Forensic Science International: Digital Investigation 42 (2022) 301400

Contents lists available at ScienceDirect

I
Investigati,0'1

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

DFRWS 2022 USA - Proceedings of the Twenty-Second Annual DFRWS USA

Juicing V8: A primary account for the memory forensics of the V8
JavaScript engine

Check for
updates

Enoch Wang *°, Samuel Zurowski *°, Orion Duffy ", Tyler Thomas *°,
Ibrahim Baggili * >~

2 University of New Haven Cyber Forensics Research and Education Group (UNHCFREG), Samuel S. Bergami Jr. Cybersecurity Center, USA
b Connecticut Institute of Technology at the University of New Haven, USA

ARTICLE INFO ABSTRACT

Article history: V8 is the open source interpreter developed by Google to enable JavaScript (JS) functionality in Chrome
and power other software. Malicious threat actors abuse the usage of JS because most modern-day

browsers implicitly trust script code to execute. To aid in incident response and memory forensics in

Keywords: such scenarios, our work introduces the first generalizable account of the memory forensics of the V8 JS
Memory forensics engine and provides practitioners with a list of objects and their descriptors extracted from a memory
Volatility image. These objects can be used to reveal key information about a user and their activity. We analyzed
J\f\;/ascript the V8 engine and its garbage collection process. We then developed and validated a Volatility plugin —

V8MapScan — to reconstruct V8 objects from a memory image. The runtime of the V8 engine is housed
within the V8 isolate which contains its own heap manager and garbage collector. Within the heap of the
isolate exists a root object map known as the MetaMap. By using the MetaMap and a object-fitting
technique, we were able to extract objects, object-maps, and object properties. The V8MapScan plugin
scans process memory for the MetaMap data structure contained within the V8 isolate using its data
structure, references to objects can be found and extracted. Our findings were verified with Chrome
DevTool's Heap Profiler. Our approach recovered the majority of objects indicated by the heap profiler
with common types such as the ONE_BYTE_INTERNALIZED_STR type returning more than 98.9%. Lastly,

we provide a case study using our tools on the Monero Cryptocurrency Miner.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Memory analysis
Object recovery

1. Introduction

The V8 engine powers commonly used software such as Elec-
tron applications (e.g. Discord, Node.js (Node)). Currently, 95% of
web browsing employs some form of JavaScript (JS) and 99% of
websites use]S (Tiwari Yan, 2012). Billions of users everyday
interact with V8 in some capacity whether in Chrome, Discord, or
Electron applications (Google chrome statistics for 2022, 2022;
Jargon, 2019). V8 is written in C++ and runs independently within
its own thread (Mulazzani et al., 2013). The V8 thread may spawn
worker threads to mark areas for Garbage Collection (GC), code
optimization, and more (Concurrent marking in v8, 2018). Appli-
cations running JS maintain live objects within the heap and are

* Corresponding author. University of New Haven Cyber Forensics Research and
Education Group (UNHCFREG), Samuel S. Bergami Jr. Cybersecurity Center, USA.
E-mail addresses: ewang3@unh.newhaven.edu (E. Wang), szurol@unh.
newhaven.edu (S. Zurowski), oduffl@unh.newhaven.edu (O. Duffy), tthom10@
unh.newhaven.edu (T. Thomas), ibaggili@newhaven.edu (L. Baggili).

https://doi.org/10.1016/j.fsidi.2022.301400

managed solely by the V8 engine (Degenbaev et al., 2018). These
live objects can provide critical information to some of the mali-
cious activity preformed through JS.

Malicious threat actors abuse the usage of JS because most
modern-day web browsers implicitly trust script code to execute.
The majority of websites surfed by users contain JS that is executed.
While most JS can be trusted, due to the implicit trust, attackers are
enabled to lure victims to their websites and execute malicious
code. Many websites have been found to employ the computational
power of visitors to mine cryptocurrency without the knowledge of
the visitor — known as cryptojacking (Jan et al., 2018).

Furthermore, web browsers have numerous Application Pro-
gramming Interface (API) capabilities that can be abused by at-
tackers, presenting many client-side attack vectors. Frameworks
such as MarioNet have proven that browser-based attacks may run
malicious code that persists even after closing the browser
(Papadopoulos et al., 2018). There have even been instances of the
V8 engine being exploited. Google disclosed a Type Confusion

2666-2817/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ewang3@unh.newhaven.edu
mailto:szuro1@unh.newhaven.edu
mailto:szuro1@unh.newhaven.edu
mailto:oduff1@unh.newhaven.edu
mailto:tthom10@unh.newhaven.edu
mailto:tthom10@unh.newhaven.edu
mailto:ibaggili@newhaven.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301400&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301400
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301400

E. Wang, S. Zurowski, O. Duffy et al.

Vulnerability in V8 (CVE-2021-30551) that was exploited due to
logic errors (Glazunov, 2021; Meadows, 2003). Vulnerabilities
exploiting the nature of V8 are beneficial to investigate including
client side attacks such as cross-site scripting (XSS), session
hijacking, and click-jacking.

To counter these attacks, forensic investigators may rely on disk,
memory, and network forensics. To gain full reconstruction of JS
objects and user activity, post-mortem memory forensics becomes
necessary. In this work, we conduct memory analysis of the V8 JS
engine. We provide metrics of reliability and completeness of ob-
ject recovery across Node versions and compare our results to
heapdumps analyzed using Google's developer tool used to analyze
heap snapshots. Our work makes the following contributions:

@® We present the primary account of the memory forensics of
the V8 JS engine.

@® We present V8MapScan, a series of Volatility plugins capable
of locating the V8 objects, their maps and descriptors,
capable of displaying the information extracted from appli-
cations running Node. We also share a dataset that provides
key metrics of how much data can be recovered. The plugin
and dataset can be found at https://github.com/unhcfreg/V8-
Memory-Forensics-Plugins.

@ We outline key data structures within the V8 JS engine and
their relationship to each other.

® We demonstrate that our approach is generalizable and
works against other applications employing Node's V8 run-
time (Discord).

In Sections 2 and 3 we discuss the intricacies of the V8 engine
and related work. Section 4 describes the reverse engineering
process and the functionality of V8MapScan. Sections 5 presents
and discusses our performance metrics. Sections 8 and 7 speculate
how this work may be continued and present the implications of
our work.

2. Background

In this section, we discuss the memory layout of objects in V8,
the V8 GC process, JS forensics, and the llnode plugin. The memory
layout for the data structures was discovered through source code
analysis (Bak), which is publicly available, and verified through the
use of lInode. We present summary details about the tools used and
the information we extracted from relevant data structures. We
also elaborate on GC and its implications on our work.

2.1. V8 objects

Objects within V8 are organized through hidden classes that
record both the offset for a given object property and the address of
the object (Ahn et al., 2014). These hidden classes can be referred to
as object maps. V8 uses these maps to categorize various object
types by including property descriptors that indicate type and
length. These maps also contain a reference to the SELF object
within its table (Chambers et al., 1989). Objects vary from type to
type and can be represented by an identification number found
within the map, known as an instance type. The object structure
itself can be broken down into three main components: map
pointer, properties, and object elements. Object types can consist of
basic strings, arrays, user-created objects, and more.

2.2. V8 string types

Several of the simplest string types start with a pointer to the
map of the object, followed by an integer describing the length of

Forensic Science International: Digital Investigation 42 (2022) 301400

the string, and the properties that create the string. The most basic
string type is known as a ONE_BYTE_INTERNALIZED_STRING_TYPE. It
is primitive and often contains a short ASCII string. There is also the
CONS_ONE_BYTE_STRING_TYPE, which contains two pointers to two
separate one byte internalized string types that are then merged.
The type that is directly called the string type contains chunks of
code stored in Unicode Transformation Format (UTF).

2.3. V8 structure of arrays

The primary organizational structure of arrays is similar to the
basic strings. It is stored as a pointer to the map of the object, fol-
lowed by an integer describing the length, and succeeded by the
properties themselves. Depending on the array type in question,
multiple bytes in memory may be allocated for the properties.
However, in the simplest types, each property is a single word. JS
objects are somewhat different. The number of properties must be
found through the map, as it is not stored within the object itself. JS
objects begin with a pointer to their map, similar to the other object
types. It is followed by two pointers to arrays. The second pointer
will always be to an empty array, while the first may point to the
same empty array or an overflow array in a case where there was
not enough memory available in the location where the object was
stored to hold all properties of the object.

2.4. Garbage collector

A key factor to consider when performing memory forensics is
Garbage Collection (GC). GC varies from engine to engine which
affects what objects remain in memory. GC in V8 is a complex
process that manages background memory, enabling programs
running JS applications to perform seamlessly without jitter or
running out of memory. Changes to the Stop-The-World (STW)
approach have moved the GC process into a concurrent, parallel,
and incremental execution (Infiihr; Krylov et al., 2020). STW refers
to the algorithmic approach utilized in the Java Virtual Machine
(JVM) to halt all running threads during GC (Flood et al., 2001). This
prevents race conditions or other complications that may occur
while objects are organized by the GC. Although effective, |JS ap-
plications with STW observe a noticeable impact in real-time per-
formance (Boehm and Demers Scott, 1991).

A full GC of the heap is unnecessary (Li et al., 2018). The V8 JS
engine design adopts algorithms that break up the task into smaller
sub-tasks managed by a background thread (Bhattacharya et al.,
2017). Many of the improvements occur with the Minor GC
which exclusively manages the young generation. Young refers to
the type of objects maintained within the Young Space in memory
(Fig. 1). This approach leverages the “Weak Generational Hypoth-
esis” effect, which states that a majority of objects (about 98%), die
within a short period (Oracle. 3 generations, 2015). To accommo-
date this, V8 copies the surviving objects into the old generation
space, which consists of the Old Data Space, the Old Pointer Space,
and the Large Objects indicated in Fig. 1.

The old generation objects reserve the expensive operation of
copying for the remaining 2% of live objects that persist through 2
iterations of GC (Ren Ying, 2016). Any dead objects surviving past 2
iterations of GC are left as memory to be collected as implied
garbage, as seen in Object 3 in Fig. 1. This reduces the need for
marking surviving objects, finding dead objects, and removing
them from memory. Young objects surviving two iterations are
promoted into old space, as seen in Object 2 in Fig. 1. To improve the
task of finding dead objects, developers have adopted the tech-
nique of root object tracing (Bikineev et al., 2021). Traditionally,
dead objects were determined by reference counters which main-
tain a count of how many times the object is referenced using

https://github.com/unhcfreg/V8-Memory-Forensics-Plugins
https://github.com/unhcfreg/V8-Memory-Forensics-Plugins

E. Wang, S. Zurowski, O. Duffy et al.

Young Space Young Space

Scavange
Object 1 - Object 1
Object 2
- Promote
Object 3

Old Data Space Old Data Space

Object 2

Mark-Sweep B
- — <

Old Pointer Space Old Pointer Space

Large Objects Large Objects

Code Space Code Space
Map Space Map Space
Property Space Property Space
Cell Space Cell Space

Fig. 1. Memory layout of garbage collector.

reference pointers. When the count reaches zero, the object is
deallocated and marked as dead. One of the common issues with
reference pointers are reference cycles, a situation where dead
objects reference each other preventing the reference counter from
ever reaching 0. Determining object lifeline by tracing reachable
objects from root objects (Transitive closure) provides a dynamic
and robust solution, reducing the amount of code required while
recursively determining objects that are in use (Weninger et al.,
2018; Levanoni and Petrank, 2001).

The primary effect of GC on our work and memory forensics
include the periodic deletion of data stored objects. Thus, GC limits
what can be recovered from memory. GC depends on a number of
factors including the idle state, heap state, object size stored, type of
GC (minor/major), and the application's own implementation of
GC. This process makes GC both a nebulous and time restrained
process and our results indicated significantly fewer found objects
when GC occurs.

2.5. llnode

llnode is a plugin for the Low-Level Debugger (LLDB) for Node. It
is the product of the Low-Level Virtual Machine (LLVM) project, a
collection of compilers and tools created to support the analysis of
applications (Lattner and Adve, 2004). Capable of breaking down
high-level data types into low-level primitives, the compiler uti-
lizes a multi-stage optimization system to represent complex data
structures into words and tokens readable to humans. Due to the
compile-link-execute model of high-level languages, binaries
created by a specific architecture may not run on a different ar-
chitecture due to varying instruction sets. LLVM is able to assist in
this transition by transforming programs into low-level represen-
tations capable of being translated into any architecture (Arthur
Lattner, 2002). As a result, LLVM is perfect for Just-In-Time (JIT)

Forensic Science International: Digital Investigation 42 (2022) 301400

applications and has expanded into the development of platform-
specific tools such as llnode for Node.

The llnode plugin specifically enables the LLDB to inspect |S
objects, object properties, object maps, and the stack frame on
active instances of Node. The plugin is able to do this with a object
fitting method, where the stack frame is scanned and parsed for
objects. Objects are determined by fitting a portion of the stack
frame into various object-sized chunks with different parameters
relative to the data type. If any of the parameters are not met, the
object returns false for the object type. This process repeats until all
objects within the stack are defined.

The information produced by llnode is useful for back-end de-
velopers but the restriction to live instances make it unsuitable for
post-mortem forensic examination. We employed the plugin to
observe each data structure layout and determine their relational
pattern. By creating an instance of V8 within linode, complete data
structures could be pulled from memory. This assisted in the
verification of objects extracted with V8MapScan, our Volatility
memory forensics plugin. The object fitting method utilized in the
scan portion of the llnode plugin was also instrumental in the
development of V8MapScan.

The redevelopment of the scan process was necessary for our
work as the llnode plugin currently does not support Windows and
requires a running instance of Node to debug (Kim and Ryou, 2019).
The V8MapScan Volatility plugin, on the other hand, is capable of
extracting objects from a captured Windows memory image,
making it suitable for forensic applications.

3. Related work

This section presents work that is related to the field of memory
forensics.

3.1. Forensics related to V8

Discord is a popular messaging application built on Electron
(which is built on V8). Discord enables users for Instant Messaging
(IM) and Voice over IP (VoIP) which could be used for nefarious
purposes such as spreading malware, harassment, and more. A tool
called DisFor was developed to extract, analyze, and present
Discord client-side artifacts in a forensically sound manner (Igbal
et al., 2021). While this approach can produce forensically sound
evidence, it solely focused on disk artifacts rather than volatile
memory.

3.2. Memory forensics

Memory forensics involves the acquisition and analysis of vol-
atile Random-access Memory (RAM) on a system. The memory is
considered volatile because the data requires a power source to
maintain its state. Once a system shuts down, the capacitors begin
draining their voltage. These voltages represent the state of a binary
bit effectively storing data. Over time, memory forensic techniques,
such as cold boot attacks, have been developed to target this spe-
cific mechanism. With direct physical access to the RAM, it is
possible to slow this process by freezing the RAM, enabling forensic
investigators to create a memory image (Ooi and Kam, 2009).
Alternatively, memory forensic acquisition tools such as Dumplt,
FTK Imager, and Winpmem can be mounted on an external Uni-
versal Serial Bus (USB) port to acquire volatile memory from a live
system. However, acquisition exists as only the first part of a much
greater challenge: interpreting raw memory data.

With access to forensically sound memory images, live memory
analysis can be conducted on multiple levels. The first level involves
finding all human readable strings from a memory dump with the

E. Wang, S. Zurowski, O. Duffy et al.

use of grep (Case and Richard, 2017). Doing so may provide im-
mediate information, such as a password stored in plain-text.
However, information stored in applications are subject to struc-
tures and symbols which may appear as nonsense without proper
translation. Development of memory forensics tools capable of
reverse engineering structures to carve relevant data has become
an imperative requirement. Similar frameworks have been devel-
oped for password managers (Frank and Dewald, 2017), login
shells, crypto wallets (Van Der Horst et al., 2017), hypervisors
(Graziano et al., 2013) and other applications. This method of
custom designing a unique plugin for a specific platform is a ne-
cessity as data structuring varies between applications.

The process of developing a plugin on top of a memory forensics
tool to reconstruct high-level structures is still at its infancy (Pagani
and Balzarotti, 2019). The development of memory forensics tools
will continue to provide investigators with meaningful information
carved from raw data (Schatz and Cohen, 2017; Tyler et al., 2020,
2021). The techniques of similar projects have been reviewed and
inspiration has been taken from their methodology. However, the
unique applications for each plugin require a different approach for
each project, and a universal approach has yet to be discovered.
Furthermore, updates to applications and operating systems
continue to break algorithms employed to extract data structures
from memory (Lewis et al., 2018). Exploring the memory structures
of application engines leads to general approaches applicable to a
large number of applications. For example tracing hooks within
processes may provide forensically relevant data across multiple
programs rather than one type of application (Case et al., 2019).

4. Methodology

In this section, we present the reverse engineering process of V8
and how creating a controlled instance of V8 enabled us to identify
magic bytes. We demonstrate how the information obtained from
reverse engineering the engine could be leveraged to create an
algorithm capable of reconstructing various V8 memory data
structures. Finally, this section ends with an explanation of how
images were created to simulate a system hosting Node. These
images were used to observe V8 running live applications, and to
evaluate the efficacy of our approach.

4.1. Reverse engineering V8

The steps involved in reverse engineering V8 consisted of the
following:

@ Creating a controlled instance of V8 within llnode

@ Reading through the code base and identifying indicated
data structures within a live instance V8

@ Validating relational patterns within the memory structure

The code base revealed two key factors. The first enabled the
discovery of objects through a similar tracing methodology per-
formed by V8's GC. The second enabled the verification of each data
structure. Each object within V8 could be tied to an object map that
identifies information about the object such as descriptions,
instance type, and property fields (See Fig. 2). Each object map also
contains a reference to the MetaMap, a root map that all maps
inherit from. The address of the MetaMap contains within its im-
mediate value a reference to itself +1 (See Fig. 3).

Understanding the object maps enables data extraction about
each object including object type code, object type name, and ob-
ject properties. Each object holds a pointer to its object map and
values which are described by the object properties. Thus to
properly parse an object, both the object and the object map are

Forensic Science International: Digital Investigation 42 (2022) 301400

necessary. Determining the location of both the object and the
object map is possible through a series of recursive Yara-scans.
These recursive scans follow the structure of: 1) finding the Met-
aMap, 2) finding each object map, 3) finding each object.

Determining each field within each data structure was done
through correlating llnode outputs with the V8 code base (Bak).
Addresses of entire objects could be extracted using llnode but
understanding the layout of each object required the code base.
Information such as the various sizes of each field was indicated by
the developers, resulting in the visual representation provided in
Fig. 2. Each field indicated in the object map represents 4 bytes with
the exception of the Prototype Tag field which represents 8 bytes.
The second field in the object map contains the first and second
integer fields which are also subdivided into 1-byte fields. These
fields contained identifying information, the most important being
the Instance Type. The Instance Type is contained within the sec-
ond integer in a 2-byte field. Descriptors for the objects matching
the map could be extracted from the sixth field in the object map.
The majority of objects follow the layout indicated in Fig. 2 but
certain types such as custom-defined arrays are exceptions to this
layout with primitive types seeing minor changes from the indi-
cated Fig. 2.

4.2. Plugin development

The discovery of the MetaMap facilitates the V8 data structure
as it indicates a set of addresses within the V8 isolate. The isolate is
an independent copy of the V8 runtime which includes: a heap
manager, a garbage collector, and other various functionalities. The
MetaMap is the root map that is referenced by a pointer from all
object maps. The location of the MetaMap is referenced at the start
of all object maps as well as within its own structure. Thus, it is
possible to find the MetaMap by scanning for values that match the
address +1. Additionally, finding the MetaMap enables searching
for object maps that contain a reference to the MetaMap. Fig. 3
shows the layout of a object, object map, and MetaMap's relation
through a series of reference pointers. Each reference pointer in-
dicates the address of the next structure. Starting from the value
stored within the first address of the object and subtracting 1 from
it produces the object map. The value stored in the object map - 1
also contains the MetaMap.

Algorithm 1. Algorithm for V8MapScan

Algorithm 1 Algorithm for V8MapScan

1: rule < ”FF 03 (20 | 40)”
2: y « yara.compile(rule)
3: for process € processList do

4 if process # VS_PROCES S then

5 continue

6: end if

7 m « y.match(process)

8 if m # V8_MetaMap then > Locate MetaMap
9: continue

10: end if

11: yref « yara.compile(m) > References to MetaMap
12: mapRefs « yref.match(process)

13: for objMap € mapRef's do

14: V80bj « parseObj(objMap) » Extract objects
15: end for

16: end for

The V8MapScan plugin begins by scanning for a series of magic
bytes that are stored within the MetaMap structure. In the

E. Wang, S. Zurowski, O. Duffy et al.

Forensic Science International: Digital Investigation 42 (2022) 301400

> Second Int
1
1 2. First and Instance Size
1.Pointer to Map o l'M;;;’\tA::p Second Integer | Instance Type
Field Primitive/Object
3. Third Integer 4. Object Instance Slack First Bit Field
i Field Prototype Point
2. Pointer to Overflow Array, Empty = rototype Fointer Visitor 1D Second Bit Field
Array
5. Constructor .
Pointer, Map 2}255!20;&2; R Descriptor Array
Pointer, Other
4. Properties 1.Pointer to Map
' 7. Dependent - :
Code Lipst Pointer 8. Validity Cell 2. Descriptor Counts
3. Enum Cache
9. Prototype ;’i?nstg'rstorage Field 4. Name Pointer
5. Details, Descriptor Value
Fig. 2. V8 data structures.

p identify the address that correlates to a value, a series of repeat
0x14e808a3380 ,—a14a5b7ab503p000 d19e7937€a020000 scans using the addresses that stored a manipulated value must be
0x14€80823390 1 290b78172e010000 91185b72b5030000 performed until a single address remains. This technique was used
0x14e808a33a0 ' 199d7937ea020000 290bf817ae010000 . . . s .
0x14e808a33b0 ! 0000000000000000 0000000000000000 to identify the address of custom strings within Node version 15.1

N\ : / and enabled discovery of the MetaMap by recursively iterating

______ 1 Object Structure through the reference pointers as demonstrated in 3.
: With the MetaMap obtained, the plugin can locate all object
¥ - maps by scanning for values containing the address of the
0x3b57a5b4aa0) ,-6901f817ae010000 0303031921040019 MetaMap +1. Each map is enumerated and extracted for informa-
4 1
§357:54: ;;ég?ggggggggggg ;1 lg??gggigggggg tion relating to the object (descriptors and instance types). To find
0x3b57a5b4ad0 0000000000000000 0000000000000000 the ObjECtS themselves, another full process scan is conducted with
the address of the object map +1. Like the maps, the objects also
Object Map contain valuable information such as value and properties. The
step-by-step procedure is indicated in Algorithm 1 and demon-
strates a O (n®) time complexity. Line 1 includes the magic bytes
8X1391;]§23132‘ [?28;2283888%888 8?8?2313398?8383 used for identifying the MetaMap structure. Line 2 compiles them
Xlae ae . .
0x1ae17f80188 b101f817ae010000 2902f817ae010000 into the Yara-scan ruleset. Lines 3 through 10 scan for the MetaMap
Ox1ae17f80198 8902f817ae010000 0000000000000000 within the Node process space. Lines 11 and 12 locate all Ob_]ect

MetaMap

Fig. 3. Memory layout: V8 object, object map and MetaMap

MetaMap structure, shown in Fig. 3 and Algorithm 1, the bytecodes
on line one provide a signature that can be directly scanned for.
Various versions of Node contain unique bytecode identifiers
located four bytes from the base address of the MetaMap. To sup-
port multiple versions of Node, the bytecodes FF 03 (20 | 40) are
used to locate the MetaMap in versions 12 through 15. To verify that
the structure is a MetaMap, the base address +1 is compared to the
value stored at the address itself. The determination of these magic
bytes were acquired using the llnode debugger to simulate an
instance of V8. The first set of magic bytes were found from a
simulated version of Node version 14.15.1. This method worked for
every version of Node after 12.0 with the exception of 15.1.

For finding the MetaMap in version 15.1, Cheat Engine was
utilized to conduct a series of pointer scans on known objects.
Cheat Engine is an open-source debugger that attaches itself to
processes memory in order to manipulate values. These values can
directly correlate to variables used within the process. Pointer scans
are conducted by scanning for a value located within the process.
Scanning for a value will provide the addresses where the value is
found. However, not all the addresses contain the value to the
desired variable (Casey et al., 2019; Cano, 2016; Feng et al., 2008). To

maps by searching for references of the MetaMap. Lines 13 to 15
locate and extract all objects by searching for references to the
object maps. Real-time execution of the plugin is primarily deter-
mined by the number of object maps detected within the image.

4.3. Experimentation

To establish evidence that the V8 object recovery approach
outlined is accurate, a robust experiment was conducted. Addi-
tionally, to produce evidence, an environment had to be created
with a custom Node application that enables:

@ Creation of Objects

@ Deletion of Objects

@ Unique Identification of Objects

@ Predictability of the total number of V8 Objects within the
heap.

A custom application was created with properties that could be
instantiated within the source code. A user would define an object
in the source code to increment the total number of user objects by
one. However, because the class contained other properties, other
object types would also increment.

In the experiment, 10 memory dumps were created by
employing Windows 10 virtual machines using VMware Worksta-
tion. The memory dumps used in this experiment are listed in

E. Wang, S. Zurowski, O. Duffy et al.

Table 1

Memory dump dataset.
Name Size Node Version Application
V8_1_objects.vmem 2GB 14.15.1 Custom
V8_2_objects.vmem 2GB 14.15.1 Custom
V8_3_objects.vmem 2GB 14.15.1 Custom
V8_4_objects.vmem 2GB 14.15.1 Custom
V8_5_objects.vmem 2GB 14.15.1 Custom
V8_6_objects.vmem 2GB 14.15.1 Custom
V8_7_objects.vmem 2GB 14.15.1 Custom
V8_8_objects.vmem 2GB 14.15.1 Custom
V8_9_objects.vmem 2GB 14.15.1 Custom
V8_10_objects.vmem 2GB 14.15.1 Custom
Agari_ver11_0.vmem 2GB 11.0 Custom
Agari_ver13_0.vmem 2GB 13.0 Custom
Agari_ver15_0.vmem 2 GB 15.0 Custom
Discord.vmem 2GB N/A Discord

Table 1 and may be downloaded from our GitHub. The memory
images labeled custom were specifically used for the experiment.
The number represents how many user objects were created by the
custom application written. This was conducted by, executing the
Node application, and then taking a snapshot containing all user
objects which were created, including all the others created by the
V8 runtime. Furthermore, another snapshot was taken using the
heapdump Node library to analyze the total number of each object
type (Noordhuis). The heapdump library takes advantage of V8's
built-in functionality to take a heap snapshot using the heap pro-
filer. The heap snapshot tool can also be loaded into the Chrome
DevTools heap profiler for analysis. Furthermore, heapdump is
immediately executed within the application once all objects are
created. It is almost important to note that invoking this within the
application can potentially create more objects. The heapdump
approach was employed to quantify the amount of data our pro-
posed approach recovered. The purpose of the experiment was to
evaluate the following: 1) statics of the number recovered objects
via heapdump, 2) the number of recovered objects, and 3) how
garbage collection can affect data recovery in volatile memory.

Once the data was collected, our Volatility plugin was tested.
The plugin would create a CSV file containing the following prop-
erties: number of user-created objects, object type, and total count
of the object type. Once CSV files were created for each memory
dump, they were concatenated together for analysis and analyzed
within a Jupyter Notebook. The results of the experiments can be
found in graphs 4, 5 and Table 2.

4.4. Version testing

To ensure the robustness of the plugin, multiple versions of
Node were tested using the images indicated in Table 1. A sample
Node application, called Agari (Ronitsinha) was run on multiple

Table 2
Object discovered by method statistics.

Instances Type Heap Count Plugin Count Discovered Percent
All String Types 8180 8127 99.3%

Internalized String 5583 5527 98.9%

Array 1677 2699 >100%

ArrayBuffer 23 28 >100%

Global 2 1 50%

User Objects 10 10 100%

Symbols 111 154 >100%

Forensic Science International: Digital Investigation 42 (2022) 301400

versions of Node. A memory snapshot was taken of each version
which can be seen Table 1. The tests showed the plugin was able to
extract objects, identified by unique strings, in all versions of Node
after 13.0. The plugin was not able to identify the MetaMap nor a V8
isolate in version 11.0. Inspection of the process memory from
version 11.0 also revealed that certain Node processes could not be
dumped from memory.

Aversion of the plugin was also modified for 32-bit applications
such as Discord. Discord is only launched in 32-bit and currently
does not have a 64-bit version. The modified plugin was able to
consistently locate the MetaMap from the Discord image indicated
in Table 1. The modified plugin scanned through every instance of
Discord located within the image to determine the structure. The
current state of the modified plugin contains no further imple-
mentation and does not locate object maps or objects.

5. Findings and evaluation
5.1. Overview

The plugin developed during this research was tested on Win-
dows 10 (—profile = Win10 x 64_18362). Testing was performed on
memory images created specifically with both custom Node ap-
plications and Discord. Memory images were captured using
snapshot support in VMWare Workstation. Anticipated data was
used compare with the plugin output through V8's source code on
GitHub. V8's functions that created the]S objects were analyzed to
determine all relevant data. This information was then compared to
the information recovered by the plugins.

5.2. Plugin output and usability

This section outlines how to use the V8MapScan plugin to
analyze memory dumps. Only partial output is shown to provide
insight on how it works since the amount of data depending on
each memory dump can differ.

5.2.1. v8_extractprops

v8_extractprops can be useful for providing insight on the total
objects that can be potentially recovered. Listing 1 shows a sample
of a property found in an object and the data residing in it. This
plugin was primarily used for dataset creation and analysis. How-
ever, it can serve to provide properties of objects that may be
forensically interesting to a practitioner.

$ python vol.py —f dump.vmem v8_extractprops
[
[
Property 1°,
‘string 7,
900186240977,
’C:\\ Users \\Bob\\ Desktop \\app.js’
1,
[’Property 3°, ’smi ’, 0],

5 P

[’ Property 4°, ’smi ’, 3]

5.2.2. v8_findalltypes

v8_findalltypes returns all the Object Maps and the descriptors.
This includes how many maps there are of each type. v8_findall-
types output can be found in Listing 2 showing the name of the
type, the decimal number of the type, and the total map count of
the respective type.

E. Wang, S. Zurowski, O. Duffy et al.

$ python vol.py —f dump.vmem v8_findalltypes
Name Instance Type Map Count
Error 1069 1
URIError 1069 1
Object 1092 28
has 1052 1
delete 1053 1
toISOString 1066 1

5.2.3. v8_extractobjects

v8_extractobjects takes the object Map address and returns all
the objects that are inferenced from this address. This can be used
to collect relevant information and extracting object information.
Example output shown in Listing 3 provides the type, map address,
and the address of the object map.

$ python vol.py —f dump.vmem v8_extractobjects
Type Map Address String Address

String Oxlael7f80408 0x6963708ce8
String

bindServerHandle

5.2.4. v8_instancetypeaddr

v8_instancetypeaddr works by supplying in an instance type
number. These numbers can be found in the v8_findalltypes plugin
output. The output can be found in Listing 4 where it provides the
MetaMap address, and the object address of the instance type. Once
the number has been inputted, this plugin will return the address of
the object maps found. The purpose of this plugin is to enable in-
vestigators to look for specific types and then use other plugins to
then conduct deeper analysis on the instance types to see the data
it holds. It can contain arrays, strings, and various other information
of potential forensic relevance.

$ python vol.py —f dump.vmem v8_instancetypeaddr
Enter InstanceType: 1066
Map found: 0x34697840d80L
Number Object Address
1 0x344bd60bad8

5.3. Recovery analysis

It is important to note that metrics in memory forensics is an
understudied topic, and a difficult problem since memory is vola-
tile. However, we conducted our analysis given the reasonable
constraints memory forensics imposes. The graphs in Figs. 4 and 5
show metrics of the total amount of objects that were discovered by
our Volatility plugin. Examined were two specific instance types.
The red portion of the bar indicates approximately how much data
was not found due to potential GC. This is an approximation, based
on the number of increasing objects from all the dumps for each
instance type. For example, in Fig. 5, each time a new object was
introduced in each memory dump, it would increase by two with
the anomaly in which GC potentially occurred. Based on the y
values, we linearly approximated on the amount of objects that
should be found in memory (assuming GC did not occur). It is
important to note that it is almost impossible to have 100% cer-
tainty that all objects were found because of the indeterminate
nature of GC.

Forensic Science International: Digital Investigation 42 (2022) 301400

For JSObjectType (hex value 0 x 421), most cases seemed to
have the maximum value of how many objects should be recover-
able. JSObjectType uses a constant approximation since the total
number of objects is based on the number of instance types.
Additionally, effects of GC can also be seen in Fig. 4. On the x axis, 1
and 7 in the all memory dumps had significantly less retrievable
data because when those memory images were collected major GCs
occurred. This resulted in less retrievable data using our approach.
One of the major impacts in object recovery in V8 in GC attribution.
When major GCs occurs, it can result in thousands of unrecoverable
objects. As a forensic practitioner, this data could be relevant for a
case and may pose challenges. In our testing, memory dumps that
contained major GC show a substantial smaller amount of recov-
erable data. However, even if GC occurs the V8MapScan plugin can
still show a number of recoverable JSObjectType. Many of the
memory images created (specifically 3,4,8,10) show indications that
minor GC occurred showing that minor sweeps of GC can result in
some unrecoverable data. If GC does not occur, all]SObjectType
instances would have been recorded as approximately 4870.

One of the most common string types used in V8 is ONE_BY-
TE_INTERNALIZED_STR. Results on this type were analyzed and
shared in Fig. 5. This type was shown to have an increase of
recovered data. The number of user objects were increased in the
custom application. The figure also indicates V8MapScan was able
to recover more data as the number of user objects increased. Two
memory images (one and seven user objects) show major and
minor GCs occurred resulting in majority of the data not being able
to be recovered. Six user objects created contained the same
number of objects retrievable for five user objects. This suggests
that a minor GC occurred before the snapshot was taken.

Using the heapdump approach, Table 2 shows some of the re-
covery percentages on specific V8 types (or a combination of spe-
cific types). For some types, our plugin could recover more than the
heapdump library within Node meaning that either that memory
was potentially going to be GCed or the library is unable to recover
that specific data. Some data not found with heapdump may be due
to sometimes data being set to null. However, within the heap it
should reside because it has not been fully deleted. For most types,
results show that in most instances almost 100% of the data is
recoverable.

JSObjectType Total Discovered Objects for Each User Object

5,000 <) % e <A 2
9
E 4000 | £
i o o
=
5 3,000
= o =l 1o |o =)
2 S B S R S 0 B < ¥ |«
5 2,000
A v
£ o 2
2
& :\of o
1,000
O Objects Found
[l Gc Amount
0 0 I |

1 2 3 4 5 6 7 8 9 10
Total Number of User Objects Created

Fig. 4. V8 JSObjectType recovery data.

E. Wang, S. Zurowski, O. Duffy et al.

One Byte Internalized String Type Objects Found Count

— Y~ T~ N
6,000 = e
E 5,000
2
i
3, 4,000
B
o
s o 1B 12 8 B B s 3] 8 8
g 3,000 a2 e e e e 12 =2 =2 =
= ’ o o o el Ne) Ne) s O O S
=] vy
E
Z
= 2,000
ke
1,000 O Objects Found
[GC Amount
0 7 T [

1 2 3 4 5 6 7 8 9 10
Total Number of User Objects Created

Fig. 5. One Byte internalized string recovery data.

6. Monero miner case study

To show forensic usefulness of our approach we conducted a
case study on a cryptocurrency miner (Node Miner). Crypto-
currency miners have been exploited by adversaries in recent
times, and thus their forensic examination is appropriate for real-
world investigations.

A memory snapshot on the Monero miner was taken and
analyzed with our suite of V8 plugins. The Monero (XMR) Miner
was running on Node. To setup the case study, we employed a
virtual machine with the following properties:

Windows 10 (Build, 18362)

Node (14.15.1)

node-miner designed to easily mine Monero (XMR) and
Electroneum (ETN) https://www.npmjs.com/package/node-
miner

The pool pool.minexmr.com:4444

MyMonero wallet

Forensic Science International: Digital Investigation 42 (2022) 301400

A wallet was created using the MyMonero application to
generate areceiving address for the Monero miner. The node-miner
was then run on the pool pool.minexmr.com:4444. Upon the
execution of the application, a memory snapshot was taken of the
virtual machine. The image was analyzed using the v8_extrac-
tprops tool of our plugin which prints all objects that may be useful
to the investigator.

In a real world scenario, a practitioner may first employ the
utility tool instance-types-info.py found on our project's GitHub to
locate specific string types that could be forensically relevant
(Fig. 6). This utility allows the user to reference the values of the
string types that reside within V8. Upon doing this, an investigator
can run the v8_findinstancetypes on the memory image to verify
that JS object exists (Listing 5). Practitioners may then note that
instance type “8” exists, therefore, they can attempt to extract the
objects. We note that V8 string types do not have a symbolic name
which is why they are known as “Invalid Typename”. Upon vali-
dation, an investigator may then employ v8_extractprops (Listing
1) to query a specific type referencing the instance-types-info.py
script output. This allows an examiner to correlate specific types of
JS objects to their associated values.

$ python vol.py —f monero.vmem v8_findalltypes
Name Instance Type Map Count
Invalid Typename 0 1
Invalid Typename 2 1
Invalid Typename 8 1
Error 1069 2
Uintl6Array 1051 1
ArrayBuffer 1061 2

Next, an investigator extracts the information as shown in Fig. 7
which shows forensically relevant artifacts such as the wallet,
URLs, modules used within the V8 process etc. With the increasing
hijacking of npm modules, knowing which modules are used in a
node application can be extremely useful. The line following
“pool.minexmr.com” contains the wallet address used by the
cryptocurrency miner. This quick case study illustrates the efficacy
of using our constructed techniques in real-world memory forensic
scenarios.

7. Conclusion
This paper explored the internal workings of the V8 JS engine

and its Garbage Collector. Applications utilizing the V8]S engine
were employed in our evaluation. Objects created in these

wkkkkkkkkkkcxst TNSTANCE TYPES FOR STRING **#**#kiHukhnks

INTERNALIZED_STRING_TYPE
ONE_BYTE_INTERNALIZED_STRING_TYPE
EXTERNAL_INTERNALIZED STRING_TYPE
EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE
UNCACHED_EXTERNAL_INTERNALIZED_STRING_TYPE

UNCACHED_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE

STRING_TYPE
ONE_BYTE_STRING_TYPE
CONS_STRING_TYPE
CONS_ONE_BYTE_STRING_TYPE
SLICED_STRING_TYPE
SLICED_ONE_BYTE_STRING_TYPE
EXTERNAL_STRING_TYPE
EXTERNAL_ONE_BYTE_STRING_TYPE
UNCACHED_EXTERNAL_STRING_TYPE
UNCACHED_EXTERNAL_ONE_BYTE_STRING_TYPE
THIN_STRING_TYPE
THIN_ONE_BYTE_STRING_TYPE
FIRST_NON_STRING_TYPE

: 0x00
. 0x08
: 0x02
: OX0A
© 0x12
1 Ox1A
: 0x20
T 0x28
g (el
: 0x29
N Ox23
: Ox2B

0000000000000000
0000000000001000
0000000000000010
0000000000001010
0000000000010010
0000000000011010
0000000000100000
0000000000101000
0000000000100001
0000000000101001
0000000000100011
0000000000101011
000000000010001@
0000000000101010
0000000000110010
0000000000111010
0000000000100101
0000000000101101
2000000001000000

: 0x25
: @x2D
: 0x40

Fig. 6. Types an investigator should prioritize to investigate.

8

https://www.npmjs.com/package/node-miner
https://www.npmjs.com/package/node-miner

E. Wang, S. Zurowski, O. Duffy et al.

NODE_UNIQUE_ID
setupWorker

node-miner

miner

pool.minexmr.com

4BCwVXDPTEmMCsfZU2LZyA2HRwdSvGuwxHaGHMxYc16ZBJunT6X

iord123
sers\enoch\Desktop\node_modules\p!
rs\enoch\Desktop\no
\Desktop\nod
noch\node_module

och\.node_librariesC:\Program Files\

s\enoch\Desktop\node_modules\puppeteer\1i

noch\node_modules
och\.node_Llibrar

op\node_module
ctop\node_modules\ws\

Forensic Science International: Digital Investigation 42 (2022) 301400

W7dE087z6WmgnmAFyYE jo5tfwWRxyzfvtgBTePMsD

Lib\utilsdebug

noch\Desktop\node_modul
sers\enoch\.node_modulesC:

Fig. 7. Truncated output of V8 Strings extracted from memory.

environments were traced through each state of the GC and
memory images were taken. These memory images were then
analyzed and aided in the development of a new memory forensic
tool.

With the information gathered by reviewing the llnode code, V8
code, V8 documentation, and methodologies demonstrated (Van
Der Horst et al., 2017), we were able to develop a Volatility plugin
designed to extract objects from the V8 JS engine. With it, we
managed to extract objects from Node and applications built on
Node.

The results were discussed and analyzed to evaluate our con-
structed plugin. We produced the primary account and tool for the
comprehensive memory forensics of the V8 JS engine, as well as a
dataset that may be employed in future research.

8. Future work

Support into the applications Discord and Chrome are current
plans for the future. The modified 32-bit version supporting
Discord can only locate the MetaMap structure because it requires
all other functions to convert to 32 bit. Additionally, Chrome
implementation of V8 differs from Node and will require a new
method capable of parsing multiple sub-processes for multiple V8
isolates.

Furthermore, several case studies can be conducted against
client-side attacks, server-side attacks, and extracting messages
from Discord. The plugins can provide investigators insight on how
to discover relevant forensics artifacts in memory. The case study
will also analyze the time to determine how long JS artifacts reside
in memory.

One of the plugins developed v8_findalltypes, instances of the
type names will be indicated as null because the current location
searched for these names does not always contain the symbolic
name. To accommodate this, properties identified as null require a
different search algorithm to find the proper name. This approach
would require more memory analysis with lldb as they reside in a
different location in V8's engine.

In addition, a significant improvement includes accommodating
changes to Volatility. The plugin in the future should be upgraded
to Volatility3 as Python?2 is at the end of its life. Volatility3 provides
many feature enchantments that could be used and result in better
performance and long-term support. Volatility3 uses Intermediate
Symbol Format (ISF) files which are standard JSON. The V8's
memory structure could be written to an ISF to provide symbol
tables that allow for easier manageability. Additionally, the

V8MapScan will become better suited towards any future versions
of V8, as ISF files can be provided to accommodate versioning. ISF
will enable parsing of V8 objects to become more manageable.
Currently, V8 object fields are parsed in Python class members.
These Python class members can also be error-prone and difficult to
understand.

Acknowledgements

This material is primarily based upon work supported by Na-
tional Security Agency (NSA) and Department of Defense (DoD)
under grant H98230-20-1-032. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
National Security Agency or Department of Defense. Reverse en-
gineering of data structures was provided by Mathew Piscitelli,
documentation of structures, and assistance of developing the
volatility plugin was greatly appreciated. Additionally, the assis-
tance provided by Hailey Johnson, who helped manage the project,
testing the plugin, and keeping track of the team's progress was
critical to the project's success.

References

Ahn, Wonsun, Choi, Jiho, Shull, Thomas, Maria, J., 2014. Garzaran, and Josep Tor-
rellas. Improving javascript performance by deconstructing the type system. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI '14. Association for Computing Machinery,
New York, NY, USA, ISBN 9781450327848, pp. 496—507. https://doi.org/10.1145/
2594291.2594332, 10.1145/2594291.2594332.

Arthur Lattner, Chris, 2002. LLVM: an Infrastructure for Multi-Stage Optimization.
University of Illinois at Urbana-Champaign. PhD thesis.

Bak, Lars. The official mirror of the v8 git repository. https://github.com/v8/v8.

Bhattacharya, Dev, Kent, Kenneth B., Aubanel, Eric, Daniel, Heidinga, Shipton, Peter,
Micic, Aleksandar, 2017. Improving the performance of jvm startup using the
shared class cache. In: 2017 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM). IEEE, pp. 1-6.

Bikineev, Anton, Katz, Omer, Lippautz, Michael, Nov 2021. Oilpan library. https://v8.
dev/blog/oilpan-library.

Boehm, Hans-], Demers, Alan J., Scott, Shenker, 1991. Mostly parallel garbage
collection. ACM SIGPLAN Not. 26 (6), 157—164.

Cano, Nick, 2016. Game Hacking: Developing Autonomous Bots for Online Games.
No Starch Press.

Case, Andrew, Richard III, Golden G., 2017. Memory forensics: the path forward.
Digit. Invest. 20, 23—33.

Case, Andrew, Jalalzai, Mohammad M., Firoz-Ul-Amin, Md, Maggio, Ryan D., Ali-
Gombe, Aisha, Sun, Mingxuan, Richard IIl, Golden G., 2019. Hooktracer: a sys-
tem for automated and accessible api hooks analysis. Digit. Invest. 29,
S$104—-S112.

Casey, Peter, Lindsay-Decusati, Rebecca, Baggili, Ibrahim, Frank, Breitinger, 2019.
Inception: virtual space in memory space in real space—memory forensics of
immersive virtual reality with the htc vive. Digit. Invest. 29, S13—S21.

https://doi.org/10.1145/2594291.2594332
https://doi.org/10.1145/2594291.2594332
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref2
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref2
https://github.com/v8/v8
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref4
https://v8.dev/blog/oilpan-library
https://v8.dev/blog/oilpan-library
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref6
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref7
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref7
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref8
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref10

E. Wang, S. Zurowski, O. Duffy et al.

Chambers, Craig, Ungar, David, Lee, Elgin, 1989. An efficient implementation of self
a dynamically-typed object-oriented language based on prototypes. ACM Sig-
plan Not. 24 (10), 49—70.

Concurrent marking in v8. https://v8.dev/blog/concurrent-marking, June 2018.

Degenbaev, Ulan, Eisinger, Jochen, Hara, Kentaro, Hlopko, Marcel, Lippautz, Michael,
Payer, Hannes, 2018. Cross-component garbage collection. In: Proceedings of
the ACM on Programming Languages, 2(OOPSLA), pp. 1-24.

Feng, Wu-chang, Kaiser, Ed, Schluessler, Travis, 2008. Stealth measurements for
cheat detection in on-line games. In: Proceedings of the 7th ACM SIGCOMM
Workshop on Network and System Support for Games, pp. 15—20.

Flood, Christine H., Detlefs, David, Shavit, Nir, Zhang, Xiolan, 2001. Parallel garbage
collection for shared memory multiprocessors. In: Java Virtual Machine
Research and Technology Symposium.

Frank, Block, Dewald, Andreas, 2017. Linux memory forensics: dissecting the user
space process heap. Digit. Invest. 22, S66—S75. https://doi.org/10.1016/
j.diin.2017.06.002. ISSN 1742-2876.

Glazunov, Sergei, 2021. Cve-2021-30551: chrome type confusion in v8. https://
googleprojectzero.github.io/0Odays-in-the-wild/0day-RCAs/2021/CVE-2021-
30551.html.

Google chrome statistics for 2022, Mar 2021. https://backlinko.com/chrome-users.

Graziano, Mariano, Lanzi, Andrea, Balzarotti, Davide, 2013. Hypervisor memory
forensics. In: Stolfo, Salvatore]., Angelos Stavrou, Wright, Charles V. (Eds.),
Research in Attacks, Intrusions, and Defenses. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, pp. 21—40.

Dominik Infiihr. Generational and Parallel Garbage Collection.

Igbal, Farkhund, Motylinski, Michat, MacDermott, Aine, 2021. Discord server fo-
rensics: analysis and extraction of digital evidence. In: 2021 11th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS). IEEE,
pp. 1-8.

Jan, Riith, Zimmermann, Torsten, Wolsing, Konrad, Oliver, Hohlfeld, 2018. Digging
into browser-based crypto mining. In: Proceedings of the Internet Measure-
ment Conference 2018, pp. 70—76.

Jargon, Julie, Jun 2019. The dark side of discord, your teen's favorite chat app.
https://www.wsj.com/articles/discord-where-teens-rule-and-parents-fear-to-
tread-11560245402.

Kim, Min-jeong, Ryou, Jae-cheol, 2019. Development of 1ldb module for potential
vulnerability analysis in ios application. J. Internet Comput. Serv. 20 (4), 13—19.

Krylov, Georgiy, Patrou, Maria, Dueck, Gerhard W., Siu, Joran, 2020. The evolution of
garbage collection in v8: google's javascript engine. In: 2020 9th Mediterranean
Conference on Embedded Computing (MECO). IEEE, pp. 1-6.

Lattner, Chris, Adve, Vikram, 2004. Llvm: a compilation framework for lifelong
program analysis & transformation. In: International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, pp. 75—86.

Levanoni, Yossi, Petrank, Erez, 2001. An on-the-fly reference counting garbage
collector for java. In: Proceedings of the 16th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pp. 367—380.

Lewis, Nathan, Case, Andrew, Ali-Gombe, Aisha, Richard, Golden G., 2018. Memory
forensics and the windows subsystem for linux. Digit. Invest. 26, S3—S11.
https://doi.org/10.1016/j.diin.2018.04.018. ISSN 1742-2876. https://www.
sciencedirect.com/science/article/pii/S1742287618301944.

Li, Haoyu, Wu, Mingyu, Chen, Haibo, 2018. Analysis and optimizations of java full
garbage collection. In: Proceedings of the 9th Asia-Pacific Workshop on

10

Forensic Science International: Digital Investigation 42 (2022) 301400

Systems, pp. 1-7.

Meadows, Catherine, 2003. A procedure for verifying security against type confu-
sion attacks. In: 16th IEEE Computer Security Foundations Workshop. IEEE,
pp. 62—72. Proceedings, 2003.

Mulazzani, Martin, Reschl, Philipp, Huber, Markus, Leithner, Manuel,
Schrittwieser, Sebastian, Weippl, Edgar, Wien, EC., 2013. Fast and reliable
browser identification with javascript engine fingerprinting. In: Web 2.0
Workshop on Security and Privacy (W2SP), vol. 5. Citeseer.

Noordhuis, Ben. bnoordhuis/node-heapdump: make a dump of the v8 heap for later
inspection. https://github.com/bnoordhuis/node-heapdump.

0oi, Joo Guan, Kam, Kok Horng, 2009. A proof of concept on defending cold boot
attack. In: 2009 1st Asia Symposium on Quality Electronic Design. IEEE,
pp. 330—335.

Oracle. 3 generations. https://docs.oracle.com/javase/8/docs/technotes/guides/vim/
gctuning/generations.html, Feb 2015.

Pagani, Fabio, Balzarotti, Davide, August 2019. Back to the whiteboard: a principled
approach for the assessment and design of memory forensic techniques. In:
28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, ISBN 978-1-939133-06-9, pp. 1751—-1768. https://www.usenix.
org/conference/usenixsecurity19/presentation/pagani.

Papadopoulos, Panagiotis, Ilia, Panagiotis, Polychronakis, = Michalis,
Markatos, Evangelos P., loannidis, Sotiris, Vasiliadis, Giorgos, 2018. Master of
Web Puppets: Abusing Web Browsers for Persistent and Stealthy Computation.
arXiv preprint arXiv:1810.00464.

Ren, Xin, Ying, Zhangxu, 2016. Generational garbage collection algorithm based on
lifespan prediction. In: 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW), pp. 183—187. https://
doi.org/10.1109/W-FiCloud.2016.47.

Ronitsinha. Ronitsinha/node-js-game: a node.js agar.io clone. https://github.com/
ronitsinha/node-js-game.

Schatz, Bradley, Cohen, Michael, 2017. Advances in volatile memory forensics. Digit.
Invest. 20. https://doi.org/10.1016/j.diin.2017.02.008, 03.

Tiwari, Devesh, Yan, Solihin, 2012. Architectural characterization and similarity
analysis of sunspider and google's v8 javascript benchmarks. In: 2012 IEEE
International Symposium on Performance Analysis of Systems & Software. IEEE,
pp. 221-232.

Tyler, Thomas, Piscitelli, Mathew, Shavrov, Ilya, Baggili, Ibrahim, 2020. Memory
foreshadow: memory forensics of hardware cryptocurrency wallets — a tool
and visualization framework. Forensic Sci. Int.: Digit. Invest. 33, 301002. https://
doi.org/10.1016/j.fsidi.2020.301002. ISSN 2666-2817. https://www.
sciencedirect.com/science/article/pii/S2666281720302511.

Tyler, Thomas, Piscitelli, Mathew, Ashok Nahar, Bhavik, Baggili, Ibrahim, 2021. Duck
hunt: memory forensics of usb attack platforms. Forensic Sci. Int.: Digit. Invest.
37, 301190. https://doi.org/10.1016/j.fsidi.2021.301190. ISSN 2666-2817. https://
www.sciencedirect.com/science/article/pii/S2666281721000986.

Van Der Horst, Luuc, Raymond Choo, Kim-Kwang, Le-Khac, Nhien-An, 2017. Process
memory investigation of the bitcoin clients electrum and bitcoin core. IEEE
Access 5, 22385—22398. https://doi.org/10.1109/ACCESS.2017.2759766.

Weninger, Markus, Gander, Elias, Mossenbock, Hanspeter, 2018. Utilizing object
reference graphs and garbage collection roots to detect memory leaks in offline
memory monitoring. In: Proceedings of the 15th International Conference on
Managed Languages & Runtimes, pp. 1-13.

http://refhub.elsevier.com/S2666-2817(22)00081-6/sref11
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref11
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref11
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref11
https://v8.dev/blog/concurrent-marking
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref14
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref15
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref15
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref15
https://doi.org/10.1016/j.diin.2017.06.002
https://doi.org/10.1016/j.diin.2017.06.002
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-30551.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-30551.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-30551.html
https://backlinko.com/chrome-users
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref19
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref19
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref19
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref19
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref19
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref21
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref22
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref22
https://www.wsj.com/articles/discord-where-teens-rule-and-parents-fear-to-tread-11560245402
https://www.wsj.com/articles/discord-where-teens-rule-and-parents-fear-to-tread-11560245402
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref24
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref24
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref24
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref25
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref27
https://doi.org/10.1016/j.diin.2018.04.018
https://www.sciencedirect.com/science/article/pii/S1742287618301944
https://www.sciencedirect.com/science/article/pii/S1742287618301944
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref29
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref30
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref30
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref30
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref30
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref31
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref31
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref31
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref31
https://github.com/bnoordhuis/node-heapdump
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref33
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref33
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref33
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref33
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/generations.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/generations.html
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref36
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref36
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref36
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref36
https://doi.org/10.1109/W-FiCloud.2016.47
https://doi.org/10.1109/W-FiCloud.2016.47
https://github.com/ronitsinha/node-js-game
https://github.com/ronitsinha/node-js-game
https://doi.org/10.1016/j.diin.2017.02.008
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref40
https://doi.org/10.1016/j.fsidi.2020.301002
https://doi.org/10.1016/j.fsidi.2020.301002
https://www.sciencedirect.com/science/article/pii/S2666281720302511
https://www.sciencedirect.com/science/article/pii/S2666281720302511
https://doi.org/10.1016/j.fsidi.2021.301190
https://www.sciencedirect.com/science/article/pii/S2666281721000986
https://www.sciencedirect.com/science/article/pii/S2666281721000986
https://doi.org/10.1109/ACCESS.2017.2759766
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44
http://refhub.elsevier.com/S2666-2817(22)00081-6/sref44

	Juicing V8: A primary account for the memory forensics of the V8 JavaScript engine
	1. Introduction
	2. Background
	2.1. V8 objects
	2.2. V8 string types
	2.3. V8 structure of arrays
	2.4. Garbage collector
	2.5. llnode

	3. Related work
	3.1. Forensics related to V8
	3.2. Memory forensics

	4. Methodology
	4.1. Reverse engineering V8
	4.2. Plugin development
	4.3. Experimentation
	4.4. Version testing

	5. Findings and evaluation
	5.1. Overview
	5.2. Plugin output and usability
	5.2.1. v8_extractprops
	5.2.2. v8_findalltypes
	5.2.3. v8_extractobjects
	5.2.4. v8_instancetypeaddr

	5.3. Recovery analysis

	6. Monero miner case study
	7. Conclusion
	8. Future work
	Acknowledgements
	References

