve the guiding center equations (1)—(4) using expensive numerical
integration. Use the computed trajectories to evaluate F' (R((]Z),Vo(l)) for i = 1,...,n.

(c) Set « as in (13), replacing Var(F') and Var(G) with sample variances computed using the

Fyrmo,p = Fyaopn + o (GMc,m = GMC,n) .

Use an estimate p of p(F, G). If an estimate is not readily available, one can be found easily using samples.

4.2. Choice of surrogate model

We now detail our choice of a data-fit surrogate model G
designed to maximize correlation with F for our estimation
of energetic particle confinement. We rely on data-fit surro-
gates because traditional sources of surrogates are not appro-
priate for energetic particle dynamics. For example, there is
no natural hierarchy of simplified physics models to leverage
[47], since the guiding center equations are already a simplifi-
cation of the computationally intractable full-orbit dynamics,
and a ‘beads on the wire’ model for the particle trajectories,
which would omit all finite-gyroradius corrections, as in the

kinetic MHD model [10, 12, 21, 24, 30, 50, 51, 55], would
not lead to good correlation since it neglects the large cross-
field drifts of energetic particles. Similarly, we have empiri-
cally found that another usually powerful source of surrogates,
arising from successively coarsening the grid [13], is not sat-
isfactory either for our application. That is because the time
step of the numerical ODE integrator is tightly constrained
by the requirement to resolve the shortest characteristic time
scales of the motion of both trapped and passing particles.
When this time step is significantly increased, accuracy is sig-
nificantly reduced, and correlation rapidly decreases. Lastly,
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since the problem is transport dominated, popular surrogates
from traditional model reduction, such as proper orthogonal
decomposition or reduced basis methods, are a poor choice
[44].

For a data-fit surrogate, we consider a linear basis function
model of the form:

G"(Ry, Vo P') = > Piow(Ro, Vo),
k=0

(16)

where P" € R"™! and {¢;};_, is any set of basis functions.
Using this family of surrogates, we want to find the set of
parameters P" which maximizes the correlation with our high-
fidelity model. This amounts to solving

main)gnize p(F,G"(-; PM)). (17)
However, a caveat of this formulation is that the optimiza-
tion problem (17) has infinitely many maxima through scaling,
since our model is linear, p(F, G"(-;cP")) = p(F,cG"(-;P")) =
p(F,G"(-; P")) for any ¢ > 0.

It thus is better to consider P}, which solves the following

optimization problem (18):

min}i);]nize E[(F — G"(- ; P"))?]. (18)
Due to the linear nature of our family of surrogate models,
the unique solution P of (18) is also one of the non-unique
solutions for (17).

In practice, evaluating the objective function in (18) is as
challenging as the original problem motivating our work, since
itinvolves evaluating expectations of F. Finding the exact min-
imum P is therefore a computationally intractable problem,
regardless of the choice of basis functions {¢y}}_,. We now
explain how we address this difficulty and construct a satis-
factory approximation of P’ for the particular choice of basis
functions { ¢ }{_, we make for this study, namely piece-wise
linear functions. The idea is to temporarily change the inter-
pretation of F, and view it as a deterministic map from the
four-dimensional space (s, 0, ¢, v)) to R. First, in (s, 0, ¢, v))
coordinates, we construct a regular mesh on [0, 1] x [0, 27] x
[0,7/2] X [—Vinax> Vinax)> and evaluate F on that mesh. Then
we specifically choose our basis functions {¢;} to be the hat
functions on the mesh, so that our family of linear basis func-
tions G" is the family of piece-wise linear functions on the
mesh.~ If F is a continuous map, and we determine P” so that
G"(-,P") is the corresponding interpolant of F on the mesh,
then P" will be a close approximation to P. The reasoning
behind this is that if F is continuous, as we refine the mesh then
G"(-;P}), where P solves (18) on successively finer meshes,
will converge to F. Since G"(- ;l~)") also converges to F' as the
mesh is refined, we expect P” to be a strong approximation to
P, converging as the mesh refines. Although we cannot mea-
sure how close P" is to PZ, in practice we have observed that
G"(, I~’") is favorably correlated with F, even on a relatively
coarse mesh.

5. Numerical results

‘We now conduct numerical tests to determine the level of vari-
ance reduction and the speedup one can obtain in practice with
our MEMC approach in a realistic stellarator configuration. We
first provide details for the setup of our numerical experiments.
Then we demonstrate the effectiveness of MFMC for confine-
ment studies done at high resolution, with a time step equal to
the characteristic gyroperiod of alpha particles in our magnetic
equilibrium. Since the time step is small, we cannot track parti-
cle orbits beyond T, = 0.1 ms with the computing resources
available to us. This is well below the typical alpha particle
slowing down time, which is approximately 200 ms. In terms
of confinement, the results of this analysis are mostly domi-
nated by prompt particle losses. In the final part of this section,
we decrease the time resolution of our high-fidelity numeri-
cal integrator, in order to compute particle trajectories up to
Tina = 20 ms. While this remains below the typical alpha par-
ticle slowing down time, it is long enough to include more var-
ied particle loss channels, and thus provide realistic estimates
of the effectiveness of MFMC for alpha particle confinement
studies.

5.1. Numerical setup

For our high-fidelity solver, we use a Runge—Kutta 4 (RK4)
time integrator for the guiding center equations. The terms
BS,B(;,BC,B(’,BC, /g are provided as numerical outputs of a
VMEC solve [28]. These functions are given by the double
Fourier representation (5) using 128 pairs (m, n) in the (6, ¢)
variables, where only cosine or sine series arise due to stel-
larator symmetry. For each (m, n) pair, f,,,(s) is represented
using a smoothing spline over 101 equispaced points in [0, 1].
We perform all tests on a Wistell-A vacuum magnetic configu-
ration. Wistell-A is a quasihelically symmetric stellarator with
four-fold stellarator symmetry [5]. For the time step size in our
RK4 integrator, we choose A7 = 27/} which is the charac-
teristic gyroperiod of alpha particles in the Wistell-A magnetic
field. This step size allows us to accurately resolve the guid-
ing center dynamics, but limits us in how large T'g,, can be. We
note that the gyroperiod is in principle not a characteristic time
scale of guiding center motion. It may thus seem more natural
to consider the transit time as the characteristic time scale, i.e.
the time for an alpha particle to transit a field period. However,
as our results below will show, for the Wistell-A configuration
we study in this work, accurate results require the time step to
be of the order of the gyroperiod.

We shall refer to our low-fidelity models as G', G''™,
and G™* for the quantities of interest F', Fim¢ and Ffiux,
respectively. To track the flux label in time, we specify Npyx
time points #; = (time step size) X Ngipk fork = 1,. .., Nqyy.
Note that Ng,x and Ny, change depending on the time step
size, and are adjusted in order to get to the desired T'g,. The
reasoning behind recording the flux label every N, steps is
that for any practical value of Ty, tracking the trajectory at
every step requires an unreasonably large number of specified
time points. For different time step sizes, we choose Np in
an attempt to make the specified time points similar to one
another. For example, if the time step size is halved, then N,
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Table 1. Costs for the high-fidelity model in seconds, cost ratios, and Ngux and N, used for
various time step sizes and integration lengths. We see that for T,y = 20 ms our low-fidelity
models are several millions of times faster than the high-fidelity evaluation. Only the values for
(AT, 0.1) were measured, all other columns result from scaling.

(Time step size, Thna (ms)) (A7,0.1) (BA7,20) (5A7,20) (7A7,20)  (10AT, 20)
High-fidelity cost (s) 20 1333 800 571 400
Cost ratio, G' and G'ime 2% 10° 1.33x 108 8 x 107 5.71 x 107 4 x 107
Cost ratio, Gflux 6 x 10* 4 % 10° 3.6 x 10° 1.7 x 10° 1.2 x 10°
Nux 684 760 684 978 684
Neip 100 300 200 100 100

Table 2. Correlations between the high-fidelity and low-fidelity models for each quantity of
interest using different time step sizes and 7', . For the normalized flux label we report both the
mean correlation over time points as well as the correlation at T'g,,. Correlations are measured

using 10* samples.

(Time step size, Tfina (MS))

(A7,0.1) (BAT,20) (5A7,20) (7A7,20) (10AT,20)

Classification of lost particles 0.8776
Modified loss time 0.9444
Normalized flux label (average) 0.9846
Normalized flux label (final time) 0.9761

0.9076 0.8996 0.8762 0.8460
0.9299 0.9426 0.9436 0.9247
0.9538 0.9517 0.9403 09111
0.9486 0.9452 0.9270 0.8833

would be doubled. If the time step size is divided by three,
then N, would be tripled, and Ng. adjusted as well. Thus,
for an input (Ry, V), our high-fidelity flux label model out-
puts {F™ (1, Ro, Vo) }2™. Our low-fidelity flux label model
is then {GM™(Ry, Vo) }o™ where G is the piece-wise linear
interpolant to F flux (ze, ) over a regular mesh in (s, 0, ¢, v)|) as
detailed in section 4.2. Similarly G'™ is the piece-wise linear
interpolant to F™ over the same mesh. For all interpolants
we use 25 points in each dimension. For G we specify an
optimal threshold using G'™. Namely, we set

1, G"™(Ry, Vo) < Tinreshold

G"*'(Ry, Vo) = { (19)

0, otherwise,

where Tihreshold 1S chosen to minimize the expected misclas-
. . 2
sification E {(F lost _ Glost) } . To compute Tpreshold, WE USE a

sample average approximation of the expected misclassifica-
tion using 10* samples, and then choose T eshola to be the min-
imizer of that sample average approximation evaluated at 10*
equispaced points between 0 and Ty, . Note that in our numer-
ical experiments, the time Thresnold 1S found to be comparable
to Tﬁnal~

To sample Ry ~ U in magnetic coordinates, we take advan-
tage of the four-fold stellarator symmetry in Wistell-A and
sample (so, 0o, ) from the probability density proportional
to /g over D = (0,1) x (0,27) x (0,7/2). This is done by
numerically integrating /g over D to compute the normaliza-
tion constant, and then performing rejection sampling with a
uniform proposal. This step is relatively fast and requires on
average only three rejections before a successful draw from
the target distribution.

The costs of evaluating F'°%, Fi™® and F"* are all the same:
the time required to numerically integrate to 7', using a given
time step size. The cost per time step (which is roughly 4 x

the cost per right-hand side evaluation (1)—(4) in our imple-
mentation) is on the order of 1073 s. For the values of T
considered in this work, the total time is on the order of tens of
minutes. For longer integration to T,y = 200 ms, this would
be on the order of hours. The measured runtime is reported
in table 1. In our experiments, constructing a surrogate G from
given training data is on the order of milliseconds and thus very
low because only a spline interpolant has to be built. If train-
ing data are available from previous simulations, then they can
be directly used to construct a surrogate. If training data need
to be generated first, then this can incur one-time high costs
but more sophisticated surrogate models than the interpolants
used here can help to reduce these one-time costs. We discuss
this important point in more detail in section 6. The costs of
evaluating G'* and G'™ are the same, but the cost of evalu-
ating G™* is slightly larger since it requires evaluating N,y
interpolants. In table 1 we report the costs of evaluating the
high-fidelity model, the cost ratios for G, Gime and the cost
ratios for G across multiple time step sizes and values of
Tfina- We note that for 7', = 20 ms the low-fidelity models
are all several millions of times faster than the high-fidelity
models.

In table 2 we report the correlations between our high and
low-fidelity models for each of the quantities of interest across
multiple time step sizes and values of Tgn,. We measure the
correlation coefficient using 10* samples.

5.2. High resolution high-fidelity model and short time
integration

We numerically compare the MC and MFMC estimators for
the loss fraction, mean modified loss time, and mean flux
label using our low-fidelity models for a situation in which
we have a high resolution high fidelity time integrator, with
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Figure 2. RMSE vs computational budget (seconds) for top left: loss fraction. Top right: mean modified loss time. Bottom left: mean
normalized flux label. Bottom right: computational speedup of MFMC compared to MC for each of the quantities of interest. For the mean
flux label, we report the median over speedups for each of the Ny, specified time points.

which we can only afford to compute trajectories over a rel-
atively short time. Specifically, here we use time step size
AT and choose Ty as 0.1 ms. For computational budgets
p = 100,250, 500, 1000, 2500, we measure the RMSE of MC
and MFMC by using 100 replicates of each estimator and com-
pare them to a reference solution generated using MC with 10°
samples.

For a given computational budget p, we would ideally want
to use the optimal MEMC estimator with n high-fidelity evalu-
ations and m low-fidelity evaluations satisfying (13). However,
in practice the resulting n and m are not necessarily integer.
Thus we simply round down and choose

p

(F.G
w(l—p(F,G)?)

m=(p—nw
1+

and compare this MFMC estimator to the MC estimator with p
high-fidelity model evaluations. In the case of the normalized
flux label, we average the RMSE over the Ng,y specified time
points.

In figure 2 we see the clear variance reduction using MFMC
with our low-fidelity models compared to standard MC. We
see that for the same computational budget, for each quantity

of interest, MFMC is able to noticeably outperform MC. The
most remarkable improvement is for the mean normalized flux
label, where MFEMC is nearly 30 times faster than MC. The
improvement for the loss fraction is more modest, but MFMC
is still four times faster than MC.

In the case of the normalized flux label, each of the Ngyy
specified time points has a different speedup, and in figure 2 we
report the median over all such values. The different speedups
at each specified time point #; is due to the fact that the correla-
tion between F* and G™* decreases over time, which can be
seen in figure 3. As a result the measured speedup for com-
puting E[F fluxz,, Ry, Vo)] is much larger than the measured
speedup of, e.g. E[F 10X (Thnats Ro, Vo)]. Consequently, in utiliz-
ing the speedups for different time points we must be careful
of outliers. This is the primary reasoning behind assessing the
speedup for the whole trajectory by the median of the speedups
at each time point, since the median is more robust to outliers
than other measures of central tendency, such as the mean.

5.3. Lower resolution high-fidelity model and longer time
integration

We now extend our analysis to a longer 7', of 20 ms. Since
this is 200 times longer than the short time integration case,
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Figure 3. Correlation between F1"* and G™* as a function of time, using different time step sizes for F* (which in turn leads to a different
G™* for each step size). We note that all the correlations stay practically the same until around 3 x 10~* s. After that, the experiment with
the lowest resolution high-fidelity model (i.e. 10A7) has a rapid drop off in correlation. The decrease with respect to different time step sizes
is expected, with the highest resolution experiment maintaining the highest correlation.

we must increase the step size for the high-fidelity model by a
factorof 3,5, 7, and 10 for computational tractability. Note that
changing the step size changes the high-fidelity models F'°*,
Fimeand F™*, which implicitly changes the corresponding
low-fidelity models G, G™ and G,

The results in table 2 indicate that accuracy of the high-
fidelity model has a direct impact on the level of correlation
between the high-fidelity and the low-fidelity models. The
numerical experiments with 3A7 and SA7 yield similar cor-
relations by the final time, but we see that as the time step of
the high-fidelity numerical integrator further increases, and the
accuracy of the high-fidelity model thus further decreases, the
correlation with the low fidelity model decays quickly. A par-
tial exception to that conclusion applies to the modified loss
time, for which the correlation remains steady as we increase
the time step of the ODE integrator. For the moment, we do
not have an explanation for this surprising observation.

The importance of relying on an accurate high-fidelity
model can be seen in figure 3 as well, where we plot the corre-
lation between F™* and G as a function of time, for different
choices of step size. For short time all step sizes of the numer-
ical ODE integrator provide the same correlation, but as time
increases, we see that low resolution in the high-fidelity model
leads to rapid loss of correlation. Moreover we notice the gen-
eral pattern that, uniformly in time, the more resolution one has
for the high-fidelity model, the more correlation one obtains
with the corresponding low fidelity model.

Since the costs of our low-fidelity models remain the same,
it is doubly beneficial for MFMC that correlation between the
high-fidelity and low-fidelity models tends to increase as the

1

resolution, and thus cost, of the high-fidelity solver increases.
Indeed, improving the resolution of the high-fidelity model
not only yields better correlation to the resulting low-fidelity
model, but also a larger cost ratio, which in turn means more
variance reduction with MFMC.

Just by looking at tables 1 and 2 and figure 3, we might
expect some of the speedup we obtained in our high resolution,
short time integration analysis to extend to the current analy-
sis with lower resolution and longer time integration. Although
the correlation goes down for longer time, the cost ratio grows
rapidly, which in the MFMC setting can offset the effects of
decreasing correlation. Furthermore, we may expect that the
models with smaller step sizes (e.g. 3A7) will yield better
speedup than models with larger step sizes (e.g. 10A7). This
is precisely what we now test numerically.

For computational budgets p = 100,250, 500, 1000, we
measure the RMSE of MC and MFMC by using 90 replicates
for each estimator and compare them to a reference solution
generated using MC with 10° samples. We rely on fewer repli-
cates in estimating the RMSE and have less resolution in the
reference solution because of the significantly increased com-
putational cost for longer time integration of the particle orbits.
We balance the costs in the same manner as in the short time
integration case, and also assess the flux label speedup using
the median, for the same reasons as before.

Our speedup results for the lower resolution, longer time
integration experiments are displayed in figure 4. Broadly, we
see that we lose some speedup for this larger T,y as com-
pared to our short time integration experiment, but still achieve
an order of magnitude speedup in estimating the mean flux
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12

Figure 4. Measured speedup for Tny = 0.02 s for different time step sizes of the high-fidelity ODE integrator, using A7 = 27/$. Top left:

3AT. Top right: 5A7. Bottom left: 7A7. Bottom right: 10AT.

label when the step size 3A7 is used. For the other quantities
of interest, the speedup is also quite large, the smallest being
an almost four times speedup for estimating the loss fraction
with the high fidelity integrator with time step 10A7. For all
time step sizes, the speedup for estimating the loss fraction is
about 4, as we had obtained for the experiment with a short
time integration.

Comparing across experiments with different step sizes,
we note that we typically get the most speedup for the most
accurate, and most expensive, high-fidelity model, with step
size 3AT. As the step size increases, we see that the speedup
in estimating the loss fraction decreases the slowest, whereas
the speedup for estimating the mean flux label decreases the
fastest. This is consistent with the results from figure 3, and it
means that when we increase the step size, the larger cost ratio
does not seem to fully make up for the decreased correlation.
The speedup for the mean modified loss time does not appear
to depend on the step size in a clear manner, and is between
around 6.5 and 8 depending on the step size. These results are
also consistent with the correlations reported in table 2, where
we did not observe any obvious trend with the step size for this
quantity of interest. Note that for the largest step size 10A7,
there is more speedup in estimating the mean modified loss
time than in estimating the mean flux label.

6. Summary and discussion

We have developed and implemented the first MFMC scheme
for estimating energetic particle confinementin stellarator con-
figurations. For the Wistell-A magnetic equilibrium we consid-
ered, this has allowed us to gain over an order of magnitude in
speedup compared to standard MC for certain cases and cer-
tain physical quantities. For other cases and physical quantities
for which MFEMC acceleration is less efficient, the speedup
was still at least a factor of four. This speedup was gained
by leveraging efficient data-driven surrogate models built from
interpolants.

Although we found that MFMC provided the largest
speedup for our highest resolution high fidelity model with
particle trajectories which were integrated over a short time
scale, we observed that the speedups for estimating the loss
fraction and the modified mean loss time remained large and
roughly constant as we significantly increased the final time
for the integration of the particle trajectories and reduced the
resolution of our high-fidelity models.

6.1. Benefits in early vs late design phases

As our results suggest, the acceleration obtained by replac-
ing standard MC with MFMC will depend on the physical
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quantity of interest, on the equilibrium magnetic configuration,
and on the manner the uncertainty in the initial conditions is
introduced. For example, one can mathematically show that
speedup for the loss fraction deteriorates as the true loss frac-
tion E[F'*!] goes to 0. If we had not assumed that alpha parti-
cles are born uniformly in the stellarator volume U, but instead
had had all of them born on a flux surface close to the magnetic
axis, as is sometimes done in confinement studies, the true loss
fraction would have been smaller, and the MFMC speedup for
this quantity of interest may have been smaller as well. On the
other hand, the Wistell-A configuration is already well opti-
mized for alpha particle confinement. If we had considered a
magnetic configuration with significantly worse alpha particle
confinement, we may have obtained a much higher speedup
through our MFMC implementation. In the context of stel-
larator optimization, the approach we presented in this article
may therefore be most useful in the early design optimization
phase, when the loss fraction is high. In the later design phases,
if the loss fraction has been optimized to become very low,
the variance reduction provided by MFMC via control vari-
ates becomes ineffective for the estimation of the loss fraction
(but not necessarily for other confinement quantities, as we
showed in this work). For such situations, variance reduction
methods based on, e.g. multi-fidelity importance sampling are
more suitable [47].

6.2. Surrogate modeling

There are several open questions regarding the construction
of surrogate models for estimating energetic particle confine-
ment in stellarator configurations. In this work, we focused on
interpolants because they can be readily constructed with off-
the-shelf software packages that are widely used. If training
data are available, then constructing an interpolant as surro-
gate model has negligible computational costs compared to,
e.g. a high-fidelity model evaluation. However, if training data
are unavailable, then they need to be obtained first, which can
incur one-time high costs. One direction of future research
is deriving surrogate models with adaptive methods that judi-
ciously explore the parameter space and request new training
samples only where necessary based on error indicators, rather
than uniformly sampling the parameter space as in this work.
For example, surrogate models based on sparse grids have been
shown to require little data [29]. Another line of future work
is to develop physics based reduced models that require no
training [47].

The optimization loop for finding a stellarator design with
good confinement properties poses additional challenges but
also opportunities. In the early stages of optimization, when
the magnetic configuration changes significantly from one
optimization iteration to the next, surrogate models built for
the previous iterations can become obsolete quickly. However,
less accurate and quick to build surrogate models are sufficient
because relatively crude estimators of the objective can pro-
vide the relevant information for finding descent directions.
Physics based reduced models, which require no training, can
play a critical role in these early stages of optimization. In later
stages of the optimization, surrogate models may be re-used

for multiple iterations because they remain valid as the mag-
netic equilibrium changes only slightly from one optimization
iteration to the next. Thus, it can be worthwhile to invest a
larger budget in training a surrogate model to reduce the vari-
ance with multi-fidelity methods to obtain accurate estima-
tors of the optimization objective. The development of multi-
fidelity methods that trade-off the surrogate construction to
exploit the properties of early vs later optimization stages is
a challenging but promising research topic. Note in that regard
that multi-fidelity methods have been successfully used for
design in various engineering disciplines [42, 43, 54], but have
not yet been applied to problems involving sensitive chaotic
dynamics, as we have studied in this article.

6.3. Scope

We applied our approach to a relatively straightforward setup,
but our MFMC framework for estimating energetic particle
confinement lends itself to extensions to more detailed physics
and design studies. For example, it would be straightforward to
replace our numerical ODE integrator with existing high per-
formance solvers for guiding center trajectories, which may
also include collisions [18, 49] and wave—particle interactions
[56]. Another immediate extension would be to consider more
sophisticated models for the initial conditions of the alpha
particles, accounting for energy spread at birth, and the fact
that for peaked pressure profiles, most alpha particles are born
in the core of the device. Our success with MFMC using
guiding center orbits also suggests that estimating statistics
based on full-orbit trajectories may become computationally
tractable. While full-orbit simulations are extremely expen-
sive to perform, if we can find a proper surrogate to leverage,
MFMC would enable high accuracy estimation of full-orbit
statistics while only requiring a very small amount of full-
orbit simulations. These topics are all subjects of ongoing
work. Finally, it is important to stress that for a reliable anal-
ysis of energetic particle confinement, single-particle codes
and theories may not be sufficient. A more self-consistent
drift kinetic theory has recently been proposed for tokamaks
with magnetic field perturbations [60], and we do not yet
know if MFMC is relevant for such theory, and could lead to
speed-up.
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