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Abstract

Trans-Neptunian objects provide a window into the history of the solar system, but they can be challenging to
observe due to their distance from the Sun and relatively low brightness. Here we report the detection of 75 moving
objects that we could not link to any other known objects, the faintest of which has a VR magnitude of 25.02 4 0.93
using the Kernel-Based Moving Object Detection (KBMOD) platform. We recover an additional 24 sources with
previously known orbits. We place constraints on the barycentric distance, inclination, and longitude of ascending
node of these objects. The unidentified objects have a median barycentric distance of 41.28 au, placing them in the
outer solar system. The observed inclination and magnitude distribution of all detected objects is consistent with
previously published KBO distributions. We describe extensions to KBMOD, including a robust percentile-based
lightcurve filter, an in-line graphics-processing unit filter, new coadded stamp generation, and a convolutional neural
network stamp filter, which allow KBMOD to take advantage of difference images. These enhancements mark a
significant improvement in the readiness of KBMOD for deployment on future big data surveys such as LSST.
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1. Introduction

Small bodies are the final frontier in the study of flux-limited
populations in the solar system. While these objects are primarily
very small and often very distant, they are nevertheless critical to
our understanding of the formation of the solar system. For
example, trans-Neptunian objects (TNOs) contain dynamically
unperturbed relics from the formation of the solar system (Luu &
Jewitt 2002). They provide a window into the early history of the
solar system and enable tests of planetary formation and
migration hypotheses. The Nice model (Tsiganis et al. 2005)
suggests that all the giant planets formed well interior to 20 au
and migrated outward due to interactions with planetesimals.
Better knowledge of the dynamical populations of TNOs would
enable tests of additional and alternative hypotheses regarding
the dynamical history of the solar system, such as the smooth
migration of Neptune (Hahn & Malhotra 2005; Nesvorny 2015;
Morbidelli & Nesvorny 2020), a stellar flyby (Kenyon &
Bromley 2004), or rogue planetary embryos (Gladman &
Chan 2006). Improving our understanding of TNO size and
orbital distributions, especially at the low-mass end where they
are more poorly constrained, will be critical for our under-
standing of these and other hypotheses.

Well beyond the edge of the Classical Kuiper Belt lies the Oort
Cloud. Most famously, the inner Oort Cloud includes the object
Sedna, which is thought to be a member of a larger population of
sednoids (Brown et al. 2004). Sedna is an inner Oort Cloud
object with a perihelion of 76 =4 au, but a semimajor axis of
480 + 40 au. Therefore, it spends well over 90% of the time on
its orbit beyond the detection limit of the survey that discovered
it. According to the Minor Planet Center (MPC) database for
TNOs, centaurs, and scattered disk objects (SDO), Sedna has the
second largest perihelion (after 2012 VP113) of any detected
solar system object. It represents one of the only currently
observable links to the Oort Cloud, a region that contains a
wealth of information about the history of the solar system. If we
could increase the number of known sednoids and other Oort

Cloud objects, they would provide observational constraints on
the formation environment of the Sun (Brasser et al. 2006) and
the Sun’s dynamic history in the Milky Way after leaving its
formation environment (Kaib et al. 2011).

New and upcoming approaches to survey astronomy provide
exciting opportunities for the study of these populations. For
example, the upcoming Legacy Survey of Space and Time
(LSST; lIsst.org; Ivezi¢ et al. 2019) expects to survey over
18,000 square degrees of the sky 825 times over a period of
10 yr, generating about 20 TB of data every 24 hr.

LSST plans to detect solar system objects from individual
images, with a single-visit limiting magnitude in the » band of
24.7, and link these detections to measure orbits. Current
projections (LSST Science Collaboration et al. 2009) show that
LSST is expected to detect about 40,000 TNOs, which is by
itself a large increase over the currently known 4077 Centaurs,
KBOs, and SDOs (MPC). However, if we could coadd the
images to increase the signal-to-noise ratio (SNR) of the solar
system detections, then we could recover significantly more
objects. Following the formula Am = (5/2)log /N, coadding
just three months of LSST data would increase the limiting
magnitude in the r band from 24.7 to 26.1. This increase in
depth means LSST would detect ~8.0 times more TNOs
compared to a single image, assuming the single power-law r-
band KBO distribution of Fraser et al. (2008). Instead of
40,000 TNOs, we could detect ~320,000 TNOs. If we could
coadd a year of LSST data, this increases to over 520,000 new
TNOs detected (given our simplified assumptions). None of
this requires any more data than LSST will already acquire.

Coadding moving objects poses unique challenges compared to
coadding stars. Because stars move very slowly compared to most
survey cadences, coaddition of a stack of aligned images usually
increases the limiting magnitude for stars compared to single
images. Solar system objects, however, generally move at on-sky
velocities of > 1”7hr', due to both the proper motion of the
objects and the reflex motion caused by the Earth’s orbit. This
means that traditional image coaddition typically does not increase
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the number of detectable moving objects. Known moving objects
may be tracked and aligned along their orbits to improve the
quality of the detection, but to use image coaddition to detect new
objects with unknown orbits, another approach is required.

The Kernel-Based Moving Object Detection (KBMOD;
Whidden et al. 2019) algorithm takes a time series of images
of the same R.A. and decl., uses a “track before detect” (TBD)
approach to account for the potential motion of objects on an
image, and then coadds the shifted images (increasing the
SNR of objects with the candidate trajectory). To sample all
possible orbital parameters requires searching billions of
candidate trajectories even within the footprint of a single
charge-coupled device (CCD). Consequently, current imple-
mentations of TBD have generally been restricted to narrow-
field surveys (Bernstein et al. 2004). KBMOD addresses this
by using GPU-accelerated computing to search over a wide
range of trajectories for a stack of CCDs in about 10 minutes.

In this paper, we present a number of algorithmic improve-
ments to KBMOD that allow us to search for moving objects in
difference images. We use the Dark Energy Camera (DECam)
NEO Data Survey to validate our improvements. This is a larger
survey with a longer and more irregular cadence than KBMOD
has been applied to in the past. Successfully running on
difference images and a more complicated survey shows that
KBMOD is beginning to be applicable at the scale needed for
upcoming big data surveys like LSST. In Section 2, we discuss
the DECam NEO Data Survey and the processing we applied to
it using the LSST Software Stack. In Section 3, we discuss the
KBMOD algorithm and present recent improvements. In
Section 4, we discuss the results from our analysis, including
the detection of unidentified outer solar system objects. We
discuss current limitations and future improvements in Section 5.

2. Data
2.1. The DECam NEO Survey Data

The DECam NEO Data Survey covered an area on the sky of
greater than 2000 square degrees. The ~6.7 TB data set from
the DECam NEO Data Survey (PI: Lori Allen) uses the Dark
Energy Camera on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO; Flaugher et al.
2015). The DECam NEO Data Survey consists of 32 nights of
data. In the first 10-night observing run in 2014, Trilling et al.
(2017) found 235 unique NEOs.

Each individual image taken by DECam is a composite of 62
2K x4K science CCDs, with a fill factor of 0.8 (Herner et al.
2020). Each CCD image covers an area of ~0.04 square
degrees with a pixel scale of 0727. This results in a total field
of view for DECam of about 3 square degrees. The CCDs are
250 um thick fully depleted devices, with a peak quantum
efficiency above 85% at ~6500 A(Flaugher et al. 2015). Gaps
between CCDs are between 153 pixels (columns) and 201
pixels (rows). Observations for this data set were taken in the
VR filter, a broad optical filter extending from 500 to 760 nm.

We separate this data set into 782 pointing groups based on
R.A. and decl. CCD 01 and 61 had no data in our images,
leading to a set of 60 CCDs per pointing group. We define a
pointing group as a set of DECam exposures within 25" of a
common R.A. and decl. and define a pointing as an individual
DECam exposure (i.e., a set of 60 CCDs) in a pointing group.
Most pointing groups contain between 5 and 25 pointings.
Pointing groups characteristically have 5 pointings per night,
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with all data taken over nearly consecutive nights. The intra-
night pointings are taken about five minutes apart for a total
intra-night time span of approximately 25 minutes.
Twenty-four pointing groups had a high stellar number
density, with more than 10,000 sources detected in a CCD.
When astrometrically calibrating these images (see Section 2.2),
these pointing groups exceeded the memory limits of the
available computational resources and were therefore excluded.
The current limitations regarding the processing of dense fields
with LSST Science Pipelines are described in Sullivan & Bellm
(2021). Detectability of moving objects with KBMOD, however,
is driven strongly by the quality of the difference images.
Three hundred seventy-two pointing groups contained data
from at least four unique survey nights. Because of the short
intra-night image cadence, which can cause slow-moving
objects to exhibit minimal motion within a night, we only
search over pointing groups with at least four unique survey
nights. This ensures that any given KBMOD trajectory will
search a sufficiently large number of unique on-sky positions,
thereby reducing the probability of linking of static objects.
In order to comply with computational limitations, we selected
43 pointing groups from the set of 372 pointing groups, focusing
our research on higher-quality data. These 43 pointing groups have
a total effective search area of approximately 132 square degrees.
We refer to these 43 pointing groups as the “search sample.” This
downselect from 372 pointing groups was as follows. Forty
pointing groups existed where all pointings in the pointing group
had a maximum seeing full-width at half-maximum (FWHM) of
1725. These 40 pointing groups make up the bulk of the search
sample. There were an additional 12 pointing groups that had over
20 total pointings, but with only 20 pointings with seeing > 1”25.
These pointing groups returned a greater number of erroneous
candidate trajectories that required by-eye rejection. This is
possibly due to the inclusion of poor-seeing images in the
image-differencing template (see Section 2.2). Due to computa-
tional limitations, we elected to run KBMOD on only 3 of these
pointing groups, focusing our GPU resources on the 40 pointing
groups where all 20 pointings had the required seeing limits. These
3 pointing groups make up the remainder of the search sample.

2.2. Processing the DECam Data

The raw DECam images were processed by the DECam
Community Pipeline (Valdes et al. 2014) resulting in a set of
InstCal PROCTYPE images, as defined in the NOAO Data
Handbook (NOAO 2015). These images are bias- and linearity-
corrected, flat-fielded, and sky-subtracted by the community
pipeline. Data-quality masks and inverse variance arrays were
provided. We downloaded the compressed InstCal data from
the NOAO Data Archive between July and November of 2017.

Prior to running the KBMOD pipeline, we first astrometrically
calibrate the images in all 782 pointing groups. This was
undertaken using the LSST Science Pipelines Software (Jurié
et al. 2017). Sources were detected in the individual images.
Sources with an SNR > 40 were matched to the data from GAIA
Data Release 1 (DR1). The median astrometric scatter for the
sources used to fit the CCD world coordinate systems (WCS) was
25 mas; 373 CCDs had an astrometric scatter worse than 100 mas.
The median number of sources detected per CCD was 3575.

As a followup to Whidden et al. (2019), we use image
differencing to remove nonvariable and nonmoving sources
within an image (as opposed to just masking the sources). We
used the LSST Stack to difference the images in the pointing
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Figure 1. Single pointing (pointing group 011, CCD 29, visit 303605) before (left) and after (right) image differencing. Similar to DS9, we applied an arcsinh filter to

the pixels in this example in order to better show objects in each image.

groups using a method based on Alard & Lupton (1998). For
the DECam NEO Survey data, we difference each pointing
against a coadded template. Given the short intra-night time
separation between images of a given pointing group, objects
moving slower than of order 1” hr~' will not move a full PSF
width over a single night. We therefore separate a pointing
group into two approximately equal groups such that each
image in the first group will be separated in time from each
image in the second group by at least 12 hours. A coadded
template was independently generated from each group and
used to difference the opposite group. Because our minimum
search velocity is > 92 pixels per day (> 24" per day), this
guarantees that objects of interest will be much greater than one
PSF away from where they were in the coadded template. This
means that pointings in the middle of a pointing group—with
respect to time—will have the shortest image-differencing
baseline, and will therefore set a theoretical limit on the slowest
moving objects we can detect.

In order to difference the science images against the coadded
template (Alard & Lupton 1998; Zackay et al. 2016; Zackay &
Ofek 2017a, 2017b), we need to find a convolution kernel K
such that for a science image /(x) and a coadded template P(x),
I(x) = K ® ®(x). Following the approach of Alard & Lupton
(1998), we separated the template into local spatial cells of
128 <128 pixels. We detected sources in both images and
grouped them into the spatial cells. Stamps of these sources were
created with sizes between 21x21 pixels and 35x35 pixels,

depending on the FWHM of the source. Stamps in each cell
were used to find the local spatially-invariant convolution kernel
solutions of each stamp. The local convolutional kernel was
modeled as a set of Gaussian functions multiplied with a
polynomial. The coefficients of the kernel were then found by
solving a least-squares problem. One source (and thus one
stamp) was selected for each grid cell based on the clipped mean
of all the kernel solutions in the cell. This gave the local
convolution kernel for that cell. Chebyshev polynomials of the
first kind were fit to the local kernel coefficients in order to
determine a model for spatially-variant global convolution kernel
coefficients. This global kernel was then used to match the PSF
of the coadded template to that of the science image. We
matched the template to the science image rather than the other
way around because the template has less noise and the
convolution correlates with noise. The two images were then
subtracted. Finally, a decorrelation algorithm was run to remove
the correlation in the noise of the difference image. After
differencing the image, we warp all images in a pointing group
to the sky plane of the first pointing in the pointing group. This
ensures that a pixel in one pointing will correspond to the same
R.A. and decl. as that of the same pixel in another pointing.
As an example, Figure 1 shows pointing group 023, CCD
35, wvisit 303665 before and after image differencing and
warping. The final image size for the KBMOD image is set by
the intersection of the image and the template that is subtracted.
Slight misalignments of the pointings in a pointing group may
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Figure 2. Number of sources per CCD image for each visit in 10 pointing groups (pointing group 091 to 100). The median number of sources per science image
(orange) is 3396 per CCD image. The median number of sources per difference image (blue) is 180 per CCD image. Differencing the science images therefore reduces

the number of static sources in the image by a factor of about 18.

reduce the final image sizes. All pointing groups were,
however, aligned to within 50” in R.A. and decl., with all
but 28 pointing groups aligned to better than 25” in both R.A.
and decl. Therefore the reduction in image area was minimal.

The asteroid search was run for each aligned stack of
DECam CCDs independently; we did not search trajectories
across CCD boundaries. The effective area on which we are
able to search for moving objects is, therefore, about 0.04
square degrees. In other words, a necessary requirement for the
detection of a moving object with the KBMOD algorithm is
that the object stays within the field of view of an individual
CCD for at least two pointings. In practice, we require that an
object stay in the field for at least 3 nights (typically 15
pointings). This means that an object must move slower than
about 15" hr™' to be detected by KBMOD.

3. Techniques

KBMOD generates images of likelihood (¥;) and variance
(®;) from a series of CCD images as described in Whidden et al.
(2019). Assuming a Gaussian likelihood function, a stack of ¥;
and ®; images can then be shifted along a potential asteroid
trajectory and summed in order to get the coadded likelihood of
a detection (Wepuqa =2>_¥; and Poaqq = ;P;). See Ofek &
Zackay (2018) for the optimal approach for source detection
with Poisson noise. We define an SNR v for a detection such that
Veoadd = \Ilcoadd/  @eoaga- In this v image, generated for each
given angle and velocity vector, any points above some
threshold m can be considered to be m-sigma detections of a
moving source. For a single trajectory, we can define the
summed likelihood as >"LH = v95°Y . The interested reader is
directed to Whidden et al. (2019) for more detail.

The large number (>10%) of potential asteroid trajectories
means that these W; and ®; images must be searched many times
over. For this reason, KBMOD uses massively parallel GPU
computing for the core computations. The current software allows

a user to search over 10'° potential moving object trajectories in a
stack of 10-15 4Kx4K images in under a minute using a
consumer-grade GPU (e.g., Nvidia 1080 Ti; Whidden et al. 2019).
Our pointer-arithmetic approach means that we never actually shift
and stack images. Rather, we merely sum the previously calculated
likelihoods, utilizing thousands of concurrent GPU threads to keep
the computation feasible on consumer-grade hardware.

The DECam NEO data set presents unique filtering
challenges compared to Whidden et al. (2019) due to the
increased number of potentially valid trajectories, the short
intra-night cadence, and image-differencing artifacts. In
Whidden et al. (2019), detected sources appearing in the same
position in 2 or more images, pixels with counts above 120
counts, and other mask flags set by the DECam community
pipeline or the LSST software stack were all masked. In the
current data set, we use difference imaging to subtract static
sources. This enables us to decrease the masked area of the
image, only masking sources flagged as detected if they appear
in 10 or more images. However, despite reducing the number
of detected individual sources on the image by a factor of about
18 (see Figure 2), leaving most of the image unmasked,
coupled with difference imaging artifacts, increases the number
of trajectories with > _LH > 10 by a factor of 10. This problem
is worsened by the intra-night cadence. The average time
between images within a single night is about 5 minutes. This
means that for a characteristic trajectory with a velocity of 100
pixels per day, objects will move by less than 1 pixel between
images. Conversely, this also means that if a static source
appears along the potential trajectory, flux from this object will
most likely be present in at least five trajectory data points,
introducing repeated outliers into the trajectory.

3.1. og Filtering

In order to deal with the increased number of high-likelihood
trajectories (i.e., 107 with YLH > 10), we developed faster,
more effective filtering. First, we altered how the GPU and
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C++ code handed off data to the Python-based filtering,
leading to a speed increase of up to 300%. Second, we replaced
the Kalman filter used in Whidden et al. (2019) with a more
statistically robust quantile-based filtering method. We describe
this new filtering method below.

With a traditional quantile-based filter, the filter rejects data
points that are greater than no from the central value of the
distribution, where o is a measure of the spread of the
distribution. In the case of a Gaussian distribution, o might be
estimated by computing the standard deviation of the data and
the central value estimated by computing the mean of the data.
If we take n =1, then this simple filter would reject any data
points that are greater than 1o from the mean.

In the presence of significant outliers, the mean and standard
deviation become biased estimators for the central value and
the spread of the underlying Gaussian distribution. Following
the approach of Ivezic et al. (2014), we adopt a robust estimator
for the central value and the true standard deviation of a
Gaussian distribution with outliers. Consider the cumulative
distribution function (CDF) of a Gaussian distribution

_ 1 X p
f(x)—2[1+erf(acﬁ)] (D)

where g is the mean, os is the standard deviation of the
Gaussian, and erf is the error function. The inverse, then, is
given by

X =p+ ogN2 erff[2f (x) — 1]. )

By sampling the Gaussian distribution at two quantiles f(x;)
and f(x;), we can estimate 0. To do this, we take the difference
of the inverted CDF

xj — x; = ogN2 (erf 1 [2f (x)) — 1]
—erf'[2f (x) — 1) 3)
1
erf*1[2f(xj) — 1] — erf ' [2f (x) — 1]
(xj — x) )

=0 =

=06 = Clx; — xil. 5)

Here, C is a coefficient dependent only on the choice of
quantiles. x; and x; are estimated by selecting values from the
lightcurve. The choice of upper and lower quantiles is user-
determinable. Here, we estimate o using data from the 25th to
75th percentiles for a coefficient of C,575~0.7413. Then, we
can estimate x,5 and x75 from the data by selecting the 25th and
75th percentile values, respectively, from the data. We can then
estimate the standard deviation of the underlying Gaussian
distribution with o = 0.7413(5 — x»5). Given a robust
estimator of the spread of the distribution (i.e., o), we apply
a filter that rejects any points that are not within £nog (e.g.,
20) of the median of the data.

We apply this method to the likelihood and/or flux values of
each trajectory. We then recompute >_LH for the trajectory
values that pass the filter and reject the trajectory if the
recomputed likelihood (3"LH) is less than 10. In practice, this
filtering method successfully rejects of order 10° erroneous
candidate trajectories in approximately 60s using 30 CPU
cores.
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3.2. In-line GPU PFiltering

Applying a variant of the o filter in the GPU while the
search is running, instead of in post-processing, increases the
number of potentially valid trajectories returned to the CPU by
KBMOD. In Whidden et al. (2019), KBMOD passed the four
trajectories per pixel with the highest > LH from the GPU to
the CPU. Other trajectories with the same startin% pixel were
discarded. Because KBMOD searches of order 10'* trajectories
for a 2K x4K image, it is computationally infeasible to keep the
results of all evaluated trajectories in GPU RAM. The
disadvantage of this approach is that lower-likelihood trajec-
tories may get removed from the search even if they are valid
trajectories of true objects. With reduced masking, there are
many erroneous candidate trajectories with high likelihood.
This means that removing the masks may have increased the
probability of discarding valid trajectories.

In-line GPU filtering solves this problem by applying the
filtering method to compute > LH’ before the trajectory is
passed back to the CPU. This in-line GPU filter means that if a
trajectory has a high > LH only due to an outlier in the data,
that trajectory is unlikely to supplant another valid trajectory
when GPU results are passed back to the CPU. We also
increased the number of returned results per pixel from four to
eight. This means that we were able to process about four times
as many results per pixel compared to Whidden et al. (2019).
The in-line GPU filtering uses a single GPU and is about 10%
faster than comparable CPU filtering using 30 CPU cores.
Figure 3 demonstrates how the in-line GPU filter returns more
potentially valid trajectories for a given number of trajectories
per pixel.

3.3. Median Stamp Coadd Generation

As shown in Figure 1, saturated cores and small image
misalignments leave a number of artifacts in the difference
image that also have to be accounted for in the filtering process.
As in Whidden et al. (2019), we computed the central moments
of postage stamps for candidate trajectories. Stamps were
rejected if they did not have central moments that were
consistent with a Gaussian. In this data, we required that the X,
y, Xy, XX, and yy moments be strictly less than 0.5, 0.5, 1.5,
36.5, and 36.5, respectively. These values were chosen
empirically based on the central moments of known KBOs.
We generated coadded stamps by computing the median pixel
value for each pixel along the trajectory. This mitigates the
effect of image-differencing artifacts, improving the perfor-
mance of the central moment filter.

3.4. CNN Filtering

To further reduce the number of false positives, we filter
using a convolutional neural network (CNN). We built a
residual network with 50 layers (ResNetSO'; He et al. 2016).
Residual networks are a type of CNN that add “shortcut
connections” to the network architecture, which help to train
deeper networks. Training a CNN requires a large amount of
representative data. In this case, we needed a large (>10%
labeled set of 21x21 stamps containing approximately equal
numbers of false positives and true positives. To generate false
positives, we ran an untargeted search (with similar grid

' https://github.com /priya-dwivedi /Deep-Learning /blob/master /resnet_
keras /Residual_Networks_yourself.ipynb
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are more likely to be potentially valid. These results are then processed with the CNN filter and subject to human review. These data come from repeated reprocessings

of pointing group 023, CCD 35.

spacing as described in 4.1) with a coadded likelihood limit of
>_LH > 10 along trajectories unlikely to correspond to real
objects (approximately 90° from the direction of the ecliptic).
We ran a total of 53 searches with data from 34 unique pointing
groups. These pointing groups were not constrained to the
search sample. These searches yielded 113,549 21x21 false
positive postage stamps. Because KBOs are relatively rare, we
could not use real recovered objects to generate the thousands
of true positives needed to train the CNN. To circumvent this
limitation, we generated 44,950 simulated true positives. To
make these stamps, we retrieved 25 21x21 postage stamps
from a CCD along a semi-random trajectory. Next, we drew a
random brightness from an exponential distribution (with
dimmer objects being the most likely). Using this brightness,
we added a Gaussian to each background stamp with a random
standard deviation (1-2.1 pixels), a random central offset
(<2 pixels), and a random linear offset (<2 pixels over the
image time baseline). To train the CNN, we cut the false
positive stamps and simulated true stamps down to 40,000
randomly selected coadded stamps each. We used 70% of the
data for training, 20% for validation, and the remaining 10%
for testing. After 20 epochs, the training set accuracy was about
99%, while the validation set accuracy was about 96%. After
training, the test set accuracy was also about 96%.

This CNN returns a predicted probability that a coadded
postage stamp contains a simulated object. Because the stamps
of simulated objects differ from the stamps of real objects, this
probability is not a perfect representation of the likelihood that

a coadded stamp contains a real object. However, it creates a
user-programmable threshold that can be used to reduce false
positives enough that the remaining candidate trajectories can
be analyzed by eye. We reject any stamps with a CNN
probability of true less than 75%. As shown in Figure 4, when
reviewing only objects with a >)_LH > 15 and using this CNN
filter, there are generally fewer than 10 candidate trajectories
per CCD that require human by-eye confirmation or rejection.

4. Results
4.1. Search, Detection, and Recovery

We ran an untargeted KBMOD search on each stack of
CCDs in the search sample for a total of 2580 searches. Similar
to Whidden et al. (2019), an untargeted search looks for linear
trajectories with velocities between 92 and 550 pixels per day
(1.04°hr " to 6.19”hr™') with angles of +7/10 from the
ecliptic angle. Compared to Whidden et al. (2019), we doubled
the resolution of the grid spacing from 256 velocity steps and
128 angle steps to 512 velocity steps and 256 angle steps. This
ensured that trajectories would end up separated by no more
than about 2 PSF FWHM from neighboring trajectories.

In order to test the efficiency of these new filtering methods,
we generated a list of known objects in the search sample. We
used Skybot (Berthier et al. 2006) and JPL Horizons
(Giorgini 2015) to find all KBOs that were present in the
search sample with the additional requirement that they be
present in the first image of the pointing group. We generated
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Figure 4. Number of results per CCD image stack from pointing group 190 requiring by-eye confirmation or rejection (hereafter “candidate trajectories™) for
likelihood limits of 10 (dashed line) and 15 (solid line), with (orange) and without (blue) RESNET 50 CNN filtering. These results are from pointing group 190, one of
the search sample pointing groups. Here, the CNN was set to filter out any candidate trajectories with a probability of true that was less than 75%. When using an LH
limit of 15 and the CNN, the number of candidate trajectories per CCD was reduced to 11 or less, an acceptable number of trajectories for a human to review.

21x21 pixel postage stamps of the object in each image in
which it is present. We developed a variant of KBMOD that
computes the likelihoods along a single trajectory then runs the
aforementioned quantile-based filtering and computed the
central moments of the postage stamps. Figure 5 shows these
results for pointing group 300, CCD 30, object 2015 GQ56.
We removed KBOs with an unfiltered >_LH < 15. This left us
with a “recovery sample” of 26 KBOs.

In the untargeted search of the search sample, we recovered
22 out of 26 (or 84.6%) of the known objects in the recovery
sample after all filtering was applied (see Figure 6). The CNN
probability threshold was kept at 75%. Recovery statistics for
these objects are shown in Figure 7. For object recovery, we
discarded any trajectories that had a starting position more than
5 pixels (approximately 1.35”, or 1 PSF FWHM) from the
predicted location or had a velocity difference from the known
velocity of more than 5 pixels per day (approximately
0.056” hr~'). The median position and speed residuals were
0.427” and 0.0036” hr!, respectively, significantly below the
chosen cutoff values. This velocity error corresponds to
approximately a 1.27 pixel position error over 4 days. Using
the NOAO DECam Exposure Time Calculator (ETC), we
estimate the single-image 100 depth to be at most 22.75V.
Because the pointing groups contain data from different nights,

we computed this limit assuming a new moon. It is therefore an
upper limit. Of the recovered objects, 18 were fainter than the
upper-limit single-image 100 depth. This confirms that
KBMOD is able to use difference images to find moving
KBOs that are too dim to detect in a single image at the 100
level, extending the result of Whidden et al. (2019) to
difference images.

We investigated each of the missed known objects
individually. 2013 GY136 (pointing group 204, CCD 57)
failed to process due to a CCD that failed image differencing.
This reduced the total number of images in CCD 57 to fewer
than 20 and CCD 57 was therefore not reprocessed. 2013
GZ137 (pointing group 202, CCD 52) failed CNN filtering
with a threshold of 75%, but passes with a threshold of 50%.
2015 GY55 (pointing group 306, CCD 26) starts within 4
pixels of the chip edge, causing this trajectory not to be
searched by KBMOD. 2013 GH137 (pointing group 192, CCD
41) has two fully masked stamps and two more with partial
masking, which may have caused it to be filtered out.

In addition to the 22 detected known objects in the recovery
sample, we detected 2 additional known KBOs. These KBOs
had an unfiltered >_LH < 15 along the JPL Horizons trajec-
tories and were therefore not included in the recovery sample.
The best KBMOD trajectories for these objects had a filtered
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Figure 5. Sample output for object 2015 GQS56 (pointing group 300, CCD 30) when using trajectory estimates from the JPL Horizons service. The first row shows the
coadded stamp (left) and the flux lightcurve (right). Orange points in the flux lightcurve are points that pass o lightcurve filtering. The remaining rows show the
postage stamps for 2015 GQ56 in each individual image. The coadded stamp was generated by taking the median value at each pixel; this effectively removes image-
differencing artifacts. This trajectory was generated using orbital values from JPL Horizons. These figures were generated for all known KBOs in the search sample in
order to determine the unfiltered >_LH, as well as for debugging purposes. Each stamp shows the estimated SNR v of that stamp.

SLH' > 15. We then linked these objects back with
known KBOs.

4.2. Orbit Fitting and Analysis

We detected 75 moving objects that we were unable to link
to existing objects. Trajectories with >_LH > 15 that passed all
filtering were accepted or rejected with a by-eye examination of
the individual stamps, the coadded stamp, and the flux
lightcurve.

As shown in Figure 8, we used the method described in
Bernstein & Khushalani (2000) to fit barycentric distance r,
inclination i, and longitude of ascending node {2 of both the

recovered known objects and the unidentified objects. For the
known objects, we compared the orbital parameters fit to the
KBMOD trajectory with their respective parameters as reported
by JPL Horizons. The medians of the absolute value of the
residuals between the best-fit values and the JPL Horizons
values are 0.36au, 0.32°, and 0.92° for ry, i, and €
respectively. The median values for ry and i of the known
objects reported by JPL Horizons are 7y = 41.55au and
[ = 5%46 , respectively. The median values of the unidentified
objects for the best-fit ry and i are 7 = 41.28 au and i = 7°67.
The three parameters (shown in Figure 8) that are well fit with
our data constrain the plane of the orbit and the initial distance
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Figure 7. Statistics for the known objects that were recovered with a untargeted KBMOD search on CCDs with known objects in the search sample. For object
recovery, we discarded any results that had a starting position more than 5 [l)ixels (approximately 1.35”, or one PSF FWHM) from the predicted location or had a
velocity difference of more than 5 pixels per day (approximately 0.056” hr™ ). The velocity cutoff was chosen based on the recovery distribution. As shown in the
bottom left and bottom right, respectively, the median difference between predicted and recovered position and speed was significantly lower than these cutoff values.
The upper left plot shows each trajectory’s initial predicted and recovered position on the CCD image for each object. The upper right plot shows each trajectory’s
predicted and recovered x and y velocity on the CCD image for each object.
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Figure 8. Best-fit barycentric distance r, inclination i, and longitude of ascending node 2 (dots) with respective standard deviations (lines) of the detected known
objects (left) and unidentified objects (right) using the method of Bernstein & Khushalani (2000). ry, i, and €2 were also fit with Find_Orb. When the value from
Find_Orb is inconsistent with Bernstein & Khushalani (2000) within 1o, we show the best-fit value from Bernstein & Khushalani (2000) with a square instead of a
dot. For the known objects, the JPL Horizons value of the corresponding parameter is overplotted with an x. The short time baseline of the observations allows us only
to constrain initial barycentric distance, inclination, and longitude of ascending node. The medians of the absolute value of the residuals between the best-fit values and
the JPL Horizons values are 0.36 au, 0.32°, and 0.92° for ry, i, and €2 respectively. As reported by JPL Horizons, the median values of the known objects for ry and i
are 7y = 41.55 au and i = 5°46 respectively. The median values of the unidentified objects for the best-fit r and i are 7o = 41.28 au and i = 7°67.

of the object from the solar system barycenter. Individual
values are shown in Table 1 in the Appendix.

In addition to the method of Bernstein & Khushalani (2000),
we used Find_Orb2 to fit ry, i, and 2. This allowed us to
compare the best-fit values between the two orbit-fitting codes.
When best-fit values from Find_Orb were not within 1o of the
best-fit value from the Bernstein & Khushalani (2000) code, we
show the value as a square in Figure 8. We discarded values
with inconsistent inclinations from the remainder of the orbit
analysis.

There were a few noteworthy limitations to our data set and
apparent outliers in our best-fit values. Because of the relatively
short time baseline of about 4 days, we were unable to place
any meaningful constraints on the other Keplerian elements

% hitps://github.com/Bill-Gray /find_orb
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individually. For three unidentified objects (unidentified object
numbers 58, 69, and 74), the orbit-fitting code did not return
uncertainties. We therefore consider them inconsistent between
Bernstein & Khushalani (2000) and Find_Orb. Unidentified
object numbers 4, 6, and 8 have a best-fit inclination of
ise > 90°. Similarly, known object number 20 (2000 EE173)
has a best-fit inclination of iz = 173°36 £0°54, but a JPL
Horizons inclination of igorizons = 5°95. However, these 4
objects are all marked as inconsistent between Find_Orb and
Bernstein & Khushalani (2000). As such, their best-fit values
are removed from further orbital analysis.

To evaluate the consistency of the properties of our detected
asteroids with published distributions, we apply the analysis of
Whidden et al. (2019) to the detected objects with consistent
inclinations reported in this paper. We compared our observed
inclination distribution with that of Brown (2001) by using a
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Figure 9. One-sided Kuiper variant of the Kolmogorov—Smirnov (K-S) test
comparing our recovered inclinations with the inclination distribution predicted
by Brown (2001). We reject the null hypothesis that our inclinations came from
the distribution of Brown (2001) with only 76.6% confidence (less than 10).
We therefore consider our observed inclinations to be consistent with the
distribution predicted by Brown (2001).

one-sided Kuiper variant of the Kolmogorov—Smirnov (K-S)
test. We use a test statistic of D\/ﬁ where N is the number of
objects and D is given by Equation (30) in Whidden et al.
(2019).

D = max(P; — j/N). 6)
P; is the probability for a given inclination distribution that an
object j has an inclination equal to or below the actual
inclination i;. Some TNO subpopulations have nonuniform
inclination distributions around the ecliptic. This is an
unmodeled systematic in our test statistic. We compute P;
using Monte Carlo methods. We take 107 inclinations from the
Brown (2001) distribution, place them randomly along circular
orbits and take all objects within +0°5 of the ecliptic latitude (3;
of discovery. These values allow us to find P; by calculating the
probability that an object with a given 3; has an inclination at or
below i;. We run 1000 Monte Carlo simulations, using the
mean D+/N as our test statistic. See Section 4.2.1 of Whidden
et al. (2019) and Section 3 of Brown (2001) for more details.

Our mean value for D/N was 1.40. As shown in Figure 9,
we reject the null hypothesis that our observed inclinations
come from the distribution of Brown (2001) with only 76.6%
confidence, which is less than the 1o confidence level of 84.1%
(DJ/N = 1.47). This is to say that we cannot confidently reject
the null hypothesis. We can therefore say that our observed
inclinations are consistent with Brown (2001).

We repeated the further comparison of Whidden et al.
(2019), using an approximate survey simulation to identify the
distribution of objects with a given inclination that we would
expect to find given the central R.A. and decl. of our search
sample. We modeled the DECam field of view as a circle with a
diameter of 2°2. We used the inclinations and orbits from the
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Monte Carlo simulations used to generate Figure 9 and
recorded the objects visible within the simulated camera
footprint. We then normalized this simulated object distribution
to the number of detected objects in the search sample.
Figure 10 shows the simulated distribution (blue) and the
observed distribution (orange). The x> value between the
simulated and expected distributions was 8.58, corresponding
to a p value of 0.48. We therefore again say that our observed
inclinations are consistent with Brown (2001).

4.3. Magnitude Estimation and Analysis

Figure 11 shows our estimates of the VR magnitude of the
known and unidentified objects detected with KBMOD. To fit
the VR magnitudes, we generated 25 x25 pixel postage stamps
in the undifferenced science images following the KBMOD
linear trajectory. In each stamp, we fit for the location of the
object by maximizing the value of the flux minus the stamp
background. The flux was calculated by summing the counts
within a circular top-hat PSF with a radius of twice the FWHM
of the stamp. The local stamp background was estimated from
the region outside of this PSF. The magnitude zero point was
obtained from the InstCal images. We then took the median
magnitude value from each set of 15 to 20 magnitude estimates.

As we did in Whidden et al. (2019), we compared our joint
magnitude distribution with the apparent magnitude luminosity
function presented in Fraser et al. (2008), adjusting for ecliptic
latitude by using the inclination distribution of Brown (2001).
We use the < VR — R > KBO color reported by Fraser et al.
(2008). We note, however, that the DECam VR filter of our
observations differs somewhat from the Mosaic2 VR filter used
in Fraser et al. (2008). They have similar central wavelengths,
but different filter response curves. Individual magnitudes are
shown in Appendix Table 1. The magnitude uncertainties listed
in the Appendix are reported as o uncertainties estimated from
each set of magnitude estimates.

We approximate the camera footprint as a 3 deg? circle. In
practice, our trajectories do not cover the entire camera
footprint. Each individual KBMOD search only uses data from
a single CCD, requiring 60 individual searches to cover a full
camera footprint. We further require that each candidate
trajectory have at least 15 observations, corresponding to a
time baseline of about 3 days. Depending on the search
velocity and angle, this means that any objects that start near a
CCD edge will not be searched, as the trajectory will go off the
CCD edge before the trajectory has the requisite 15 observa-
tions. We define an effective search fill factor as the fraction of
the CCD that is actually searched with KBMOD. For our
search parameters, the search fill factor varies from about 0.5 to
about 0.9. Assuming a typical KBO speed and angle of 275
pixels per day with an in-image angle of 4.4 radians gives a
typical search fill factor of around 0.7. Multiplying this by the
camera active-pixel fill factor of about 0.8 gives a typical net
fill factor of approximately 0.55.

Figure 12 shows a histogram of our observed VR magnitudes
along with the number expected from Fraser et al. (2008)
assuming a fill factor of 1.0 and 0.55. Our joint magnitude
distribution is largely inconsistent with Fraser et al. (2008)
assuming a fill factor of 1.0, but is consistent to within
uncertainties up to about VR =23.25 assuming a fill factor
of 0.55.
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Figure 11. Best-fit VR magnitudes for the previously known objects (left) and unidentified objects (right).

5. Discussion

The improvements already presented in this paper helped
enable KBMOD to detect 22 out of 26 known objects in the
recovery sample. The trajectories of these known objects were
recovered with a median error in the starting position of less
than two pixels. Furthermore, KBMOD was able to detect 75
objects that we were unable to link with any previously known
objects. Although the time baseline of the data was short, we
were able to fit the barycentric distance, inclination, and
longitude of the ascending node of both the known objects and
the unidentified objects. The inclination distribution of the
recovered objects is consistent with the distribution from
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Brown (2001). The number of objects detected as a function of
magnitude is consistent with the distribution from Fraser et al.
(2008) assuming a net fill factor of 0.55.

Whidden et al. (2019) validated KBMOD on the High
Cadence Transient Survey (HiTS; Forster et al. 2016). This
work validates algorithmic improvements to KBMOD filtering
with a survey that has a time baseline of up to four nights,
compared to the three nights used in Whidden et al. (2019).
Furthermore, this work validates KBMOD as applied to images
that have been differenced with a coadded template.

In so doing, we demonstrated that KBMOD can recover
KBOs in difference images from a survey with a longer time
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baseline and an irregular cadence. However, this required more
robust filtering methods. By adding GPU filtering, we have
increased the effective number of potentially valid candidate
trajectories that can be passed out of the GPU for further
filtering and analysis. With the os-based filtering, we have also
implemented more robust lightcurve filtering that improves
filtering with an irregular image cadence. The CNN ResNet50
stamp filter shows great promise for future stamp-filtering
methods.

Next-generation astronomy surveys will soon be current-
generation. This imminent wealth of data will require new
computational tools in order to access its full potential.
KBMOD has the potential to increase the number of TNOs
detected with LSST from ~40,000 to ~320,000 as well as
investigate the faint and mysterious class of objects at the very
edge of our solar system. In terms of probing the sednoids, with
three months of coadded data we could detect a Sedna-like
object at opposition at over 290 au, as opposed to ~210 au for a
single image. With a year of coadded data, 290 au increases to
310 au. If we could coadd the entire LSST survey, 310au
increases to over 415 au. Note that objects on elliptical orbits
spend much more of their time further from the Sun. If Sedna,
which was detected near its perihelion around 90 au (Brown
et al. 2004), is representative of a larger population of sedoids,
then most of these objects should be closer to apocenter than
pericenter. Therefore, a linear increase in detection distance
should yield a super-linear increase in the number of detected
objects on a similar orbit. With this coaddition approach, it
might even be possible to detect inner Oort Cloud objects with
perihelion near 400 au, and aphelion well beyond.

Further work is needed before KBMOD will be able to run
on LSST. We do not currently address the “look-elsewhere”
effect in our search algorithm (e.g., Vitells & Gross 2011).
However, our false positives are already dominated by image
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artifacts and real sources. Even after filtering, trajectories
require human by-eye confirmation or rejection. Because of this
requirement of human review, we consider this an acceptable
limitation. Future work will further investigate necessary
algorithmic improvements to enable machine-only object
confirmation, including addressing the “look-elsewhere” effect.

Enabling KBMOD to search across multiple CCDs will
increase the effective fill factor, enabling greater completeness
and longer time baselines. CCD chip gaps and camera edges
will always keep the fill factor below 1.0 (relative to a circular
footprint). However, with a CCD chip gap between 153
(columns) and 201 (rows) pixels, a KBO would move past the
chip gap and onto the next CCD in about one night, assuming a
typical KBO velocity of 275 pixels per day.

Improving image astrometry and image differencing is likely
to reduce the number of image-differencing artifacts, thereby
reducing the number of candidate trajectories requiring by-eye
detection. The nonuniformity of the image time baseline in this
survey means that artifacts appeared in approximately the same
location in up to five images. This posed a unique challenge to
filtering out artifacts from candidate trajectories. Because of
these factors, and because we ultimately validate each detected
object by eye, we save a full efficiency analysis of KBMOD for
a future survey.

Given the relatively low inclination (median value of
i =7°67) and barycentric distances between 30au and 50
(median value of 7y = 41.28 au), we find it likely that the
majority of the unidentified objects presented in Figure 8§ are
Kuiper Belt objects. However, because the short arcs prevent us
from placing accurate constraints on semimajor axis and
eccentricity, we are unable to confirm this prediction with the
current data. Future followup or precovery attempts for these
objects may be able to extend the observational arcs enough to
accurately constrain them to the Kuiper Belt, and perhaps place
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them within a Kuiper Belt subpopulation (e.g., the cold
classical Kuiper Belt).
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Appendix
Table of Detected Object Parameters

Table 1
Best-Fit Parameters Estimated from the DECam NEO Survey Data for Objects Detected with KBMOD

Identifier VR Mag Barycentric i (degrees) Q (degrees) Linked to
(pg, ccd) Distance (au) Known Object
(190,20) 24.46 £0.22 3838 £2.42 8.58 +2.99 48.73 +4.99 True
(190,23) 24.13 £ 0.82 42.02 £+ 2.43 3.10 £ 0.50 84.35 £10.33 True
(191,27) 2427 £0.23 39.76 £ 2.41 3.60 £1.33 36.21 £0.22 True
(191,47) 24.18 £0.40 31.87 £2.31 4.34 £1.69 31.89 £ 1.58 True
(192,06) 24.51 £0.27 54.00 £ 2.60 252+0.92 206.20 £+ 4.28 True
(192,36) 24.48 £0.40 4197 £2.46 5.16 £1.89 35.82+£0.84 True
(192,42) 24.37 +£0.29 43.62 £+ 2.47 2.14 4+ 0.78 2431 +5.10 True
(193,05) 24.61 +£0.29 39.75 £2.41 275 £0.35 90.86 £9.91 True
(193,18) 24.44 £ 0.37 4230 £2.51 11.27 £ 4.05 206.48 £ 4.19 True
(193,21) 24.48 £0.36 46.19 £ 2.49 2.90 £ 0.67 73.62 £9.82 True
(193,23) 2372 +£0.19 43.08 £ 2.46 2.82 4+ 0.59 173.42 £+ 11.60 True
(193,50) 2431 £0.29 3236 £2.51 17.95 £7.29 4220 £ 1.84 True
(301,46) 23.76 £ 0.57 4495 £ 2.61 2.02 +£0.74 8.43 £5.74 True
(302,06) 22.83 £0.29 38.44 £ 3.69 30.55 £ 17.70 199.08 £ 2.98 True
(195,47) 22.97 £ 0.15 3248 £245 9.90 £ 3.56 14.35 + 8.85 True
(202,48) 23.26 £0.17 40.88 £2.58 1622 £5.92 47.86 £ 3.56 True
(203,09) 24.18 + 0.68 44.53 +2.48 2.08 £+ 0.36 166.51 £+ 12.63 True
(203,11) 23.92 £0.20 48.25 £2.90 24.39 £9.49 215.16 £ 1.73 True
(203,43) 24.52 £ 0.47 44.81 +£2.53 8.68 £ 3.05 45.78 +£2.30 True
(205,18) 24.04 £0.59 41.57 £2.47 3.22+£0.04 122.65 £ 4.57 True
(284,29) 22.06 £ 0.46 34.99 +2.54 173.36 + 0.54 136.65 £+ 10.42 True
(285,22) 20.75 £ 0.07 41.60 £3.94 14.00 £ 6.38 349.32 £17.52 True
(296,28) 22.69 £+ 0.16 4122 +£2.71 6.75 + 1.43 252.08 £+ 13.39 True
(300,30) 23.70 + 0.98 46.90 £2.94 17.79 £ 7.56 24.73 £0.84 True
(017,46) 23.99 £+ 0.33 35.59 £2.45 5314024 285.01 £ 7.11 False
(018,20) 2393 £1.26 38.64 +£2.45 4.92 £0.10 316.13 £5.57 False
(018,52) 24.78 £+ 0.80 46.17 £ 2.57 12.08 £+ 3.39 243.09 + 8.42 False
(191,19) 24.99 £0.58 4291 £2.44 1.58 £0.62 39.44 + 1.65 False
(191,50) 24.14 £ 0.36 30.67 £ 1.17 156.06 + 4.63 216.93 £+ 0.01 False
(192,05) 2441 £0.24 41.54 £243 1.07 £ 0.49 58.69 £ 10.24 False
(192,08) 24.20 £ 0.23 30.66 £ 1.17 155.99 +4.65 216.93 £+ 0.01 False
(192,08) 24.74 £0.24 4049 £2.42 0.80 £ 0.37 4248 £2.53 False
(192,54) 22.24 +£0.04 3295 £ 1.16 166.54 +2.55 41.03 £ 0.58 False
(193,07) 2442 £0.33 41.65 £2.44 3.00 £0.38 91.13 £9.69 False
(193,10) 24.65 + 0.52 42.19 +£2.44 2.70 £ 0.37 89.64 + 10.07 False
(193,14) 23.96 £ 0.41 4247 £2.45 4.01 £1.17 62.14 £7.95 False
(193,14) 25.02 £0.93 41.86 £2.43 1.83 £0.10 107.81 £9.23 False
(193,26) 2397 £0.14 42.55 £2.44 3.06 £0.93 63.12 £ 8.68 False
(193,32) 24.48 + 0.64 36.70 £ 2.37 4.86 + 1.69 50.56 £+ 5.10 False
(193,40) 24.62 £0.31 42.11 £2.44 222 +0.62 66.85 £9.23 False
(301,30) 22.65 + 1.01 41.40 £ 2.73 16.18 £ 6.70 203.61 £ 0.50 False
(301,40) 23.69 £ 0.40 41.28 £2.65 0.63 £0.24 238.25 £ 15.08 False
(305,14) 23.27 +£0.34 39.36 £2.42 7.04 £+ 2.54 36.55 £3.74 False
(305,28) 23.40 £0.43 41.71 £2.44 1.24 £0.04 129.48 £ 8.93 False
(305,60) 23.23 £ 0.46 33.71 £2.69 24.33 £+ 10.40 206.56 £+ 0.24 False
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Table 1
(Continued)

Identifier VR Mag Barycentric i (degrees) Q (degrees) Linked to
(pg, ccd) Distance (au) Known Object
(306,47) 2342 +£0.28 42.58 £2.51 4.02 £0.99 63.85 £ 10.83 False
(306,48) 22.90 £ 0.54 38.66 £ 2.59 13.04 £5.12 37.81 £4.62 False
(306,49) 22.93 £0.69 38.26 £ 2.46 2.75 +£0.07 130.35 £ 5.44 False
(307,05) 23.36 £+ 0.69 32.65 £ 2.60 520+ 0.24 135.87 + 7.47 False
(310,29) 22.95 +£0.18 46.00 &+ 2.53 440+ 0.11 105.05 £ 5.51 False
(310,29) 23.01 £0.55 47.06 £+ 2.54 4.18 £0.03 125.85 £3.95 False
(310,36) 23.93 £0.68 39.59 £3.05 28.70 £ 12.84 202.30 £3.92 False
(311,46) 22.38 £0.19 41.20 £ 2.90 25.12 £ 10.68 23.80 £0.88 False
(313,60) 22.85 +£0.24 34.45 +£2.43 522+ 1.24 248.71 + 11.50 False
(314,13) 2321 £0.26 34.06 £+ 2.38 4.65 + 1.81 213.63 £ 2.65 False
(316,45) 23.17 £0.51 4523 +£2.49 6.53 +2.19 14.69 +4.92 False
(316,55) 23.06 £0.22 42.89 +2.46 6.75 £2.36 19.17 £3.99 False
(194,18) 24.61 £ 0.68 43.06 +2.45 1.51 £0.34 351.73 £ 13.15 False
(194,21) 24.42 £0.26 43.55 £2.46 2.94 £0.83 544 £9.74 False
(194,27) 2452 & ... 34.99 £ 2.46 14.26 +5.49 222.73 £ 2.60 False
(195,20) 24.14 £0.21 48.32 £2.78 2131 £7.74 22549 £3.55 False
(195,60) 24.84 £ 0.70 34.81 £2.41 434 +0.03 311.05 £4.15 False
(196,30) 24.61 £0.57 3551 £2.58 14.99 £ 6.01 25.81 £5.82 False
(197,19) 24.46 £+ 0.49 43.06 +2.46 246 £0.34 341.70 £ 11.82 False
(197,34) 22.84 £0.23 38.20 £ 2.45 10.77 £ 3.82 229.64 £4.24 False
(197,36) 24.75 £ 0.73 4191 +245 3.26 £ 0.80 359.82 £ 11.28 False
(197,58) 24.13 £0.60 3547 £2.71 23.38 £9.82 3245 +£294 False
(202,05) 23.88 £0.13 41.77 £ 245 3.54 £0.03 121.93 £ 4.22 False
(202,20) 23.60 £ 0.40 46.02 £2.53 8.61 £2.62 58.42 + 6.64 False
(202,27) 23.44 £0.28 39.07 £+ 2.44 8.62 £2.75 57.97 £ 6.73 False
(202,36) 23.71 £0.29 38.38 £3.22 34.18 £ 15.74 42.95 £2.59 False
(202,40) 2343 £0.24 3443 £3.42 35.99 £ 18.64 41.40+2.35 False
(202,42) 24.27 £ 0.60 42.86 £4.42 46.16 £+ 26.51 41.31 £2.46 False
(203,12) 24.18 £ 0.56 4541 +£2.56 10.71 £ 3.84 209.74 £ 3.52 False
(203,43) 2457 £1.29 41.76 £2.45 1.04 £0.01 130.90 + 14.38 False
(204,21) 2395 + 1.04 46.44 +2.54 571 +£2.04 211.76 £ 3.18 False
(204,21) 24.04 £0.45 42.46 +£2.48 2.51+0.78 6247 £7.19 False
(204,27) 24.00 £+ 0.42 47.18 £2.59 10.79 +£3.91 216.79 £ 1.34 False
(204,41) 24.07 £0.48 44.49 +£2.50 0.61 £0.24 177.43 £ 21.56 False
(205,22) 2437 £0.45 38.39 £2.49 7.67 £2.68 198.45 £7.99 False
(205,23) 24.14 £0.33 41.25 £2.53 1144 £4.13 205.70 £5.58 False
(205,49) 24.26 £+ 0.40 43.63 +£2.49 2.33 +£0.06 139.21 £ 8.76 False
(284,13) 2345 +£0.18 36.40 £ ... 31.17 £ ... 1041 £ ... False
(284,29) 23.59 £0.68 37.56 £4.53 9.23 £4.19 340.77 £ 22.78 False
(284,42) 22.60 £0.18 41.54 £3.52 10.56 £ 4.43 238.99 £+ 18.72 False
(284,52) 23.68 £ 0.27 41.11 £ 3.67 10.45 +3.41 340.23 £ 16.58 False
(284,59) 2325 £0.62 36.70 £ 4.97 8.47 £3.74 254.19 £ 32.60 False
(288,15) 23.89 £+ 0.48 4570 +3.47 17.81 £9.31 12.57 £ 4.05 False
(288,29) 2341 £0.28 4498 £ 4.41 30.20 £ 20.59 204.55 £3.45 False
(288,48) 23.54 £0.27 40.10 £ 3.98 19.55 £ 13.47 208.92 £6.35 False
(289,48) 23.51 £0.41 38.02 £ 6.91 21.02 £ 27.89 213.72 £+ 18.67 False
(289,48) 23.82 £0.51 4245 +3.30 8.96 £+ 3.85 233.24 £+ 15.66 False
(290,23) 23.84 +£0.37 47.45 £3.38 26.35 £ 12.60 211.83 £4.95 False
(291,08) 2325 £0.26 34.80 £ ... 40.90 £ ... 18.00 £ ... False
(291,27) 23.85 £ 0.61 33.10 £ 1091 29.45 £ 64.35 206.97 £+ 13.80 False
(296,43) 23.60 £ 0.31 38.91 £2.78 6.00 +0.71 327.10 £ 10.71 False
(297,46) 23.33 £0.27 33.72 £4.03 7.33 £0.07 291.61 £6.21 False
(298,22) 2395 £0.41 45.59 £+ 4.09 36.73 £ 20.72 216.21 £ 7.06 False
(298,26) 22.38 £ 0.59 33.54 £ .. 39.53 £ ... 17.32 £+ ... False

Note. Objects are identified based on their detected pointing Group (pg) and CCD. Orbital values and uncertainties are found using the method of Bernstein &
Khushalani (2000). VR magnitudes are found as described in 4.3. VR magnitude uncertainties are o uncertainties, estimated based on the individual stamp VR
magnitude estimates. Parameters for which no uncertainty was returned are indicated with an ellipsis in the uncertainty value.
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