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The degrees of freedom that confer to strongly correlated systems their many intriguing proper-
ties also render them fairly intractable through typical perturbative treatments. For this reason,
the mechanisms responsible for their technologically promising properties remain mostly elusive.
Computational approaches have played a major role in efforts to fill this void. In particular, dy-
namical mean field theory (DMFT) and its cluster extension, the dynamical cluster approximation
(DCA) have allowed significant progress. However, despite all the insightful results of these embed-
ding schemes, computational constraints, such as the minus sign problem in Quantum Monte Carlo
(QMC), and the exponential growth of the Hilbert space in exact diagonalization (ED) methods,
still limit the length scale within which correlations can be treated exactly in the formalism. A
recent advance aiming to overcome these difficulties is the development of multiscale many body
approaches whereby this challenge is addressed by introducing an intermediate length scale between
the short length scale where correlations are treated exactly using a cluster solver such QMC or ED,
and the long length scale where correlations are treated in a mean field manner. At this intermediate
length scale correlations can be treated perturbatively. This is the essence of multiscale many-body
methods. We will review various implementations of these multiscale many-body approaches, the
results they have produced, and the outstanding challenges that should be addressed for further
advances.

I. INTRODUCTION

Strongly correlated systems include some of the most
technologically promising materials of our time. To har-
ness their significant promise, understanding the funda-
mental mechanisms responsible for their intriguing prop-
erties is essential.1–5 This understanding remains a chal-
lenge for the condensed matter community despite sev-
eral decades of intense effort. For instance, although
the discovery of high temperature superconductors dates
back to 1987,6 the underlying superconducting mecha-
nism remains the subject of intense research activity.
Following their discovery, the Hubbard model was pos-
tulated to contain the ingredients necessary to explain
the properties of high temperature superconductors and
their low-energy excitations.7 But despite its simplicity,
an exact solution of the Hubbard model beyond one di-
mension remains elusive.8,9 Therefore, numerical meth-
ods have played a crucial role. These methods are how-
ever constrained by the minus sign problem for Quantum
Monte Carlo (QMC), or by the exponential scaling of
the Hilbert space for exact diagonalization, to relatively
small system sizes. Embedding schemes have emerged as
an important avenue to treat the problem in the ther-
modynamic limit. These schemes map the lattice prob-
lem onto an impurity, for the case of dynamical mean
field theory, or onto a cluster for the case of its clus-
ter extensions, dynamical cluster approximation or cellu-
lar dynamical mean field theory, embedded into a mean
field.10,11 Embedding approaches allow the exact treat-
ment of short length scales at the level of the cluster or
the impurity, and the treatment of longer length scales
at the mean field level. Multiscale many body methods

follow this logic to its natural next step by incorporating
between the previous two length scales, an intermediate
one at which correlations are treated with diagrammatic
perturbation theory.12

In general, the difficulty in understanding correlated
systems lies in the fact that there are no simple theories
to explain both the weak interaction limit of the metallic
state and the strong interaction limit of the Mott insulat-
ing phase.13,14 The most successful theory of interacting
fermions is the Fermi liquid theory.15–17 The basic under-
lying assumption is that the interaction can be turned
on adiabatically from the non-interacting free fermions
limit. The consequence is that the quantum numbers of
the non-interacting fermions remain unchanged. Elec-
trons can be treated as quasi-particles in a rather stable
state with a lifetime that becomes very long for those
states near the Fermi level.

The Fermi liquid theory is a very efficient descrip-
tion of interacting fermions in a metallic phase15–17. It
is applicable to almost all metallic phases, except for
special circumstances such as the notable exception of
one-dimensional systems. The theory owes its simplicity
to being an effective renormalized single particle theory.
Once the system is beyond the simple single particle de-
scription, there is no universal prescription to handle the
competition or cooperation between the different degrees
of freedom and the interplay between the kinetic and the
potential energies. Precisely for this reason, numerical
methods are often inevitable for practical calculations.

Widely used mean field methods factorize the interac-
tion terms in the Hamiltonian to reduce the problem to
an effective single particle theory in a static potential.
The mean field, Hartree-Fock, approximation often pro-
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vides reasonable results18–21, but its shortcomings are
also obvious, in particular for intermediate interaction
strengths where quantum fluctuations are large. The
Hartree-Fock approximation quenches the quantum or
temporal fluctuations completely. This may be a rea-
sonable assumption if the interactions are overpowered
by the kinetic energy terms. However, for many phys-
ical realizations of strongly correlated systems, perhaps
the most well known one being the cuprate superconduc-
tors, the interaction is of the same order of magnitude as
the bandwidth. Naively factorizing the interaction term
to suppress all the quantum fluctuations is questionable
at best. Indeed, there is currently no simple mean field
theory that can explain most features of the cuprate su-
perconductors. Understanding the metallic phases be-
yond Fermi liquid theory is key for understanding bro-
ken symmetry phases, such as d-wave superconducting
pairing in the cuprates. While one can construct a phase
with no explicit broken symmetry and use the mean field
method to understand the effective theory, this always in-
volves fractionalized particles and strong constraints such
as those of gauge theories.22

Beyond mean field theory, there exists a plethora of
techniques based on weak coupling expansion. They are
typically based on low order perturbative methods, such
as second order perturbation theory, or on selecting a cer-
tain class of diagrams and summing them up to infinite
order. A typical example is the random phase approxi-
mation (RPA), which selects the class of ladder diagrams
and sums them up to infinite order.23–26 A more sophisti-
cated approach is to sum a large class of diagrams in an
iterative way. For example, parquet diagrams are gen-
erated when second order diagrams are inserted itera-
tively into the interaction vertex. This generates a class
of diagrams that can only be separated into two discon-
nected pieces by cutting at least two fermion lines.27–29

The advantage of the parquet approach compared to sec-
ond order perturbation theory is in the ability to sum
up a large variety of diagrams including those at infinite
order. This, in principle, allows the instability towards a
broken symmetry to be captured30–32. Its main advan-
tage over random phase approximation is in its unbiased
sum of diagrams in different scattering channels to en-
able the study of the competition among different broken
symmetries.

Instead of using a diagrammatic expansion approach,
the Dynamical Mean Field Theory (DMFT) maps the
strongly correlated lattice onto an impurity site embed-
ded in a self-consistently determined effective medium.
The interest in the high spatial dimension limit of
strongly correlated models in the late 80’s and early 90’s
led to the understanding that in this limit, strongly cor-
related models with local interactions can be greatly sim-
plified. This is due to the fact that an expansion in terms
of the hopping amplitude in infinite dimension leads to
the vanishing of all diagrams except the local ones, and,
for a translationally invariant system, the model loses all
spatial dependence. This simplification led to the dy-

namical mean field theory.

DMFT remains the subject of active research efforts,
particularly because there is no universal quantum impu-
rity solver. Various methods have been proposed over the
past few decades. These include semi-analytical meth-
ods based on perturbation theory or modified mean field
theories. The more well known methods include the iter-
ative perturbation theory and the local moment approx-
imation. Numerical approaches include various kinds of
Quantum Monte Carlo and exact diagonalization meth-
ods. Recently, density matrix renormalization group and
matrix product state methods have also been explored.
Quantum computing algorithms for solving the quantum
impurity problem have been proposed recently.33–36 After
all, solving even a single impurity is a non-trivial prob-
lem, as the mean field hybridization function is not given
by a simple form that can allow an analytical solution.

It is worth noting that the DMFT can be viewed as
a formal generalization of the coherent potential approx-
imation (CPA) proposed by Soven in the 60’s.37,38 The
CPA has since been extensively used for studies of ran-
dom disorder models with negligible interactions, in par-
ticular for random alloys. Various extensions of CPA
have been proposed over the years. The earliest one that
goes beyond the single site approximation is the molec-
ular CPA.39,40 It embeds the cluster into an effective
medium that possesses the same structure as the clus-
ter itself. It thus generates an effective medium differ-
ent from that of the CPA. The obvious deficiency of the
method is the breaking of translational invariance.

A different scheme of embedding cluster methods is
the Dynamical Cluster Approximation (DCA)41,42. By
construction, the method naturally preserves the trans-
lational invariance of the original model by directly work-
ing with both the cluster and the effective medium
in momentum space. The method has been exten-
sively employed on the Hubbard model43–45, Ander-
son model46, periodic Anderson model47, and Falicov-
Kimball model48. The cluster extension is not just a
quantitative improvement on the DMFT. It is neces-
sary to produce important features that are absent in
the DMFT results. Perhaps the most important one
is the DCA’s ability to capture nonlocal correlations
such as that of d-wave pairing, which is obviously ab-
sent for approximations that do not consider spatial
dependence explicitly49. The method has also been
considered in the context of multiple scattering theory
where it is re-branded as non-linear coherent potential
approximation50.

The difficulty of solving a cluster impurity (or em-
bedded cluster) problem scales exponentially. Roughly
speaking, quantum Monte Carlo based methods scale
exponentially with the number of impurity sites (clus-
ter size), with inverse temperature, or with the inter-
action strength51–54. The exception is strong-coupling
expansion based Monte Carlo methods, but this is
usually limited to a rather small number of impurity
sites55,56. Another class of impurity/cluster solvers is
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based on diagonalization of the effective finite size Hamil-
tonian. For these Hamiltonian-based solvers, such as ex-
act diagonalization57–62, the Hilbert space grows expo-
nentially with the cluster size and thus both comput-
ing memory and time requirements grow at the same
rate. This is also true to a large extent for another
Hamiltonian-based approach, the numerical renormaliza-
tion group method63–66. In general, for practical calcu-
lations, the maximum number of impurity sites is rather
modest (∼ 10 sites).

Over the last couple of decades various novel methods
have been proposed. These include the density matrix
renormalization group67,68, the related matrix product
wavefunction69 and, even more recently, different forms
of machine learning approaches70,71. These more re-
cent methods may have potential for certain applications.
For instance, they may be more efficient for calculating
real time Green functions in nonequilibrium problems72.
Approaches based on machine learning could also be
more efficient in solving a large set of impurity prob-
lems, and this may be useful for applications on ran-
dom systems that require averaging over random disor-
der realizations73. However, none of these novel impurity
solvers are suitable for the calculation of the vertex func-
tion which is essential for most methods that are built
on an expansion on top of the DMFT solution. Addi-
tionally, Monte Carlo sampling of the partition function
provides more flexibility for controlling the error as the
impurity cluster size is increased. Also, although it has
been proven that the single impurity problem does not
exhibit a minus sign problem, the absence of minus sign
in the Monte Carlo sampling can not be assumed for a
generic impurity problem74.

Following the logic of embedding a small system into a
mean-field host, one can anticipate better accuracy in the
result if an intermediate length scale is inserted between
the previous two. Since short length scales are appropri-
ately treated with exact solvers and the long length scale
by a mean field, this intermediate length scale can be
treated reliably with diagrammatic methods. This is the
essence of multiscale many body methods for strongly
correlated systems as formulated in the early 2000’s12

and the subject of continued efforts since then75.

This review focuses exclusively on the methods for
studying systems in equilibrium. It is noteworthy to
point that effort has been devoted to the generalization of
the multiscale many body (MSMB) approaches to non-
equilibrium problems76–78. We refer the reader to the
original article for details76, as we do not discuss these
nonequilibrium approaches in the present paper.

The rest of the review is structured as follows. In sec-
tion II, we summarize the DMFT method and its connec-
tion to the Anderson impurity problem by approaching it
from its ”cavity method” formulation. In section III, we
discuss two cluster extensions of DMFT, dynamical clus-
ter approximation (DCA) and cellular dynamical mean
field theory (CDMFT). We proceed in section IV with
a discussion of the extended dynamical mean field the-

ory (EDMFT) that extends DMFT to the treatment of
nonlocal interaction. Section V is focused on the 1/d ex-
pansion, a systematic expansion of DMFT with respect
to the hopping amplitude. In section VI, we describe
the original formulation of the multiscale many body
method. The parquet formalism, which encompasses var-
ious commonly used diagrammatic approximations, and
which is essential for the diagrammatic treatment of in-
termediate length scales, is described in section VII. Fol-
lowing this, we briefly describe different implementations
to incorporate nonlocal corrections into the DMFT/DCA
starting with the dynamical vertex approximation in sec-
tion VIII, and then the dual fermion method in section
IX. In section X, we present the dual boson extension for
corrections to EDMFT. In section XI, we discuss efforts
to incorporate nonlocal correction into the GW approx-
imation (an approach that obtains the self-energy from
the single particle Green function (G) and the screened
Coulomb interaction (W)) in the form of the “triply ir-
reducible local expansion” (TRILEX). In section XII, we
discuss functional renormalization group and its usage
for nonlocal corrections to DMFT. In section XIII, an
important computational challenge, the numerical repre-
sentation of the vertex functions in memory, is discussed.
In section XIV, we discuss important physical constraints
on the methods. In section XV, we summarize results ob-
tained on different models with various implementations
of the multiscale many-body approach before ending with
our conclusions.

II. DYNAMICAL MEAN FIELD THEORY

Following the discovery of high temperature super-
conductors, it was argued that the Hubbard model (1)
captures their low energy properties.7 This deceptively
simple model describes itinerant electrons that can hop
between nearest-neighbor sites 〈i, j〉 on a lattice with a
hopping integral tij , and are subject to a Coulomb inter-
action U when a site is doubly occupied. The model is
schematically depicted in Fig. 1 and defined as:

Ĥ = −
∑

<i,j>,σ

tijc
†
i,σcj,σ +

∑

i

Un̂i,↑n̂i,↓, (1)

where ci,σ (c†i,σ) is the destruction (creation) operator

that destroys (creates) an electron with spin σ at site i.

n̂i,σ = c†i,σci,σ is the number of particles of spin σ at site
i.
The DMFT method in itself is a generalization of the

usual mean field theory. But unlike the usual mean field
theory, say for the Ising model for example, the mean
field here is not an order parameter. Instead it is a func-
tion of time or frequency. Thus, the approach captures
all temporal fluctuations. Focusing on the translationally
invariant paramagnetic phase, there is no explicit order
parameter. One may also construct an explicit order pa-
rameter to represent the broken symmetry, but this is
not done routinely and is not the focus of this discussion.
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FIG. 1. Schematic illustration of the Hubbard model on a
square lattice. Electrons are allowed to hop between nearest
neighboring sites with a hopping amplitude t, and the inter-
action of strength U is local.

Within the DMFT solution of a translationally invari-
ant system, the spatial fluctuations are completely sup-
pressed as in a traditional mean field theory. As we will
see, a major way to improve the approximation is to sys-
tematically incorporate the corrections due to the spatial
dependence of the model into the DMFT solution. Also,
since the self-consistency condition is valid only at the
single particle level, there is no guarantee that high or-
der Green functions, such as the different susceptibilities,
are matched between the lattice and impurity models.
When the DMFT was developed in the early

90’s11,79–86, solving even a single impurity problem was
rather challenging. With the formulation of new nu-
merical algorithms and advances in computing power, a
single impurity problem can, in general, be numerically
solved quite efficiently. While there is still not a com-
pletely satisfactory method that is accurate for a wide
range of parameters, particularly for solving interacting
problems with random disorder which requires a large
ensemble of different impurity realizations for disorder
averaging73,87,88, the single impurity problem can mostly
be handled at the present time.
As a side note, it is worth mentioning that ear-

lier work on DMFT can be traced back to the study
of the transverse-field Sherrington-Kirkpatrick model.89

In that model the spatial fluctuations are completely
suppressed as the model consists of spin couplings in
the fully connected network with the transverse exter-
nal magnetic field, thus it can be mapped to a single
site problem.90 The idea of similarly handling fermion
problems only appeared in the late 80’s in studies of
fermionic systems in the infinite dimensional limit by
Vollhardt and Metzer.79,80 A series of papers by Mller-
Hartmann were also influential in the development of
DMFT and later generalizations to the dynamical clus-
ter approximation.81,82 In 1991, the physics of the Hub-
bard model via DMFT was discussed by Georges and
Kotliar.83 The first numerically “exact” DMFT solution
of the Hubbard model was presented by Jarrell.84

The DMFT formalism can be explained quite trans-
parently from a path integral formulation. Consider the
action of the Hubbard model on a lattice,

S = −
∑

ri,rj ,σ

∫ β

0

∫ β

0

dτidτjψ
∗
σ(ri, τi)G

−1
0 (ri, τi, rj , τj)ψσ(rj , τj)

+ U
∑

ri

∫ β

0

dτiψ
∗
↑(ri, τi)ψ↑(ri, τi)ψ

∗
↓(ri, τi)ψ↓(ri, τi), (2)

where G0 is the bare Green function, ψ∗
σi
(ri, τi) and

ψσi
(ri, τi) are the Grassmann fields for spin σi at location

ri and imaginary time τi.
The first part of the action contains the kinetic energy

as characterized by the bare Green function G0. It is
simply obtained from the bare dispersion of the consid-
ered model. The second term includes the interaction
characterized by the parameter U , which we assume to
be local. Any interaction beyond the local Hubbard term
will involve further approximations in the context of the
dynamical mean field theory.
The exact Green function of the above action can be

completely characterized by the self-energy Σ. If we write
the self-energy in the frequency-momentum space, the
relation between the bare Green function and the exact
Green function G is given by the Dyson equation,

G(k, ω) =
1

G−1
0 (k, ω)− Σ(k, ω)

. (3)

In the simplified case of a translationally invariant sys-
tem, the idea of the dynamical mean field theory is to
relate the full lattice problem with spatial dependence
to a single site problem. To this end, DMFT reframes
(2) into an effective action for a single site with a bare
Green’s function G:

Seff = −
∫

dω
∑

σ

ψ∗
σ(ω)G−1(ω)ψσ(ω) (4)

+ U

∫

ω1+ω3=ω2+ω4

dω1dω2dω3dω4ψ
∗
↑(ω1)ψ↑(ω2)ψ

∗
↓(ω3)ψ↓(ω4).

Consider the Anderson impurity model characterizing an
impurity coupled to a band of conducting electrons and
given by the Hamiltonian:

HAIM = Un↑n↓ − µ
∑

σ

c†σcσ

+
∑

j,σ

Vj

(

f†jσcσ + c†σfjσ

)

+
∑

jσ

ǫjf
†
jσfjσ. (5)

Where c†σ, cσ are creation and destruction operators for

the impurity electrons while f†jσ, fjσ are those of the
conduction electrons. Its action is:

SAIM = −
∫

dω
∑

σ

ψ∗
σ(ω)G−1

AIM (ω)ψσ(ω) (6)

+ U

∫

ω1+ω3=ω2+ω4

dω1dω2dω3dω4ψ
∗
↑(ω1)ψ↑(ω2)ψ

∗
↓(ω3)ψ↓(ω4),
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where GAIM is the single impurity Anderson model non-
interacting Green’s function defined by:

G−1
AIM (iωn) = iωn + µ−∆(iωn) (7)

with

∆(iωn) =

∫ +∞

−∞

dω
1

iωn − ω

∑

jσ

V 2
j δ(ω − ǫj). (8)

The AIM action (6) is equivalent to (4) with G play-
ing the role of the non-interacting AIM Green’s function.
The construction can be justified via the concept of the
”cavity method” in the infinite dimension limit whereby
all degrees of freedom are integrated out except for the
site labelled by the index 0. In this limit of d → ∞ for
a hypercubic lattice, the hopping amplitude is rescaled
as tij = t/

√
2d so that the kinetic energy and the inter-

action energy remain of the same order. The effective
action, Seff , in this process is defined by:

1

Zeff

exp(−Seff [ψ
∗
0,σψ0,σ]) =

1

Z

∫

∏

i 6=0,σ

exp(−S[{ψ∗
i,σ, ψi,σ}]). (9)

Where Z and Zeff are the partition functions associated
with S and Seff respectively. The effective action can be
written as:

Seff [ψ
∗
0,σψ0,σ] = S0

+

N
∑

n=1

∑

i1,j1,···in,jn

η∗0,i1η
∗
0,i2 · · · η

∗
0,inηj1,0ηj2,0 · · · ηjn,0

∏

i,j=1,···,n

∫

dτidτjG
(0)(i1, τi1 , i2, τi2 , · · ·, in, τin ;

j1, τj1 , j2, τj2 , · · ·, jn, τjn). (10)

Where S0 is the local action at site ”0”:

S0 = −
∫ β

0

∫ β

0

dτdτ
′
∑

σ

ψ∗
σ(τ)G

−1
0 (τ, τ

′

)ψσ (τ
′

)

+ U

∫ β

0

dτψ∗
↑(τ)ψ↑(τ)ψ

∗
↓(τ)ψ↓(τ). (11)

G(0) is the Green’s function connecting the cavity to the
impurity. ηi,0 = ti,0ψ0,σ, with ti,0 the hopping from site
i to 0.
Only terms of order n = 2 survive the expansion (10)

in the d→ ∞ limit. Leading to:

Seff [ψ
∗
0,σψ0,σ] = S0

+

N
∑

i1,j1=1

t0,i1tj1,0

∫

dτdτ
′

ψ∗
0,σψ0,σG(i1, τi1 , j1, τj1).(12)

Rewriting this in frequency space, gives the AIM action
(6) with GAIM replaced by G such that:

G−1(iωn) = iωn + µ−
∑

i,j

t0,itj,0G(iωn). (13)

This relation connects the impurity Green function to
the lattice Green function. For the Bethe lattice,91

G−1(iωn) = iωn + µ − t2G(iωn). For a general lattice,
the connection between the lattice Hubbard model and
the single impurity model is established by setting the
self-energy,

Σlattice(k, ω) = Σimpurity(ω). (14)

Since the self-energy of the original lattice Hubbard
model has spatial dependence while that of the single
impurity Anderson model does not, to construct the lat-
tice Green function one has to rely on the coarse-graining
process that assumes the self-energy of the lattice model
to be the same in the entire Brillouin zone.

Glattice(k, ω) =
1

G−1
lattice,0(k, ω)− Σ(k, ω)

(15)

≈ 1

G−1
lattice,0(k, ω)− Σlattice(ω)

.

The missing link between the Hubbard model and the
Anderson model is to determine the effective bare Green
function of the Anderson model. For the D-dimension
case, this is given by:

Gimpurity(ω) =
∑

k

1

(2π)D
Glattice(k, ω) (16)

=
∑

k

1

(2π)D
1

G−1
lattice,0(k, ω)− Σlattice(ω)

.

The summation over the momentum can thus be re-
placed by an integral over the bare density of states to
simplify the calculation. The bare density of states for
the hypercubic lattice at the limit of infinite spatial di-
mensions can be exactly calculated.81,82 We have gath-
ered all the ingredients for the DMFT approximation and
the algorithm can be summarized as in Fig. 2.

III. CLUSTER ROUTE FOR EXTENDING THE

DMFT

A natural and direct avenue to generalize the DMFT
is to incorporate nonlocal correlations by including more
than a single impurity site, i.e by formulating the theory
around a cluster of multiple sites in a self-consistently
determined host. This type of cluster DMFT remains an
important method for the study of strongly correlated
systems, as it allows, by increasing the cluster size, a sys-
tematic correction unlike perturbative expansion meth-
ods. Moreover, one can envision that a perturbative ex-
pansion on top of the cluster method would produce an
even better result, since the bare effective Hamiltonian or
action for the perturbative expansion, which corresponds
to the DCA or CDMFT solution on the smaller system,
is presumably more accurate and already includes a sub-
stantial amount of nonlocal correlations.
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particle irreducible diagrams by the Dyson equation. A
connection is made between the single-particle and the
two-particle diagrams by the Schwinger-Dyson equation
that connects the self-energy to the (full/reducible) ver-
tex F containing all allowed diagrams in a given channel.
The subset of all two-level diagrams in the full vertex
that are irreducible in the same channel is known as the
irreducible vertex Γ. The subset of irreducible vertices
that are irreducible in any channel is called the fully ir-
reducible vertex Λ.

+

++

+

+

+

a

c

b

FIG. 8. Illustration of the reducibility of a diagram in the
particle-hole horizontal channel. (a) The diagram is reducible
in the particle-hole channel in the sense that the diagram
can be separated by cutting two horizontal Green function
lines. (b) Examples of diagrams which are irreducible with
respect to the particle-hole horizontal channel. The one on
the left hand side is reducible in the particle-hole vertical
channel. The one on the right hand side is reducible in the
particle-particle channel. (c) Examples of fully irreducible
diagrams. They cannot be separated into two parts by cutting
two Green functions lines in any one of the three channels.
From Ref. [123].

It is worth noting that the above idea for the decom-

position is not unique. One can devise other possible
decompositions. For example, a recent attempt is to de-
compose diagrams in terms of the fermion-boson vertex.
We will not explore this direction in detail in this review.
The above decomposition is the most natural one in the
sense that the method can be easily understood in terms
of an iterative process. The higher order diagrams are all
generated by iteratively replacing the vertex function at
a lower order approximation.
Furthermore, we are mostly interested in models that

preserve the SU(2) spin rotation symmetry. Since this
symmetry is always obeyed for the two-dimensional cal-
culations at non-zero temperature, it is convenient to pre-
serve this symmetry. This is accomplished by decompos-
ing the vertices in the so-called spin-diagonalized repre-
sentation. In this representation, the spin degrees of free-
dom decompose the particle-hole channel into the den-
sity and the magnetic channels, and the particle-particle
channel into the spin singlet and the spin triplet chan-
nels which we denote as d-channel, m-channel, s-channel,
and t-channel respectively.30 They are defined for the ir-
reducible vertex as follows,

Γd = ΓPH
↑↑;↑↑ + ΓPH

↑↑;↓↓, (26)

Γm = ΓPH
↑↑;↑↑ − ΓPH

↑↑;↓↓, (27)

Γs = ΓPP
↑↓;↑↓ − ΓPP

↑↓;↓↑, (28)

Γt = ΓPP
↑↓;↑↓ + ΓPP

↑↓;↓↑, (29)

and similarly for F and Λ.
The formalism is completed by equations that connect

the different types of vertices. The full vertex is related
to the irreducible vertex by the Bethe-Salpeter equation
and the irreducible vertex is in turn related to the fully
irreducible vertex by the parquet equation. We reproduce
the full set of equations for the parquet formulation in the
spin diagonalized representation in the following.
The Schwinger-Dyson equation that connects the ver-

tex to the self-energy is

Σ(P ) = −UT
2

4N

∑

P ′,Q

{G(P ′)G(P ′ +Q)G(P −Q)(Fd(Q)P−Q,P ′ − Fm(Q)P−Q,P ′)

+G(−P ′)G(P ′ +Q)G(−P +Q)(Fs(Q)P−Q,P ′ + Ft(Q)P−Q,P ′)}, (30)

where G is the single-particle Green function, which itself
can be calculated from the self-energy using the Dyson
equation,

G−1(P ) = G−1
0 (P ) − Σ(P ), (31)

where G0 is the bare Green function. Here, the indices
P , P ′ and Q combine momentum k and Matsubara fre-
quency iωn, i.e. P = (k, iωn).
The reducible and the irreducible vertices in a given

channel are related by the Bethe-Salpeter equation,

Fr(Q)P,P ′ = Γr(Q)P,P ′ +Φr(Q)P,P ′ , (32)

Fr′(Q)P,P ′ = Γr′(Q)P,P ′ +Ψr′(Q)P,P ′ , (33)

where r = d or m for the density and magnetic chan-
nels and r′ = s or t for the spin singlet and spin triplet
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channels. The vertex ladders are defined as

Φr(Q)P,P ′ ≡ (34)
∑

P ′′

Fr(Q)P,P ′′χph
0 (Q)P ′′Γr(Q)P ′′,P ′ ,

Ψr′(Q)P,P ′ ≡ (35)
∑

P ′′

Fr′(Q)P,P ′′χpp
0 (Q)P ′′Γr′(Q)P ′′,P ′ ,

where χ0, the bare susceptibility, is the product of two
single-particle Green functions.

The parquet equations in the spin diagonalized repre-
sentation are

Γd(Q)PP ′ = Λd(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q − 3

2
Φm(P ′ − P )P,P+Q (36)

+
1

2
Ψs(P + P ′ +Q)−P−Q,−P +

3

2
Ψt(P + P ′ +Q)−P−Q,−P ,

Γm(Q)PP ′ = Λm(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q (37)

− 1

2
Ψs(P + P ′ +Q)−P−Q,−P +

1

2
Ψt(P + P ′ +Q)−P−Q,−P ,

Γs(Q)PP ′ = Λs(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q − 3

2
Φm(P ′ − P )−P ′,P+Q (38)

+
1

2
Φd(P + P ′ +Q)−P ′,−P − 3

2
Φm(P + P ′ +Q)−P ′,−P ,

Γt(Q)PP ′ = Λt(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q +
1

2
Φm(P ′ − P )−P ′,P+Q (39)

− 1

2
Φd(P + P ′ +Q)−P ′,−P − 1

2
Φm(P + P ′ +Q)−P ′,−P .

It is important to note that if we substitute the ir-
reducible vertices Γ (Eqs. 36, 37, 38, and 39) into the
Bethe-Salpeter equation (Eqs. 32 and 33) the crossing
symmetries (symmetry relations of the vertex that are a
consequence of the Pauli exclusion principle for identical

fermionic particles) in the full vertex F is automatically
satisfied regardless of the numerical values of the vertex
ladders Φ and Ψ, assuming the fully irreducible vertices,
Λ, obey the crossing symmetries. We write all the full
vertices explicitly in the following, using only the vertex
ladders, Φ, Ψ, and the fully irreducible vertices, Λ.

Fd(Q)P,P ′ = Λd(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q − 3

2
Φm(P ′ − P )P,P+Q (40)

+
1

2
Ψs(P + P ′ +Q)−P−Q,−P +

3

2
Ψt(P + P ′ +Q)−P−Q,−P +Φd(Q)P,P ′ ;

Fm(Q)P,P ′ = Λm(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q (41)

− 1

2
Ψs(P + P ′ +Q)−P−Q,−P +

1

2
Ψt(P + P ′ +Q)−P−Q,−P +Φm(Q)P,P ′ ;

Fs(Q)P,P ′ = Λs(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q − 3

2
Φm(P ′ − P )−P ′,P+Q (42)

+
1

2
Φd(P + P ′ +Q)−P ′,−P − 3

2
Φm(P + P ′ +Q)−P ′,−P +Ψs(Q)P,P ′ ;
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IX. DUAL FERMIONS

Another path to the multiscale treatment of correla-
tions in a fermionic system is that of the dual fermions
approach that was built on previous analogous methods
for bosonic systems. This approach systematically incor-
porates nonlocal correlations into the DMFT solution.
The method is distinguished from others in that it maps
a strongly correlated fermionic lattice onto weakly cor-
related delocalized fermions. This allows a perturbative
treatment of nonlocal correlations using some subsets of
allowed diagrams to produce satisfactory corrections on
top of the short-length scale correlations that are ad-
dressed by an exact solver.
The dual fermion formalism is an extension of the

theory by Sarker for strongly correlated system.163 He
proposed a strong coupling expansion of the solution
from the atomic limit that predates widespread usage
of DMFT. Similar ideas have also been proposed for
the study of one dimensional system.164 In this theory,
the Hubbard model is mapped onto another interact-
ing fermionic model in which the multi-particle hopping-
exchange processes appear explicitly. The formulation
is equivalent to the dual fermion formalism as currently
known.165–167

Starting from the action of itinerant electrons on a
lattice that can be written as:

S [c∗, c] =
∑

ω,k,σ

c∗ω,k,σ [iω + µ− hk] cω,k,σ +
∑

i

Sloc[c
∗, c],

(44)
where µ is the chemical potential, hk is the hoping term in
momentum space, c∗ω,k,σ(cω,k,σ) are the Grassmann vari-

ables corresponding to the creation (annihilation) oper-
ator, and Sloc is the local part of the action. The lattice
problem can be reframed into that of a set of impuri-
ties and an additional term to account for the remaining
contributions:

S[c∗, c] =
∑

i

Simp[c
∗
i , ci]−

∑

ω,k,σ

c∗ω,k,σ[∆(iω)− hk]cω,k,σ.

(45)
Revisiting the expression of the partition function, a
Hubbard-Stratonovich transformation can be applied on
the second term, introducing new fermionic degrees of
freedom. The action can then be expressed as:

S[c∗, c; f∗, f ] =
∑

i

Srestr,i[c
∗, c; f∗, f ]

+
∑

ω,k,σ

f∗ω,k,σ fω,k,σ

g2(iω)[∆(iω)− hk]
. (46)

Where g is the single particle DMFT Green function
and Srestr,i is the action restricted to site i, and is defined
by:

Srestr,i[c
∗, c; f∗, f ] = Simp[c

∗, c]

+
∑

ω,σ

[f∗ω,σg
−1(iω)cω,σ + h.c.].(47)

The lattice fermionic degrees of freedom can then be inte-
grated out of the action restricted to the respective sites
following:

∫

exp (−Srestr,i [c
∗, c, f∗, f ])D [c∗, c]

= Zimp exp

(

−
∑

ω,σ

f∗ω,σg
−1(iω)fω,σ + V [f∗i , fi]

)

.(48)

This last expression introduces the dual potential
V [f∗i , fi] in terms of the new fermionic degrees of free-
dom. It is shown to include all 2n-vertices for the impu-
rity with n = 2, 3, 4, ....
An explicit expression for the dual potential is obtained

by expanding both sides of this equation and comparing
the resulting expressions order by order. The dual po-
tential to lowest order reads

V [f∗, f ]=
1

4

∑

ωω′ν

∑

σ1,σ2,σ3,σ4

γσ1,σ2,σ3,σ4
(iω, iω′, iν)

×f∗ω+ν,σ1
fω,σ2

f∗ω′,σ3
fω′+ν,σ4

+ · · · . (49)

Where γ is the DMFT reducible or full vertex. Thus,
nonlocal correlations are addressed by solving the many-
body problem with bare Green function g and interaction
potential V . The lattice fermions can finally be inte-
grated out to produce an action that only depends on
the dual fermions:

SD[f∗, f ] = −
∑

ω,k,σ

f∗ω,k,σG
d,0
σ (iω, k)fω,k,σ+

∑

i

V [f∗i , fi].

(50)
With the bare dual fermion Green function defined by:

Gd,0
σ (iω, k) = − g2(iω)

[g(iω) + (∆(iω)− hk)
−1

]
. (51)

The action of Eq. (50) is the tool to account for nonlo-
cal correlations. It can be treated using diagrammatic
perturbation theory. In this context, the interaction po-
tential is usually truncated to the 4-point vertex. For
most practical calculations, higher order terms of the
dual potential are truncated,168 though they may have
non-negligible effect.169,170 However, the formalism is
shown, by construction, to be convergent both in the
strong coupling and in the weak coupling regime. The
process for solving the formalism follows a typical dia-
grammatic procedure. The impurity Green function and
the vertex are obtained from the DMFT calculation. The
impurity Green function is used to evaluate the Dual
fermions non-interacting Green function. The vertex and
the non-interacting Green’s function are then used for a
self-consistent diagrammatic solution with a given subset
of all the allowed diagrams. This solution produces the
dressed dual fermion Green’s function. The dual Green
function can subsequently be used to evaluate the lattice
Green function. Alternatively, phase transitions can be
studied directly using the dual fermion diagrams since
the instability identified in the dual fermions space is
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It is given by the flow of the full vertex as the cutoff is
lowered to the desired energy or temperature. The for-
mulation is represented in term of ordinary differential
equations.
The main challenge of the parquet method is the in-

stability of the numerical solution. Even if we assume
the existence of a unique solution, a robust method to
attain this solution remains highly non-trivial. This is
ultimately the main issue with methods that seek self-
consistent solutions. Unlike the dynamical mean field
theory in which only single particle quantities are in-
volved, the two-particle methods, full parquet or sim-
plified forms, involve solving for the vertex through self-
consistent equations. Divergence in the vertex function is
expected to occur as the temperature is lowered. There-
fore, equations with variables spanning a large range of
values over many orders of magnitude have to be solved.
This is clearly a non-trivial task from the perspective
of numerical simulations. Although one can solve the
equations at high temperature, it is not always clear how
far the solution can be pushed down in temperature.
Contrary to this, the functional renormalization group
method sums up the same set of diagrams without the
necessity of solving relevant equations self-consistently.
The divergence is approached step by step rather than

via shooting as is done in the self-consistent solution.
While the advantage of functional renormalization

group from the point of view of numerical stability is
clear, the justification of its usage for nonlocal correc-
tions with the vertex function from the DMFT solution
is not obvious. The conventional wisdom of renormal-
ization group calculations is that the bandwidth should
be large and the interaction is a small parameter. The
full vertex from DMFT is not necessarily small compared
to the effective bandwidth. Therefore, the conventional
wisdom of justifying the low order expansion is not in-
controvertibly fulfilled. Moreover, these couplings gen-
erate self-energy corrections, which have been shown to
be important for studying systems with retardation ef-
fects, leading to the renormalization of the Fermi velocity
and quasiparticle lifetime. Thus, these couplings have to
be kept even though they are often ignored in the non-
retarded systems. In brief, the effective system being
solved is retarded although the original Hubbard model
is not.
To leading second order expansion, the renormaliza-

tion group equations for the scale (Λ) dependent full
vertex function, FΛ(k1, k2, k3),

211,212 and the self-energy,
ΣΛ(k) for a spin rotational invariant two-body interact-
ing system, are given by:

∂ΛFΛ(k1, k2, k3) =−
∫

dp∂Λ[GΛ(p)GΛ(k)]FΛ(k1, k2, k)FΛ(p, k, k3)

−
∫

dp∂Λ[GΛ(p)GΛ(q1)]FΛ(p, k2, q1)gΛ(k1, q1, k3)

−
∫

dp∂Λ[GΛ(p)GΛ(q2)][−2gΛ(k1, p, q2)FΛ(q2, k2, k3)

+ FΛ(p, k1, q2)FΛ(q2, k2, k3) + FΛ(k1, p, q2)FΛ(k2, q2, k3)], (54)

∂ΛΣΛ(k)=−
∫

dp∂Λ[GΛ(p)][2FΛ(p, k, k)−FΛ(k, p, k)], (55)

where k = k1 + k2 − p, q1 = p + k3 − k1, q2 = p + k3 −
k2,

∫

dp =
∫

dp
∑

ω 1/(2πβ), and GΛ is the self-energy
corrected propagator at cutoff Λ.
The RG equation can be presented in terms of dia-

grams. For a non-retarded system, the low energy insta-
bility can be obtained from the renormalization flow of
the couplings, and different phases can be identified by
the fixed points corresponding to the relevant spin and
charge modes. One can explicitly construct the flows of
the susceptibilities of different order parameters. For ex-
ample the pairing susceptibility, χδ(k, ω), is defined by:

χδ
Λ(0, 0)=

∫ ∫

dp1dp2〈cp1,↓c−p1,↑c
†
−p2,↑

c†p2,↓
〉Λ. (56)

The RG equations are:

∂Λχ
δ
Λ(0, 0) =

∫

dp∂Λ[GΛ(p)GΛ(−p)](Zδ
Λ(p))

2, (57)

∂ΛZ
δ
Λ(p) = −

∫

dp′∂Λ[GΛ(p
′)GΛ(−p′)] (58)

Zδ
Λ(p

′)gΛ(p
′,−p′,−p, p).

The function Zδ
Λ(p) is the effective vertex in the

definition for the susceptibility χδ
Λ. The RG equa-

tions for susceptibilities are solved with initial condition
χδ
Λ=Λ0

(0, 0) = 0. The dominant instability in the ground
state is given by the most divergent susceptibility by solv-
ing the renormalization equations numerically. Similar
equations can be derived for other susceptibilities.

For the FRG boosted DMFT approach, DMF2RG,227

the initial condition for the full vertex functions and the
self-energy are both given by the DMFT.227 The scale
dependent bare propagator is defined as an interpola-
tion between the DMFT propagator and the bare lattice
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more powerful Broyden method which utilizes the gradi-
ent of the hybridization function in the impurity prob-
lem has been implemented and is occasionally used in
cases where convergence is difficult to achieve.239 For the
two-particle theories, given the complexity of the equa-
tions being solved, more sophisticated methods have been
attempted. One of them is the homotopy method, in
which a known convergent solution is relaxed to hope-
fully lead to a solution for another temperature or in-
teraction strength. Practically, the methods are not in
general easy to apply and convergence is not guaranteed.
The above difficulties in solving for the two-particle

vertex function self-consistently may give an advantage
to FRG based methods in which no self-consistent solu-
tion is sought. The solution is obtained not by solving
non-linear integral self-consistent equations, but rather
by solving differential equations with initial conditions.
This allows more flexibility in the numerical solution.
For substantial progress to be accomplished, it is es-

sential that numerical methods perform well while, at
the same time, requiring reasonable computational re-
sources. Although storing the full vertex is a daunting
task, the amount of information it actually contains is,
in practice, not very large. At least for the weak cou-
pling case, the vertex functions contain very small en-
tropy in the sense that it can be compressed numerically
to a large extent and still retain most of the information.
It has been suggested for a long time that, a possible
route to storing the vertex function is to use the spectral
representation.240,241 A clear advantage in the spectral
representation is that the high frequency information is
built in the representation. The spectral representation
has been further explored in recent studies.242,243

Various efforts have also been devoted to understand-
ing the frequency structure of the vertex function. These
may help with new ideas on approximation schemes for
the vertex function.244–250 The latest proposal is to use
a tensor network representation.251

Yet another intuitive scheme is to consider an inho-
mogeneous grid to represent momentum-frequency space
indices. Generically, the frequency or momentum depen-
dence is described by an interpolation scheme. This can
be justified specifically for the frequency indices because
the low frequency information should be more impor-
tant, contains most of the information and thus requires
higher resolution. Moreover the high frequency contribu-
tion can be well fitted by simple functions for convenient
storage. Generally, such methods which are based on in-
terpolations, can be seen as approximating the vertex as
follows:

F (ωk, ωk
′ , ωq) = S(F̃ (ω̃k, ω̃k

′ , ω̃q), ωk, ωk
′ , ωq), (60)

where F is the vertex in the uniform frequency grid ω and
F̃ is the actual data stored in the grid of some arbitrary
basis in ω̃. S is the interpolating function or the basis
function that maps F̃ to F .

Note that there is no inverse for such an interpolation
or basis expansion. Similar ideas can also be extended

to the space grid. This has been studied recently in the
context of FRG and also the parquet method.252–256 An
extreme case of only retaining the transfer frequency and
momentum has been proposed as a simplification of the
parquet equations for analytical solutions for single im-
purity problems.133–135

The lack of an inverse transformation to the original
vertex means that the self-consistent equations are, in
principle, altered by the transformation. The represen-
tation is however a controlled approximation in the sense
that the larger number of basis functions or the larger
number of grid points can reduce the acquired error. On
the other hand, strictly speaking, the crossing symme-
tries of the vertex, that are a manifestation of the Pauli
exclusion principle, are also broken by such interpolation
or basis expansion schemes. These symmetries are one of
the key features of the parquet algorithm.

A scheme that has been studied in the context of
FRG is to factorize the vertex function approximately.227

In the representation of the vertex function with two
fermionic frequencies and one bosonic transfer frequency,
the frequency transfer has the most dominant contribu-
tion. Thus, one can argue physically that the frequency
or momentum transfer part of the vertex function can
be factorized. This drastically reduces the computa-
tional effort and, in particular, the storage requirement.
A less drastic approximation is the so-called two-level
approximation,246 for which the low frequency part of
the vertex is calculated exactly while only the frequency
transfer dependence is kept for the high frequency part
of the vertex. Another recent proposal is to consider the
momentum dependence by using an expansion in terms
of, say, spherical harmonics. This can help reduce the
storage for the spatial dimension and thus allow studies
of larger cluster sizes.252

It is important to point out out that the corrections on
top of the DMFT solution, while they are indeed quite
meaningful, are often not large for most momentum-
frequency points, particularly for weak or very strong
interactions. It is, in this sense, appropriate to inquire
what are the effects of numerical errors on a method that
would, in principle, be capable of significant corrections
to DMFT. Might the approximate numerical solutions
overwhelm the expected solution? Of course, one could
expect that corrections in the intermediate regime are
larger, but the convergence problem in this regime may
prevent a satisfactory solution.

Overall, a number of challenges still remain for gen-
eral numerical solutions. Algorithmic breakthroughs, ad-
vances in the representation of the vertex function and in
the solvers, are needed for general converging solutions
over a wider range of parameters.
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Carlo (DQMC), Fluctuation Exchange (FLEX), and self-
consistent second-order approximation methods. This
comparison, illustrated in Fig. 19, shows a satisfactory
agreement with DQMC and a significant improvement
over the FLEX or the self-consistent second-order ap-
proximation.

FIG. 19. Comparison of the Determinant Quantum Monte
Carlo (DQMC) imaginary time Green function at k = (π, 0)
[panel (a)] and k = (0, 0) [panel (b)] with the result from
several diagrammatic approaches [self-consistent second or-
der (SC 2nd), fluctuation exchange (FLEX), parquet approx-
imation (PA)]. The parquet approximation shows the best
agreement with the DQMC result. From Ref. [123].

When exploring the origin of instabilities identified
in the susceptibility, the parquet formalism enables the
identification of separate channel contributions. Indeed,
a key feature of the parquet equations is that they ex-
press the contribution to a given scattering channel by
processes from other channels. This is essential in un-
derstanding the mechanisms for key processes and phase
transitions. Yang et al analyzed the pairing vertex as a
function of temperature and doping. To this end, they
wrote it in the form of its contributions from the charge
and spin channels: Γ = Λ + Φc + Φs, and applied the d-
wave projection to this equation to get the expression in
terms of the different components: Vd = VdΛ+Vdc+Vds.
This analysis indicated that the dominant contribution
to Vd originates from the spin channel.273

The relations (40, 41, 42, 43) can also allow us to re-
store the crossing symmetries for the full vertices dur-
ing the iterative solution of the self-consistent equations.
This procedure was found to enhance the stability of
the self-consistent solution. With two-particle diagrams,
physical instabilities can be identified by examining the
divergence of the susceptibility in the associated scatter-
ing channel. This divergence is also manifested through

the leading eigenvalues of the pairing matrix in the chan-
nel r, Mr = Γr × χr

0, becoming equal to 1. As shown in
Fig. 20, the leading eigenvalues of the pairing matrix typ-
ically diverge prematurely in the self-consistent solution
of the parquet formalism and thus lead to a breakdown of
the numerical solution at moderate to large values of the
interaction. However, when the crossing symmetries are
enforced throughout the iterative process, a more stable
solution is found. This allows a better approach to the
actual physical instability.155

Kusunose solved parquet equations for both the im-
purity Anderson model and the Hubbard model on a
square lattice mainly for the particle-hole symmetric or
the half-filled case.141 He argued that in both models the
vertex renormalization in the spin channel eliminates the
magnetic instabilities of the mean-field theory to ensure
satisfaction of the Mermin-Wagner theorem. The par-
quet method gives the same critical exponents as the self-
consistent renormalization Moriya theory in the quantum
critical region.

Pudleiner et al. studied the Pariser-Parr-Pople (PPP)
model or Hubbard model with nonlocal interaction for
the conjugated π bonds in benzene.274 They found that
quasiparticle renormalization is much weaker in the PPP
than in the Hubbard model, but the static part of the
self-energy enhances the band gap of the PPP model. In
addition, the vertex corrections to the optical conductiv-
ity are much more important in the PPP model.

B. Dynamical vertex approximation

Most of the applications of the dynamical vertex ap-
proximation are focused on the Hubbard model in two
dimensions. The one dimensional Hubbard model has
also been studied by the full parquet dynamical ver-
tex approximation.275 For the three dimensional Hub-
bard model, it has been found that the antiferromagnetic
phase develops incommensurate magnetic ordering as the
doping increases.162 Interesting results on the critical ex-
ponent have also been obtained.276

The main gain of including more spatial fluctuations is
the suppression of the tendency towards ordering. The
dynamical vertex approximation has been shown to re-
duce the transition temperature of the antiferromagnetic
ordering in the half-filled Hubbard model in both two
and three dimensions. As we discussed in the previous
section, neither DMFT nor dynamical vertex approxi-
mation fulfill the Mermin-Wagner theorem, thus broken
symmetry is allowed at a finite temperature even for the
two-dimensional case. We summarize the major results
from the dynamical vertex approximation in the follow-
ing.
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FIG. 20. For a simple iterative solution of the parquet formalism, leading eigenvalues of the pairing matrix in different channels
[density (d), magnetic (m), spin singlet (s), and spin triplet (t)] as a function of the iteration number at temperature T = 0.4t
on a 2 × 2 cluster. Without enforcing the crossing symmetries, the leading eigenvalues approach 1 and divergence occurs
prematurely in the self-consistent solution for U = 4t and U = 6t. When the crossing symmetries on F are explicitly restored
at every iteration, the solution is found to remain stable for the same values of U . From Ref. [155].

1. Hubbard Model

Valli et al. used the parquet dynamical vertex approxi-
mation to study the electronic self-energies and the spec-
tral properties of the finite-size one-dimensional Hub-
bard model with periodic boundary conditions. In this
model the Fermi liquid theory is invalid, and that should
present a rather challenging case for any perturbative
expansion on top of the DMFT solution.275 Valli et al.
suggested that for a non-degenerate bare dispersion, the
parquet dynamical vertex approximation quantitatively
reproduces the exact many-body solution of the system.
This is illustrated in Fig. 21 that compares the exact self-
energy to that of the parquet DΓA. Given that the system
should be a Luttinger liquid which cannot be adiabati-
cally tuned into a Fermi liquid, this is a very encouraging
result.

Schäfer et al. have studied the two-dimensional Hub-
bard model on a square lattice.278 They defined two
transition lines in the phase diagram: one for the gap
cutting across the nodal direction and the other for a
gap throughout the Fermi surface. The self-energy data
shows that the evolution between the two regimes occurs

in a gradual way, not through a phase transition, and
also that at low enough temperatures the whole Fermi
surface is always gapped.

Schäfer et al. also showed that the electron self-energy
is well separable into a local dynamical part and a static
nonlocal contributions for the three dimensional Hubbard
model.279 The quasiparticle weight remains essentially
momentum independent for different fillings, including
in the presence of overall large nonlocal corrections to
the self-energy.

Pudleiner at al. computed the self-energy for the
half-filled Hubbard model on a square lattice using lat-
tice quantum Monte Carlo simulations and the dynami-
cal vertex approximation.280 The self-energy is strongly
momentum-dependent, but it can be parametrized via
the noninteracting energy-momentum dispersion ǫk, ex-
cept for some pseudogap features right at the Fermi edge.

In Ref. 281, Schäfer et al. studied the two dimensional
Hubbard model by combining dynamical vertex approx-
imation, lattice quantum Monte Carlo, and variational
cluster approximation. They demonstrated that scatter-
ing at long-range fluctuations due to paramagnons opens
a spectral gap at weak-to-intermediate couplings, irre-



24

FIG. 21. Nonlocal corrections to DMFT obtained by the par-
quet DΓA on an 8 site Hubbard ring at half-filling for U = 2t
and temperature T = 0.1t. The figure shows the compar-
isons between the exact, and the DΓA results for the real and
the imaginary parts of the self-energy at different momentum
points and for the DMFT results as a function of Matsubara
frequency. From Ref. [277].

spective of the preformed localized or short-ranged mag-
netic moments. They argued that the two-dimensional
Hubbard model has a paramagnetic phase which is insu-
lating at low enough temperatures for any finite interac-
tion and no Mott-Hubbard transition is observed.
Schäfer et al. found that the antiferromagnetic phase

transition of the Hubbard model in three dimensions is in
contradiction with the conventional Hertz-Millis-Moriya
theory.162 They argued that the quantum critical behav-
ior is driven by the Kohn anomalies of the Fermi surface,
even when electronic correlations become strong.
Rohringer at al. studied the three dimensional half-

filled Hubard model.276 They found the Neel temperature
is lowered from that of the DMFT as expected. More in-
terestingly, they found the critical exponents to be the
same as those of the three dimensional Heisenberg an-
tiferromagnet in contrast to mean field exponents. This
demonstrates that non-mean-field behavior can indeed be
obtained by these systematic nonlocal corrections.
Rohringer and Toschi studied several spectral and ther-

modynamic properties of the Hubbard model in two and
three dimensions.282 Specifically, by evaluating the elec-
tronic scattering rate and the quasiparticle mass renor-
malization in the low energy regime, they character-
ized the gradual deterioration by nonlocal correlations
of the Fermi liquid physics as a function of the interac-
tion strength. They found that the kinetic energy either
increases or decreases compared to that of the DMFT de-

pending on the interaction strength being weak or strong,
respectively. They argued that these results correspond
to the evolution of the ground state from a nesting-driven
(Slater) to a superexchange-driven (Heisenberg) antifer-
romagnet.

2. Attractive Hubbard Model

Lorenzo Del Re et al. studied the attractive Hubbard
model in three dimensions for the pairing or charge den-
sity wave ordering.159 They found that the fitted critical
exponents from the ladder DΓA results were larger not
only than the DMFT ones, but also larger than the exact
ones belonging to the corresponding universality class.

3. Periodic Anderson Model

Schäfer et al. studied the phase diagram and quantum
critical region of the periodic Anderson model.283 They
found a phase transition between a zero-temperature an-
tiferromagnetic insulator and a Kondo insulator. In the
quantum critical region, they determined a critical expo-
nent γ = 2 for the antiferromagnetic susceptibility. This
becomes γ = 1 at high temperature.

C. Dual Fermions

The dual Fermion method has been used to investigate
models from the Falicov-Kimball to the Hubbard model
in both two and three dimensions. The Anderson model
for random disorder has also been studied and so far,
this is the only post-DMFT method for the study of dis-
order. Perhaps a more interesting study is that of the
Anderson-Hubbard model, which investigates the long
standing problem of the competition between Mott insu-
lator and Anderson insulator. We summarize the major
results from the dual fermion method in the following.

1. Hubbard Model

Hafermann et al. used the ladder diagrams for the
dual fermion and found that the critical Néel tempera-
ture of the mean-field solution is suppressed in the ladder
approximation of the two-dimensional Hubbard.284

Rubtsov at al. found that the antiferromagnetic pseu-
dogap, the Fermi-arcs formation, and the non-Fermi-
liquid effects due to the Van Hove singularity are cor-
rectly reproduced by the lowest-order diagrams for the
two-dimensional Hubbard model.285

Otsuki et al. obtained the phase diagram for the two-
dimensional Hubbard model.286 This features a phase
separation region in the low-doping regime around the
Mott insulator.
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Astretsov et al. mapped out the phase diagram of the
2D Hubbard model as a function of temperature and dop-
ing. They identified an antiferromagnetic region at low
doping and a superconducting dome at higher doping.177

Their results support the role of the van Hove singular-
ity as an important ingredient for the high value of Tc
at optimal doping. At small doping, the destruction of
antiferromagnetism is accompanied by an increase of the
charge fluctuations supporting the scenario of a phase-
separated state driven by quantum critical fluctuations.

Tanaka studied the square-lattice Hubbard model at
half-filling using the ladder dual fermion approximation.
He found that the almost simultaneous creation of the
pseudogap and the loss of the Fermi liquid feature is con-
sistent with what is expected in the Slater regime.287 Al-
though the pseudogap still appears in the quasi-particle-
like single peak for U ≤ 4, the Fermi-liquid feature is par-
tially lost on the Fermi surface already at higher temper-
atures as expected in the Mott-Heisenberg regime, where
local spins are preformed at high temperatures. A sharp
crossover from a pseudogap phase to a Mott insulator at
finite U ≃ 4.7t was found to occur below the temperature
of the pseudogap formation.

van Loon et al. applied the dual fermion approach
with a second-order approximation to the self-energy
for the Mott transition in the two-dimensional Hubbard
model.288 A strong reduction of the critical interaction
and an inversion of the slope of the transition lines with
respect to single-site dynamical mean-field theory was
observed.

Katanin et al. showed the suppression of the quasipar-
ticle weight in the three-dimensional Hubbard model.289

With an additional correction in the susceptibility to ful-
fill the Mermin-Wagner theorem,290 they also found a
dramatically stronger impact of spin fluctuations in two
dimensions where the pseudogap is formed at low enough
temperatures. They proposed that the origin of the pseu-
dogap at weak-to-intermediate coupling is in the splitting
of the quasiparticle peak.

Hirschmeier et al. studied the three dimensional Hub-
bard model and they reported that in the weak-coupling
regime, spin-flip excitations across the Fermi surface are
important while the strong-coupling regime is described
by Heisenberg physics.291 For intermediate interaction,
aspects of both local and nonlocal correlations appear.
They also found that the critical exponents of the tran-
sition in the strong-coupling regime are consistent with
the Heisenberg model down to an interaction of U = 10t.
Again the identification of non mean-field exponents is
an interesting finding.

Antipov et al. demonstrated that diagrammatic multi-
scale methods anchored around local approximations are
indeed capable of capturing the non-mean-field nature of
the critical point of lattice models.292 This is an interest-
ing result as the mean field theory describes the longest
length scale in the problem.

van Loon et al. studied the two-dimensional square-
lattice for small to moderate interaction strengths.293
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FIG. 22. Leading eigenvalues of the antiferromagnetic pair-
ing matrix as a function of temperature for U = 4t for the
DCA 1 site cluster and the dual fermion corrected result on
a 4 × 4 cluster. The dual fermion corrections are calculated
with different approximations: second order Σ(2), FLEX, and
parquet. The leading eigenvalue is calculated by either in-
cluding only the single particle correction in the self-energy,
or both the single particle correction and the two-particle cor-
rection in the irreducible vertex. Σd = 0 corresponds to the
bare dual fermions quantities with no DCA calculation. From
Ref. [171].

The nonlocal correlations beyond dynamical mean-field
theory induce a pseudogap in the density of states. The
upper bounds on the crossover temperature are found to
be significantly lower than previously reported dynamical
vertex approximation results at U=t.

As mentioned previously, the methods presented here
can be applied to quantum cluster theories such as DCA
and CDMFT to perturbatively capture nonlocal correla-
tions beyond the length scale of the initial cluster size.
Fig. 22 shows an analysis of the leading eigenvalue of
the antiferromagnetic pairing matrix for different approx-
imate methods within the dual fermion approach. The
figure indicates how the unphysical phase transition ob-
tained from the mean field result (DCA with one site)
is suppressed with different approximations of the dual
fermion solution.171

Fig. 23 from Ref [277] shows a compilation of re-
sults obtained using different methods and illustrates
the systematic corrections to the transition temperatures
through the incorporation of nonlocal correlations in the
two-dimensional Hubbard model at half-filling. The fig-
ure depicts, at large U and at low T , the DMFT para-
magnetic metal solution indicating the first-order Mott
metal insulator transition with a low temperature Mott
paramagnetic insulator. The first-order transition termi-
nates at a critical value of Uc = 10t. Including the short
range antiferromagnetic correlations such as in CDMFT,
variational cluster approximation (VCA) or second-order
dual fermions (DF(2)), modifies the critical interaction
value and the shape of the coexistence region. Includ-
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FIG. 23. Comparative phase diagrams of the two-dimensional
Hubbard model obtained from different methods. The fig-
ure demonstrates the effects of systematic incorporation of
nonlocal correlations on the Mott metal insulator transition
temperature as a function of interaction. From Ref. [277].

ing longer-range antiferromagnetic fluctuations through
ladder DΓA or the two-particle self-consistent (TPSC)
method leads to further modifications eventually trans-
forming the MIT into a crossover at small U that is con-
sistent with the Uc → 0 for T → 0 limit.

2. Hubbard Model on a Triangular Lattice

Yudin at al. studied the Hubbard model on a trian-
gular lattice.294 They showed that the band flattening is
driven by correlations and is well pronounced even at suf-
ficiently high temperatures, of the order of 0.10.2 times
the hopping parameter.
Lee et al. studied the Hubbard model on the tri-

angular lattice at half filling. They determined the
metal-insulator transition and the hysteresis associated
with a first-order transition in the double-occupancy and
nearest-neighbor spin-correlation functions as functions
of temperature.295 By calculating the spin susceptibility,
an enhancement of antiferromagnetic correlations and ev-
idence for magnetically ordered phases were found.
Antipov et al. studied the half-filled Hubbard model

on an isotropic triangular lattice with a spin polarized ex-
tension of the dual fermion approach.296 They found that
the dual fermion corrections drastically decrease the en-
ergy of a spin liquid state while leaving the non-collinear
magnetic states almost non-affected. This makes the spin
liquid become a preferable state in a certain interval of
interaction strength of the same order of magnitude than
the bandwidth.
Li et al, studied both the half-filled and the doped

Hubbard model on a triangular lattice and produced its

phase diagram.297

3. Hubbard Model on the Honeycomb Lattice

Hirschmeier et al. studied the Hubbard model on
the honeycomb lattice in the vicinity of the quantum
critical point by means of a multiband formulation of
the dual fermion approach. They found that the crit-
ical interaction strength of the quantum phase transi-
tion from a paramagnetic semimetal to an antiferromag-
netic insulator is in good agreement with other numerical
methods.298 They also argued that the Hubbard model
on the honeycomb lattice behaves like a quantum nonlin-
ear σ model, while displaying signs of non-Fermi-liquid
behavior.

4. Falicov-Kimball Model

Astleithner at al. studied the Falicov-Kimball model.
Using the full parquet dynamical vertex approximation,
they argued that weak localization corrections in the
particle-particle channel are not the dominant vertex cor-
rections to the optical conductivity.299

5. Kondo Lattice Model

Otsuki studied the Kondo lattice model to explore pos-
sible superconductivity emerging from the critical an-
tiferromagnetic fluctuations.300 The d-wave pairing is
found to be the leading instability only in the weak-
coupling regime. As the coupling is increased, a change of
the pairing symmetry into a p-wave spin-singlet pairing
was found.

6. s-d Exchange Model

Sweep et al. studied the critical values of the s-d ex-
change coupling constant.301 They reported a difference
between the DMFT and dual fermion results that is more
than a factor of two for the square lattice and spin one-
half localized electrons.

7. Anderson Disorder Model

Terletska et al. generalized the dual fermion approach
to disordered systems using the replica method.179,302

The developed method utilizes the exact mapping to the
dual fermion variables, and includes inter-site scatter-
ing via diagrammatic perturbation theory in the dual
variables. As shown in Fig. 24 nonlocal effects that are
missed in the CPA are captured.
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FIG. 24. Nonlocal corrections to the CPA for the disorder
Anderson model. The dual fermion corrections capture the
nonlocal corrections that are absent in the CPA results. This
leads to a better agreement with the DCA result for the imag-
inary part of the self-energy and the density of states as the
disorder strength is increased. Left panel: ImGr=0(ωn) in
d = 1 at T = 0.02. Right panel: total density of states for
different disorder strengths: W = 0.25, 1.25, 2.0 (4t = 1).
From Ref. [179].

8. Anderson Falicov-Kimball Model

Yang at al. generalized the dual-fermion formalism
for disordered fermionic systems to include the effect of
interactions. The phase diagram for the two dimensional
Anderson-Falicov-Kimball model was obtained.303

9. Anderson-Hubbard Model

Haase et al. studied the three-dimensional Anderson
Hubbard model. They report that the dual-fermion ap-
proach leads to quantitative as well as qualitative im-
provement of the dynamical mean-field results. This is
shown in the phase diagrams of Fig. 25 obtained with
DMFT (a), dual fermions with second order diagrams
(b), and dual fermions with FLEX diagrams (c). The
systematic improvement of the solution first with the in-
corporation of non-local corrections and then in terms of
the level of the diagrammatic treatment is shown through
the expected suppression of the DMFT critical temper-
atures for the antiferromagnetic phase. These solutions
allowed the authors to calculate the hysteresis in the dou-
ble occupancy in three dimensions, taking into account

FIG. 25. U -T phase diagram of the 3D Anderson-Hubbard
model for different values of the disorder strength V obtained
with DMFT (a), dual fermions with second order diagrams
(b), and dual fermions with FLEX diagrams (c). The shaded
regions correspond to the antiferromagnetic phase. W is the
bandwidth. Note that the authors do not calculate the critical
temperatures in the region of U/W < 1/3. From Ref. [180].

nonlocal correlations.180

Otsuki studied the Kondo lattice model,300 and
found that different superconductivity pairing symme-
tries emerge from the critical antiferromagnetic fluctu-
ations. He found the d-wave pairing to be the leading
instability only in the weak-coupling regime. As the cou-
pling is increased, a change of the pairing symmetry into
a p-wave spin-singlet pairing is observed. The competing
superconductivities are ascribed to a crossover between
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small and large Fermi surfaces, which occurs with the
formation of heavy quasiparticles.

D. Dual Bosons

The dual boson method has been applied on mod-
els with nonlocal interactions. These include the trun-
cated long range Coulomb coupling, the nearest neigh-
bor interaction in the extended Hubbard model, and the
anisotropic dipolar coupling for cold atoms. A key differ-
ence is that those nonlocal density-density type couplings
can lead to the competition between charge fluctuations
and spin fluctuations which results in charge density wave
ordering and possibly bond wave ordering.304

1. Extended Hubbard Model

Vandelli et al. proposed to use quantum Monte Carlo
to sample diagrams from the dual boson theory for the
extended Hubbard model.186 They proposed that the
single-particle Green function allows one to estimate the
transition point to the charge density wave phase.

2. Hubbard Model with Dipolar Coupling

van Loon et al. studied the Hubbard model with
long-range dipole-dipole interactions.305 This is an in-
teresting model in the context of experiments with cold
atoms on optical lattice.306 Besides the stripe phase
and the checkerboard phase, based on their dual bo-
son calculation they suggest that there is a novel phase
with ”ultralong-range” density correlations at distances
of tens of lattice sites.

3. Hubbard Model with Coulomb Coupling

Hafermann et al. and van Loon et al. studied the po-
larization for the two dimensional Hubbard model with
long range Coulomb coupling.183,307 They found that
plasmon spectra are qualitatively different from those of
the random-phase approximation: they exhibit a spec-
tral density transfer and a renormalized dispersion with
enhanced deviation from the canonical behavior.

E. TRILEX

Applications of TRILEX are mostly on the two dimen-
sional Hubbard model.
Aryal et al. found that the local vertex, for strong in-

teractions, gains a strong frequency dependence, driving
the system to a Mott transition for the half-filled Hub-
bard model on a square lattice.193 At low enough tem-
peratures, large spin fluctuations lead to an enhancement

of the momentum dependence of the self-energy. Upon
doping, they find a Fermi arc in the spectral function.
Vuievi et al. studied the dependence of the su-

perconducting temperature on the bare dispersion at
weak coupling, which shows a clear link between
strong antiferromagnetic correlations and the onset of
superconductivity.194 They identified a combination of
hopping amplitudes particularly favorable to supercon-
ductivity at intermediate doping.

F. FRG

Functional renormalization group has been used exten-
sively for over two decades. Recent applications to im-
prove the DMFT solution have so far been mostly limited
to the Hubbard model.
Tranto et al. first proposed to use FRG to expand the

DMFT solution.227 They studied the half-filled square
lattice Hubbard model and found that the method pro-
vides more prominent momentum dependence than the
conventional FRG method.
Vilardi et al. studied the doped two dimensional Hub-

bard model.308 They found strong antiferromagnetic cor-
relations from half-filling to 18% hole doping at low tem-
perature, and a sizable d-wave pairing interaction driven
by magnetic correlations at the edge of the antiferromag-
netic region.

XVI. CONCLUSION

We have reviewed multiscale many body numerical
methods to address strongly correlated systems by appro-
priately treating the short length scale, the long length
scale and the intermediate length scale. The different
methods implemented to date have produced promising
results despite being hindered by a variety of numerical
challenges. Since short length scales are treated exactly,
diagrammatic methods arise as a suitable approach to
deal with the intermediate length scales by systemati-
cally evaluating appropriate subsets of possible diagrams.
In this context the parquet formalism is the most natu-
ral toolkit. We have reviewed the construction of the
parquet formalism and the different diagrammatic ap-
proximations that it encompasses as well as algorithms
for their numerical solutions. We have not discussed in
this review efforts to extend the methods into ab-initio
calculations. These represent an important next step for
appropriate treatments of real materials. In general, mul-
tiscale many body methods to incorporate nonlocal cor-
rections into the DMFT solution represent an active area
of research and new implementations are actively being
developed to overcome previous shortcomings.
Some of the latest ideas have not been discussed in

the present review. These include but are not limited
to the parquet method for the vertex in the boson-
fermion representation,309–312 the atomic approximation
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of the four-particle irreducible functional method,313 one-
particle irreducible functional method,314 nonlocal ex-
pansion method,315 and FLEX+DMFT approach.316,317

Another important topic is that of the solvers for the
vertex functions. While there are many different nu-
merical solvers for the impurity/cluster problem, most
of them are not suitable for the calculation of the vertex
function which is essential for perturbative expansions
around the DMFT solution. While many solvers may
be generalized for the calculation of vertex function, at
present the practical methods are exact diagonalziaton
and quantum Monte Carlo.
For the exact diagonalization method, the calculation

of the vertex function is usually down to brute force cal-
culation in the Källén-Lehmann spectral representation.
Unlike the calculation of the single particle quantity, the
method based on expansion in terms of a continued frac-
tion is not applicable for the calculation of the vertex
functions.11,59,318,319 Thus the calculation is limited to a
rather small number of bath sites or orbitals.157,287

For the quantum Monte Carlo approach, besides the
minus sign problem,320,321 the main challenge for calcu-
lating the vertex is the noise in the measurements, espe-
cially at high frequency. This is particularly acute for the
hybridization expansion approach. Significant progress
has been made to reduce the noise by measuring in a ba-
sis of orthogonal polynomials.322–325 There is continuous
improvement on the sampling efficiency and on the abil-
ity to attain ergodicity.326–330 For further discussion of
these approaches, we refer the interested readers to the
comprehensive review by Gull et al.53

As we have seen, the different implementations of mul-
tiscale many body approaches have produced very signifi-
cant results that validate the motivation of the approach.
Indeed, more appropriate treatments of nonlocal correla-
tions improve the results both qualitatively and quanti-
tatively. To improve the robustness of the approach and
to extend the methods to broader ranges of parameters,
further developments are needed to overcome the com-
putational challenges. This may involve new insights on
the physics, leading to modified algorithms, or the devel-
opment of new numerical techniques.
While we discuss several executions of the MSMB

approach, an omission in this paper is a definite guide-
line with pros and cons of the respective methods. In
particular, it is desirable to answer the question of
which method provides the best results with the least
numerical effort. Presently, there are various reasons
why it is rather difficult to address this question. First,

many of the methods have not been fully investigated,
some of them may not even have been optimally im-
plemented. Second, the question of ’best results’ needs
qualification, it is unlikely that there is one method
which holds a clear advantage over the others in terms
of getting the best results. This can be understood from
the point of view that all the methods discussed are
based on some form of perturbative expansion on top of
effective interacting models. The range of parameters is
an important factor in deciding the quality of different
expansions. Third, the implementation of a given
method also affects the quality of the results. All the
methods require the handling of different types of vertex
functions. The procedure for storing and approximating
the vertex functions can be a non negligible factor in
the final results. While there is intense activity on
the MSMB approaches, the field is still rather young.
We have painted a detailed picture of the landscape in
our discussions of the different methods, the nuances
within the methods, and possible subtleties across the
numerical approximations involved. In time, we believe
the community will push these different implementations
to the point of producing a fuller picture; allowing for
more transparent comparisons.
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B 100, 195114 (2019).

155 K.-M. Tam, H. Fotso, S.-X. Yang, T.-W. Lee, J. Moreno,
J. Ramanujam, and M. Jarrell, Phys. Rev. E 87, 013311
(2013).

156 K. Held, A. A. Katanin, and A. Toschi, Prog. Theor.
Phys. Supp. 176, 117 (2008).

157 A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75,
045118 (2007).

158 K. Held, “Dynamical vertex approximation,” (2014),
arXiv:1411.5191 [cond-mat.str-el].

159 L. Del Re, M. Capone, and A. Toschi, Phys. Rev. B 99,
045137 (2019).

160 A. Valli, G. Sangiovanni, O. Gunnarsson, A. Toschi, and
K. Held, Phys. Rev. Lett. 104, 246402 (2010).

161 A. Galler, P. Thunström, P. Gunacker, J. M. Tomczak,
and K. Held, Phys. Rev. B 95, 115107 (2017).
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270 M. Schüler, S. Barthel, T. Wehling, M. Karolak, A. Valli,
and G. Sangiovanni, Eur. Phys. J. Spec. Top. 226, 2615
(2017).

271 S. Biermann and A. Lichtenstein, “Many body perturba-
tion theory, dynamical mean field theory and all that,”
in Handbook of Solid State Chemistry (American Cancer
Society, 2017) Chap. 5, pp. 119–157.

272 A. Toschi, G. Rohringer, A. A. Katanin, and K. Held,
Ann. Phys. (Berl.) 523, 698 (2011).

273 S.-X. Yang, H. Fotso, S.-Q. Su, D. Galanakis, E. Khatami,
J.-H. She, J. Moreno, J. Zaanen, and M. Jarrell, Phys.
Rev. Lett. 106, 047004 (2011).

274 P. Pudleiner, P. Thunström, A. Valli, A. Kauch, G. Li,
and K. Held, Phys. Rev. B 99, 125111 (2019).
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279 T. Schäfer, A. Toschi, and J. M. Tomczak, Phys. Rev. B
91, 121107 (2015).
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