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Abstract— Microwave measurements and machine learning
algorithms are presented to estimate metal ion concentrations
in drinking water. A novel block loop gap resonator (BLGR)
as a microwave probe is designed and fabricated to estimate
Pb ion concentrations in city water as low as 1 ppb with an
rms error of 0.18 ppb. No physical contact between the BLGR
probe and the water sample allows on-site/in situ continuous
detection of ppb-level metal ion concentrations. The S11 raw
data (amplitude and phase) from the BLGR are used to classify
and estimate metal ion concentrations using a support vector
regression algorithm. The performance of the proposed method
to estimate Pb concentrations in the presence of interfering metal
ions (Cu2+, Fe3+, and Zn2+) is also evaluated, and it is found that
the average measurement error remains less than 13%.

Index Terms— Loop gap resonator (LGR), machine learn-
ing, metal ions in water, microwave sensor, Pb contaminants,
Pb sensor.

I. INTRODUCTION

METAL ions in water have a great impact on biological
and environmental processes [1], [2]. While metal ions,

such as sodium (Na), iron (Fe), copper (Cu), and zinc (Zn), are
essential for different biochemical processes, metal ions, such
as lead (Pb), mercury (Hg), and cadmium (Cd), are severely
toxic even at low concentrations [3].

There are several well-established technologies used to
identify the concentration and type of metal ions in water.
They are inductive coupled plasma mass spectrometry [4], [5],
atomic absorption spectrometry [6], [7], electrochemical
analysis [8], [9], fluorescence spectrometry [10], [11], and
optical emission spectrometry [12], [13]. These technologies
have high accuracy and sensitivity. However, they require
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sophisticated instruments and involve complex data analysis
in a controlled environment. Hence, measurements by such
systems are ex situ since they must be performed in a
laboratory [14]. Most on-site/in situ sensing technologies are
based on electrochemical or optical methods [9], [15]–[17].
Electrochemical sensors require the modification of the sens-
ing electrode surface, whereas optical sensors require mole-
cular markers. Both electrochemical and optical sensors are
unsuitable for continuously monitoring metal ion contaminants
in drinking water. Microwave resonators have been used
for sensing glucose and mixed phosphate/nitrate ppm level
concentrations in water [18]–[20].

In this article, a microwave block loop gap res-
onator (BLGR) is presented as a metal ion sensor. The BLGR
continuously measures the concentrations of metal ions in
drinking water systems. Because liquid samples of interest
are placed in a glass tube inside the resonator as shown
in Fig. 1(d), the BLGR has no physical contact with the sample
ensuring on-site/in situ continuous monitoring of metal ions in
water. Experimental results demonstrate that the BLGR is able
to classify solutions of different ions (Na+, K+, and Mg2+)
in deionized (DI) water and to measure Pb ion concentration
with 1 ppb resolution in city water.

II. BLGR SENSORS

A loop gap resonator (LGR) is a microwave device consist-
ing of a hollow cylindrical loop with a gap at its periphery.
It is also known as a slotted tube cavity [21] or a split ring
resonator [22]. The device can be considered as a lumped
LC circuit where the loop acts as an inductor and the gap
functions as a capacitor. In the presence of an electromag-
netic (EM) signal, a magnetic field is induced around the
loop. The gap holds electric charges that create a uniform
electric field [23]. When the stored magnetic energy in the
loop and the stored electric energy in the gap are equal,
the LGR structure becomes resonant. An LGR is a reusable
passive device with large filling factor, medium Q value, and
nearly uniform magnetic field in the loop [24]. It is much
less susceptible to stray environmental signals while sensing
than the cavity resonator. The sensor is cost-effective, as mass
production is possible. LGRs are extensively used to measure
different electrodynamic properties of solids. In electron spin
resonance spectroscopy, a single-loop multiple-gap LGR has
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Fig. 1. Schematic of different resonators: (a) split ring resonator, (b) slotted
tube cavity resonator, (c) BLGR with dimensions, and (d) integration of a
BLGR, coupling loop, and water sample for the S11 measurement. A 6.3-mm
OD glass tube is placed in the BLGR loop. A water sample is introduced in
the glass capillary. There is no physical contact between the BLGR and the
water sample. In the picture, the water sample is colored with a blue dye to
facilitate visualization.

been introduced for the frequency range 1–10 GHz [25], [26].
A single-loop LGR can exhibit unwanted radiation at higher
frequencies. To reduce the radiation loss, a multiloop multigap
resonator, which better confines magnetic flux, has been used
Wood et al. [27]. Each additional gap adds one more capacitor
in series in the equivalent circuit, enabling ESR spectroscopy
at a higher frequency.

As shown in Fig. 1(a) and (b), most LGR structures are
cylindrical, where the loop acts as an inductor, and a parallel
slot is cut from the body to create a capacitor. The capacitance
of the cylindrical LGR depends on the difference between
the inner and outer radii, whereas inductance is a function
of the inner radius. The resonant frequency can be adjusted
by changing the inner radius (inductance) or by increasing the
difference between the inner and outer radii (capacitance).

In the proposed sensor, a rectangular body replaces the outer
periphery as shown in Fig. 1(c). We call this sensor a BLGR.
The block shape body provides not only mechanical stability
to the LGR, but also a secure mounting place for a coupling
loop, which is required to couple RF signals to the LGR. With
the BLGR, the resonant frequency can be tuned by adjusting
the loop diameter and the gap size (d). The BLGR structure
allows cuts perpendicular to the gap. These perpendicular cuts
create tightly coupled resonators and thus additional resonant
frequencies can be introduced, which is effectively broadens
the bandwidth. The cuts go through the inductive loop and the
gap. In the case of LGRs used in ESR spectroscopy, the cuts
go through the inductor loop only. This is done to allow field
modulation to penetrate into the sample and do not create
coupled resonators [28].

III. PRINCIPLE OF OPERATION OF THE BLGR SENSOR

Molecules interact with EM fields in several ways. Charges
in neutral molecules tend to form a dipole moment. The
charges, spins, and dipoles in a sample under test respond

to the applied EM wave to form an average field [29].
The total EM field includes the effects of both the applied
field and the scattered fields from charge, spin, and current
rearrangements [30]. The backscattered field is specific to
different atoms and ions, resulting in measurable EM field
amplitude and phase variations.

The RF reflection coefficient (S11) has been used to identify
doping concentrations in silicon samples [31]. The measured
S11 data are mapped into the sample’s resistance and capaci-
tance to quantify dopant concentration [32]. The BLGR also
measures S11 data from ions in a water sample. The BLGR can
detect the presence of various ions and their concentrations
in terms of a change in reflection coefficient. Ions in water
shift the resonant frequencies of the resonator [19]. The
frequency shift depends on charge number, concentration,
and background of the liquid sample [33]–[35]. Water sam-
ples with different ions and concentrations of a specific ion
(i.e., Pb) exhibit amplitude and phase variations of the S11 data.
Variation can be observed over the entire frequency range,
but it is more pronounced near the resonance frequencies of
the BLGR.

In Gramse et al. [32], the authors consider only two
dopant ion types, which are relatively immobile in the sample.
However, many metal ions may be present in a water sam-
ple. Moreover, the mobility of these ions can vary substan-
tially depending on the characteristics of the sample. Hence,
the investigation of the reflection coefficient to determine the
features for different ions and concentrations of a specific
metal ion in a water sample is a much more complex task.
Hence, a machine learning algorithm is used to extract fea-
tures, classify different ions, and quantify different concentra-
tions. Specifically, a support vector machine (SVM) or support
vector regression (SVR) algorithm is used to process S11 raw
data. The SVR model is trained with different concentrations
of the target (e.g., Pb) ion. As a result, the algorithm learns
how both the frequency and phase response components of
S11 data change for different target ions in a water sample.

IV. ELECTRICAL CIRCUIT MODEL OF THE BLGR

The resonant frequency (ωo) of a resonator depends on
inductance and capacitance [22]. In the BLGR, the value of
both the inductance (L) and the capacitance (C) are directly
dependent on the structural parameters shown in Fig. 1,
including the length (l), the gap width (w), the loop radius (r ),
the separation between plates (d), and the permittivity (ε) in
the gap. These relationships are governed by the following
equations:

L = μN2πr2

l
(1)

C = ε
lw

d
(2)

ωo =
√

1

LC
=

√
d

εμπ N2r2w
. (3)

In this work, we focus on a single loop (N = 1)
BLGR made of aluminum (conductivity of 3.77 × 107 S/m).
One feature of the BLGR is that the resonant frequency is
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Fig. 2. S11 data across the 0.5–2.5 GHz frequency range of single-loop
single-gap BLGRs with 1/2, 3/8, and 1/4 in loop diameter.

TABLE I

DIMENSIONS OF BLGR WITH DIFFERENT LOOP RADII,
RESONANT FREQUENCIES, AND Q VALUES

independent of the length (l) of the device. In metal ion
sensing applications, increasing the length provides larger
volume of sample for higher sensitivity. The BLGR can be
designed according to application-specific requirements by
adjusting its various physical dimensions. The resonant fre-
quency is inversely proportional to the loop radius (r ). A larger
loophole can lower the resonant frequency resulting in low
electronic cost to operate the BLGR. In this work, single-gap
BLGRs with 1/2, 3/8, and 1/4 in loop diameter are designed.
The frequency responses of the three resonators are shown
in Fig. 2. The physical dimensions of the resonators, measured,
calculated, simulated resonant frequencies, and quality factors
are summarized in Table I.

The calculated resonant frequencies in Table I are ideal.
Typical deviations from the ideal case include field fringing
and losses due to finite conductivity of the metal. The pen-
etration (skin depth) of the electric field into the capacitor
plates can also change the capacitance and, hence, the reso-
nant frequency. The measured frequencies in Table I include
both effects: fringing and losses. The BLGR geometry is
simulated using MIT Electromagnetic Equation Propagation
(MEEP) [36] assuming a perfectly conducting material. The
simulation results include field fringing effect, but no losses.
In Table I, the resonant frequencies from the simulation are
within 8% of the calculated frequencies and within 3% of the
measured results.

In the BLGR, multiple gaps may be made along the
length (l) to obtain multiple resonance frequencies for broad-
ening the measurement bandwidth. In that case, the total
capacitance is split into several small capacitors/inductors
by introducing cuts perpendicular to the original gap as
shown in Fig. 3. The small capacitors/inductors are heavily

Fig. 3. Single-loop BLGRs with different gaps: 1) single-gap; 2) double-gap;
3) triple-gap; and 4) BLGR attached with an inductive coupling loop.

Fig. 4. S11 data across the 1–4 GHz frequency range of single-gap, double-
gap, and triple-gap BLGR with 1/4 in loop diameter.

coupled together and produce multiple resonant frequencies.
For instance, a single perpendicular cut divides the total
capacitance into two capacitors/inductors. This creates two
resonant frequencies, in where the lower resonance is dictated
by the total capacitance/inductance and the higher resonant
is resulted from the partial capacitance/inductance induced by
the additional cut. The lower resonant frequency is slightly
higher (2%) than the resonance frequency with no additional
cut. In this work, we use single-gap, double-gap, and triple-gap
resonators with a quarter inch loop diameter. Each cut is
one-third of the distance (l) from the edge. Fig. 3 shows the
geometry of the gap and the additional perpendicular cuts.
The cuts are introduced to create tightly coupled resonators
that produce extra dips in S11. Frequency responses of single-
gap, double-gap, and triple-gap resonators are shown in Fig. 4.
The resonant frequency of the single-gap BLGR is 1804 MHz
with a Q of 81. The double-gap BLGR has two resonances at
1832 and 2910 MHz with Q values of 20 and 40, respectively.
The triple-gap BLGR has three resonances at 1834, 2759, and
3339 MHz with Q values of 20, 40, and 50, respectively.
In this work, the 1/4�� diameter is chosen because the typical
tube size for drinking water system is 1/4��.

V. EXPERIMENTAL MEASUREMENT DETAILS

The block diagram for S11 measurement is shown in Fig. 5.
The coupling loop is connected to a vector network ana-
lyzer (VNA) and is placed near the BLGR as shown
in Fig. 6(a). The magnetic field of the coupling loop couples
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Fig. 5. Block diagram of the proposed strategy for ion sensing in liquid
samples using BLGR and machine learning.

Fig. 6. Inductive loop coupling mechanism of BLGR: (a) orientation of
magnetic field, (b) generalized equivalent circuit of multiple gap BLGR, and
(c) variation of coupling factor with coupling space, g.

to the resonator through the loop hole shown in Fig. 6(a) [25].
The inductive coupling loop is fabricated on a 1.6-mm thick
printed circuit board (PCB). The circuit model of the cou-
pling loop and the BLGR is shown in Fig. 6(b). Lc and
Li are the inductance of the coupling loop and the BLGR,
respectively. Li and Ci are the inductance and the capacitance
of the i th gap in a multiple-gap BLGR. Coupling efficiency
depends on the spacing (g) between the coupling loop and
the BLGR, respectively. A coupling factor is defined as the
ratio of the S11 amplitude to the maximum value of the
S11 at the resonant frequency. The variation of the coupling
factor as a function of the distance between the coupling
loop and the resonator is shown in Fig. 6(c). The RF energy
transferred to the BLGR is maximized when the separation is
around 0.9 mm. The resonator reflects a portion of the signal,
which is returned to the VNA. The ratio of the reflected
signal to the incident signal is the S11 scattering parameter.
A 40-GHz VNA (Agilent E8363B) is used for S11 data
acquisition in this work. For practical applications, a Copper
Mountain Technology one-port VNA (1 MHz–6 GHz), which
is smaller and low cost, can be used.

TABLE II

MACHINE LEARNING ALGORITHM RESULTS FOR

Na+ , K+ , AND Mg2+ CLASSIFICATION TEST

A quarter-inch outer diameter (OD) glass tube is inserted
through the coupling loop and the loophole of the BLGR.
Various liquid samples are placed in the glass tube. The
S11 data acquisition process is automated by using a custom
LabVIEW program. The liquid samples are placed into the
glass tube in the BLGR using a syringe pump. An initial delay
of 10 s is used to settle the liquid sample motion before the
S11 measurement begins. The frequency range of the S11 data
is from 10 MHz to 5 GHz with 20 000 data points. The VNA
measures the amplitude and the phase at each frequency. For
each measurement, the 20 000 magnitude and phase values
are normalized to the range [0, 1] and concatenated into
40 000-dimensions feature vectors, which are used to train the
SVM and the SVR.

VI. RESULTS

In this section, two methods for measuring metal ions in
water samples using the BLGR are presented: classification
of different ions (Na+, K+, and Mg2+) in DI water and
measurement of the concentration of Pb ions in drinking water.

Many unknown ions dissolved in city water may affect
the S11 measurement. To verify that our algorithms are able
to determine the presence of ions of interest in water sam-
ples, 100 ppm Na+, K+, and Mg2+ solutions are prepared
by dissolving sodium chloride (NaCl), potassium chloride
(KCL), and magnesium chloride hexahydrate (MgCl2·6H2O)
in DI water, respectively. A multiclass classifier based on
error-correcting output codes [37] comprising three binary
SVM classifiers is trained with 1300 feature vectors from each
sample and tested on an additional 200 feature vectors of each
sample. Table II shows the confusion matrix corresponding to
the 200 test feature vectors for each of the three ions. As the
table indicates, each of the 200 predicted feature vectors is
associated with the correct ion, that is, the test data is classified
with 100% accuracy.

To evaluate the ability of the proposed sensor to mea-
sure the concentration of specific ions in the presence of
unknown background ions, Pb concentrations in Milwaukee
(WI, USA) city water are measured. Various Pb concentrations
are prepared from a seed solution of known concentration.
Concentrations of 1, 3, 5, 10, and 20 ppb PbCl2 are prepared
as trace-level contaminants in 200 mL of city water by the
addition of 4, 12, 20, 40, and 80 μL volumes, respectively,
of acidified 50 ppm Pb stock solution (PbCl2 dissolved 1% v/v
16 M HNO3 in DI water). Equivalent microlitter volumes
of a blank (0 ppb Pb) stock solution (1% v/v 16 M HNO3

in DI water only) are used to prepare negative controls.
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TABLE III

SUMMARY OF CITY WATER pH AND CONDUCTIVITY CHANGE OVER TIME

Both stock solutions are prepared in DI water to minimize the
introduction of additional monovalent (1+) or divalent (2+)
metal ions. Pb concentrations are measured with three dif-
ferent BLGRs: single-gap, double-gap, and triple-gap. A total
of 1500 data files of each concentration are collected with each
of the resonators. The SVR model is trained using 1300 data
files from each concentration. Pb concentrations are measured
using the remaining 200 files of each concentration.

HNO3 is typically used to stabilize Pb compounds in water
that would otherwise be absorbed into the sample container
over time. The consequence of the acidification of the stock
samples, however, is a substantial decrease in DI water pH
and increase in conductivity. In this work, the change in pH
of the acidification of the stock is less than 1 and the change
in conductivity is about 50 μS/cm. The Pb stock solution
is prepared with a sufficiently high concentration of Pb to
minimize any changes to pH and conductivity. Although the
change in pH and conductivity in sample solutions can be
minimized, it is impossible to eliminate their effect completely.

pH and conductivity of the city water are measured using a
pH meter (Ultrameter II) before preparing different Pb solu-
tions and are found to be 7.84 and 308.6 μS/cm, respectively.
The changes in pH and conductivity of the Pb solutions are
monitored over time. The measured values are within 2%
after one month. The initial and the final pH and conductivity
of the samples are summarized in Table III. The control
solution (no Pb) is prepared to compare the changes of pH,
conductivity, and any other unknown compound contamination
during sample storage.

Fig. 7 shows concentrations of training data samples (blue
circles), actual values (yellow×), and measured values of Pb
concentrations (red, purple, and green ∗). Machine learning
test results of Pb measurement using a single-loop single-
gap, double-gap, and triple-gap BLGR are spaced horizontally
from left to right along with the training level of each ppb
concentration. The x-axis represents the sample number and
the y-axis represents the Pb concentration in ppb. As shown
in Fig. 7, Pb measurement using the triple-gap BLGR shows
the lowest error.

The rms errors for each Pb concentration for the three dif-
ferent resonators are summarized in Table IV. The average rms
errors of the measurements are 0.70, 0.58, and 0.16 ppb for a
single-gap, double-gap, and triple-gap BLGR, respectively.

Fig. 7. Machine learning training and test results of Pb measurement in city
water. 1, 3, 5, 10, and 20 ppb Pb concentrations are measured. Test results of
a single-gap, double-gap, and triple-gap BLGR are spaced horizontally from
left to right on the training datasets.

TABLE IV

RMS ERROR OF MEASUREMENT FOR DIFFERENT

Pb CONCENTRATIONS AND RESONATORS

A. Interpolation Performance

Since the SVR is trained using discrete concentration values,
it must be able to interpolate samples with previously unob-
served concentrations. To evaluate the ability of the model
to interpolate concentration values between the trained values
(i.e., not observed during training), the performance of each
of the resonators is assessed using 200 new samples with a Pb
concentration of 15 ppb, which is not included in the training
sets described above. As Fig. 8 indicates, for the single-gap
resonator, the measurement error is within 25% of the actual
value, which corresponds to an rms error of 2.42 ppb. The
estimates generated using the double-gap resonator differ by
at most 13% from the actual values, which corresponds to an
rms error of 0.71 ppb. Although the estimates generated by the
triple-gap resonator show lower variance than those obtained
using the double-gap resonator, the bias of approximately 1
ppb for the triple-gap resonator leads to a higher rms error
of 1.68 ppb with respect to the actual values.

It should be noted that the precision of the interpolated
measurements can be adjusted based upon the resolution of
the training samples. Let li , i = 1, 2, . . . , N represent the
N different concentration levels used for training (in the
experiments above, N = 5). Let l̃ be an arbitrary concentration
level such that li−1 ≤ l̃ ≤ li . The overestimation error for
l̃ is upper bounded by li and lower bounded by li−1. Hence,
the overall error is limited to li − li−1. For example, for a
concentration of 2 ppb, the measured values are expected to be
between 1 and 3 ppb, whereas for a concentration of 15 ppb,
the corresponding error is at most 10 ppb (i.e., li−1 = 10
and li = 20). Therefore, by increasing the resolution of the
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Fig. 8. Performance of the proposed machine learning algorithm in the
presence of previously unobserved concentrations. Test results of a single-
gap, double-gap, and triple-gap BLGR are spaced horizontally from left to
right on the training datasets.

training data, it is possible to reduce the interpolation error
to the desired sensor resolution. For example, training with
samples at 1 ppb intervals would allow the sensor to estimate
Pb levels with 1 ppb resolution.

B. Robustness to Variation in Water Composition

To assess the robustness of the proposed approach to daily
variations in the composition of water samples, the perfor-
mance of the machine learning algorithm is evaluated using
training data and test data collected on different days. Water
samples from the city of Milwaukee are collected every other
day on six different days. Pb solutions are diluted into the
samples collected in days 3, 5, and 7 at concentrations of 5,
10, and 20 ppb. These samples are used to train the SVR. The
test set consists of the samples from days 1, 9, and 11 diluted
with Pb at a concentration of 10 ppb. The Pb concentrations
of samples in the test set are measured using the triple-gap
resonator. Table V shows that although variations in pH,
conductivity, and total dissolved solids (TDSs) lead to slightly
higher rms errors, the average error is comparable to that
obtained using training and test samples collected on the same
day. Training the algorithm using data collected over longer
periods of time should further mitigate the impact of water
composition variability on the performance of the sensor. For
example, the model could be trained using samples collected
once per week over a year. Since most deviations in water
composition should be observable during such an extended
period, training with yearly data should further improve the
performance of the machine learning algorithm.

C. Measurement Accuracy in the Presence of Interfering
Metal Ions

Cu, Fe, and Zn metal ions and their compounds are fre-
quently found in tap water and typically occur at concentra-
tions that are higher than more regulated heavy metals, such
as Pb, Cd, Hg, and As. The Environmental Protection Agency
(EPA) maximum contaminant levels (MCLs) for Cu, Fe, and
Zn can be one to two orders of magnitude greater than the
regulated limit for Pb and other higher toxicity heavy metals.

TABLE V

SUMMARY OF pH, CONDUCTIVITY, AND TDS OF WATER SAMPLES
(NO Pb) COLLECTED ON DIFFERENT DAYS. RMS ERROR

(RIGHT COLUMN) OF 10 ppb Pb SAMPLES

TESTED WITH THE SVR MODEL

TABLE VI

SUMMARY OF MEASUREMENT ERROR OF 10 ppb Pb SOLUTIONS SPIKED
WITH INTERFERING METAL IONS OF DIFFERENT CONCENTRATIONS

Interference due to high concentrations of Cu, Fe, and Zn on
the sensor’s response to Pb is investigated here.

The SVR is trained with 5, 10, and 20 ppb Pb solutions
prepared in Milwaukee city water. First Cu, Fe, and Zn
solutions of 10 ppb without Pb ions are tested with the model
trained using Pb ions. The results indicate no Pb ions in the test
samples. Then, 10 ppb Pb solutions spiked with interfering Cu
ions (20, 50, and 100 ppb) are prepared. Table VI shows the
resulting rms errors for Pb concentrations when spiked with
Cu ions. The results show that the presence of Cu ions has no
significant impact on Pb concentration measurement. In each
case, the BLGR can effectively estimate Pb concentrations in
water with the background interfering ions. The average rms
error is 1.34 ppb over the three interfering ions.

VII. DISCUSSION

In this work, the impact of elements found in drinking water
on the accuracy of the results is considered. For example,
HNO3 is added to city water to prevent precipitation of PbCl2.
Since both HNO3 and PbCl2 are dissolved in the city water,
the BLGR may be detecting ions from HNO3 instead of
Pb ions. A 1% HNO3 seed solution is used as a control
solution to confirm that the sensor measures Pb ions rather than
ions from HNO3. Control solutions (with no Pb) are prepared
assuming equal amounts of HNO3 in the control solution and
the Pb solution for the 10 and 20 ppb levels. The measured
Pb levels of both control solutions are close to 0 ppb.

There are other typical contaminants (minerals and other
metal ions) in drinking water that may affect our results.
Conductivity is related to the total dissolved ion content in
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the water. DI water has a pH of 6.07 and a conductivity
of 1.65 μS/cm. The conductivity of city water (308.6 μS/cm)
is very different from that of DI water. Pb concentration
is measured using city water solutions for machine learning
training and DI water solutions in testing and vice versa. The
results indicate that the background water chemistry may influ-
ence the measurement of Pb concentration. As the background
chemistry changes, additional changes in the machine learning
model may be required.

The concentration of dissolved metal ions in drinking water
may also affect the results. The concentration of metal ions in
the city water samples is determined using inductively coupled
plasma (ICP) analysis. The presence of Na, Mg, Al, K, Ca,
Fe, Cu, and Zn ions are found to be between 5 ppb and
35 ppm, while concentrations of Cu, Fe, and Zn are 23, 20,
and 4 ppb, respectively. Pb solutions are additionally spiked
with 20, 50, and 100 ppb of Cu, Fe, and Zn ions, respectively.
The rms error of the solutions containing only Pb is less
than 1 ppb. The average measurement error of Pb concen-
tration is up to 13% for samples intentionally spiked with
interfering ions. Training the SVR with samples containing
different concentrations of interfering ions commonly found
in city water would further reduce the impact of these ions on
the accuracy of Pb estimation.

It is also possible to use the measured data to infer an
appropriate frequency range to enhance selectivity. For exam-
ple, using a single-gap BLGR to estimate Pb concentration
in DI water, we search for the 1 GHz frequency span within
the 10 MHz to 5 GHz range with the smallest rms errors in
Pb concentration. The segment containing resonance has the
lowest error (25% lower than the other segments). Therefore,
a multiple gap BLGR may estimate ion concentrations more
accurately because there are multiple resonant frequencies.
We have measured Pb concentration in city water using a
single-gap, double-gap, and triple-gap BLGR over the entire
frequency range (10 MHz to 5 GHz). The average rms errors
of each estimate are 0.70, 0.58, and 0.16 ppb, respectively.
As expected, the triple-gap BLGR having three resonant fre-
quencies in the scan frequency range shows the lowest errors.
The triple-gap BLGR has three resonant frequencies, each with
a different Q. The most sensitive resonance for Pb ions in
water is found by computing rms errors in Pb concentration
for a 1 GHz frequency span around each resonant frequency.
The extracted rms errors are 0.30, 0.26, and 0.29 ppb, for the
first, second, and third frequency ranges, respectively. Hence,
the second frequency span contains more information about
Pb ion concentration. A BLGR with all three resonances
(triple-gap) in the second frequency range (2.25–3.25 GHz)
may result in lower errors in Pb measurement.

The machine learning algorithms can also be adapted
to automatically determine a suitable frequency to further
improve sensor selectivity. Feature selection techniques such
as those proposed in [38] may be used to allow the machine
learning algorithms to automatically determine the most selec-
tive resonant frequency for Pb ions. A preliminary feature
analysis indicates that the algorithms take into consideration
distinct frequency ranges for determining the presence of
different ions. Furthermore, the algorithms extract most of the

relevant information from the phase response of the reflected
signal. Such behavior is consistent with the fact that the
response of the ions to the excitation signal should be better
characterized in terms of its delay than its attenuation. The
results of a feature selection study can then be used to design a
suitable BLGR with optimum center frequency. This approach
would predict Pb levels in water with higher accuracy while
simultaneously suppressing the effect of other contaminants.

In terms of data acquisition and processing time, measuring
the S11 raw signal using the Agilent E8363B VNA over the
frequency range described above takes 9.1 s, and the SVR
processes the corresponding sensor measurement in 10 ms
on average on an Advanced Micro Devices (AMD) Rome
64-core 2 GHz processor (running on a single core). Hence,
the proposed system can perform approximately six measure-
ments per minute. Since the concentration of contaminants in
drinking water does not vary significantly within such short
intervals, the sensor allows on-site/in situ detection of metal
ions continuously and in real-time.

VIII. CONCLUSION

A continuous on-site/in situ sensing system for metal ions
in water is presented. There is no physical contact of the
water samples with the sensing elements, which increases
sensor longevity and retains its functional consistency. The
conventional outer circular shape of LGRs is replaced with
a rectangular block for mechanical stability, coupling loop
support, and multiple cuts for multiple resonant frequencies.
The proposed BLGR has a compact size, highly tunable
resonant frequencies, moderate Q, and flexible integration into
existing water supply systems. Machine learning algorithms
(SVM and SVR) replace existing mathematical models limited
to immobile ions in a solid substrate. Metal ion concentrations
in water are estimated using S11 raw data alone. The measure-
ment error decreases with an increase in the number of gaps
in the BLGR because there are more resonant frequencies.
The triple-gap BLGR has the lowest rms error (0.16 ppb
average error) in Pb measurement. The detection limit of 1 ppb
Pb is achieved in city water containing various unknown
background ions; this is significantly below the United States
EPA regulation (15 ppb).
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