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Abstract

Weak scaling performance of a recently developed fully kinetic, 3-D parallel immersed-finite-element particle-in-cell frame-

work, namely PIFE-PIC, was investigated. A nominal 1-D plasma charging problem, the lunar photoelectron sheath at a low

Sun elevation angle, was chosen to validate PIFE-PIC against recently derived semi-analytic solutions of a 1-D photoelectron

sheath. The weak scaling performance test shows that the overall efficiency of PIFE-PIC is insensitive to the number of

macroparticles and, counterintuitively, more domain decomposition iterations in the field-solve of PIC may lead to faster

computing due to better convergence of field solutions at early stages of PIC iteration. The PIFE-PIC framework was then

applied to simulate plasma charging of a wavy lunar surface with 324,000 cells and 150 million macroparticles demonstrating

the capability of PIFE-PIC in resolving local-scale plasma environment near the surface of the Moon.

Keywords Particle in cell · Weak scaling · Plasma charging · Immersed finite element

1 Introduction

With the renewed interest of surface exploration on the

Moon, especially the goal of landing on the polar regions

(also known as “the lunar terminator”) as set by NASA’s

Artemis program, it is critical to understand the plasma–

surface interactions at the local scale, i.e., near the lunar

surface. Lacking an atmosphere and a global magnetic field,

the Moon is directly exposed to solar radiation and vari-

ous space plasma environments (mostly drifting protons and
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electrons in the solar wind). A direct consequence of such

interactions is surface charging caused by bombardment of

solar wind plasma and emission/collection of photoelectrons.

The plasma sheath formed near the illuminated lunar surface

is usually referred to as the “photoelectron sheath” because

it is largely dominated by photoelectrons compared with

average solar wind plasma. At the lunar polar regions, the

near-surface photoelectron sheath and the charged surface

are expected to have substantial influence on the charging of

landers and rovers during surface missions. Since the lunar

surface is covered by a regolith layer, which separates the

solid bedrock from the plasma environment [1,2], a com-

plete model of plasma charging on the lunar surface needs

to explicitly take into account the properties of the regolith

layer, such as the permittivity and layer thickness, as well

as the lunar ground at the bedrock. Recently, Han et al. [3]

presented a general approach of modeling plasma charging

at the lunar surface including the regolith layer as well as

the lunar bedrock below the regolith layer. This approach

integrated particle-in-cell (PIC) with a non-homogeneous

immersed-finite-element (IFE) field solver capable of resolv-

ing charging of dielectric materials [4,5]. The 3-D IFE-PIC

model is capable of solving the electric field and charge depo-

sition both inside and outside of irregularly shaped objects

immersed in a plasma, which is unique among PIC-based

charging models. The charging calculation from local charge

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-022-00470-0&domain=pdf
http://orcid.org/0000-0001-6186-1777


1280 Computational Particle Mechanics (2022) 9:1279–1291

deposition in the PIC approach also enables time-varying

modeling of the charging process.

The IFE-PIC code package in Ref. [3] was serial, which

has limited its applications to relatively small-sized prob-

lems with respect to practical interests. Toward the goal of

developing a massively scalable, fully kinetic, multi-scale,

multi-species modeling framework for complex plasma–

surface interactions, Han et al. [6,7] developed the parallel

IFE-PIC (PIFE-PIC) framework with 3-D domain decom-

position using Message Passing Interface (MPI) parallel

computing architecture, where each subdomain is handled

by an individual processor. Specifically, the details of 3-D

domain decomposition for both field-solve and particle-push

steps of PIC as well as strong scaling performance tests of

PIFE-PIC are given in Ref. [7].

This paper investigates weak scaling of the PIFE-PIC

framework. A nominal 1-D problem was chosen to first

validate the PIFE-PIC framework against recently derived

semi-analytic solutions of a 1-D photoelectron sheath [8]

and then examine the weak scaling performance of PIFE-

PIC. The rest of the paper is organized as follows. Section 2

briefly describes the IFE algorithm and its applications to

kinetic plasma modeling, as well as the PIFE-PIC code suite.

Section 3 presents a validation and baseline case for PIFE-

PIC applied to 1-D lunar photoelectron sheath simulations.

Section 4 investigates weak scaling performance of PIFE-

PIC. Section 5 applies PIFE-PIC to simulate charging of a

wavy lunar surface demonstrating the capability of PIFE-

PIC. Finally, Sect. 6 gives a summary and conclusion.

2 IFE algorithm and the PIFE-PIC suite

The fundamental phenomenon of plasma charging on the sur-

face of the Moon is dielectric surface charging, whereas the

equilibrium surface potentials are determined by local cur-

rent balance condition. Since the shape of the rugged lunar

surface terrain is non-trivial, it is important to accurately

resolve the interface conditions between the plasma region

and the lunar regolith/bedrock region. For electrostatic prob-

lems such as lunar plasma charging, PIC methods are widely

used to model the charged particles using macroparticles and

track the motions of particles. The electric potential φ is gov-

erned by the following 3-D elliptic boundary value problem:

−∇ ·
(

ε−
∇φ−

)

= 0, in �−, (1)

−∇ ·
(

ε+
∇φ+

)

= ρ(X), in �+, (2)

φ = g(X), on �D, (3)

∂φ

∂n�N

= p(X), on �N , (4)

Fig. 1 Computational domain with an interface

where X = (x, y, z), and ρ is the charge density function.

The computational domain � is separated by an interface

� into two subdomains �+ and �−. �D and �N denote

the Dirichlet and the Neumann portion of the boundary ∂�,

with given boundary values g and p, respectively. n�N
is the

outward normal of �N . See Fig. 1 for an illustration of the

problem setup.

Across the interface �, the following interface jump con-

ditions are enforced:

[φ]� = 0, (5)
[

ε
∂φ

∂n�

]

�

= q, (6)

where q is a given charge density function and n� is the unit

normal vector of � from �− to �+. The dielectric coefficient

ε(X) is discontinuous across the interface due to the material

property change. Without loss of generality, we assume that

ε(X) is a piecewise constant function as follows:

ε(X) =

{

ε−, in �−,

ε+, in �+,

where min(ε+, ε−) > 0.

In general, there are two types of numerical methods

for interface problems: fitted-mesh methods and unfitted-

mesh methods. Conventional numerical methods, such as

finite element method, require solution meshes to align with

material interfaces. In general, these body-fitting meshes are

unstructured if the interface geometry is nontrivial. Parti-

cle tracking performed on unstructured mesh is inefficient

because a global search of elements is inevitable, which

significantly increases the computational costs. See the left

plot of Fig. 2. On the other hand, structured meshes, such

as the Cartesian mesh, have inherent limitations of resolv-

ing complex interface geometries, such as the lunar surface.

To overcome this type of difficulties, the immersed-finite-

element (IFE) method among many other unfitted-mesh

methods [9–13] was developed to solve interface prob-

lems based on interface-unfitted meshes while maintained

sufficient approximation accuracy. These interface-unfitted

numerical methods are particularly desirable in PIC sim-
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Fig. 2 A body-fitted mesh and

an unfitted mesh for interface

problems with particle tracking.

(Colour figure online)

ulations because they enable efficient particle tracking as

illustrated in the right plot of Fig. 2.

The main idea of IFE methods is to incorporate phys-

ical interface jump conditions in the design of local IFE

functions. This idea was first introduced in Ref. [14] for

one-dimensional elliptic interface problems with piecewise

linear polynomial approximation. In the past two decades,

the IFE methods have been extensively studied for elliptic

interface problems [15–23], planar elasticity system [24–26],

parabolic interface problems [27,28], hyperbolic interface

problems [29–31], Stokes interface problems [32,33], etc. It

has been shown that the IFE method can achieve optimal con-

vergence on an interface-independent mesh with the number

and location of the degrees-of-freedom isomorphic to the

standard FEM on the same mesh [34–36]. These immersed-

finite-element functions have been used in various numerical

frameworks such as discontinuous Galerkin method [37–39],

finite volume method [40–42], and nonconforming finite ele-

ment method [43].

The IFE method has been successfully used together with

PIC in plasma particle simulations [44–49]. Recently, a non-

homogeneous IFE-PIC algorithm has been developed for

particle simulations of plasma–material interactions with

complex geometries while maintaining the computational

speed of the Cartesian-mesh-based PIC [4,50–53]. In the past

decades, the IFE-PIC method has matured to successfully

model plasma dynamics problems arising from many space

applications, such as ion thruster grid optics [54–57], ion

propulsion plume-induced contamination [58–60], charging

of lunar and asteroidal surfaces [3,5,61–64], and dust trans-

port dynamics around small asteroids [65].

The PIFE-PIC package was developed based on the serial

non-homogeneous IFE-PIC as presented in Refs. [4,5]. In

PIFE-PIC, the computation domain is first decomposed

into cubic blocks with the same PIC mesh size. Local

(not necessarily uniform) IFE mesh is then generated for

each subdomain. For the parallel electrostatic field solver,

Dirichlet–Dirichlet domain decomposition with overlapping

cells is used to distribute the subdomains among multiple

MPI processes [66,67]. For each subdomain, the IFE solver

is the same as the serial IFE method with Dirichlet boundary

conditions [4,53,68–70]. These Dirichlet boundary condi-

tions are imposed at the boundaries of the subdomains, which

are also interior for the neighboring subdomains. Therefore,

the field solution at respective neighboring subdomains are

used as Dirichlet boundary conditions for each subdomain.

Within the field-solve part of each step in the PIC loop, inner

iterations among subdomains are performed such that the

solutions of the overlapping cells are exchanged and updated

as the new Dirichlet boundary conditions for the respective

neighboring subdomains. Simulation particles belonging to

a certain subdomain are stored together on the processor that

solves the field of the same subdomain. In this sense, “parti-

cle quantities” and “field quantities” of each subdomain are

handled by the same processor. Data communications are

implemented at inner boundaries (“guard cell” regions) used

to interchange field solutions and particle data for needed

calculations. Algorithm 1 describes key steps of PIFE-PIC

in the form of pseudocode showing three levels of iteration

(loop): the main PIC loop, the domain decomposition method

(DDM) loop, and the matrix solver preconditioned conjugate

gradient (PCG) loop. More details of the PIFE-PIC frame-

work used in this study are presented in Ref. [7], and the serial

version of the field solver that handles dielectric charging was

described in detail in Refs. [4,5].

3 Code validation and baseline simulation

In this section, we validate the PIFE-PIC code for the simula-

tion of a nominal 1-D photoelectron sheath against recently

derived semi-analytic solutions [8]. Since the upcoming

Artemis Moon missions are targeted toward the lunar ter-

minator region where the Sun elevation angle (SEA) is low,
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Algorithm 1 Pseudocode of key steps of PIFE-PIC

1: Start

2: Read inputs: domain, geometry, and plasma data

3: Initialize: MPI directives, domain decomposition, and arrays

4: Load particles into domain

5: ! Solve initial electrostatic field (i tP I C = 0) below:

6: while i tP I C = 0 do

7: i tDDM = 0

8: while i tDDM < i tDDM Max I nitial do

9: Each subdomain solves its own field using PCG

10: Exchange boundary conditions among subdomains (DDM

loop)

11: if DDM loop converges then

12: Exit

13: else

14: Continue

15: end if

16: i tDDM = i tDDM + 1

17: end while

18: i tP I C = i tP I C + 1

19: end while

20: ! Initial field solved

21: ! Start main PIC loop

22: while i tP I C ≤ i tP I C Max do

23: Gather: calculate force on each particle

24: Inject particles from global boundaries

25: Move particles and handle inner boundaries among subdomains

26: Handle particles going out of global domain

27: Handle particles hitting objects: collect charges carried by par-

ticles

28: Scatter: calculate space charge density for field-solve

29: ! Field-solve below:

30: ! Same as initial field solve but use i tDDM Max P I Cloop

31: ! Field solved for this PIC step

32: i tP I C = i tP I C + 1

33: end while

34: ! Main PIC loop finished

35: End

we chose a 5-degree SEA that would result in a monotonic

electric potential profile near the surface [8,71–73]. Figure 3

shows a schematic of the simulation cases used for valida-

tion/baseline case (serial) and the weak scaling performance

test (parallel, to be discussed in Sect. 4).

3.1 Problem description and simulation setup

This validation study contains a plasma species with ther-

mal electrons and cold drifting ions impinging a flat surface.

Other parameters of the charged species, including photo-

electons, such as number density n, drifting velocity vd ,

thermal velocity vt , temperature T , and Debye length λD ,

are selected to represent average solar wind conditions at 1

AU, as shown in Table 1.

The validation case uses a computation domain of 1.5 ×

1.5 × 100 (normalized by Debye length of photoelectrons

at 90◦ SEA) with a globally uniform PIC and IFE mesh,

i.e., both meshes have a mesh size of h = 0.5. Thus, the

entire simulation domain has 3 × 3 × 200 PIC cells which

totals to 1800 cubic PIC cells (1800 × 5 = 9000 tetrahe-

dral FE/IFE cells since each cuboid PIC cell is partitioned

into five tetrahedral FE/IFE cells). The simulation domain

contains two flat surfaces that physically correspond to the

lunar bedrock interface and the lunar regolith surface. The

lunar bedrock interface is located at ẑ = 1.99, and the lunar

regolith surface is at ẑ = 5.70. This validation study utilizes

the serial configuration of the PIFE-PIC code, such that the

entire computation domain is partitioned into 1 × 1 × 1 sub-

domain; therefore, the whole domain is computed by only

one MPI process.

Particles were preloaded into the domain before the ini-

tial field solution and injected into the domain at Zmax within

each PIC step. On average, 1728 macroparticles representing

solar wind electrons (12×12×12) and 4096 macroparticles

representing solar wind ions (16×16×16) were populated in

one PIC cell. Particles hitting the Xmin, Xmax, Ymin, and Ymax

boundaries were treated with periodic conditions. Particles

hitting the Zmax boundary were absorbed and removed from

the domain. Particles hitting the lunar regolith surface were

collected to calculate the non-homogeneous flux jump con-

dition, which was then used to self-consistently solve for the

electric field including the floating potential of the regolith

surface.

At the Zmin and Zmax boundaries, the potentials are set to

0 as the reference potential. At Xmin, Xmax, Ymin, and Ymax

boundaries, zero-Neumann boundary conditions are applied

due to the 1-D configuration. The relative permittivity of the

regions for both the lunar bedrock and regolith layer was

set to 4 [1]. The normalized time step size was set to be

0.05. The convergence criterion of the field-solve was set

at a tolerance of 1 × 10−6 for the absolute residual of the

preconditioned conjugate gradient (PCG) matrix solver with

the maximum number of PCG iteration set to 1000. (For the

serial case, the PCG solver took about 300 iterations to con-

verge, more details in Sect. 4.) All the runs presented in this

study were performed on AMD EPYCTM Rome (Ryzen 2)

compute nodes provided by the Center for High Performance

Computing Research at Missouri University of Science and

Technology. This serial validation case took approximately

18.5 wall-clock hours for 40,000 PIC steps when the steady

state was reached.

3.2 Comparison with semi-analytic solutions and
performance profiling

Following the steps detailed in Ref. [8], semi-analytic solu-

tions to the density and potential profiles of the 1-D pho-

toelectron sheath were obtained to validate the PIFE-PIC

solution. These comparisons are plotted in Fig. 4. Excellent

agreement between two PIFE-PIC and semi-analytic solu-

tions is achieved. This validation case shows the suitability

of the setup and the fully kinetic PIFE-PIC framework to
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Fig. 3 Simulation cases for validation/baseline (serial, left) and weak scaling performance test (parallel, right). (Colour figure online)

Table 1 Average solar wind and

photoelectron (at 90◦ SEA)

parameters at 1 AU∗

Solar wind electron Solar wind ion Photoelectron

n, cm−3 8.7 8.7 64

vd , ×107 cm/s 4.68 4.68 N/A

vt , ×107 cm/s 14.53 0.31 6.22

T , eV 12 10 2.2

λD , m 8.73 N/A 1.38

*N/A denotes “not applicable”

study the near-surface plasma environment and charging on

the Moon.

Table 2 shows the detailed timer profile of PIFE-PIC on

the validation case in terms of the percentage of total wall-

clock time of key procedures in PIFE-PIC, namely “gather”

(interpolate electric field at particle positions), “particle-

push” (update particle velocities and positions), “particle-

push-comm” (particle adjustment at local boundaries and

communication among subdomains), “adjust-objects” (par-

ticle collection and charge deposition), “scatter” (deposit

particle charge onto mesh grids), “field-solve” (solve for elec-

tric potential), “field-solve-phibc” (communication among

subdomains and update of local potential boundary con-

ditions), and “other” (including particle injection at global

boundaries and input/output). These data show that for the

validation case PIFE-PIC spent the majority of computing

time on operations related to particles, including “gather,”

“particle-push,” “adjust-objects,” and “scatter.” Since these

operations scale linearly with the number of macroparticles

in the simulation, we expect the weak scaling performance

to depend partially on the number of macroparticles, which

will be discussed in the next section.

4 Weak scaling parallel efficiency

For weak scaling, we keep the computing load (domain size

and number of macroparticles) the same for all MPI pro-

cesses while scaling up the problem size (both domain size

and number of total macroparticles). It is noted here that for

parallel cases, the solar wind travels toward the surface with

an incidence angle of 10◦ representing the lunar terminator

scenario (Fig. 3, right). Since the plasma charging problem

studied here involves an interface in the domain, we only

scale up the domain along x- and y-directions such that there

is no domain decomposition along the z-direction and each

process handles a computation domain with an interface.

Five parallel cases are tested, along with the serial baseline

case, with their domain decomposition configurations listed

in Table 3. The domain size and number of PIC cells for

the serial case are the same as the validation case above. As

the problem size increases so does the number of proces-

sors; therefore, in the parallel versions of the weak scaling

approach the problem size and number of PIC cells increase

proportionally. For example, the 2×2×1 domain decompo-

sition (DD) configuration case uses four times the processors

and has four times the number of PIC cells (3×3×200 =

123



1284 Computational Particle Mechanics (2022) 9:1279–1291

Fig. 4 1-D photoelectron sheath validation case comparing the PIFE-PIC solutions against the semi-analytic solutions. (Colour figure online)

Table 2 Time percentage

breakdown for all 40,000 PIC

steps

Computing step % of total wall-clock time (%)

Total wall-clock time 100.00

Initialization time 0.02

Main PIC Loop time 99.98

Total gather time 44.86

Total particle-push time 31.65

Total particle-push-comm time* 0.00

Total adjust-objects time 9.48

Total scatter time 7.66

Total field-solve time 6.03

Total field-solve-phibc time** 0.00

Total other time 0.31

*Included in the “particle-push time.” 0% for the serial configuration

**Included in the “field-solve time.” 0% for the serial configuration
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Table 3 Domain decomposition

configurations for weak scaling

test cases

# of subdomains (MPI processes) DD Configurations Size of global domain (cells)

1 (serial) 1×1×1 3×3×200

4 2×2×1 6×6×200

9 3×3×1 9×9×200

16 4×4×1 12×12×200

25 5×5×1 15×15×200

36 6×6×1 18×18×200

1800 versus 6×6×200 = 7200 PIC cells) as the serial ver-

sion.

For all the runs in weak scaling, the convergence criteria of

the field solution were kept the same as the validation case

above (1 × 10−6 for the absolute residual of PCG solver)

with the maximum number of PCG iteration set to 1000. It is

noted here that the PCG solver of the serial case took about

300 iterations to converge, while for all the parallel cases, it

took only about 40–50 iterations as shown in Fig. 5, which

caused 100+% parallel efficiency for this set of weak scaling

(more explanations in discussion of Tables 4, 5 and 6).

For the parallel configurations, the domain decomposition

method (DDM) used in PIFE-PIC added one more level of

iterations (DDM iterations) compared with the serial case.

The DDM iteration numbers were set in a way that for the

initial field solution, the maximum number of DDM itera-

tion was 1000, while for each PIC step within the main PIC

loop, the maximum number of DDM iteration was set to be

either 10 or 5 for two different groups with same tolerance

of 1 × 10−3 for the relative residual. It is noted here that to

start with a better initial field for PIC steps, the 1000 DDM

iterations were only needed for the initial field solution. In

our observations, the field solution typically converges in

less than 800 DDM iterations for the initial PIC step, about

50 DDM iterations for the second PIC step, and then stay

around 10 DDM iterations starting from the third PIC step,

while more macroparticles were injected to the domain at

the boundary and caused perturbations. The normalized time

step size was set to be 0.05, and all simulations ran for 40,000

PIC steps, which is the same as the validation case above.

The speedup is defined as S = p · Ts/Tp, where Ts is the

serial runtime and Tp is the parallel runtime on p MPI pro-

cesses. The weak scaling parallel efficiency is then defined

as E = Ts/(Tp) × 100%.

As shown in the validation/baseline case, the comput-

ing time largely depends on the number of macroparticles.

Therefore, three sets of particle number were considered in

the weak scaling test—each with (on average) 27 particles

(3×3×3), 64 particles (4×4×4), and 125 particles (5×5×5)

per species, per cell populated in the domain for two groups

of DDM iterations:

• Group I at most 10 DDM iterations per main-loop PIC

step (note the DDM may converge in less than 10 itera-

tions);

• Group II at most 5 DDM iterations per main-loop PIC

step (note the DDM may converge in less than 5 itera-

tions).

Tables 4 to 6 list the total wall-clock time, speedup, and

parallel efficiency of each case for both Group I and Group

II for 27 particles (3×3×3), 64 particles (4×4×4), and 125

particles (5×5×5) per species, per cell, respectively. The

timer data were taken over all 40,000 PIC steps.

A few trends are observed here:

1. It is surprising to see all parallel cases achieved 100+%

parallel efficiency for weak scaling. Further investigations

revealed that this was caused by the difference in the num-

ber of PCG iterations in the field-solve step (called in

two loops—DDM loop and PIC loop) for the specific

“unit domain” per MPI process chosen here, which is

3 × 3 × 200 PIC cells. For the serial case, the PCG solver

took more than 300 iterations to converge to the set cri-

terion of 1 × 10−6 absolute residual, while for all the

parallel cases, all processes took only about 40–50 PCG

iterations to converge to the same criterion. Therefore,

the serial case spent more iterations in the PCG solver,

and thus slower, which eventually led to 100+% parallel

efficiency for the parallel cases.

2. As the number of subdomains increases, the parallel effi-

ciency does not change significantly except for the case of

4 subdomains, as a general trend for all cases of particle

loading and DDM setup.

3. Overall the efficiency is insensitive to the number of par-

ticles in the domain. For all three levels of the number

of particles, the efficiency trends are about the same, and

they show a larger dependency on the number of maxi-

mum DDM iterations.

4. In general, for the parallel cases, the efficiency is higher

for the Group I data (10 DDM iterations) compared to the

Group II data (5 DDM iterations). This may seem counter-

intuitive since typically fewer DDM iterations save more

time in the “field-solve” step of PIFE-PIC, but in the
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more-subdomain cases (with 10 DDM iterations) PIFE-

PIC converges faster at the early stage because of the

increased number of DDM iterations. Later, this allows

the code to run fewer DDM iterations (in this case 2 DDM

iterations) for the majority of the run time. On the other

hand, the more-subdomain cases with 5 DDM iterations

oscillate between 5 and 2 DDM iterations throughout the

run time because there were not enough initial DDM iter-

ations to converge at the early state of the run. An example

of this trend can be seen in Fig. 5 on the cyan plot second

from bottom labeled “# of DDM it.” (only one example

is shown for the case using 125 particles per species, per

cell and 36 subdomains since all the other data follow the

same trend). Therefore, using a larger “max DDM itera-

tions” within the PIC step for this specific configuration

led to a faster field solution. It is noted here that this trend

may be limited to similar setups only - solving for steady

state with preloaded particles in the domain. For other

configurations, this trend may not hold and the choice of

an optimal number of DDM iterations may need further

investigations.

5 Application to plasma charging of a wavy
lunar surface

In this section, the PIFE-PIC code is applied to simulate

plasma charging of a wavy lunar surface under average solar

wind conditions.

5.1 Problem description and simulation setup

The problem considered is solar wind plasma charging near

the lunar surface, specifically, at the terminator region. The

plasma environment is the same as the ones shown in Table 1.

The geometry of the lunar surface is realized through an

algebraic equation describing the surface terrain in the form

of z = z(x, y) where z denotes the local surface height. For

the wavy lunar surface considered here, the shape is realized

by the algebraic equation of (the “hat” denotes normalized)

ẑ = ẑ(x̂, ŷ) = 2 cos
(2π x̂

90

)

cos
(2π ŷ

60

)

+ 11.75 (7)

as illustrated in Fig. 6.

The simulation domain has 90×60×60 = 324,000 PIC

cells (1.62 million tetrahedral FE/IFE cells). Each PIC cell

is a 1.38×1.38×1.38 cube (in m3). In physical units, the

domain size is approximately 124 m by 83 m by 83 m. At the

Zmin boundary, the simulation domain includes a layer of the

lunar bedrock with a thickness of Lbedrock = 2.12×1.38 = 2.9

m. On top of the bedrock is a layer of dielectric regolith with

a thickness of L regolith = (9.75 − 2.12) × 1.38 = 10.5 m.

The relative permittivities of the lunar regolith layer and the

bedrock are taken to be εregolith = 4 and εbedrock = 10,

respectively [74]. 3-D domain decomposition of 6×4×4

(total 96 MPI processes) is used to run the simulation

(Fig. 6a).

Particles representing solar wind ions and electrons are

preloaded and injected into the domain with an angle of 10◦

toward the surface in the X–Z plane. Particles representing

photoelectrons are generated at the sunlit regions accord-

ing to the local sunlight index (Fig. 6b). At the global Zmax

domain boundary, ambient solar wind particles are injected.

Particles hitting the global Ymin and Ymax boundaries are

reflected due to symmetry. Since the solar wind is flowing in

the positive x-direction, the Xmin and Xmax particle bound-

ary conditions are periodic. Particles hitting the lunar surface

are collected and their charges are accumulated to calculate

surface charging.

The Dirichlet boundary condition of � = 0 is applied

at the Zmax boundary (the unperturbed solar wind), whereas

Neumann boundary condition of zero electric field is applied

on all other five domain boundaries. The maximum num-

ber for PCG iterations was set to 100 with a tolerance of

1 × 10−6 for absolute residual. (Indeed, all PCG solutions

converged in about 80 iterations.) The maximum number of

DDM iterations for initial field solution was set to 1000, and

the maximum number of DDM iterations for each step within

the main PIC loop was set to 200 with a tolerance of 1×10−3

for relative residual.

5.2 Surface charging results

The run took about 23 h to finish 20,000 PIC steps with the

time step size of 0.05 (total simulation time till t̂ = 1000).

At the steady state, the entire domain had about 150 million

macroparticles. The results presented below are taken at t̂ =

1000.

Figure 7 illustrates the density contours of solar wind ions,

solar wind electrons, photoelectrons, and total space charge

near the surface. The solar wind ion and electron density

contours show a differential density around the surface high-

lands. The photoelectron density contours clearly exhibit the

lack of photoemission in the shadow region of the center

highland. The total space charge density contours show the

non-neutral regions associated with the differential density

caused by the wavy surface terrain.

Figure 8 illustrates the potential contours of the domain

and near the surface highlands. It is shown, for the average

solar wind conditions considered here, the surface potential

in the sunlit region of the center highland is charged to about

−2 × 2.2 � −4.4 V, while the surface in the shadow region

of the center hill is charged to about −11×2.2 � −24.2 V. It

is noted as this length scale is on the order of tens of meters,

the differential surface charging will affect the lunar surface
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Table 4 Weak scaling test results for 27 particles per species, per cell

# of subdomains Total time TI (min) Speedup SI Efficiency EI (%) Total time TII (min) Speedup SII Efficiency EII (%)

1 (serial) 125.4 1.00 100.00 122.9 1.00 100.00

4 100.8 4.98 124.45 100.1 4.91 122.83

9 119.1 9.48 105.32 113.8 9.72 108.04

16 110.3 18.19 113.68 115.5 17.03 106.42

25 114.9 27.28 109.14 122.1 25.18 100.74

36 121.1 37.29 103.57 121.9 36.30 100.83

Table 5 Weak scaling test results for 64 particles per species, per cell

# of subdomains Total time TI (min) Speedup SI Efficiency EI (%) Total time TII (min) Speedup SII Efficiency EII (%)

1 (serial) 138.1 1.00 100.00 137.4 1.00 100.00

4 115.4 4.79 119.67 98.9 5.56 139.03

9 107.1 11.61 128.97 131.9 9.38 104.22

16 105.4 20.96 131.03 134.6 16.34 102.11

25 106.8 32.34 129.35 131.1 26.21 104.84

36 111.9 44.41 123.37 130.4 37.94 105.38

Fig. 5 Field convergence history of the 125 particles per species, per cell and 36 subdomain case, PCG absolute residual and DDM relative error.

The green line on maximum DDM relative error plot is the DDM tolerance. (Colour figure online)
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Fig. 6 The lunar surface

geometry and simulation

domain. (Colour figure online)

Fig. 7 Normalized density

contours. For electrons,

numerical values include a

negative sign indicating the

negative charges. The densities

are normalized by 64 cm−3 and

the spatial dimensions are

normalized by 1.38 m. (Colour

figure online)
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Table 6 Weak scaling test results for 125 particles per species, per cell

# of subdomains Total time TI (min) Speedup SI Efficiency EI (%) Total time TII (min) Speedup SII Efficiency EII (%)

1 (serial) 160.1 1.00 100.00 159.1 1.00 100.00

4 121.0 5.30 132.38 117.7 5.41 135.13

9 122.1 11.80 131.11 146.6 9.77 108.51

16 126.6 20.24 126.49 149.2 17.07 106.67

25 130.3 30.73 122.91 145.2 27.39 109.56

36 129.4 44.53 123.70 154.9 36.98 102.73

Fig. 8 Potential contours of

lunar surface charging. The

potential values are normalized

by 2.2 V and the spatial

dimensions are normalized by

1.38 m. (Colour figure online)

activities for exploration missions such that the risk of dis-

charging/arcing and horizontal/vertical transport of levitated

charged lunar dusts should be considered.

6 Summary and conclusion

In this study, weak scaling performance of a recently devel-

oped fully kinetic parallel immersed-finite-element particle-

in-cell framework, namely PIFE-PIC, was investigated. A

nominal 1-D plasma sheath problem of the vertical struc-

ture of the lunar photoelectron sheath at a low Sun elevation

angle was chosen to validate PIFE-PIC against recently

derived semi-analytic solutions of 1-D photoelectron sheath.

The weak scaling performance test shows that the over-

all efficiency of PIFE-PIC is insensitive to the number of

macroparticles and, counterintuitively, more domain decom-

position iterations in the field-solve of PIC may lead to faster

computing due to better convergence of field solutions at

early stages of PIC iteration. The PIFE-PIC framework was

then applied to simulate plasma charging of a wavy lunar

surface with 324,000 cells and 150 million macroparticles

demonstrating the capability of PIFE-PIC in resolving local-

scale plasma environment near the surface of the Moon.
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