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ABSTRACT

Alterations to the epigenome are a hallmark of biological aging and age-dependent patterning of the DNA
methylome (“epigenetic aging”) can be modeled to produce epigenetic age predictors. Rates of epigenetic aging
vary amongst individuals and correlate to the onset of age-related disease and all-cause mortality. Yet, the
origins of epigenetic-to-chronological age discordance are not empirically resolved. Here, we investigate the
relationship between aging, DNA methylation, and environmental exposures in Japanese medaka (Oryzias
latipes). We find age-associated DNA methylation patterning enriched in genomic regions of low CpG density
and that, similar to mammals, most age-related changes occur during early life. We construct an epigenetic
clock capable of predicting chronological age with a mean error of 61.1 days (~8.4% of average lifespan). To test
the role of environmental factors in driving epigenetic age variation, we exposed medaka to chronic,
environmentally relevant doses of ionizing radiation. Because most organisms share an evolutionary history
with ionizing radiation, we hypothesized that exposure would reveal fundamental insights into environment-
by-epigenetic aging interactions. Radiation exposure disrupted epigenetic aging by accelerating and
decelerating normal age-associated patterning and was most pronounced in cytosines that were moderately
associated with age. These findings empirically demonstrate the role of DNA methylation in integrating
environmental factors into aging trajectories.

INTRODUCTION

Selective pressures resulting from environmental
conditions modify the rate of aging and are
hypothesized to contribute to variation in lifespan
across species [1]. At the individual level, variation in
the rate of aging reflects a decoupling of biological
from chronological aging which may underlie variable
timing of life history events, physiological function, and
the onset of age-related disease [2, 3]. While the origins
of Dbiological-to-chronological age mismatch are
unknown, evidence suggests that the environment is a
key determinant [2, 4]. However, the mechanisms by
which the environment contributes to variation in
biological aging are not fully resolved.

One potential mechanism integrating environmental
factors into variable aging trajectories is age associated
patterning of the epigenome. DNA methylation
represents a fundamental epigenetic modification and
occurs in concert with many other epigenetic processes,
including histone modifications [5]. Not only is
variation in the DNA methylome linked to extrinsic
factors such as exposure to contaminants [6], famine
[7], season [8] and social environment [9], recent
studies show compelling links between epigenetic
changes and aging [2, 10, 11]. Stereotypical changes
occurring with age at cytosine-guanine dinucleotides
(CpGs) can be modeled to construct “epigenetic clocks”
which predict chronological age with unprecedented
accuracy in several vertebrate species [2, 12]. While
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epigenetic modifications are considered a hallmark of
normal aging [13], the causal role that “epigenetic
aging” might play in declines in cellular and
physiological function is debated. Additional research
on the basic biology of epigenetic aging in a variety of
species is needed to advance a broader understanding of
the underlying mechanisms driving both normal and
accelerated epigenetic aging.

Certain aspects of epigenetic aging appear conserved
across vertebrates, with epigenetic clocks developed in
several mammals [10, 14-17], a bird [18], and most
recently fish [19, 20]. Comparisons of epigenetic clocks
in mice, humans, and dogs reveal functional similarities
including an enrichment of age-associated loci in
developmental genes [21], suggesting these clocks
might converge on similar biological processes across
taxa. The broad sense heritability of epigenetic age
acceleration has been estimated to be up to 40% [10],
although more recent evidence suggests this is an
overestimation and that environmental conditions exert
more influence on epigenetic age acceleration when
compared to genetic components [22]. Thus, whereas
phylogenetic relationships may play a role in
determining the rate of epigenetic aging across species,
environmental conditions are likely the most significant
drivers of intraspecific variation in epigenetic aging.

Individual variation in epigenetic aging appears to be
linked to numerous fundamental life history traits [12]
including the precocious onset of puberty [23],
menopause [24], and mortality [25]. Even more,
epigenetic age appears to reflect aspects of
reproductive effort, such as oocyte yield [26], number
of pregnancies [27], and the birth weight of offspring
[28]. Adverse environments are thought to affect
plasticity in life history traits [1], and given that
stressful [29] and polluted [30] environments are
associated with epigenetic age-acceleration in
humans, epigenetic aging presents a potential
mechanism linking environmental factors and
individual variation in biological aging. However,
identifying causal relationships between epigenetic
aging and environmental factors is fundamental to
understanding the mechanistic role epigenetic
processes might play in life history variation.

Alterations to the epigenome are recognized as a
hallmark of aging [13, 31, 32], but whether age-
associated epigenetic modifications are reflective of one
or many different underlying processes is unknown.
Some of the first studies reporting epigenetic change
with age reported the random loss of epigenetic
information over time, or epigenetic drift [33]. In
contrast, epigenetic clocks rely on non-random changes
to the DNA methylome over time, suggestive of a

process independent of epigenetic drift [34]. Recent
work demonstrates that DNA damage, namely the
induction of DNA double stranded breaks (DSBs), plays
an important role in the acceleration of epigenetic age
[35]. Induction of DSBs in mice accelerates epigenetic
aging via the relocalization of chromatin modifiers
(RCM) which are recruited to aid in DSB repair [35].
During RCM, chromatin modifiers leave their original
loci and do not always return with high fidelity,
resulting in aberrant epigenetic patterning and the loss
of epigenetic information over time [35]. Interestingly,
this proposed mechanism involves the occurrence of
epigenetic drift at non-random loci [35] — producing
predictable patterns from random processes. This
provides a potential link between the endogenous and
exogenous factors which may accelerate normal aging
[36]. However, additional research is needed to
understand whether epigenetic aging and epigenetic
drift are separate, indistinguishable, or linked processes.
Further, resolving the relationship between environ-
mental factors (i.e., those causing DSBs) is required to
understand the origins of epigenetic-to-chronological
age discordance and the impact it may have on variation
in life history traits.

While associations between  epigenetic  age
acceleration and disease states are well established,
the proximate mechanisms regarding how epigenetic
aging interacts with environmental signals is not
known. To address this, we investigate the physical
convergence of environmentally induced changes and
age-related changes across the DNA methylome.
Here, we identify signatures of epigenetic aging by
sequencing DNA methylomes of a well-studied
teleost, the medaka fish (Oryzias latipes), and
compare our findings to those observed in mammals.
Medaka are ideal for this type of study due to their
hardiness, short lifespan, and small genome [37]. We
construct an epigenetic clock de novo based on age-
associated changes to the DNA methylome and use an
outdoor replicated mesocosm experiment to analyze
how chronic exposure to ionizing radiation (IR) from
gamma-emitting Cesium-137 sources affects normal
epigenetic aging. IR is a ubiquitous environmental
stressor under which all life has evolved and is a
known source of DSBs [38]. IR exposures of less than
10 mGy/day are deemed to be safe for aquatic
organisms, however, lower doses are known to cause
biological effects [39]. Here, we analyze how a 7-
week exposure to 5, 50, and 500 mGy/day of IR alters
epigenetic aging with the hypothesis that IR exposure
may result in epigenetic age acceleration via the
induction of RCM. Collectively, our study advances
our understanding of conserved epigenetic aging
patterns in vertebrates, and highlights how environ-
mental factors, like IR, influence the aging methylome
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to both disrupt and accelerate normal epigenetic
aging.

RESULTS
Characteristics of the age-associated methylome

Spearman correlation coefficients revealed that, across
the medaka methylome, 166 cytosines (0.24%) gain
methylation with age (cor > 0.5) and 41 cytosines
(0.06%) lose methylation with age (cor < -0.50; Figure
1A). Collectively, 0.3% of all cytosines covered were
correlated with age as assessed by correlation
coefficients > + 0.5. After an FDR correction for
multiple comparisons, 73 cytosines (0.11%) retained
significant p-values (p < 0.05). Age-associated
cytosines generally gain methylation with age
(Figure 1B).

To determine the organization of age-associated
cytosines throughout the genome, the distribution of
age-associated  cytosines was mapped  across
chromosomes. Similar to findings in other species [10,
15], age-associated changes appear to be widespread
with age-associated cytosines (n = 207) present on all
24 chromosomes (Figure 1C). We then examined the
genomic locations of the age-associated cytosines, as
determined by Spearman correlation coefficients, with
respect to their proximity to CpG islands and genic
context. We observed a tendency for age-associated
cytosines to fall into non-coding regions with low CpG
density. For example, age-associated cytosines are
enriched in CpG open-seas (p = 0.0049), and are
significantly depleted in CpG islands (p = 4.6e-07)
which generally harbor gene promoters [40] (Figure
1D). Relative to background, age-associated cytosines
are significantly enriched in introns (p = 9.9¢-05) and
depleted in exons (p = 0.042; Figure 1E). However, age-
associated cytosines were also slightly more likely to be
in genic rather than intergenic regions (p = 0.024;
Figure 1E). As CpGs in the human epigenetic clock are
reported to co-localize with glucocorticoid response
elements [29], we tested for significant deviations from
the expected overlap between age-associated sites and
three hormone response elements. However, enrichment
of age-associated cytosines in glucocorticoid, estrogen,
an androgen response eclements was not detected
(Figure 1F).

Temporal dynamics of epigenetic aging

Using the top age-associated cytosines (n = 207), we
determined that the mean absolute rate of change was
greater in early life (2-6 months; 18.4%) when
compared to later in adulthood (9-14 months; 9.5%; t =
9.65, df =206, p < 2.2e-16; Figure 1G). After correcting

for the number of days elapsed between each time point,
medaka had an average absolute change in methylation
of 0.15% per day during early life and 0.066% per day
during later life, suggesting that the rate of change in
methylation is more than twice as fast during early life.
Additionally, the aging methylome also appears to be
qualitatively different in early and later life. There are
far more differentially methylated cytosines (DMCs)
that become hypermethylated with age in early life
(1230 DMCs) compared to later life (485 DMCs; Figure
1H). Conversely, the number cytosines which lose
methylation with age is much greater in later life (1361
DMCs) relative to early life (231 DMCs; Figure 1H).
Interestingly, 74.3% of cytosines which change between
2- and 14-months also become hypermethylated.
Collectively, these findings demonstrate that the aging
DNA methylome is qualitatively different across the
lifespan and is quantitatively more dynamic during
early life.

Discordant methylation

We also examined the relationship between
chronological age and discordant methylation, an
indicator of epigenomic instability [41]. Genome wide
levels of discordant DNA methylation were observed to
increase with log-transformed age (LMM; 8 = 3.01, SE
= 0.66, p = 4.11e-05; Figure 1I), suggesting that
epigenetic patterns are indeed eroded over time,
consistent with epigenetic drift.

Constructing an epigenetic clock for medaka

Training a linear model on the medaka DNA
methylome revealed the highly predictable nature of
age-associated remodeling (Figure 2A, 2B). We created
a linear model by selecting 10 cytosines whose
methylation patterns were the most highly correlated
with chronological age (i.e. greatest Pearson correlation
coefficients). This linear model performed well on the
training set of 37 samples (R?> = 0.893; MAE = 32.6
days; Figure 2C) and was validated using a test set (n =
10) consisting of 1-2 samples per age group, selected at
random (R? = 0.722; MAE = 61.1 days; Figure 2D).
When considered in the context of a 2-year lifespan,
which is standard in our medaka population, this
represents age-prediction accuracy within 8.4% of the
lifespan. This linear model is largely (80%) comprised
of cytosines which become hypermethylated with age
(Figure 2E).

Additionally, we compared the performance of three
different approaches to building epigenetic clocks
across the training and test sets (Supplementary
Figures 1-4). While the elastic net approach produced
a model which was effective at predicting age in the
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test set (R? = 0.76, MAE = 60.9 days) it was also very
overfit to the training set (R? = 0.99, MAE = 3.9 days;
Supplementary Figures 1, 2 and Supplementary Table
1). Conversely, the PCA based epigenetic clock was a
relatively weak predictor of chronological age in both
the training (R> = 0.77, MAE = 48.7 days) and test
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sets (R? = 0.64, MAE = 73.9 days; Supplementary
Figures 3, 4 and Supplementary Table 1). The
approach that minimized both overfit and mean
absolute error (MAE) of the training set was
determined to be a linear model (Supplementary
Table 1).
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Figure 1. Characterization of age-associated DNA methylation patterning in medaka hepatic tissue. (A) Histogram of correlation
coefficients between methylation status and age in days. Hypermethylated cytosines are shown in red and hypomethylated in blue. (B)
Heatmap of age-associated cytosines (n = 207). Age is specified by color intensity (2-month: light gray to 14-month: black). (C) Distribution of
age-associated cytosines across the medaka genome. Cytosines that become hypermethylated with age are shown in red and those that
become hypomethylated with age in blue. (D-F) Bar plots showing comparisons between age-associated cytosines (light blue) and
background (dark blue) coverage of genomic features. (G) Comparison of the change in methylation during early- and late-life across age-

associated cytosines. (H) Table showing differential methylation
have discordant methylation across age groups.

between early- and late-life. (I) Differences in the percent of reads which
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Environmentally accelerated epigenetic aging

To test if exposure to an environmental stressor
accelerates epigenetic aging, we applied all three of our
epigenetic clocks to fish exposed to ionizing radiation
for seven weeks at 5, 50, and 500 mGy/day in a Low
Dose Irradiation Facility (LoDIF). There was no
difference in age prediction in fish exposed to IR
relative to unexposed controls (Figure 3A-3C).
Additionally, IR exposure did not affect the percentage
of reads with discordant methylation (Figure 3D), nor
did it affect survival rate across treatments.

Environmental effects on the aging methylome

We hypothesized that the influence of age and
environmental factors on cytosine methylation might
exist along an opposing continuum with strongly age-
associated cytosines independent of environmental
influences on one end and cytosines affected by the
environment and less likely to be affected by age on the
other. Along this continuum, we posited that a subset of
cytosines exist that are affected both by age and
environmental exposures (Figure 4A). To test this
hypothesis, we first sorted cytosines into bins according
to the degree to which their methylation status was
correlated with age to form an aging continuum. We

then determined which cytosines become differentially
methylated after exposure to ionizing radiation and
identified 8,595 cytosines whose methylation status is
significantly affected by exposure to at least one dose of
IR (5, 50, and 500 mGy/day) relative to our background
exposure control. Between the aging and LoDIF
datasets there were 58,825 cytosines (85.2%) which
were dually represented. Of the IR DMCs, 1072 (12.5%
of IR DMCs) were also represented in our aging dataset
(out of a total of 69,064 cytosines). We then tested if
cytosines which were differentially methylated after IR
exposure were enriched in age-associated bins relative
to background representation. Consistent with our
hypothesis, we found that cytosines which become
differentially methylated due to IR exposure were
overrepresented in bins harboring cytosines with weak
age-associations, ranging from —0.25 to —0.5 (p = 0.035)
and 0.25 to 0.5 (p = 8.9¢-08; Figure 4B). Interestingly,
we also detect a depletion of IR DMCs in cytosines
which have correlation coefficients between 0.0 and —
0.25 (p = 0.0045; Figure 4B).

We further investigated the link between exposure to IR
and epigenetic aging by assessing the directionality of
IR-induced methylation in relation to changes occurring
during normal aging. Of the cytosines which were both
affected by IR and age (Figure 5A), we found that IR
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Figure 2. Construction of an epigenetic age predictor in medaka. (A) Conceptual diagram of the RRBS experiment. (B) Description
and performance metrics of the medaka epigenetic clock. (C) Performance of the epigenetic clock on the training set (n=37) and (D) test set
(n=10). (E) Heat map of the methylation of the 10 clock cytosines. Age is specified by color intensity (2-month: light gray to 14-month: black).
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exposure resulted in methylation shifts reflective of
both accelerated and decelerated epigenetic age (Figure
5A) and these effects are observed across the genome
(Figure 5B). Interestingly, there is an increased
incidence of IR exposure resulting in deceleration of
normal epigenetic aging in cytosines with weak positive
age-associations, ranging from zero to 0.25 (p = 1.3e-
05) and 0.25 to 0.5 (p = 0.043; Figure 5A). There were
no dose dependent effects on the direction of change
(Figure 5C).

DISCUSSION

Here, we characterize age associated patterning of the
medaka DNA methylome and model these patterns to
construct an epigenetic clock that predicts chronological
age with an accuracy of 8.4% of the lifespan. We
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demonstrate that epigenetic aging in medaka shares
similarities with other species such as mice and humans
[12]. Most notably, age associated cytosines tend to be
located in regions with lower CpG density and in non-
coding regions, similar to findings in mice [15].
However, the opposite trend is seen in dogs [21], which
may in part be a product of targeting conserved
mammalian sequences rather than RRBS. In contrast to
humans, we do not observe an enrichment of age-
associated methylation patterning in glucocorticoid
receptor response elements, nor in the response
elements of other nuclear hormone receptors,
suggesting fundamental differences in aging programs
may also be present [29]. How these similarities and
differences translate into functional variation across
aging and life history trajectories warrants further
investigation.
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Figure 3. Effect of ionizing radiation on age-associated DNA methylation. Epigenetic age estimates for fish exposed to 7-weeks of
ionizing radiation at various dose rates (0, 5, 50, and 500 mGy/day) as predicted by (A) a linear model, (B) PCA, and (C) elastic net age
predictors. (D) Percent of reads with discordant methylation across exposure groups.
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Epigenetic aging in medaka occurs approximately twice
as fast early in life when compared to rates in mature
fish. This is consistent with findings in mice, humans,
and dogs suggesting that the methylome is most
dynamic early in life and corresponds to physiological
processes (i.e. growth, maturation) in similar ways

Responsive to
environment

across species [21]. In addition to increased rates of
change at specific cytosines, we find that a greater
number of cytosines incur gains of methylation during
early life. These findings raise the potential that
epigenetic aging occurs on a qualitative scale in which
different cytosines acquire or lose age-associated
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methylation patterning semi-independently of aging
rate. Our data and those of others [2, 42] are consistent
with studies demonstrating that biological aging, as
measured by telomere length, is also more dynamic
during early life [43—47]. In most cases, increased rates
of telomere attrition are associated with faster growth
early in life and are thought to reflect trade-offs between
growth and longevity [48-50]. Whereas positive
correlations between accelerated epigenetic aging and
individual variation in body size have been reported in
humans [51], these linkages have not been explored in
the context of variable life history strategies present in
other ecological systems [12]. Given that evolutionary
theories of aging, such as antagonistic pleiotropy,
emphasize the importance of maximizing fitness during
early life [52, 53], understanding the role of the
environment in determining rates of epigenetic aging at
different life stages stands to better inform our
understanding of the mechanisms driving adaptive
plasticity in life histories. Studies examining how
epigenetic aging trajectories, both in a quantitative (e.g.,
rate) and qualitative (e.g., variable subsets of cytosines

acquiring age-associated patterns) sense, are affected in
early life are clearly needed to advance our under-
standing regarding both the origins of epigenetic-to-
chronological age discordance and the potential
adaptive roles it might play in nature.

Double stranded DNA breaks have recently been shown
to accelerate epigenetic aging in mice [35], and based
on these findings, we hypothesized that chronic IR
exposure, a known source of DSBs [54], might also
result in accelerated aging. Previous research in humans
has demonstrated a relationship between radiation
treatment in breast cancer patients and increased
epigenetic age [55]. However, after a 7-week exposure
to three doses of IR, we do not observe any accelerated
epigenetic aging in medaka. However, it is also possible
the negative result reflects a weakly trained epigenetic
clock or is a constraint of our low sample size. Further,
given that the rate of epigenetic aging slows with
chronological age [2], it is also possible that the timing
of IR exposure dictates the impact of on epigenetic
aging trajectories. The fish in this study were adults,
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Figure 5. Directionality of IR-induced changes to methylation status in the context of normal epigenetic aging. (A) Distribution
of cytosines which become differentially methylated from IR exposure along the continuum of association with chronological age. Arrows
signify whether the IR induced change is in the same or opposite direction as changes induced by age. (B) Genomic distribution of cytosines
which become differentially methylated with IR exposure in the same (red/blue) or opposite (gray) direction as age-related changes.
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the same and opposite direction across dose rates and a conceptual diagram of the hypothesized effect this could have on the aging
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thus exposure during earlier windows of development
could have been more influential. Experiments
assessing different exposure durations at different life
stages are needed to determine if environmentally
relevant sources of DSBs result in epigenetic-to-
chronological age discordance.

Although the epigenetic clock itself was not affected,
IR exposure did interact with the aging DNA
methylome. Cytosines with weak associations with
age were more likely to be affected by IR exposure.
This result supported our hypothesis that cytosines
strongly affected by age would be relatively
insensitive to environmental factors. However,
contrary to our hypothesis, we find that the majority
of cytosines which become weakly hypermethylated
with age respond to IR exposure in the opposite
direction of normal epigenetic aging. IR has long been
considered a general accelerant of normal aging [56],
and yet our findings suggest the effects of IR on the
aging epigenome are more nuanced than previously
realized and may both accelerate and decelerate
normal patterns of aging at specific cytosines across
the DNA methylome. The response of epigenetic
aging trajectories to ecologically (and evolutionarily)
relevant exposures will likely inform a broader
understanding of the potentially adaptive role of
epigenetic age acceleration in nature.

The current study demonstrates that specific aspects
of epigenetic aging are broadly conserved across
vertebrates, while other aspects appear more
divergent. Given the similarities between the medaka
epigenetic clock with those developed in mammals,
epigenetic aging is likely to have a conserved
functional role in the aging process, although more
work examining the causal roles of epigenetic aging is
needed. Further, using these predictable patterns we
have developed a medaka epigenetic clock which can
be used to predict chronological age as well as
measure biological age acceleration after exposure to
environmental stressors. We report a strong
dependence of epigenetic aging patterns on early life
changes in the methylome, suggesting that the timing
of exposure may determine the sensitivity to
environmental stressors. Exposure to IR at an earlier
time point may have had greater impacts on
epigenetic aging. However, the relatively small
sample sizes for both the epigenetic clock (n = 47)
and IR exposure experiments (n = 24) prevent us from
making broad conclusions about the effects of IR on
epigenetic aging. Overall, the findings in this study
demonstrates the nuanced relationship between the
environment and biological aging and establishes a
model by which environment-by-aging interactions
can be further explored.

MATERIALS AND METHODS
Development of the epigenetic clock

Animal husbandry and rearing

All procedures involving fish husbandry and animal
experiments were approved by the University of
Georgia’s IACUC (protocol A2018 09-007-Y3-A2).
Medaka were bred under optimal conditions (24° C,
16L:8D) to produce offspring which were raised under
similar conditions. For the construction of the
epigenetic clock, male fish aged 2-months (n = 7), 4-
months (n = 6), 5-months (n = 6), 6-months (n = 8), 9-
months (n = 6), 12-months (n = 8), and 14-months (n =
6) were sacrificed using an overdose of sodium
bicarbonate buffered Tricaine (MS-222 300 mg/L). Fish
were immediately necropsied, and hepatic tissue stored
in RNAlater at -80° C or -20° C. The sex of fish was
determined using sexually dimorphic fin structure and
gross morphology of gonads. Animals at 2-months of
age had not yet reached sexual maturity so PCR
amplification of the Y-chromosome specific gene,
DMY, was used to determine genetic sex [57].

DNA extraction

DNA was extracted using a modified column protocol.
Whole livers were homogenized in a lysis buffer (4M
guanidinium thiocyanate, 0.01M Tris-hydrochloric acid
(pH 7.5), and 2% beta-mercaptoethanol) using a Mini-
Beadbeater (BioSpec, Bartlesville, OK) and stainless
steel beads for 2 minutes at 30 Hz in. Resulting lysates
were centrifuged, and supernatants were transferred to
spin columns containing a fiberglass filter (Epoch Life
Science, Missouri City, TX). Column-bound DNA was
washed twice with wash buffer (60% ethanol, potassium
acetate (162.8 mM)), and tris-hydrochloric acid (27.1
mM, pH 7.5), diluted with 60% (v/v) of ethanol) and
eluted in 40 pl of TE buffer. DNA concentrations were
quantified using a Qubit fluorometer 2.0 (Invitrogen,
Carlsbad, CA) and purity was assessed on a Nanodrop
spectrometer (Thermo-Scientific, Waltham, MA) using
absorbance ratios at 260/280 and 260/230. DNA was
stored at -20° C until library preparation.

Reduced representation bisulfite sequencing

Reduced representation bisulfite sequencing (RRBS)
was used to analyze the DNA methylome, which is
preferred over whole genome bisulfite sequencing due
to the enrichment of areas with high CpG content [58].
The RRBS libraries were prepared using the Diagenode
Premium RRBS Kit (#C02030032, Diagenode,
Denville, NJ) with the following exceptions: 200 ng of
genomic DNA was used for input and the equation
cycle threshold (Ct) + 2 was used to determine the
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number of PCR cycles needed for final library
amplification. AMPure XP Beads (Beckman Coulter,
Brea, CA) were used for all steps in the Diagenode
protocol requiring size selection or clean-up of
products. Final libraries were stored at -80° C until
sequencing. Libraries were prepared in two separate
batches, 2-, 6-, 12-months and 4-, 5-, 9-, 14-months,
respectively.

Sequencing, quality control and bisulfite conversion
efficiency

Libraries were submitted to the Georgia Genomics and
Bioinformatics Core where they were further assessed for
quality and concentration using a Fragment Analyzer
(Agilent, Santa Clara, CA). Libraries were pooled and
sequenced single-end for 75 cycles on one high-output
flow cell of an Illumina NextSeq 500 with 5% PhiX
control (Illumina) for the first batch and sequenced single-
end for 100 cycles on one high-output flow cell of the
[llumina NextSeq 2000 with 20% PhiX control added for
the second batch for greater base pair diversity. The
sequencing run for the first batch generated 225 million
reads across samples, with 92% of reads falling above the
high-quality threshold of Phred score >30. The second
batch generated 525 million reads across samples with
91% at or above the high-quality threshold. Read quality
was assessed using FastQC (v0.11.5). Adapters and low-
quality sequences (Phred score <25) were trimmed using
TrimGalore! (v 0.4.5; --rrbs) and 4bp at the 3’ end was
removed due to low overall quality scores of the 3° end of
reads. The efficiency of the bisulfite conversion was
determined to be >98% using MethylKit’s (v1.10.0) [59]
conversion statistics in Program R (v3.5.1). Data from the
prepared RRBS libraries were made publicly available
using NCBI’s Sequence Read Archive (BioProject:
PRINA716946) [60].

Alignment and Methylkit

Using Bismark (v0.20.0) [61] the medaka reference
genome (ASM223467v1) was indexed for bisulfite
conversion, and reads were aligned to this indexed
reference using Bismark with an overall alignment rate
of 50-68%. Using the Bismark methylation extractor,
BAM files containing methylation calls for each sample
were produced, sorted using SAMtools (v 0.1.19) [62],
and used as input for Bioconductor’s (v 3.9) package
MethylKit (v3.12) [59] in Program R (v3.5.1). In
MethylKit, we first filtered out cytosines which were
covered at a depth of less than 5x or greater than 100x
and normalized samples by coverage using MethylKit’s
normalizeCoverage function to prevent bias arising
from PCR or over-sampling of specific individuals,
respectively. Cytosines from opposite strands were not
merged together (option destrand = FALSE). For

characterization of the aging methylome, cytosines
which were covered at a depth of at least five reads in at
least five samples per age group (i.e. at least 74.5% of
samples) were selected resulting in a subset of 90,566
cytosines. Missing data was imputed using k-nearest
neighbor imputation (k = 4) by utilizing the function
‘impute.knn’ from R package impute [63]. Invariable
cytosines were removed using the ‘nearZeroVar’
function in the package caret [64], resulting in 69,064
cytosines which were used for further analysis.

Correlation between age and methylation status

We used Program R (v3.5.1) and the function ‘corr.test’
from package psych (v1.8.12) to run independent
Spearman and Pearson correlations for each cytosine
which passed filtering. Correlation coefficients between
the percent methylation and age in days were computed
and significance values were calculated using a false
discovery rate (FDR) correction for multiple
comparisons. Spearman correlations were used to
determine the age-associated methylome in order to
describe both linear and nonlinear relationships with
age. Pearson correlations were used to determine
inclusion of cytosines in a linear age predicting model.
Cytosines with a correlation coefficient > 0.5 or < -0.5
were considered age-associated.

Determination of differentially methylated cytosines

To determine differentially methylated cytosines we
used MethylKit’s (v3.12) ‘calculateDiffMeth’ function.
Differentially methylated cytosines were those which
had at least 25% difference in methylation between age
groups with a g-value less than or equal to 0.01. Three
individual comparisons were made between age groups
(2-month vs. 6-month, 9-month vs. 14-month, and 2-
month vs. 14-month).

Characterization of genomic location

Genomic locations for age-associated cytosines
determined by Spearman correlations were charac-
terized using Galaxy’s coverage function (Galaxy
Version 2.29.0) [65]. To determine the genic context of
each cytosine, we used the medaka reference genome
annotation (ASM223467v1) to assign cytosines as lying
in introns, exons, or intergenic (not in exon or intron)
regions. The genomic coordinates were compared
against the age-associated cytosines and background
cytosines using the coverage function in Galaxy
(version 20.05) [65]. Similarly, CpG island (CGI)
context was determined by first producing a BED file
with CGI coordinates using Galaxy’s function cpgplot
(Galaxy Version 5.0.0) [65] according to a sliding
window of 100 bp (minimum size of CGI = 200 bp,
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Minimum average observed to expected ratio = 0.6,
Minimum average percentage of G plus C = 50.0).
Using bedtools ClosestBed (Galaxy Version 2.29.0)
[65], we were then able to assign each cytosine to either
a CpG island (within CGI), CpG shore (area of 2kb
flanking CGI), CpG shelf (area from 2kb-4kb flanking
CGI), or as an open-sea CpG (further than 4kb to
nearest CGI). Enrichment above background was
performed with binomial tests using the full dataset of
69,064 covered cytosines as the background.

Hormone response elements (HRE)

To determine if age-associated cytosines were enriched in
hormone response elements (HREs), we first established
the coordinates of prospective HREs in the medaka
genome using PoSSuM search (Version 2.0). Raw PFM
files were downloaded from JASPAR [66] for the
estrogen (ERE; MAOI112.2), glucocorticoid (GRE;
MAO113.3), and androgen response elements (ARE;
MAO0007.2). The raw PFM files were transformed into
PPM files (divide the frequency by the total count for that
position) and then into PSSM files (Log2(PPM
value/0.25)) where the PPM value is the count/total and
the 0.25 is the null expected frequency of that base. These
PSSM files were input into PoSSum search (-pr -format
tabs -pval 0.0001 -lazy -uniform -lahead -dna) and
compared against the medaka reference genome to
identify prospective HREs with a p-value < 0.0001
considered a significant HRE. The genomic coordinates
from the prospective HRE sites were extracted into a BED
file and compared against the age-associated cytosines
and background cytosines using the coverage function in
Galaxy (version 20.05) [65] to determine coverage in a
2kb window surrounding each cytosine (1kb upstream,
1kb downstream). Age-associated cytosines were
considered to be overlapping with an HRE if any bases
within the 2kb window overlapped with a given HRE.
Enrichment above background was performed using
binomial tests using the full dataset of 69,064 covered
cytosines as the background.

Early vs late rate of change

Using the cytosines with the greatest Spearman
correlations with age (cor > 0.5 or < -0.5; n = 207), we
calculated the average absolute rate of change in
methylation (absolute[% methylation late - %
methylation early]) between each of the age groups (2-
to 6-months, 9- to 14-months). Due to the differences in
the amount of time elapsed between early (2- to 6-
months) and late (9- to 14-months) time points, we
normalized the average absolute rate of change by
number of days between each age interval. This ‘daily’
average absolute rate of change was compared between
the early and late time points using a paired t-test.

Developing an epigenetic age predictor

To build the epigenetic clock, we built three different
epigenetic age predictors using the same subset of
cytosines (n = 69,064) and identical training and test
sets. Models were compared based on their MAE and
R? in training and test sets (Supplementary Table 1).
Overfit was assessed by comparing MAE of the training
and test set using a t-test (Supplementary Table 1).

First, we built a linear model using the Im function in the
stats package (v3.6.2) in Program R (v3.5.1). Variables
used in the model were selected based off of the strength
of Pearson correlation coefficients determined by
individual cytosines relationship with un-transformed age
within the training set (n= 37) calculated using the
function corr.test from package psych (v1.8.12).
Cytosines within 100 bp from another cytosine already
included in the model were removed and replaced with
the cytosine with the next highest correlation coefficient.
The top 10 cytosines were chosen as this value minimized
mean absolute error in the test set (n = 10).

Second, we used the GLMNET package (v1.9-9) [67] in
Program R (v3.5.1). This approach is similar to those
used for epigenetic clocks developed in human [10] and
mouse models [15]. We used an elastic net penalized
regression model (alpha = 0.5, family = gaussian) to
select cytosines and assign penalties to individual model
coefficients. We used a leave-one-out (nfolds = nrow)
cross validation to select the optimal lambda value
(value resulting in minimum mean error) for the model
on the training set (n = 37 samples). The model was
verified on a test set (n = 10; 1-2 sample from each age
group) that was selected at random. Age (in days) was
log10 transformed for this approach.

Lastly, we created an age predictor based off of a
principal components analysis (PCA) of age-associated
cytosines in the training set (as determined by Spearman
correlation coefficients > 0.5 or < -0.5; n = 304), similar
to the approach done in Lu et al. 2020 [68]. The first
principal component (PC1) explained 30.01% of the
variation and was used as a metric for age. We defined
the linear relationship between PC1 and chronological
age in the training set (n = 37) as the epigenetic age
predictor. The predictive model was validated on the
test set (n = 10).

Testing the epigenetic clock

Age prediction in fish exposed to ionizing radiation

Six month old male fish were exposed to low doses of
ionizing radiation for 7 weeks at the Savannah River
Ecology Laboratory’s Low Dose Irradiation Facility
(LoDIF) [39]. The irradiation protocol is outlined in

WWWw.aging-us.com

AGING



Bertucci et al. (2020) with slight modifications [69].
Briefly, eggs were collected during a 14-day window in
January and February 2019 and reared in mixed-sex
cohorts as described above. Males were separated and
put into 19 L containers (15 fish/container) and placed
under irradiators equipped with Cesium-137 sources
emitting radiation at approximately 5, 50 and 500
mGy/day [69]. During the exposure period, fish were
fed three times per week with Tetramin and were given
a fresh flow of water for an hour at each feeding.
Radiation sources were turned off briefly during
feeding. After a 7-week exposure, fish were
immediately euthanized with an overdose (300 mg/L) of
Tricaine/MS-222 and immediately necropsied. DNA
from hepatic tissue (n = 24) was isolated and library
preparation for RRBS was performed as described
above. Sequencing was performed at the GGBC single-
end for 75 cycles on one high-output flow cell of an
[lumina NextSeq 500 with the addition of 20%
[llumina PhiX control spiked in. Data from the LoDIF
RRBS libraries were made publicly available using
NCBI's Sequence Read Archive (BioProject:
PRINA717041) [70]. Reads were filtered and aligned as
described above. Sequencing resulted in 590,644
cytosines which were covered at a depth of 5x-100x
reads in at least 5 samples per treatment group and
1,510,504 cytosines which were covered at a depth of
5x-100x reads in at least one sample. Missing data was
imputed as described above using KNN imputation (k =
5). We used all three epigenetic age predictors to
determine epigenetic age of the 24 samples from the
LoDIF experiment. Any cytosine missing from the
dataset across all samples was left as a zero value in the
epigenetic age predictor models. Epigenetic age
predictions were compared between groups using
analysis of variance tests (ANOVA).

Determination of IR differentially methylated
cytosines

MethylKit’s (v1.10.0) ‘calculateDiffMeth’ function was
used to determine differentially methylated cytosines
between control and exposure groups using the 590,644
cytosines covered across at least five samples in each
treatment group. Differentially methylated cytosines
(DMCs) were those which had at least 25% difference
in methylation between exposure groups with a g-value
less than or equal to 0.01. Three individual comparisons
were made between control and treatment groups:
Control vs Low (5 myGy/day), Control vs Medium (50
mGy/day), and Control vs High (500 mGy/day).

Overlap of age-associated sites with IR DMCs

We determined the overlap between the age-
associated cytosines (as determined by Spearman

correlations) and the IR DMCs and tested for
enrichment in age-associated bins (correlation
coefficients —1.0 to —0.5, —0.5 to —0.25, —-0.25 to zero,
zero, zero to 0.25, 0.25 to 0.5, and 0.5 to 1.0) using
binomial tests. Enrichment above background was
done by comparing the overlap of the LoDIF dataset
to the aging dataset of 69,064 covered cytosines as the
background.

Percentage of discordant reads

The percentage of discordant reads (PDR) was
calculated using the ‘methylation_consistency’ extension
in Bismark (v0.20.0, Babraham Bioinformatics). The
number of reads containing at least 2 CpGs which had
concordant (0-9% or 91-100% methylated) or discordant
(10-90% methylated) patterns of DNA methylation was
determined and PDR was calculated as the number of
discordant reads divided by the total number of reads
containing at least 2 CpGs. A linear mixed effects model
(LMM) was used to evaluate the relationship between
PDR and log-transformed age including a random
effected of library batch. The LMM was run in the Ime4
package and p-value extracted using the package
ImerTest [71].

Data availability

Data used to support the claims in this manuscript
are publicly available in the NCBI Sequence Read
Archive (SRA) under BioProjects PRINA716946 and
PRINA717041.
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This report was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Government
nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy,
completeness, or usefulness of any information,
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that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any
agency thereof. The views and opinions of authors
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SUPPLEMENTARY MATERIALS

Supplementary Figures
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Supplementary Figure 1. Performance of the elastic net based epigenetic age predictor on the training set (n=37). R2=0.99,
MAE=3.9 days.
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Supplementary Figure 2. Performance of the elastic net based epigenetic age predictor on the test set (n = 10). R2=0.76, MAE
=60.9 days.
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Supplementary Figure 3. Performance of the PCA based epigenetic age predictor on the training set (n = 37). R2=0.77, MAE =

48.7 days.
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Supplementary Figure 4. Performance of the PCA based epigenetic age predictor on the test set (n = 10). R2 = 0.64, MAE = 73.9

days.
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Supplementary Table

Supplementary Table 1. Comparison of overfit of epigenetic clock building approaches.

Clock building Number of Training set Training set Testset Test set Overfit? (t-test p-value)

approach CpGs included MAE R? MAE R?

Elastic net 52 3.9 0.99 60.9 0.76 Yes (0.011)
Linear model 10 32.6 0.89 61.1 0.72 Yes (0.021)
PCA 304 48.7 0.77 73.9 0.64 No (0.072)
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