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Abstract

Neural network classifiers can largely rely on simple spurious features, such as back-
grounds, to make predictions. However, even in these cases, we show that they still often
learn core features associated with the desired attributes of the data, contrary to recent
findings. Inspired by this insight, we demonstrate that simple last layer retraining can
match or outperform state-of-the-art approaches on spurious correlation benchmarks,
but with profoundly lower complexity and computational expenses. Moreover, we show
that last layer retraining on large ImageNet-trained models can also significantly reduce
reliance on background and texture information, improving robustness to covariate shift,
after only minutes of training on a single GPU.

1 Introduction

Realistic datasets in computer vision are riddled with spurious correlations — patterns
that are predictive of the target in the train data, but that are irrelevant to the true
labeling function. For example, most of the images labeled as butterfly on ImageNet also
show flowers [90], and most of the images labeled as tench show a fisherman holding the
tench [12]. Deep neural networks rely on these spurious features, and consequently degrade
in performance when tested on examples where the spurious correlations break, for example,
on images with unusual background contexts [25, 82, 7]. In an especially alarming example,
CNNs trained to recognize pneumonia were shown to rely on hospital-specific metal tokens in
the chest X-ray scans, instead of features relevant to pneumonia [103]. Furthermore, spurious
correlations can disproportionately affect different population groups (each with their own
data distribution), leading to poor performance on the minority groups and unfair decisions
[13, 39, 10, 94, 32, 20, 17, 79].

In this paper, we investigate what features are in fact learned on datasets with spurious
correlations. We find that even when neural networks appear to heavily rely on spurious
features and perform poorly on minority groups where the spurious correlation is broken,
they still learn the core features sufficiently well. These core features, associated with the
semantic structure of the problem, are learned even in cases when the spurious features
are much simpler than the core features (see Section 4.2) and in some cases even when no
minority group examples are present in the training data (see Section 6)! While both the
relevant and spurious features are learned, the spurious features can be highly weighted in
the final classification layer of the model, leading to poor predictions on the minority groups.

Inspired by these observations, we propose Deep Feature Reweighting (DFR), a simple and
effective method for improving worst-group accuracy of neural network classifiers in the
presence of spurious features. We illustrate DFR in Figure 1. In DFR, we simply retrain
the last layer of a classification model trained with standard Empirical Risk Minimization
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Figure 1: Deep feature reweighting (DFR). An illustration of the DFR method on the
Waterbirds dataset, where the background (BG) is spuriously correlated with the foreground
(FG). Standard ERM classifiers learn both features relevant to the background and the
foreground, and weight them in a way that the model performs poorly on images with
confusing backgrounds. With DFR, we simply reweight these features by retraining the last
linear layer on a small dataset where the backgrounds are not spuriously correlated with
the foreground. The resulting DFR model primarily relies on the foreground, and performs
much better on images with confusing backgrounds.

(ERM), using a small set of reweighting data where the spurious correlation does not hold.
DFR achieves state-of-the-art performance on popular spurious correlation benchmarks
by simply reweighting the features of a trained ERM classifier, with no need to re-train
the feature extractor. Moreover, we show that DFR can be used to reduce reliance on
background and texture information and improve robustness to certain types of covariate
shift in large-scale models trained on ImageNet, by simply retraining the last layer of these
models. We note that the reason DFR can be so successful is because standard neural
networks are in fact learning core features, even if they do not primarily rely on these
features to make predictions, contrary to recent findings [38, 87]. Since DFR only requires
retraining a last layer, amounting to logistic regression, it is extremely simple, easy to tune
and computationally inexpensive relative to the alternatives, yet can provide state-of-the-art
performance. Indeed, DFR can reduce texture bias and improve robustness of large ImageNet
trained models, in only minutes on a single GPU.

Our code is available at github.com/PolinaKirichenko/deep_feature_reweighting.

2 Problem Setting

We consider classification problems, where we assume that the data consists of several groups
Gi, which are often defined by a combination of a label and spurious attribute. Each group
has its own data distribution p;(z,y), and the training data distribution is a mixture of
the group distributions p(z,y) = >, a;pi(x,y), where o; is the proportion of group G; in
the data. For example, in the Waterbirds dataset [85], the task is to classify whether an
image shows a landbird or a waterbird. The groups correspond to images of waterbirds on
water background (G;), waterbirds on land background (Gs), landbirds on water background
(G3) and landbirds on land background (G,). See Figure 3 for a visual description of the
Waterbirds data. We will consider the scenario when the groups are not equally represented
in the data: for example, on Waterbirds the sizes of the groups are 3498, 184, 56 and 1057,
respectively. The larger groups G, G, are referred to as majority groups and the smaller
Go, G3 are referred to as minority groups. As a result of this heavy imbalance, the background
becomes a spurious feature, i.e. it is a feature that is correlated with the target on the train
data, but it is not predictive of the target on the minority groups. Throughout the paper we
will discuss multiple examples of spurious correlations in both natural and synthetic datasets.
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In this paper, we study the effect of spurious correlations on the features learned by standard
neural networks, and based on our findings propose a simple way of reducing the reliance
on spurious features assuming access to a small set of data where the groups are equally
represented.

3 Related Work

Spurious correlations are ubiquitous in real-world applications. There is hence an active
research effort towards understanding and reducing their effect on model performance. Here,
we review the key methods and related work in this area.

Feature learning in the presence of spurious correlations. The poor performance
of neural networks on datasets with spurious correlations inspired research in understanding
when and how the spurious features are learned. Geirhos et al. [25] provide a detailed survey
of the results in this area. Several works explore the behavior of maximum-margin classifiers,
SGD training dynamics and inductive biases of neural network models in the presence of
spurious features [66, 76, 78]. Shah et al. [87] show empirically that in certain scenarios
neural networks can suffer from extreme simplicity bias and rely on simple spurious features,
while ignoring the core features; in Section 4.2 we revisit these problems and provide further
discussion. Hermann and Lampinen [38] and Jacobsen et al. [45] also show synthetic and
natural examples, where neural networks ignore relevant features, and Scimeca et al. [86]
explore which types of shortcuts are more likely to be learned. Kolesnikov and Lampert [50]
on the other hand show that on realistic datasets core and spurious features can often be
distinguished from the latent representations learned by a neural network in the context of
object localization.

In an independent and concurrent work, Rosenfeld et al. [83] show that standard ERM learns
high quality representations in the context of domain generalization, and by training the last
layer on the target domain it is possible to achieve strong results. The observations in our
work are complimentary, as they focus on different settings.

Spurious correlations in natural image datasets. Multiple works demonstrated that
natural image datasets contain spurious correlations that hurt neural network models
[50, 100, 89, 3, 90, 91, 64]. Notably, Geirhos et al. [27] demonstrated that ImageNet-trained
CNNs are biased towards texture rather than shape of the objects. Follow-up work explored
this texture bias and showed that despite being texture-biased, CNNs still often represent
information about the shape in their feature representations [37, 44]. In Section 7 we show
that it is possible to reduce the reliance of ImageNet-trained models on background context
and texture information by retraining just the last layer of the model.

Improving group robustness. The methods achieving the best worst-group performance
typically build on the distributionally robust optimization (DRO) framework, where the
worst-case loss is minimized instead of the average loss [8, 40, 85, 70, 106]. Notably, Group-
DRO [85], which optimizes a soft version of the worst-group loss holds state-of-the-art
results on multiple benchmarks with spurious correlations. Several methods have been
proposed for the scenario where group labels are not known, and need to be inferred from
the data; these methods typically train a pair of networks, where the first model is used to
identify the challenging minority examples and define a weighted loss for the second model
[58, 67, 102, 96, 107, 18, 19]. Other works proposed semi-supervised methods for the scenario
where the group labels are provided for a small fraction of the train datapoints [92, 68].
Idrissi et al. [43] recently showed that with careful tuning simple approaches such as data
subsampling and reweighting can provide competitive worst-group performance. We note
that all of the methods described above use a validation set with a high representation of
minority groups to tune the hyper-parameters and optimize worst-group performance.



Another group of papers proposes regularization techniques to learn diverse solutions on
the train data, focusing on different groups of features [95, 56, 71, 76]. Xu et al. [101] show
how to train orthogonal classifiers, i.e. classifiers invariant to given spurious features in the
data. Other papers proposed methods based on meta-learning the weights for a weighted
loss [80] and group-agnostic adaptive regularization [15, 14]. Related methods have been
developed in several areas of machine learning, such as ML Fairness [22, 30, 47, 77, 2, 46],
domain adaptation [23, 24] and domain generalization [9, 65, 57, 29, 84] including works on
Invariant Risk Minimization and causality [75, 4, 53, 5].

Transfer learning. Transfer learning [72, 88] is an extremely popular framework in
modern machine learning. Multiple works demonstrate its effectiveness in computer vision
le.g. 28, 41, 34, 93, 61, 49, 60|, and study when and why transfer learning can be effective
[104, 69, 1, 51, 54]. Bommasani et al. [11] provide a comprehensive discussion of modern
transfer learning with large-scale models. While algorithmically our proposed DFR method
is related to transfer learning, it has a different motivation and works on different problems.
We discuss the relation between DFR and transfer learning in detail in Section 5.

Our work contributes to understanding how features are learned in the presence of spurious
correlations. We show that even in the cases when ERM-trained models rely heavily on
spurious features and underperform on the minority groups, they often still learn high quality
representations of the core features. Based on this insight, we propose DFR — a simple and
practical method that achieves state-of-the art on popular benchmark datasets by simply
reweighting the features in a pretrained ERM classifier.

4 Understanding Representation Learning with Spurious
Correlations

In this section we investigate the solutions learned by standard ERM classifiers on datasets
with spurious correlations. We show that while these classifiers underperform on the minority
groups, they still learn the core features that can be used to make correct predictions on the
minority groups.

4.1 Feature learning on Waterbirds data

We first consider the Waterbirds dataset [85] (see Section 2 and Figure 1) which is generated
synthetically by combining images of birds from the CUB dataset [98] and backgrounds
from the Places dataset [108] (see Sagawa et al. [85] for a detailed description of the data
generation process). For the experiments in this section, we generate several variations of
the Waterbirds data following the procedure analogous to Sagawa et al. [85]. The Original
dataset is analogous to the standard Waterbirds data, but we vary the degree of spurious
correlation between the background and the target: 50% (Balanced dataset), 95% (as in
Sagawa et al. [85]) and 100% (no minority group examples in the train dataset). The
FG-Only dataset contains images of the birds on uniform grey background instead of the
Places background, removing the spurious feature. We show examples of datapoints from
each variation of the dataset in Appendix Figure 6.

We train a ResNet-50 model with ERM on each of the variations of the data and report
the results in Table 1. Following prior work [e.g., 85, 58, 43], we initialize the model with
weights pretrained on ImageNet. For the models trained on the Original data, there is a
large difference between the mean and worst group accuracy on the Original test data: the
model heavily relies on the background information in its predictions, so the performance on
minority groups is poor. The model trained without minority groups is especially affected,
only achieving 38.4% worst group accuracy. However, surprisingly, we find that all the models
trained on the Original data can make much better predictions on the FG-Only test data: if
we remove the spurious feature (background) from the inputs at test time, the models make



Spurious Test Data (Worst/Mean, %)

Train Data
Corr. (%) Original FG-Only
Balanced 50 91.9/97.3 94.7/98.1
Original 95 73.8/90.7 93.7/96.4
Original 100 38.4/71.5 94.6/95
FG-Only ] 75.2/82.5 95.5,/98.2

Table 1: Feature learning on Waterbirds. ERM classifiers trained on Waterbirds with
Original and FG-Only images. All the models trained on the Original data including the
model trained without any minority group examples (Spurious corr. 100%) underperform
on the worst-group accuracy on the Original data, but perform well on the FG-Only data,
almost matching the performance of the FG-Only trained model.

predictions based on the core feature (bird), and achieve worst-group! accuracy close to 94%,
which is only slightly lower than the accuracy of a model trained directly on the FG-Only
data and comparable to the accuracy of a model that was trained on balanced train data.

In Appendix A.1, we provide the full details for the experiment in this section, and additionally
consider the reverse Waterbirds problem, where instead of predicting the bird type, the
task is to predict the background type. We note that prior work did not consider this
reverse Waterbirds problem. The results on the reverse Waterbirds problem are analogous
to the Waterbirds results presented in Table 1: in the task of predicting the background, the
bird type serves as a spurious feature; the model relies on the bird type in its predictions
of the background type, but performs well if we remove the bird from the images at test
time. Notably, the results between the standard and reverse Waterbirds problems are fairly
symmetric, e.g. in the case when the spurious correlation strength is 100%, the worst group
accuracy for both problems is below random guess. On the Waterbirds data, neural networks
do not appear to be particularly biased towards either the background or the foreground,
and treat them equally.

In Appendix A.3, we try to understand how the features from the foreground and the
background interact with each other in a Waterbirds-trained neural network. We find a
phenomenon that we call logit additivity: the class logits on a Waterbirds test image are well
approximated as the sum of the logits for the corresponding background image and the logits
for the corresponding foreground image. The logit addivity suggests that the background
and foreground are processed mostly independently by the network.

In summary, we conclude that while the models trained on the Original data make use
of background information to make predictions, they still learn the features relevant to
classifying the birds almost as well as the models trained on the data without spurious
correlations. Later, we will see that we can retrain just the last layer of the Original-trained
models and dramatically improve the worst-group performance on the Original data, by
emphasizing the features relevant to the bird instead of the background.

4.2 Simplicity bias: Dominoes data

Shah et al. [87] showed that neural networks can suffer from extreme simplicity bias, a
tendency to completely rely on the simple features, while ignoring similarly predictive (or
even more predictive) complex features. In this section, we explore whether the neural
networks can still learn the core features in the extreme simplicity bias scenarios, where the
spurious features are simple and highly correlated with the target. Following Shah et al. [87]

10n the FG-Only data the groups only differ by the bird type, as we remove the background. The
difference between mean and worst-group accuracy is because the target classes are not balanced in the
training data.
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Figure 2: Feature learning and simplicity bias. ResNet-20 ERM classifiers trained on
Dominoes data with varying levels of spurious correlation between core and spurious features.
We show worst-group test accuracy for: Original data, data with only core features present
(Core-Only), and accuracy of decoding the core feature from the latent representations of the
Original data with logistic regression. We additionally report optimal accuracy: accuracy
of a model trained and evaluated on the Core-Only data. Even in cases when the model
achieves 0% accuracy on the Original data, the core features can still be decoded from latent
representations.

and Pagliardini et al. [71], we consider Dominoes binary classification datasets, where the
top half of the image shows MNIST digits [55] from classes {0, 1}, and the bottom half shows
MNIST images from classes {7, 9} (MNIST-MNIST), Fashion-MNIST [99] images from
classes {coat, dress} (MNIST-Fashion) or CIFAR-10 [52] images from classes {car, truck}
(MNIST-CIFAR). In all Dominoes datasets, the top half of the image (MNIST 0 — 1 images)
presents a linearly separable feature; the bottom half of the image presents a harder to learn
feature. See Appendix A.2 for more details about the experimental set-up and datasets, and
Appendix Figure 6 for image examples.

We use the simple feature (top half of the images) as a spurious feature and the complex
feature (bottom half) as the core feature; we generate datasets with 100%,99% and 95%
correlations between the spurious feature and the target in train data, while the core feature
is perfectly aligned with the target?. We then define 4 groups G; based on the values of the
spurious and core features, where the minority groups correspond to images with top and
bottom halfs that do not match. The groups on validation and test are balanced.

We train a ResNet-20 model on each variation of the dataset. In Figure 2 we report the
worst group performance for each of the datasets and each spurious correlation strength. In
addition to the worst-group accuracy on the Original test data, we report the Core-Only
worst-group accuracy, where we evaluate the model on datapoints with the spurious top half
of the image replaced with a black image. Similarly to Shah et al. [87] and Pagliardini et al.
[71], we observe that when the spurious features are perfectly correlated with the target on
Dominoes datasets, the model relies just on the simple spurious feature to make predictions
and achieves 0% worst-group accuracy. However, with 99% and 95% spurious correlation
levels on train, we observe that models learned the core features well, as indicated both
by their performance on the Original test data and especially increased performance on
Core-Only test data where spurious features are absent.

For reference, on each dataset we also report the Optimal accuracy, which is the accuracy of
a model trained and evaluated on the Core-Only data. The optimal accuracy provides an
upper bound on the accuracy that we can expect on each of the datasets.

Decoding feature representations. The performance on the Original and even Core-
Only data might not be fully representative of whether or not the network learned a
high-quality representation of the core features. Indeed, even if we remove the MNIST digit
from the top half of the image, the network can still primarily rely on the (empty) top half

2Shah et al. [87] and Pagliardini et al. [71] only considered Dominoes data where both the simple and
complex features are perfectly predictive of the target, corresponding to a 100% spurious correlation.



in its predictions: an empty image may be more likely to come from class 1, which typically
has fewer white pixels than class 0. To see how much information about the core feature is
contained in the latent representation, we evaluate the decoded accuracy: for each problem
we train a logistic regression classifier on top of features extracted by the final convolutional
layer of the network. We use a balanced® validation set to train the logistic regression model,
and then report the worst-group accuracy on a test set. In Figure 2, we observe that for
MNIST-MNIST and MNIST-FashionMNIST even when the spurious correlation is 100%,
reweighting the features leads to high test accuracy. Moreover, on all Dominoes datasets for
99% and 95% spurious correlations level the core features can be decoded with high accuracy
and almost match the optimal accuracy. This decoding serves as a basis of our DFR method,
which we describe in detail in Section 5.

In Appendix A.2 we report an additional baseline and verify that the model indeed learns a
non-trivial representation of the core feature, especially for spurious correlation strengths
99% and 95%.

Relation to prior work. With the same Dominoes datasets that we consider in this
section, Shah et al. [87] showed that neural networks tend to rely entirely on the simple
features. However, they only considered the 100% spurious correlation strength and accuracy
on the Original test data. Our results do not contradict their findings but provide new
insights: even in these most challenging cases, the networks still represent information about
the complex core feature. Moreover, this information can be decoded to achieve high accuracy
on the mixed group examples. Hermann and Lampinen [38] considered a different set of
synthetic datasets, showing that in some cases neural networks fail to represent information
about some of the predictive features. In particular, they also considered decoding the
information about these features from the latent representations and different spurious
correlation strengths. Our results add to their observations and show that while it is possible
to construct examples where predictive features are suppressed, in many challenging practical
scenarios, neural networks learn a high quality representation of the core features relevant
to the problem even if they rely on the spurious features. Finally, in a concurrent work,
Rosenfeld et al. [83] show that ERM can learn features sufficient for strong performance in
the domain generalization setting, adding further support to the results presented in this
section.

In summary, we find that, surprisingly, if (1) the strength of the spurious correlation is lower
than 100% or (2) the difference in complexity between the core and spurious features is not
as stark as on MNIST-CIFAR, the core feature can be decoded from the learned embeddings
with high accuracy.

5 Deep Feature Reweighting

In Section 4 we have seen that neural networks trained with standard ERM learn multiple
features relevant to the predictive task, such as features of both the background and the
object represented in the image. Inspired by these observations, we propose Deep Feature
Reweighting (DFR), a simple and practical method for improving robustness to spurious
correlations and distribution shift.

Let us assume that we have access to a dataset D = {z;,y;} which can exhibit spurious
correlations. Furthermore, we assume that we have access to a (typically much smaller)
dataset 75, where the groups are represented equally. D can be a subset of the train dataset
D, or a separate set of datapoints. We will refer to D as reweighting dataset. We start by
training a neural network on all of the available data D with standard ERM without any
group or class reweighting. For this stage we do not need any information beyond the training
data and labels. Here, we assume that the network consists of a feature extractor (such as a

3A balanced validation set contains the same number of datapoints from each of the groups in the dataset.



a sequence of convolutional layers or a vision transformer), followed by a fully-connected
classification layer mapping the features to class logits. In the second stage of the procedure,
we simply discard the classification head and train a new classification head from scratch on
the available balanced data D. We use the new classification head to make predictions on
the test data. We illustrate DFR in Figure 1.

Notation. We will use notation DFR% to specify the datasets used in each stage of the
DFR procedure: D is used to train the base feature extractor model and D is used to train
the last linear layer.

Relation to transfer learning. Algorithmically, DFR is a special case of transfer learning,
where D serves as the source data, and D is the target data [88]. However, the motivation of
DFR is different from that of standard transfer learning: in DFR we are trying to correct the
behavior of a pretrained model, and reduce the effect of spurious features, while in transfer
learning the goal is to learn general features that generalize well to diverse downstream tasks.
For example, we can use DFR to reduce the reliance of ImageNet-trained models on the
background or texture and improve their robustness to covariate shift (see Section 7), while
in standard transfer learning we would typically use a pretrained model as initialization or
a feature extractor to learn a good solution on a new dataset. In the context of spurious
correlations, one would not expect DFR to work as well as it does: the only reason DFR
is successful is because, contrary to conventional wisdom, neural network classifiers are in
fact learning substantial information about core features, even when they seem to rely on
spurious features to make predictions. Moreover, in Appendix Table 5 we show that transfer
learning with features learned ImageNet does not work nearly as well as DFR on the spurious
correlation benchmarks.

6 Feature Reweighting Improves Robustness

In this section, we evaluate DFR on two benchmark computer vision problems with spurious
correlations: Waterbirds and hair-color prediction on CelebA [59].

6.1 Experimental Setup

Data. See Section 2 for a description of the Waterbirds data. On CelebA, the groups are
non-blond females (Gy), blond females (G2 ), non-blond males (G3) and blond males (G4) with
sizes 71629, 22880, 66874, and 1387, respectively. The group G4 is the minority group, and
the gender serves as a spurious feature. See Figure 3 for a visual description of the data.

Baselines. We consider 5 baseline methods that work under different assumptions on the
information available at the training time. Empirical Risk Minimization (ERM) represents
conventional training without any procedures for improving worst-group accuracies. Just
Train Twice (JTT) [58] is a method that detects the minority group examples on train data,
only using group labels on the validation set to tune hyper-parameters. Group-DRO [85] is
a state-of-the-art method, which uses group information on train and adaptively upweights
worst-group examples during training. SUBG is ERM applied to a random subset of the
data where the groups are equally represented, which was recently shown to be a surprisingly
strong baseline [43]. Finally, Spread Spurious Attribute (SSA) is a method that attempts
to fully exploit the group-labeled validation data with a semi-supervised approach that
propagates the group labels to the the training data where group information is not available.
We discuss the assumptions on the data for each of these baselines in Appendix B.1.

DFR versions. We consider three variations of DFR%, which differ by the way we construct
the training dataset D and the balanced set D. In DFRI | we use a random group-balanced
subset of the train data as D, i.e. we keep all of the data from the smallest group, and

subsample the data from the other groups to the same size. In DF R¥‘Tll , we use a balanced



Waterbirds dataset

Go g3 G4
Image :
Examples . ,.

o g landbird landbird waterbird waterbird
Description on land on water on land on water
Class Label 0 0 1 1

# Train data 3498 (73%) 184 (4%) 56 (1%) 1057 (22%)
# Val data 467 466 133 133

Target: bird type; Spurious feature: background type; Minority: G5, Gs

CelebA hair color dataset

g1 Go g3 G4
Image
Examples
o g Non-blond Non-blond Blond Blond
Description woman man woman man
Class Label 0 0 1 1
# Train data 71629 (44%) 66874 (41%) 22880 (14%) 1387 (1%)
# Val data 8535 8276 2874 182
Target: hair color; Spurious feature: gender; Minority: G4

Figure 3: Waterbirds and CelebA data. Dataset descriptions and example images from
each group on Waterbirds and CelebA datasaets.

subset of the validation data available for each of the problems. For both DFRAT and
DFRY?! we use the standard training dataset (with group imbalance) as D. Finally, with
DFRIr ., (NM stands for “No Minority") we use a random group-balanced subset of the
train data as D, but remove the minority groups (G2, Gs on Waterbirds and G4 on CelebA)
from the data D used to train the feature extractor. In order to make use of more of the
available data, we train logistic regression 10 times using different random balanced subsets
of the data, and average the weights of the learned models. Here we can safely average the
weights of the learned models because the models are linear. By averaging, we are able to
incorporate more of the majority group data without under-weighting the minority groups.
Full details are available in Appendix B.

Hyper-parameters. For all DRF variations, the size of the reweighting set D is small
relative to the number of features produced by the feature extractor (2048). For this reason,
we use {1-regularizaion to allow the model to learn sparse solutions and drop irrelevant
features. For DFRY2! and DFRX \, we only tune a single hyper-parameter — the strength
of the regularization term. For DFR% we additionally tune separate weights for the classes,
because unlike the other DFR variations, in DFRAT the feature extractor and the last layer
are trained on the same minority data, and logistic regression with equal class weights tends
to underperform on the minority groups. We tune all the hyper-parameters on the validation
data provided with each of the datasets. We note that the prior work methods including
Group-DRO, JTT, SUBG and others extensively tune hyper-parameters on the validation



Group Info Waterbirds CelebA

Method
Train  Val Worst(%)  Mean(%) Worst(%)  Mean(%)
ERM X v 72.6/85.511.0 97.3 47.2/79.743 7 95.6
JTT X v 86.7/85.640.2 93.3 81.1/75.647.7 88.0
Group-DRO v v 91.4/87.143.4 93.5 88.9/86.941 1 92.9
SUBG v v 89.1411 - 85.642.3 -
SSA X v 89.0+0.55 92.210.87 89.841.98 92.840.11
Base Model X v 74.9:|:2_4 98.1:‘:0.1 46.9:|:2_8 95.3:|:0
DFR% v v 90~2:|:0.8 97.0:‘:0.3 80.7:|:2.4 90.6:‘:0.7
DFRy}' X v 92.940.2 94.210.4 88.311.1 91.340.3
Base Model trained without minority groups
Base Model X v 3194356 96.00.2 21.743.9 95.240.1
DFRY \u v v 89.9+40.6 94.3405 89.041.1 91.640.4

Table 2: Spurious correlation benchmark results. Worst-group and mean test accuracy
of DFR variations and baselines on Waterbirds and CelebA hair color prediction problems.
For the ERM, JTT and Group-DRO baselines, we provide the results reported in two papers:
Liu et al. [58] in green and Idrissi et al. [43] in blue. For SUBG, we provide the results from
Idrissi et al. [43], which only reported worst-group accuracy, and for SSA, we provide the
results from Nam et al. [68]. For mean accuracy, we follow Liu et al. [59] and Sagawa et al.
[85] and weight the group accuracies according to their prevalence in the training data. The
Group Info column shows whether group labels are available to the methods on train and
validation datasets. For DFRr\r’fl, we use the validation data to train the model parameters
(last layer) in addition to hyper-parameter tuning, indicated with v'v'; SSA also uses the
validation set to train the model. DFR is competitive with state-of-the-art on both datasets.
For DFR we report the mean+std over 5 independent runs of the method.

data. For DFR¥§1 we split the validation in half, and use one half to tune the regularization
strength parameter; then, we retrain the logistic regression with the optimal regularization
on the full validation set. For more details on the hyper-parameter tuning, see Appendix B.

Base model. Following prior work [e.g. 85, 58, 43], we use ResNet-50 initialized with
weights pretrained on ImageNet. We select the weight decay and initial learning rate for the
base model by choosing the hyper-parameters that produce the base model with the best
worst-group accuracy on the validation data. Note that the base model is tuned independently
from DFR.

6.2 Results

We report the results for DFR and the baselines in Table 2. All three DFR variations obtain
results competitive with state-of-the-art Group-DRO results on the Waterbirds data. On
CelebA, DFRY2! and DFRXE y,; match Group-DRO, while DFRI performs slightly worse,
but still on par with JTT.

In particular, DFRI" .\ matches or outperforms the state-of-the-art Group-DRO by using
the same data to train and tune the model*. Notably, DFRAI «\; achieves these results with
the features extracted by the network trained without seeing any examples from the minority
groups! Even without minority groups, ERM models extract the core features sufficiently
well to achieve state-of-the-art results.

4DFR%>NM matches the Group-DRO results reported in Sagawa et al. [85] and significantly outperforms
the results reported by Idrissi et al. [43].
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Figure 4: DFR Variations. Visualization of the features extracted from the reweighting
dataset D and the test data for different variations of DFR on the Waterbirds data. We show
projections of the 2048-dimensional features on the top-2 principal components extracted from
D. With DFRY2! and DFRY ,; , the distribution of the features for the minority groups
Go and G3 does not change between the reweighting and test data, while with DFRA! we see
significant distribution shift.

Moreover, DFRY2! achieves similar performance to SSA®, a method designed to make optimal
use of the group information on the validation data. Both methods use the same exact
setting and group information to train and tune the model.

To sum up, with DFR we can match the performance of the best available method when
group information is available on just the validation set (with DFRY2') or on both the
train and validation sets (with DFRI /). This state-of-the-art performance is achieved
by simply reweighting the features learned by standard ERM, with no need for advanced
regularization techniques.

Is ImageNet pretraining necessary? DFR relies on the ability of the feature extractor
to learn diverse features, which may suggest that ImageNet pretraining is crucial. In Appendix
Table 5, we report the results on the same problems, but training the feature extractor from
scratch. We find that on Waterbirds, ImageNet pretraining indeed has a dramatic effect on
the performance of DFR as well as the base feature extractor model. However, on CelebA
DFR shows strong performance regardless of pretraining. The difference between Waterbirds
and CelebA is that Waterbirds contains only 4.8k training points, making it difficult to
learn a meaningful feature extractor from scratch. Furthermore, on both datasets, finetuning
the feature extractor on the target data is crucial: just using the features extracted by an
ImageNet-trained model leads to poor results. We note that all the baselines considered in
Table 2 use ImageNet pretraining.

6.3 Why is DFRY \; better than DFR} 7

Let us consider the second stage of DFRE, where we fix the feature encoder f(-), and train a
logistic regression model £ on the dataset f (25), where by f (25) we denote the dataset with
labels from the reweighting dataset D and features from D extracted by f. We then evaluate
the logistic regression model £ on the features extracted from the test data, f(Drest)-

Let us use M to denote a minority group in the reweighting dataset D, and Mt to denote

Val

the same minority group in the test data. For DFRAT ,; and DFRY?,
trained without observing any data from M or MTet, Assuming the datapoints in M and

MTest are iid samples from the same distirbution, the distribution of features in f(M) and
F(MTeY) will also be identical.

the model f is

On the other hand, with DFRAT | the minority group datapoints M are used to train the
feature extractor f. In this case, we can no longer assume that the distribution of features
f (M) will be the same as the distribution of f(AMTest). Consequently, in DFRE | the logistic
regression model £ will be evaluated under distribution shift, which makes the problem

5DFR\TI§1 is slightly better on Waterbirds while SSA is slightly better on CelebA.
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much more challenging and leads to inferior performance of DFRX on the Waterbirds data.
We verify this intuition in Figure 4, where we visualize the feature embeddings for the
reweighting dataset D and the test data. We see that as we predicted, the distribution of
the minority group features coincides between D and test data for DFR%_NM and DFR‘T/\?1 ,
while DFRX shows significant distribution shift.

What D should be used in practice? In Table 2, the best performance is achieved by
DFRT \; and DFRY2! | which retrain the last layer on data that was not used in training
the feature extractor. In practice, we recommend collecting a group-balanced validation
set, which can be used both to tune the hyper-parameters and re-train the last layer of the
model, as we do in DFRY2! .

7 Natural Spurious Correlations on ImageNet

In the previous section we focused on benchmark problems constructed to highlight the effect
of spurious features. However, computer vision classifiers are known to learn undesirable
patterns and rely on spurious features in real-world problems [see e.g. 82, 90, 25]. In this
section we explore two prominent shortcomings of ImageNet classifiers: background reliance
[100] and texture bias [27].

7.1 Background reliance

Prior work has demonstrated that computer vision models such as ImageNet classifiers can
rely on background to make their predictions [105, 81, 89, 100, 90]. Here, we show that it is
possible to reduce the background reliance of ImageNet-trained models by simply retraining
their last layer with DFR.

Xiao et al. [100] proposed several datasets in the Backgrounds Challenge to study the effect
of the backgrounds on predictions of ImageNet models. The datasets in the Backgrounds
Challenge are based on the ImageNet-9 dataset, a subset of ImageNet structured into 9
coarse-grain classes (see Xiao et al. [100] for details). ImageNet-9 contains 45k training
images and 4050 validation images. We consider three datasets from the Backgrounds
Challenge: (1) Original contains the original images; (2) Mized-Rand contains images with
random combinations of backgrounds and foregrounds (objects); (3) FG-Only contains
images showing just the object with a black background. We additionally consider Paintings-
BG using paintings from Kaggle’s painter-by-numbers dataset® as background for the
ImageNet-9 validation data. Finally, we consider the ImageNet-R dataset [35] restricted to
the ImageNet-9 classes. See Appendix C for details and Appendix Figure 9 for example
images.

We use an ImageNet-trained ResNet-50 as a feature extractor and train DFR with different
reweighting datasets. As a Baseline, we train DFR on the Original 45k training datapoints’.
We train DFRME and DFRO¢*ME on Mixed-Rand training data and a combination of Mixed-
Rand and Original training data respectively. In Figure 5, we report the predictive accuracy
of these methods on different validation datasets as a function of the number of Mixed-Rand
data observed. We select the observed subset of the data randomly; for DFROSTMR in each
case we use the same amount of Mixed-Rand and Original training datapoints. We repeat
this experiment with a VIT-B-16 model [21] pretrained on ImageNet-21k and report the
results in the Appendix Figure 8.

First, we notice that the baseline model provides significantly better performance on FG-Only
(92%) than on the Mixed-Rand (86%) validation set, suggesting that the feature extractor

Shttps://www.kaggle.com/c/painter-by-numbers/
TWe cannot use the original ImageNet-trained ResNet-50 last layer, as ImageNet-9 has a different set of
classes.
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Figure 5: ImageNet background reliance. Performance of DFR trained on MixedRand
data and MixedRand + Original data on different ImageNet-9 validation splits. All methods
use an ImageNet-trained ResNet-50 feature extractor. DFR can reduce background reliance
with a minimal drop in performance on the Original data.

learned the features needed to classify the foreground, as well as the background features.
With access to Mixed-Rand data, we can reweight the foreground and background features
with DFR and significantly improve the performance on mixed-rand, FG-Only and Paintings-
BG datasets. At the same time, DFR®“TMR ig able to mostly maintain the performance on
the Original ImageNet-9 data; the small drop in performance is because the background is
relevant to predicting the class on this validation set. Finally, on ImageNet-R, DFR provides
a small improvement when we use all of 45k datapoints; the covariate shift in ImageNet-R
is not primarily background-based, so reducing background reliance does not provide a big
improvement.

7.2 Texture-vs-shape bias

Geirhos et al. [27] showed that when presented with images with conflicting texture and
shape, ImageNet-trained CNNs tend to make predictions based on the texture, while humans
usually predict based on the shape of the object. The authors designed the GST dataset
with conflicting cues, and proposed the term texture bias to refer to the fraction of datapoints
on which a model (or a human) makes predictions based on texture; conversely, shape bias
is the fraction of the datapoints on which prediction is made based on the shape of the
object. Geirhos et al. [27] showed that it is possible to increase the shape bias of CNNs by
training on Stylized ImageNet (SIN), a dataset obtained from ImageNet by removing the
texture information via style transfer (see Appendix Figure 9 for example images). Using
SIN in combination with ImageNet (SIN+IN), they also obtained improved robustness to
corruptions. Finally, they proposed the Shape-RN-50 model, a ResNet-50 (RN-50) trained
on SIN+IN and finetuned on IN, which outperforms the ImageNet-trained ResNet-50 on
in-distribution data and out-of-distribution robustness.

In this section, we explore whether it is possible to change the shape bias of ImageNet-trained
models by simply retraining the last layer with DFR. Intuitively, we expect that the standard
ImageNet-trained model already learns both the shape and texture features. Indeed, Hermann
et al. [37] showed that shape information is decodable from the features of ImageNet-trained
models on the GST dataset to a certain extent. Here, instead of directly targeting the GST
dataset, we apply DFR to the large-scale SIN dataset, and explore both the shape bias and
the predictive performance of the resulting models. See Appendix D for details.

In Table 3, we report the shape bias, as well as predictive accuracy of ResNet-50 models
trained on ImageNet (IN), SIN, IN+SIN and the Shape-RN-50 model, and the DFR models
trained on IN, SIN and IN+SIN. The DFR models use an IN-trained ResNet-50 model as a
feature extractor.

First, we observe that while the SIN-trained RN-50 achieves a shape-bias of 81.4%, as
reported by Geirhos et al. [27], the models trained on combinations of IN and SIN are
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Training Shape Top-1 Acc (%) / Top-5 Acc (%)

Method Data bias (%) ImageNet ImageNet-R ImageNet-C
IN 21.4 76.0/92.9 23.8/36.6 39.8/60.7
RN-50 SIN 81.4 60.3/82.7 26.9/42.1 38.1/59.7
IN+ SIN 34.7 74.6/92.1 27.6/42.5 45.7/67.4
Shape-RN-50  IN+SIN 20.5  76.8/93.3 25.6/39.8  42.3/63.3
IN 20.8 74.5/92.2  22.6/36.1  36.8/57.2
DFR SIN 34.0 65.1/85.7  24.6/39.4 36.7/56.7
IN+SIN 30.6 74.5/91.8 27.2/42.4 40.7/61.3

Table 3: Shape bias. Shape bias and accuracy on ImageNet validation set variations for
ResNet-50 trained on different datasets and DFR with an ImageNet-trained ResNet-50 as a
feature extractor. For each metric, we show the best result in bold and underline the best
result among DFR methods. By retraining just the last layer with DFR, we can significantly
increase the shape bias compared to the base model (21.4% — 34% for DFR(SIN)) and
improve robustness to covariate shift on ImageNet-R/C.

still biased towards texture. Curiously, the Shape-RN-50 model proposed by Geirhos et al.
[27] has almost identical shape bias to a standard IN-trained RN-50! At the same time,
Shape-RN-50 outperforms IN-trained RN-50 on all the datasets that we consider, and Geirhos
et al. [27] showed that Shape-RN-50 significantly outperforms IN-trained RN-50 in transfer
learning to a segmentation problem, suggesting that it learned better shape-based features.
The fact that the shape bias of this model is lower than that of an IN-trained RN-50, suggests
that the shape bias is largely affected by the last linear layer of the model: even if the model
extracted high-quality features capturing the shape information, the last layer can still assign
a higher weight to the texture information.

Next, DFR can significantly increase the shape bias of an IN-trained model. DFRISI{IN achieves
a comparable shape-bias to that of a model trained from scratch on a combination of IN
and SIN datasets. Finally, DFR%§+SIN improves the performance on both ImageNet-R and
ImageNet-C [36] datasets compared to the base RN-50 model. In the Appendix Table 7 we
show similar results for a VIT-B-16 model pretrained on ImageNet-21k and finetuned on
ImageNet; there, DFR%+SIN can also improve the shape-bias and performance on ImageNet-
C, but does not help on ImageNet-R. To sum up, by reweighting the features learned
by an ImageNet-trained model, we can significantly increase its shape bias and improve
robustness to certain corruptions. However, to achieve the highest possible shape bias, it is
still preferable to re-train the model from scratch, as RN-50(SIN) achieves a much higher
shape bias compared to all other methods.

8 Discussion

We have shown that neural networks simultaneously learn multiple different features that
can achieve low training loss, including relevant semantic structure, even in the presence
spurious correlations. By retraining the last layer of the network with DFR, we can
significantly reduce the impact of spurious features and improve worst-group-performance of
the models. In particular, DFR achieves state-of-the-art performance on spurious correlation
benchmarks, and can reduce the reliance of ImageNet trained models on background and
texture information.

Spurious correlations and representation learning.  Prior work has often associated
poor robustness to spurious correlations with the quality of representations learned by
the model [4, 6, 84] and suggested that the entire model needs to be carefully trained to

14



avoid relying on spurious features [e.g. 85, 43, 58, 107, 92, 76, 56]. Our work presents a
different view: representations learned with standard ERM even without seeing any minority
group examples are sufficient to achieve state-of-the-art performance on popular spurious
correlation benchmarks. The issue of spurious correlations is not in the features extracted by
the models (though the representations learned by ERM can be improved [e.g., 38, 76]), but
in the weights assigned to these features. Thus we can simply re-weight these features for
substantially improved robustness.

Practical advantages of DFR. DFR is extremely simple, cheap and effective. In
particular, DFR has only one tunable hyper-parameter — the strength of regularization of
the logistic regression. Furthermore, DFR is highly robust to the choice of base model, as
we demonstrate in Appendix Table 6, and does not require early stopping or other highly
problem-specific tuning such as in Idrissi et al. [43] and other prior works. Moreover, as DFR
only requires re-training the last linear layer of the model, it is also extremely fast and easy
to run. For example, we can train DFR on the 1.2M-datapoint Stylized ImageNet dataset
in Section 7 on a single GPU in a matter of minutes, after extracting the embeddings on all
of the datapoints, which only needs to be done once. On the other hand, existing methods
such as Group-DRO [85] require training the model from scratch multiple times to select the
best hyper-parameters, which may be impractical for large-scale problems.

On the need for reweighting data in DFR. Virtually all methods in the spurious
correlation literature, even the ones that do not explicitly use group information to train the
model, use group-labeled data to tune the hyper-parameters (we discuss the assumptions
of different methods in prior work in Appendix B.1). If a practitioner has access to group-
labeled data, we believe that they should leverage this data to find a better model instead of
just tuning the hyper-parameters. Finally, we note that DFR can be easily combined with
methods that automatically estimate group labels [e.g. 58, 18, 92]: we can retrain the last
layer using these estimated labels instead of ground truth.

Future work.  There are many exciting directions for future research. DFR largely
reduces the issue of spurious correlations to a linear problem: how do we train an optimal
linear classifier on given features to avoid spurious correlations? In particular, we can try to
avoid the need for a balanced reweighting dataset by carefully studying this linear problem
and only using the features that are robustly predictive across all of the training data. We
can also consider other types of supervision, such as saliency maps [90] or segmentation
masks to tell the last layer of the model what to pay attention to in the data. Finally, we
can leverage better representation learning methods [76], including self-supervised learning
methods [e.g. 16, 33|, to further improve the performance of DFR.
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Appendix Outline

This appendix is organized as follows. In Section A we present details on the experiments on
feature learning in the presence of spurious correlations. In Section B we provide details on
the results for the benchmark Waterbirds and CelebA datasets. We provide details on the
experiments on the reliance of ImageNet-trained models on the background in Section C and
on the texture-bias in Section D.

Code references. In addition to the experiment-specific packages that we discuss through-
out the appendix, we used the following libraries and tools in this work: NumPy [31],
SciPy [97], PyTorch [73], Jupyter notebooks [48], Matplotlib [42], Pandas [63].

A Details: Understanding Representation Learning with
Spurious Correlations

Here we provide details on the experiments in Section 4.

A.1 Feature learning on Waterbirds

Inverse problem. In Table 4 we present the results on the inverted Waterbirds problem,
where the goal is to predict the background type while the bird type serves as a spurious
feature. The results for the inverted problem are analogous to the results for the standard
Waterbirds (Table 1): models trained on the Original data learn the background features
sufficiently well to predict the background type with high accuracy when the spurious
foreground feature is not present, but perform poorly when presented with conflicting
background and foreground features. While it is often suggested than neural networks are
biased to learn the background [100], we see that in fact the network relies on the spurious
foreground feature (bird) when trained to predict the background.

Data. We show examples of Original, FG-Only and BG-Only Waterbirds images in Figure
6. To generate the data, we follow the instructions at github.com/kohpangwei/group_DRO#
waterbirds, but in addition to the Original data we save the backgrounds and foregrounds
separately. Consequently, the FG-Only data contains the same exact birds images as the
Original data, and the BG-Only data contains the same exact places images as the Original
data. For the 100% spurious correlation strength we simply discard all the minority groups
data from the Original (95% spurious correlation) training dataset. For the Balanced data,
we start with the Original data with 95% spurious correlation and replaced the background
in the smallest possible number of images (chosen randomly) to achieve a 50% spurious
correlation strength.

Hyper-parameters. For the experiments in this section we use a ResNet-
50 model pretrained on ImageNet, imported from the torchvision package:
torchvision.models.resnet50(pretrained=True) [62]. We train the models for 50
epochs with SGD with a constant learning rate of 10~3, momentum decay of 0.9, batch
size 32 and a weight decay of 1072. We use random crops (RandomResizedCrop (224,
scale=(0.7, 1.0), ratio=(0.75, 4./3.), interpolation=2)) and horizontal flips
(RandomHorizontalFlip()) implemented in torchvision.transforms as data augmen-
tation.

A.2 Simplicity bias

Data. We show data examples from Dominoes datasets (MNIST-MNIST, MNIST-
FashionMNIST and MNIST-CIFAR) in Figure 6. The top half of each image shows MNIST
digits from classes {0,1}, and the bottom half shows: MNIST images from classes {7,
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Figure 6: Data examples. Variations of the waterbirds (Top) and Dominoes (Bottom)
datasets generated for the experiment in Section 4.

Spurious Test Data (Worst/Mean, %)

Train Data
Corr. (%) Original BG-Only
Balanced 50 93.2/95.6 93.6/96.0
Original 95 77.4/91.2 93.1/95.7
Original 100 36.1/77.5 92.7/94.8
Place-Only - 91.8/94.2 92.4/95.2

Table 4: Feature learning on Inverted Waterbirds. ERM classifiers trained on
Inverted Waterbirds with Original and BG-Only images. Here the target is associated with
the background type, and the foreground (bird type) serves as the spurious feature. All
the models trained on the Original data including the model trained without any minority
group examples (Spurious corr. 100%) underperform on the worst-group accuracy on the
Original data, but perform well on the BG-Only data, almost matching the performance of
the BG-Only trained model.

9} for MNIST-MNIST, Fashion-MNIST images from classes {coat, dress} for MNIST-
FashionMNIST, and CIFAR-10 images from classes {car, truck} for MNIST-CIFAR. The
label corresponds to the more complex bottom part of the image, but the top and bottom
parts are correlated (we consider 95%, 99% and 100% levels of spurious correlation strength
in experiments). 20% of the training data was reserved for validation or reweighting dataset
(see Section 5) where each group is equally represented.

Hyper-parameters. We used a randomly initialized ResNet-20 architecture for this
set of experiments. We trained the network for 500 epochs with SGD with batch size
32, weight decay 1072, initial learning rate value 1072 and a cosine annealing learning
rate schedule. For the logistic regression model, we first extract the embeddings from
the penultimate layer of the network, then use the logistic regression implementation
(sklearn.linear_model.LogisticRegression) from the scikit-learn package [74]. We
use {7 regularization and tune the inverse regularization strength parameter C in the range
{0.1,10,100,1000}. For more details on Deep Feature Reweighting implementation and
tuning, see section B.

Transfer from simple to complex features. In addition to the results presented in
Figure 2, we measure the decoded accuracy using the model trained just on the spurious
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Figure 7. Logit additivity. Distribution of logits for the negative class on the test data for
a model trained on Waterbirds dataset. We show scatter plots of the logits for the Original,
FG-Only and BG-Only images. The logits on Original images are well aligned with sums
of logits on the corresponding FG and BG images (rightmost panel), suggesting that the
foreground and background features are processed close to independently in the network.

simple features: the top half of the image showing an MNIST digit. After training, we
retrain the last layer of the model using a validation split of the corresponding Dominoes
dataset which has both top and bottom parts. In this case, we measure the transfer learning
performance with the features learned on the binary MNIST classification problem applied
to the more complex bottom half of the image. We obtain the following transfer accuracy
results: 92.5% on MNIST-MNIST, 92.1% on MNIST-Fashion and 61.4% on MNIST-CIFAR.
On all datasets, the decoded accuracy reported in Figure 2 for the spurious correlation levels
99% and 95% is better than the transfer accuracy. For the 100% spurious correlation, transfer
achieves comparable results on MNIST-Fashion and MNIST-CIFAR, but on MNIST-MNIST
the decoded accuracy with a model trained on the data with the core feature is significantly
higher (99% vs 92%). These results confirm that for the spurious correlation strength below
100%, the model learns a high quality representation of the core features, which cannot be
explained by transfer learning from the spurious feature.

A.3 Logit additivity

To better understand why the models trained on the Original Waterbirds data perform well
on FG-Only images, in Figure 7 we inspect the logits of a trained model. We show scatter
plots of logits for the negative class (logits for the positive class behave analogously) on
the Original, FG-Only and BG-Only test data. Both logits on FG-Only and BG-Only data
correlate with the logits on the Original images, and FG-Only show a higher correlation.
The FG-Only and BG-Only logits are not correlated with each other, as in test data the
groups are balanced and the foreground and background are independent.

We find that the sum of the logits for the BG-Only and the logits for the FG-Only images
provides a good approximation of the logits on the corresponding Original image (combining
the foreground and the background). We term this phenomenon logit additivity: on Water-
birds, logits for the different predictive features (both core and spurious) are computed close
to independently and added together in the last classification layer.

B Details: Spurious Correlation Benchmarks

Here we provide details on the experiments in Section 6.

Data. We use the standard Waterbirds and CelebA datasets, following e.g. [85, 58, 43].
See Figure 3 for group descriptions and example images.

Base model hyper-parameters. For the experiments presented in Table 6 we
use a ResNet-50 model pretrained on ImageNet, imported from the torchvision
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ImageNet Dataset Waterbirds CelebA

Method

Pretrain Fine-tune  Worst(%) Mean(%)  Worst(%) Mean(%)

Base Model v v 74.9:|:2_4 98.1:‘:0,1 46.9:‘:2.8 95.3:‘:0
DFR% v v 90.2408 97.0403 80.7424 85.4404
DFRYa! v v 929402 94.2404 88.3411 89.6404
Base Model X v 6.9:|:3‘0 88.0:‘:1‘1 39.8:‘:2,0 95.7:|:0,1
]:)].:‘R&f\lrP X v 45.4:&4.1 69.8:&:7‘0 83.4:‘:2,6 87.5:|:0,3
DFRY X v 539118 62.6400 85.0401 87.6403
DFRITI\TI v X 475495 529405 772411  83.3401
DFR v X 505493 5ddiio 731106 809405

Table 5: Effect of ImagelNet pretraining and dataset fine-tuning. Results for DFR
on the Waterbirds and CelebA datasets when using an ImageNet-trained model as a feature
extractor, training the feature extractor from random initialization or initializing the feature
extractor with ImageNet-trained weights and fine-tuning on the target data. The models
without target dataset finetuning (DFR{Y, and DFRX\?I) lead to relatively poor performance
on both datasets. On Waterbirds, both ImageNet pretraining and dataset finetuning are
needed to achieve strong performance. On CelebA, we can achieve competitive resutls
training the feature extractor from a random initialization. All methods in Table 2 use
ImageNet-trained models as initialization and finetune on the target dataset.

package: torchvision.models.resnet50(pretrained=True). We use ran-
dom crops (RandomResizedCrop (224, scale=(0.7, 1.0), ratio=(0.75, 4./3.),
interpolation=2)) and horizontal flips (RandomHorizontalFlip()) implemented in
torchvision.transforms as data augmentation. We train all models with SGD with
momentum decay of 0.9 and a constant learning rate. On Waterbirds, we train the models
for 100 epochs with weight decay 1072, learning rate 102 and batch size 32. On CelebA,
we train the models for 50 epochs with weight decay 10~%, learning rate 10~ and batch size
128. We do not use early stopping.

DFR details. For DFR, we first extract and save the embeddings (inputs to the classifica-
tion layer of the base model) of the training, validation and testing data using the base model.
We then preprocess the embeddings to have zero mean and unit standard deviation using the
standard scaler sklearn.preprocessing.StandardScaler from the scikit-learn pack-
age. In each case, we compute the preprocessing statistics on the reweighting data used to
train the last layer. To retrain the last layer, we use the logistic regression implementation
(sklearn.linear_model.LogisticRegression) from the scikit-learn package. We use
{1 regularization. For DFRY?! and DFRXE ,; we only tune the inverse regularization strength
parameter C: we consider the values in range {1.,0.7,0.3,0.1,0.07,0.03,0.01} and select
the value that leads to the best worst-group performance on the available validation data
(as described in Section 6, for DFRY2! we use half of the validation to train the logistic
regression model and the other half to tune the parameters at the tuning stage). For
DFRA we additionally tune the class weights: we set the weight for one of the classes to
1 and consider the weights for the other class in range {1, 2, 3,10, 100, 300,1000}; we then
switch the classes and repeat the procedure. For the final evaluation, we use the best values
of the hyper-parameters obtained during the tuning phase and train a logistic regression
model on all of the available reweighting data. We train the logistic regression model on the
reweighting data 10 times with random subsets of the data (we take all of the data from
the smallest group, and subsample the other groups randomly to have the same number
of datapoints) and average the weights of the learned models. We report the model with
averaged weights.
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Base Model Hypers Waterbirds

Method

Ir wd  batch size aug Worst (%) Mean(%)
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Base Model Hypers Method CelebA

Ir  wd batch size aug Worst(%) Mean(%)

Base Model 46.9494 95.340

-3 —4
10710 128 Y DFRY  883.14 913404

Base Model 44.3164 95.2401

-3 -3
10710 128 v DFRY2  86.2412 90.840.7

Base Model 46.7400 95.340.1
DFRY2!  86.9111 91.6402

Base Model 40.6457 95.140.2
DFRY&! 85.6414 91.8405

1073 10~¢ 128 X

10—3 1073 128 X

Table 6: Effect of base model hyper-parameters. We report the results of DFRY2! for
a range of base model hyper-parameters on Waterbirds and CelebA as well as the performance
of the corresponding base models. While the quality of the base model has an effect on DFR,
the results are fairly robust. For a subset of configurations we report the mean and standard
deviation over 3 independent runs of the base model and DFR.

Do we need ImageNet pretraining? In Table 5 we report the results on Waterbirds
and CelebA for models trained from random initialization, without ImageNet pretraining.
While on Waterbirds pretraining is required to achieve good results with DFR, on CelebA
we can achieve strong performance training from random initialization. We note that the
baseline methods considered in Section 6 all use ImageNet-pretrained models.

What if we just use ImageNet features? As a baseline, we apply DFR to features
extracted by a model pretrained on ImageNet with no fine-tuning on CelebA and Waterbirds
data. We report the results in Table 5 (DFR{; and DFRY! lines). While on CelebA it is
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possible to get above random-guess performance with ImageNet features, on Waterbirds the
performance is close to random guess. The results in Table 5 suggest that both ImageNet
pretraining and fine-tuning on the target data are needed to train the best feature extractor
for DFR.

Robustness to base model hyper-parameters In Table 6 we report the results of
DFRY?! for a range of configurations of the baseline model hyper-parameters. While the
quality of the base model clearly has an effect on DFR performance, we achieve competitive
results for all the hyper-parameter configurations that we consider, even when the base
model performs poorly. For example, on Waterbirds with data augmentation, learning rate
1072 and weight decay 10~2 the base model achieves worst group accuracy of 24.1%, but
by retraining the last layer of this model with DFRY® we still achieve 88% worst group
accuracy.

B.1 Prior work assumptions

In Section 6 we compare DFR to ERM, Group-DRO [85], JTT [58], SUBG [43] and SSA
[68]. These methods differ in assumptions about the amount of group information available.

Group-DRO and SUBG assume that both train and validation data have group labels,
and the hyper-parameters are tuned using worst-group validation accuracy. DFR{Y and
DFRE y match the setting of these methods and use the same data and group information;
in particular, these methods only use the validation set with group labels to tune the
hyper-parameters.

A number of prior works [e.g. 58, 18] sidestep the assumption of knowing the group labels
on train data, but still rely on tuning hyper-parameters using worst-group accuracy on
validation, and thus, having group labels on validation data. In fact, Idrissi et al. [43] showed
that ERM is a strong baseline when tuned with worst-group accuracy on validation.

Lee et al. [56] explore the setting where they do not necessarily require group labels on
validation data, but their method implicitly relies on the presence of sufficiently many
minority examples in the validation set such that different prediction heads would disagree
on those examples to choose the most reliable classifier.

Recent works Nam et al. [68] and Sohoni et al. [92] explore the setting where the group
information is available on a small subset of the data (e.g. on the validation set), and
the goal is to use the available data optimally, both to train the model and to tune the
hyper-parameters. These methods use semi-supervised learning to extrapolate the available
group labels to the rest of the training data. We consider this same setting with DFRY2! |
where we use the validation data to retrain the last layer of the model.

C Details: ImageNet Background Reliance

Here we provide details on the experiments on background reliance in Section 7.

Data. We use the ImageNet-9 dataset [100]. To test whether our models can generalize
to unusual backgrounds, we additionally generate Paintings-BG data shown in Figure
9. For the Paintings-BG data we use the Original images and segmentation masks for
ImageNet-9 data provided by Xiao et al. [100], and combine them with random paintings
from Kaggle’s painter-by-numbers dataset available at kaggle.com/c/painter-by-numbers/
as backgrounds. For the ImageNet-R dataset [35], we only use the images that fall into one
of the ImageNet-9 categories, and evaluate the accuracy with respect to these categories.
We show examples of images from different dataset variations in Figure 9.

Base model hyper-parameters. We use a ResNet-50 model pretrained
on ImageNet and a VIT-B-16 model pretrained on ImageNet-21k and fine-
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Figure 8: ImageNet background reliance (VIT-B-16). Performance of DFR trained
on MixedRand data and MixedRand + Original data on different ImageNet-9 validation
splits. All methods use an VIT-B-16 feature extractor trained on ImageNet21k and finetuned
on ImageNet. DFR can reduce background reliance with a minimal drop in performance on
the Original data. See Figure 5 for analogous results with a ResNet-50 feature extractor.

tuned on ImageNet.  The ResNet-50 model is imported from the torchvision
package: torchvision.models.resnet50(pretrained=True). The VIT-B-16
model is imported from the 1lukemelas/PyTorch-Pretrained-ViT package avail-
able at github.com/lukemelas/PyTorch-Pretrained-ViT; we use the command:
ViT(’B_16_imagenetlk’, pretrained=True) to load the model. To extract the embed-
dings, we remove the last linear classification layer from each of the models. We preprocess
the data using the torchvision.transforms paclage Compose([ Resize(resize_size),
CenterCrop(crop_size), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229,
0.224, 0.225]1)]), where (resize_size, crop_size) are equal to (256, 224) for the
ResNet-50 and (384, 384) for the VIT-B-16. We do not apply any data augmentation.

DFR details. We Train DFR on random subsets of the Mixed-Rand train data of differ-
ent sizes (DFRM®) or combinations of the Mixed-Rand and Original data (DFRO%TMR),
For DFROGFMR e use the same number of Original and Mixed-Rand datapoints in
all experiments. As the full ImageNet-9 contains 50k datapoints, we train the logistic
regression on GPU with a simple implementation in PyTorch [73]. We then preprocess
the embeddings to have zero mean and unit standard deviation using the standard scaler
sklearn.preprocessing.StandardScaler from the scikit-learn package. In each case,
we compute the preprocessing statistics on the reweighting data used to train the last layer.
For the experiments in this section we use ¢s regularization (as the number of datapoints
is large relative to the number of observations, we do not have to use ¢1). We set the
regularization coefficient A to be 100 and train the logistic regression model with the loss
> e e Ly, wr +b) + 2 ||lwl|?, where L(-,-) is the cross-entropy loss. We use full-batch SGD
with learning rate 1 and no momentum to train the model for 1000 epochs. We did not tune
the A parameter or SGD hyper-parameters.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Figure 8.
The results are generally analogous to the results for ResNet-50: it is possible to significantly
reduce the reliance of the model on the background by retraining the last layer with DFR.
For the VIT, removing the background dependence hurts the performance on the Original
data slightly, but greatly improves the performance on the images with unusual backgrounds
(Mixed-Rand, FG-Only, Paintings-BG). Removing the background dependence does not
improve the performance on ImageNet-R.
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Figure 9: ImageNet variations. Examples of datapoints from the ImageNet variations
used in the experiments.
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D Details: ImageNet Texture Bias Details

Here we provide details on the experiments on texture bias in Section 7.

Data. We generate the stylized ImageNet (SIN) data following the instructions at
github.com /rgeirhos/Stylized-ImageNet [27]. For evaluation, we use ImageNet-C [36] and
ImageNet-R datasets [35]. For ImageNet-C we report the average performance across all
19 corruption types and 5 corruption intensities. We show examples of stylized ImageNet
images in Figure 9.

Base model hyper-parameters. We use the same ResNet-50 and VIT-B-16 models as
described in Appendix C.

DFR details. We train DFR using the embeddings of the original ImageNet (IN), styl-
ized ImageNet (SIN) and their combination (IN+4SIN) as the reweighting dataset. We
preprocess the base model embeddings by manually subtracting the mean and dividing
by standard deviation computed on the reweighting data used to train DFR; we did not
use sklearn.preprocessing.StandardScaler due to the large size of the datasets (1.2M
datapoints for IN and SIN; 2.4M datapoints for IN-++SIN). We train the logistic regression
for the last layer on a single GPU with a simple implementation in PyTorch. We use SGD
with learning rate 1, no momentum, no regularization and batch size of 10* to train the
model for 100 epochs. We tuned the batch size (in the range {10%,10%,10°}) and picked the
batch size that leads to the best performance on the ImageNet validation set (10%). We did
not tune the other hyper-parameters.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Table 7.
For this model, baselines trained from scratch on IN+SIN and SIN are not available so we
only report the results for the standard model trained on ImageNet21k and finetuned on
ImageNet; for DFR we report the results using IN+SIN as the reweighting dataset. Despite
the large-scale pretraining on ImageNet21k, we find that we can still improve the shape
bias (36% — 39.9%) as well as robustness to ImageNet-C corruptions (49.7% — 52% Top-1
accuracy). On the original ImageNet and ImageNet-R the performance of DFR is similar to
that of the baseline model.

Detailed texture bias evaluation. To provide further insight into the texture bias of
the models trained with DFR, in Figure 10 we report the fraction of shape and texture
decisions for different classes following Geirhos et al. [27]. We produce the figure using the
modelvshuman codebase available at github.com/bethgelab/model-vs-human [26]. We report
the results for both DFR models and models trained from scratch on IN, SIN and IN+SIN
as well as the ShapeResNet-50 model and humans (results from Geirhos et al. [27]). When
trained on the same data, models trained from scratch achieve a higher shape bias than DFR
models, but DFR can still significantly improve the shape bias compared to the base model
trained on IN.

Detailed ImageNet-C results. In Figure 11, we report the Top-1 accuracy for DFR
models and models trained from scratch on IN, SIN and IN+SIN on individual ImageNet-C
datasets. We use the ResNet-50 base model. The model trained from scratch on IN+SIN
provides the best robustness across the board, but DFR trained on IN+SIN also provides an
improvement over the baseline RN50(IN) model on many corruptions.
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Figure 10: Shape-texture bias report. Detailed report of the shape-texture
bias generated using the model-vs-human codebase (https://github.com/bethgelab/
model-vs-human) [26]. The plot shows the fraction of the decisions made based on shape
and texture information respectively on examples with conflicting cues [27]. The brown
diamonds (¢) show human predictions and the circles (o) show the performance of ResNet-50
models trained on different datasets: , Stylized ImageNet (SIN, blue),
ImageNet + Stylized ImageNet (IN+SIN, red), ImageNet + Stylized ImageNet Finetuned on
ImageNet (IN-+SIN—IN, pink); these models are provided in the model-vs-human codebase.
For each dataset (except for IN+SIN—IN) we report the results for DFR using an ImageNet-
trained ResNet-50 model as a feature extractor with squares [ of the corresponding colors.
Reweighting the features in a pretrained model with DFR we can significatly increase the
shape bias: DFR trained on SIN (blue squares) virtually matches the shape bias of the model
trained from scratch on IN+SIN (red circles). However, the model trained just on SIN (blue
circles) from scratch still provides a significantly higher shape bias, that we cannot match
with DFR.

Top-1 Acc (%) / Top-5 Acc (%)

Training Shape
Method Data bias (%) ImageNet ImageNet-R ImageNet-C
VIT-B-16 IN21k + IN 36 79.2/95.0  29.1/42.0 49.7/69.3
DFR IN-+SIN 39.9 79.7/94.5  29.0/41.4 52.0/71.0

Table 7: Texture-vs-shape bias results for VIT-B-16. Shape bias, top-1 and top-5
accuracy on ImageNet validation set variations for VIT-B-16 pretrained on ImageNet21k
and finetuned on ImageNet and DFR using this model as a feature extractor and reweighting
the features on combined ImageNet and Stylized ImageNet datasets. By retraining just the
last layer with DFR, we can increase the shape bias compared to the feature extractor model
and improve robustness to covariate shift on ImageNet-C.
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Figure 11: ImageNet-C results. Results of ResNet-50 models trained on different
ImageNet variations (shown in circles) and DFR using an ImageNet-trained ResNet-50 model
as a feature extractor on ImageNet-C and ImageNet-R datasets. Each panel corresponds to a
different corruption, and the horizontal axis represents the corruption intensity. Retraining the
last layer on ImageNet-Stylized (DFR(SIN), red squares) improves robustness to ImageNet-C
corruptions compared to the base model (RN50(IN), blue circles), but does not match the
robustness of a model trained from scratch on SIN or IN+SIN.
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