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What are the symmetries of a dataset? Whereas the symmetries of an individual data element can be
characterized by its invariance under various transformations, the symmetries of an ensemble of data
elements are ambiguous due to Jacobian factors introduced while changing coordinates. In this paper, we
provide a rigorous statistical definition of the symmetries of a dataset, which involves inertial reference
densities, in analogy to inertial frames in classical mechanics. We then propose SymmetryGAN as a novel
and powerful approach to automatically discover symmetries using a deep learning method based on
generative adversarial networks (GANs). When applied to Gaussian examples, SymmetryGAN shows
excellent empirical performance, in agreement with expectations from the analytic loss landscape.
SymmetryGAN is then applied to simulated dijet events from the Large Hadron Collider (LHC) to
demonstrate the potential utility of this method in high energy collider physics applications. Going beyond
symmetry discovery, we consider procedures to infer the underlying symmetry group from empirical data.
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I. INTRODUCTION

The properties and dynamics of physical systems are
closely tied to their symmetries. Often these symmetries are
known from fundamental principles. There are also, how-
ever, systems with unknown or emergent symmetries.
Discovering and characterizing these symmetries is an
essential component of physics research.
Beyond their inherent interest, symmetries are also

practically useful for increasing the statistical power of
datasets for various analysis goals. For example, a dataset
can be augmented with pseudodata generated by applying
symmetry transformations to existing data, thereby creating
a larger training sample for machine learning tasks. Neural
network architectures can be constructed to respect sym-
metries (e.g., convolutional neural networks and translation
symmetries [1]), in order to improve generalization and
reduce the number of model parameters. Furthermore,
symmetries can significantly increase the size of a useful

synthetic dataset created from a generative model trained
on a limited set of examples [2,3].
Deep learning is a powerful tool for identifying patterns

in high-dimensional data and is therefore a promising
technique for symmetry discovery. A variety of deep
learning methods have been proposed for symmetry dis-
covery and related tasks. Neural networks can parametrize
the equations of motion for physical systems, which can
have conserved quantities resulting from symmetries [4,5].
Generic neural networks targeting classification tasks can
encode symmetries in their hidden layers [6,7]. This
possibility can be used to actively learn symmetries by
encoding a shared equivariance in hidden layers across
learning tasks [8]. Directly learning symmetries can be
framed as an inference problem given access to parametric
symmetry transformations of the same dataset [9]. A given
symmetry can be identified in data if a classifier is unable
to distinguish a dataset from its symmetric counterpart
[10–12] (similar to anomaly detection methods comparing
data to a reference [13–15]). Another class of targeted
approaches can be found in the domain of automatic data
augmentation. If a dataset can be augmented without
changing its statistical properties, then one has learned a
symmetry. Significant advances in this area have used
reinforcement learning [16,17].
An alternative symmetry discovery approach that is

flexible, fully differentiable, and simple is based on
generative models [18,19]. Usually, a generative model
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is a function that maps random numbers to structured data.
For example, a deep generative surrogate model can be
trained such that the resulting probability density matches
that of a target dataset. For symmetry discovery, by
contrast, the random numbers are replaced with the target
dataset itself. In this way, a well-trained generator designed
to confound an adversary will implement a symmetry
transformation. We call this generative model framework
for symmetry discovery SymmetryGAN, since it has the
same basic training strategy as a generative adversarial
network (GAN) [20], as shown in Fig. 1.
In this paper, we extend the SymmetryGAN approach

(suggested in Ref. [17], but in the language of data
augmentation rather than symmetries) and introduce it to
the physics community. In particular, we build a rigorous
statistical framework for describing the symmetries of a
dataset and construct a learning paradigm for automatically
detecting generic symmetries. The key idea is that sym-
metries of a target dataset have to be defined with respect to
an inertial reference dataset, analogous to inertial frames
in classical mechanics. Our deep learning setup is simpler
than existing approaches and we develop an analytic
understanding of the algorithm’s performance in simple
cases. This in turn allows us to understand the dynamics of
the machine learning as it trains from a random initializa-
tion to an element of the symmetry group. The primary

purpose of this paper is to carefully demonstrate that this
method of symmetry discovery works. Having done so, in
the last section we move forward to a discussion of methods
to infer which formal groups of symmetries are present in
the dataset, a related but distinct problem which is a rich
area for future research.
This rest of this paper is organized as follows. In Sec. II,

we build a rigorous statistical framework for discove-
ring the symmetries of a dataset, contrasting it with
discovering the symmetries of an individual data element.
Our machine learning approach with an inertial restriction
is introduced in Sec. III and the deep learning implemen-
tation is described in Sec. IV. Empirical studies of simple
Gaussian examples, including both analytic and numerical
results, are presented in Sec. V. We then apply our method
to a high energy physics dataset in Sec. VI. In Sec. VII, we
discuss possible ways to go beyond symmetry discovery
and towards symmetry inference, with further studies in the
Appendix. Our conclusions and outlook are in Sec. VIII.

II. STATISTICS OF SYMMETRIES

What is a symmetry? Let X be a random variable on an
open set O ⊆ Rn, and let x be an instantiation of X. When
we refer to the symmetry of an individual data element
x ∈ X, we usually mean a transformation h∶O → O such
that

hðxÞ ¼ x; ð1Þ

i.e., x is invariant to the transformation h. More generally,
we can consider functions of individual data elements,
f∶O ⊆ Rn → O0 ⊆ Rm. In that case, the function is sym-
metric if

fðhðxÞÞ ¼ fðxÞ; ð2Þ

i.e., the output of f is invariant to the transformation h
acting on x. One can also consider equivariances, where the
output of f has well-defined transformation properties
under the symmetry [21–24]. While symmetries acting
on individual data elements are interesting, they are not the
focus of this paper.
We are interested in the symmetries of a dataset as a

whole, treated as a statistical distribution. Let X be
governed by the probability density function (PDF) p.
Naively, a symmetry of the dataset X is a map g∶Rn → Rn

such that g preserves the PDF:

pðX ¼ xÞ ¼ pðX ¼ gðxÞÞjg0ðxÞj; ð3Þ

where jg0ðxÞj is the Jacobian determinant of g. While it is
necessary that any candidate symmetry preserves the
probability density, it is not sufficient, at least not in the
usual way that we, as particle physicists, think about
symmetries.

FIG. 1. A schematic diagram of (top) the training setup for a
usual GAN and (bottom) the SymmetryGAN variation discussed
in this paper for automatically discovering symmetries. Here,
g is the generator and d is the discriminator. Not represented here
is the incorporation of the inertial reference dataset. In our
numerical examples, this is accomplished by directly imposing
constraints on g.
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Consider the simple case of n ¼ 1. Let F be the
cumulative distribution function (CDF) of X. FðXÞ is itself
a random variable satisfying

FðXÞ ∼ U½0; 1�; ð4Þ

where UðOÞ is the uniform random variable on O.
Conversely, F−1ðU½0; 1�Þ is a random variable governed
by the PDF p (for technical details, see Ref. [25]). The
uniform distribution on the interval [0, 1] has many PDF-
preserving maps, such as the quantile inversion map:

g̃ðxÞ ¼ 1 − x: ð5Þ

This map has the additional property that g̃ðg̃ðxÞÞ ¼ x, so it
appears to represent a Z2 (i.e., parity) symmetry. Using the
CDF map from above, every probability density p admits a
Z2 PDF-preserving map:

g ¼ F−1 ∘ g̃ ∘F; ð6Þ

where ∘ refers to functional composition.
If we were to accept Eq. (3) as the definition of a

symmetry, then all one-dimensional random variables
would have a Z2 symmetry, namely the one in Eq. (6).
While true in a technical sense, this is not what particle
physicists (or, to our knowledge, any domain experts) think
of as a symmetry of a dataset. The precise definition of a
symmetry must therefore be stricter than simply PDF-
preserving. In particular, while this Z2 PDF-preserving
map applies to every one-dimensional random variable, it
requires a different map for each such variable. When we
usually think about symmetries, we imagine common maps
that can be applied to a variety of physical systems that
share the same underlying symmetry structure.
This line of thinking suggests a sharper definition of a

symmetry that makes use of a reference distribution.
Consider two probability density functions

p∶Rn → R≥0; pI∶Rn → R≥0; ð7Þ

where R≥0 is the set of non-negative real numbers. A map
g∶Rn → Rn is defined to be a symmetry of p relative to pI
if it is PDF-preserving for both p and pI:

pðxÞ ¼ pðgðxÞÞjg0ðxÞj; pIðxÞ ¼ pIðgðxÞÞjg0ðxÞj: ð8Þ

The reference or inertial density pI is the analogue of an
inertial reference frame in classical mechanics. This new
definition of a symmetry will typically exclude quantile
maps, like g̃ above, because the g̃ that works for one
random variable will typically not work for another (e.g.,
Gaussian and exponential random variables).
While this new definition solves the problem of “fake”

symmetries, it also introduces a dependence on the inertial
distribution. Just as with inertial reference frames, however,

there is often a canonical choice for pI which reduces the
number of possibilities in practice. A natural choice for
many physics datasets is to pick the uniform distribution on
Rn, where n is the dimension of the dataset, because many
physics problems outside of general relativity are set either
in Euclidian space Rn or in Lorentzian space Rp;q, and the
affine groups discussed above are independent of signature
Affp;qðRÞ ¼ AffpþqðRÞ. This not a proper (i.e., normal-
izable) probability density because Rn is a noncompact
space,1 so we discuss techniques below to use it as the
inertial distribution nonetheless.
Finally, it is instructive to relate the definitions of

symmetries for datasets and functions. Given the two
PDFs in Eq. (7), we can construct the likelihood ratio

lðxÞ≡ pðxÞ
pIðxÞ

: ð9Þ

Applying the symmetry map g as in Eq. (8), the likelihood
ratio transforms as

lðgðxÞÞ ¼ pðgðxÞÞ
pIðgðxÞÞ

¼ pðxÞ
pIðxÞ

¼ lðxÞ; ð10Þ

where the Jacobian factor jg0ðxÞj cancels between the
numerator and denominator. Therefore the likelihood
ratio, which is an ordinary function, is symmetric by the
definition in Eq. (2). This cancelling of the Jacobian factor
is an intuitive way to understand why an inertial reference
density is necessary to define the symmetry of a dataset.

III. MACHINE LEARNING WITH INERTIAL
RESTRICTIONS

The SymmetryGAN paradigm for discovering sym-
metries in a dataset involves simultaneously learning two
functions:

g∶Rn → Rn; ð11Þ

d∶Rn → ½0; 1�: ð12Þ

The function g is a generator that represents the symmetry
map.2 The function d is a discriminator that tries to
distinguish the input data fxig from the transformed data
fgðxiÞg. When the discriminator cannot distinguish the
original data from the transformed data, then g will be a
symmetry. The technical details of this approach are
provided in Sec. IV using the framework of adversarial
networks. The generator is randomly initialized on the
search manifold, and through gradient descent, converges

1A compact space is a topological space that is closed and
bounded.

2Here, we are using the machine learning meaning of a
“generator,” which differs from the generator of a symmetry
group, though they are closely related.
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to the nearest symmetry. It is possible that the nearest
symmetry is the identity transformation, in which case the
generator will converge to the identity map. When the
generator is randomly initialized across the search manifold
several times, however, there is no reason why the nearest
symmetry on that manifold should always be the identity
map, so the generator will converge to the nearest nontrivial
symmetry. In fact, when the dataset respects a continuous
symmetry group, the probability of the generator converg-
ing to the identity is zero.
As described in Sec. II, it is not sufficient to require that g

preserves the PDF of the input data; it also has to preserve
the PDF of the inertial density. There are several methods to
implement an inertial restriction into the machine learning
strategy.

(i) Simultaneous discrimination: In this method, the
discriminator d is applied both to the input dataset
and to data drawn from the inertial density pI. The
training procedure penalizes any map g that does not
fool d for both datasets. In practice, it might be
advantageous to use two separate discriminators d
and dI for this approach.

(ii) Two stage selection: Here, one first identifies all
PDF-preserving maps g. Then one post hoc selects
the ones that also preserve the inertial density.

(iii) Upfront restriction: If the PDF-preserving maps of
pI are already known, then one could restrict the set
of maps g at the outset. This allows one to perform
an unconstrained optimization on the restricted
search space.

Each of these methods has advantages and disadvan-
tages. The first two options require sampling from the
inertial density pI. This is advantageous in cases where the
symmetries of the inertial density are not known analyti-
cally. When pI is uniform on Rn or another unbounded
domain, though, these approaches are not feasible.3 The
second option is computationally wasteful, as the space of
PDF-preserving maps is generally much larger than the
space of symmetry maps. We focus on the third option:
restricting the set of functions g to be automatically PDF-
preserving for pI. This in turn requires a way to parametrize
all such g, or at least a large subset of them.
For all of the studies in this paper, we further focus on the

case where the inertial distribution pI is uniform onRn. For
any open set O ⊆ Rn, a differentiable function g∶O → O
preserves the PDF of the uniform distribution UðOÞ if and
only if g is an equiareal map.4 To see this, note that the PDF
of X ∼ UðOÞ is pðX ¼ xÞ ¼ 1=VolðOÞ, where Vol is the n

volume. Hence, the PDF-preserving condition p ¼ p ∘ g ·
jg0j is met if and only if jg0j ¼ 1. A map is equiareal if and
only if its Jacobian determinant is 1, which proves our
claim. Therefore, our search space to discover symmetries
of physics datasets will be the space of equiareal maps of
appropriate dimension. Of course, there are interesting
physics symmetries that do not preserve uniform distribu-
tions on Rn; these would require an alternative approach.
The set of equiareal maps for n > 1 is not well

characterized. For example, even for n ¼ 2, not all equi-
areal maps are linear. A simple example of a nonlinear
area-preserving map is the Hénon map [26]: gðx; yÞ ¼
ðx; y − x2Þ. This makes the space of equiareal maps
difficult to directly encode into the learning. While the
general set of equiareal maps is difficult to parametrize, the
set of area preserving linear maps onRn is well understood:

ASL�
n ðRÞ ¼ fg∶Rn → RnjgðxÞ ¼ Mxþ V;

M ∈ Rn×n; detM ¼ �1; V ∈ Rng:

This is a subgroup of the general affine group AffnðRÞ,
and it can be characterized as a topological group5 of
dimension nðnþ 1Þ − 1. These maps even have complete
parametrizations such as the Iwasawa decomposition [27]
which significantly aid the symmetry discovery process.
Not all symmetries are linear, however, and if one

choosesASL�
n ðRÞ as the search space, one cannot discover

nonlinear maps. Even so, the subset of symmetries dis-
coverable within ASL�

n ðRÞ is rich enough, and the benefits
of having a known parametrization valuable enough, that
we focus on linear symmetries in this paper and leave the
study of nonlinear symmetries to future work.

IV. DEEP LEARNING IMPLEMENTATION

To implement the SymmetryGAN procedure, we modify
the learning setup of a GAN [20]. For a typical GAN, a
generator function g surjects a latent space onto a data
space.6 Then, a discriminator distinguishes generated
examples from target examples.
For a SymmetryGAN, the latent probability density is

the same as the target probability density, as illustrated in
Fig. 1. The generator g and discriminator d are parametrized
as neural networks. Following Sec. III, we construct the
generator g such that it is guaranteed to preserve the inertial
distribution, e.g., it is an area-preserving linear transforma-
tion, but the discriminator d has no such restriction. These
two neural networks are then trained simultaneously to

3One could try to leverage approximate strategies, such as
cutting off the support for pI a few standard deviations away from
the mean of p. Still, one can run into edge effects if there is a
mismatch between the domain and range of g.

4By carefully taking suitable limits, these ideas go through
even if UðOÞ is an improper prior. The important takeaway is that
uniform distributions are preserved by equiareal maps.

5A topological group is a topological space with a group
operation defined on it, and where the group operation and
inversion are continuous functions.

6While all the GANs discussed here are (approximately)
bijective, GANs in general need not be. Symmetry discovery
requires the generator to be bijective, so one may want to leverage
nomalizing flows [28,29] in future work.
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optimize the binary cross entropy loss functional, where the
generator tries to maximize the loss with respect to g and
the discriminator tries to minimize the loss with respect to d.
The binary cross entropy loss functional is

L½g; d� ¼ −
1

N

X
x∈fxigNi¼1

½logðdðxÞÞ þ logð1− dðgðxÞÞÞ�: ð13Þ

This differs from the usual binary cross entropy in that the
same samples appear in the first and second terms. A similar
structure appears in neural resampling [30] and in step 2 of
the OmniFold algorithm [31].

We now show that optimizing the above loss corresponds
to finding a symmetry generator g. The behavior of Eq. (13)
can be understood analytically by considering the limit of
infinite data:

L½g; d� ¼ −
Z

½logðdðxÞÞpðxÞ

þ logð1 − dðgðxÞÞÞpðgðxÞÞjg0ðxÞj�dx; ð14Þ

where the Jacobian factor jg0ðxÞj is now made manifest. For
a fixed g, the optimal d is the usual result from binary
classification (see e.g., Refs. [32,33]):

d� ¼
pðxÞ

pðxÞ þ pðgðxÞÞjg0ðxÞj ; ð15Þ

which is the ratio of the probability density of the first term
in Eq. (14) to the sum of the densities of both terms. We
then insert d� into Eq. (14) and optimize using the Euler-
Lagrange equation:

δL½g; g0�
δg

¼ ∂L
∂g −

d
dx

∂L
∂g0 ¼ 0: ð16Þ

By use of a computer algebra system capable of solving
simple differential equations (in our case, Mathematica
[34]), one can show that the optimal g satisfies

pðxÞ ¼ pðg�ðxÞÞjg0�ðxÞj; ð17Þ

i.e., g is PDF preserving as in Eq. (3). For such a g, we have
that d� ¼ 1

2
, the loss is maximized at a value of 2 log 2, and

the discriminator is maximally confounded.
The SymmetryGAN approach has the potential to find

any symmetry representable by gðxÞ. To target a particular
symmetry subgroup, G ≤ ASL�

n ðRÞ, we can add a term to
the loss function. For example, to discover a cyclic
symmetry group, G ¼ Zq, q ∈ N, the loss function can
be augmented with a mean squared error term:

L½g; d� ¼ LBCE½g; d� −
α

N

X
x∈fxigNi¼1

ðgqðxÞ − xÞ2; ð18Þ

where LBCE is the binary cross entropy loss in Eq. (13), gq

is g composed with itself q times, and α > 0 is a weighting
hyperparameter. A SymmetryGAN with this loss function
will discover the largest subgroup of G that is a symmetry
of the dataset.

V. EMPIRICAL GAUSSIAN EXPERIMENTS

In this section, we study the SymmetryGAN approach
both analytically and numerically in a variety of simple
Gaussian examples. For the empirical studies here and in
Sec. VI, all neural networks are implemented using the
KERAS [35] high-level API with the TensorFlow 2 backend
[36] and optimized with ADAM [37]. The generator function
g is parametrized as a linear function, with constraints that
vary by example and are described further below. The
discriminator function d is parametrized with two hidden
layers, using 25 nodes per layer. Rectified Linear Unit
(ReLU) activation functions are used for the intermediate
layers and a sigmoid function is used for the last layer. For
the empirical studies, 128 events are generated for each
example.

A. One-dimensional Gaussian

Our first example involves data drawn from a one-
dimensional Gaussian distribution with a Z2 reflection
symmetry. Data are distributed according to the probability
distribution Nð0.5; 1.0Þ, i.e., a Gaussian with μ ¼ 0.5 and
σ2 ¼ 1.0. This distribution has precisely two symmetries,
both linear:

gðxÞ ¼ x; gðxÞ ¼ 1 − x: ð19Þ

Implicitly, we are taking the inertial distribution to be
uniform on R. As stated earlier, the PDF-preserving maps
of UðRÞ are equireal. In one dimension, the only equireal
maps are linear. Linear maps in one dimension are
defined by two numbers, so the generator function can
be parametrized as

gðxÞ ¼ bþ cx: ð20Þ

In Fig. 2, we show the analytically computed loss from
Eq. (14) as a function of b and c. In this figure, the
discriminator d is taken to be the analytic optimum in
Eq. (15). There are two maxima in the loss landscape, one
corresponding to each of the linear symmetries from
Eq. (19). Here, and in most subsequent examples below,
we have shifted the output such that maximum loss value
is 0.
Another interesting feature of the loss landscape is the

deep minimum at c ¼ 0 that divides the space into two
parts. This gives rise to the prediction that, under gradient
descent, the neural network will find gðxÞ ¼ 1 − x when c
is initialized negative and find gðxÞ ¼ x when c is initial-
ized positive. In the edge case when c is initialized to
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precisely zero, the generator is degenerate and no longer
even bijective and the outcome is indeterminate, but the
likelihood of sampling c to be precisely zero is, of course,
zero. For the rest of the paper, we ignore such edge cases.
There are no such features in the loss landscape as a
function of b, suggesting that there should be little
dependence on the initial value of b.
These predictions are tested empirically in Fig. 3, where

the initialized parameters are ðbi; ciÞ ∼ Uð½−5; 5�2Þ and the
learned parameters are ðbf; cfÞ. In Fig. 3(i), there are
distinct clusters at ðbf; cfÞ ¼ ð0; 1Þ and ð1;−1Þ, showing
that the SymmetryGAN correctly finds both symmetries of
the distribution and nothing else. In Fig. 3(ii), there is a
demonstration of the loss barrier in slope space; if the initial

slope is positive, the final slope is þ1, whereas if the initial
slope is negative, the final slope is −1. Finally, Fig. 3(iii)
shows the absence of a loss barrier in intercept space; the
final intercepts are scattered between 0 and 1 independent
of the initialized intercept. We discuss further the symmetry
discovery map from initialized to learned parameters in
Sec. VII C and the Appendix.
In the above example, the parametrization of g was

sufficiently flexible that the SymmetryGAN could find
both symmetries and the loss landscape had no other
maxima. If the space is incompletely parametrized, though,
then local maxima can manifest as false symmetries.
For example, suppose instead of a two parameter g as
above, g were parametrized as gðxÞ ¼ 1þ cx. The corre-
sponding analytic loss landscape is shown in Fig. 4. A
SymmetryGAN initialized with a negative slope correctly
finds the only symmetry of this form, gðxÞ ¼ 1 − x, but a
neural network initialized with positive slope is unable to
cross over the loss barrier at c ¼ 0 and instead settles at the
locally loss maximizing gðxÞ ¼ 1þ 0.5x. While our inves-
tigations of ASL�

n ðRÞ suggests that this does not happen
with the full parametrization, the topology of the set of
equiareal maps is not known and therefore obstructions like
the one illustrated here are possible. It is always possible to
check if a solution is a symmetry, however. Specifically,
one can apply the learned function to the data and train a
post hoc discriminator to ensure that its performance is
equivalent to random guessing. For an analytic symmetry,
we know that at the point of loss maximization p ¼
p ∘ g · jg0j, and consequently d ¼ p

pþp ∘ g·jg0j ¼ 1
2
. Hence, at

the global (symmetry) maxima, L ¼ − 1
N

P
xi ½log d þ

logðd ∘ gÞ� ¼ 2 log 2. On the other hand, there is no way
for the neural network to get stuck at nonsymmetry local
maxima with L ¼ 2 log 2. Hence, the true symmetries can

FIG. 2. The analytic loss landscape in the slope (c) vs intercept
(b) space for the one-dimensional Gaussian example. The two
maxima are indicated by stars.

FIG. 3. The empirical symmetry discovery process for the one-dimensional Gaussian example. The initial parameters have a subscript
i and the final parameters have a subscript f. (i) Final slope (cfÞ vs final intercept (bf), showing that the network finds the two maxima.
(ii) Final slope (cfÞ vs initial slope (ci), showing the phase transition at ci ¼ 0. (iii) Final intercept (bfÞ vs initial intercept (bi), showing
the independence on bi.
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be distinguished from local optima by checking the value of
the loss.

B. Two-dimensional Gaussian

Next, we consider cases of two-dimensional Gaussian
random variables. These examples offer much richer sym-
metry groups for study as well as a greater scope for
variations. We take the inertial distribution to be uniform
on R2.
We start with the standard normal distribution in two

dimensions,

N1;1 ≡N ð  0; 12Þ; ð21Þ

where 1n is the n × n identity matrix. This distribution has
as its linear symmetries all rotations about the origin and all
reflections about lines through the origin, which constitute
the groupOð2Þ. For further exploration, we consider a two-
dimensional Gaussian with covariance not proportional to
the identity,

N1;2 ≡N
�
 0;

�
1 0

0 2

��
: ð22Þ

The symmetry group of this distribution is quite com-
plicated and described below. Among other features, it
contains the Klein 4-group, V4 ¼ f1;−1; σ3;−σ3g, for
Pauli matrix σ3.
The linear search space that preserves R2, the general

affine group in two dimensions, Aff2ðRÞ ¼ AGL2ðRÞ, has
six real parameters. Before exploring the entire space, we
first examine the subspace:

gðXÞ ¼
�

c s

−s c

�
X; ð23Þ

for c; s ∈ R×, where R× is the set of nonzero real numbers.
While this is only a rotation if c2 þ s2 ¼ 1, we want to test
if a SymmetryGAN can discover this relationship starting
from this more general representation. The symmetries
represented by Eq. (23) are a subgroup of GL2ðRÞ:
SOð2Þ × Rþ ¼ hθ; rjθ ∈ ½0; 2πÞ; r ∈ Rþi, where Rþ is
the set of positive real numbers. For the N1;1 Gaussian,
this means looking for the r ¼ 1 subgroup, which is
indicated by the red circle in the loss landscape in
Fig. 5(i). To test the SymmetryGAN, we sample the

FIG. 4. The analytic loss landscape for the restricted generator
gðxÞ ¼ 1þ cx, with two local maxima at c ¼ −1 and c ¼ 0.5.

FIG. 5. The analytic loss landscapes overlaid with empirically discovered symmetries for the two-dimensional Gaussian examples
with the generator restriction in Eq. (23). (i) The Gaussian N1;1 with uniform covariance, which has loss maxima on the unit circle
c2 þ s2 ¼ 1. (ii) The Gaussian N1;2 whose covariance matrix has nonequal diagonal elements, which only has symmetries at c ¼ �1

and s ¼ 0.
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parameters c and s uniformly at random from ½−1; 1�2, and
the learned c and s values correspond to the expected
SOð2Þ unit circle, also shown in Fig. 5(ii). We repeat this
exercise for the N1;2 Gaussian in Fig. 5(iii), where the
SymmetryGAN discovers the Z2 subgroup of V4 generated
by a rotation by π.
This two-dimensional example allows us to test the

approach in Eq. (18) for finding Zq subgroups of the full
symmetry group. Restricting our attention to the N1;1

example and the SOð2Þ × Rþ subgroup in Eq. (23), we
add the cyclic-enforcing mean squared error term to the loss
with α ¼ 0.1. Results are shown in Fig. 6 MSE for q ¼ 2,
3, and 7, where the analytic loss optima and empirically
found symmetries are broken into discretely many solu-
tions, with the number corresponding to the qth roots of
unity, as expected.
We now consider the general affine group, Aff2ðRÞ. In

two dimensions, the elements of this group can be
represented as a matrix with six parameters:

(i) d ∈ R×, the determinant;
(ii) θ ∈ ½0; 2πÞ, the angle of rotation;

(iii) r ∈ Rþ, the dilatation;
(iv) u ∈ R, the shear in the x direction; and
(v) ða; bÞ ∈ R2 the overall affine shift.

By Iwasawa’s decomposition [27], the full transformation
can be written as

gðXÞ ¼
ffiffiffiffiffiffi
jdj

p �
1 0

0 −1
�
δ
�
cθ sθ
−sθ cθ

��
r 0

0 1
r

��
1 u

0 1

�
X

þ
�
a

b

�
; ð24Þ

where δ ¼ 1−sgnðdÞ
2

and cθ ¼ cosðθÞ and sθ ¼ sinðθÞ.
For the distribution N1;1, the symmetry group is Oð2Þ,

described by the parameters d ¼ �1; θ ∈ ½0; 2πÞ; r ¼ 1,
and u ¼ a ¼ b ¼ 0. Visualizing this space is difficult, but
multiple slices through the analytic loss landscape are
presented in Fig. 7. The neural network is trained over all
six parameters of the Iwasawa decomposition of Aff2ðRÞ.
The empirically discovered symmetries, shown as yellow
dots in Fig. 7, are two-parameter slices of the discovered

FIG. 6. The analytic loss landscapes overlaid with empirically discovered symmetries for the N1;1 example with a cyclic-enforcing
term added to the loss, to be compared to Fig. 5(i). The cases studied are (i) Z2, (ii) Z3, and (iii) Z7.

FIG. 7. Slices through the analytic loss landscape together with empirically discovered symmetries for N1;1 with the full AGL2ðRÞ
search space. (i) The determinant-rotation angle space. The maxima are indicated by vertical red lines. (ii) The dilatation-shear space.
The maximum is indicated by a red star. (iii) The affine translation space. The maximum is indicated by a red star at the origin.
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symmetry group, where slices are chosen such that the
parameters not under study are closest to d ¼ r ¼ 1,
θ ¼ a ¼ b ¼ 0. The empirical data agree well with the
predictions.
The same analysis of N1;2 is more complex because the

corresponding symmetry group is more complicated than
for N1;1. When r ¼ 1 and u ¼ 0, the symmetries are the V4

we saw earlier (θ ¼ 0; π and d ¼ �1). By varying r and u,
however, one can in fact undo the symmetry breaking
induced by the nonidentity covariance, thereby restoring
the rotational symmetry. For example, when r ¼ ffiffiffi

2
p

, N1;2
is transformed into a Gaussian with covariance diag½2; 1�,
therefore r ¼ ffiffiffi

2
p

and θ ¼ π
2
; 3π
2
constitutes a symmetry. It is

difficult to describe the whole symmetry group in closed
form, or even to visualize it because it does not live in any
single planar slice of AGL2ðRÞ. As shown for various

parameter slices in Fig. 8, though, the empirical results
agree well with the analytic predictions.

C. Gaussian mixtures

As our last set of simple examples, we apply the
SymmetryGAN approach to three Gaussian mixture mod-
els, inspired by the examples in Ref. [38]. The first is a one-
dimensional bimodal probability distribution:

pðxÞ ¼ 1

2
Nð−1; 1Þ þ 1

2
Nð1; 1Þ; ð25Þ

which respects the Z2 symmetry group gðxÞ ¼ �x. The
empirical distribution for this example is shown in Fig. 9(i).
Applying SymmetryGAN starting from the generator for

FIG. 8. Similar to Fig. 7 but for the N1;2 distribution. (i) The determinant-sheer space. The maxima are indicated by two red stars.
(ii) The dilatation-rotation angle space. The maxima are indicated by four red stars. (iii) The affine translation space. The maximum is
indicated by a red star at the origin.

FIG. 9. Empirical distribution (i) and empirically discovered symmetries overlaid on the analytic loss landscape (ii) for a one-
dimensional bimodal distribution inspired by Ref. [38].
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linear transformations in Eq. (20), it finds the predicted
symmetries with great accuracy, as shown in Fig. 9(ii).

We next consider two two-dimensional Gaussian mix-
tures. The octagonal distribution,

pðxÞ ¼ 1

8

X8
i¼1

N
�
cos

2πi
8

;0.1

�
×N

�
sin

2πi
8

;0.1

�
; ð26Þ

has the dihedral symmetry group of an octagon D8. The
two-dimensional 5 × 5 square distribution,

pðxÞ ¼ 1

25

X5
i¼1

X5
j¼1

N ði − 2; 0.1Þ ×N ðj − 2; 0.1Þ; ð27Þ

has the symmetry group of a square D4. We use the
generator

gðXÞ ¼
�

c s

−s ð−1Þδc

�
X; ð28Þ

which can discover the entire symmetry subgroup (rota-
tions and reflections) in Oð2Þ. Data sampled from these

distributions are shown in the left column of Fig. 10.
In the middle and right columns of Fig. 10, we see that
SymmetryGAN finds the expected rotations and reflec-
tions, respectively.

VI. PARTICLE PHYSICS EXAMPLE

We now turn to an application of SymmetryGANs in
particle physics. Here, we are interested to learn if this
approach can recover well-known azimuthal symmetries in
collider physics and possibly identify symmetries that are
not immediately obvious. By the Coleman-Mandula theo-
rem [39], space-time and internal symmetries cannot be
combined in any but a trivial way. Ergo, from momentum
data, the only symmetry groups that can be discovered are
subgroups of the Poincaré group, R1;3 ⋊ Oð1; 3Þ. There is
much to be explored and studied within the Poincaré group
itself, however. We do not even have a complete classi-
fication of its unitary representations [40,41] and its
subgroup structure is remarkably rich and complex.
Discovering which specific subgroup of the Poincaré group
constitutes the symmetry group of the system at hand is a

FIG. 10. Empirical distributions (left column) and empirically discovered rotations (middle column) and reflections (right column)
overlaid on the analytic loss landscape for two two-dimensional Gaussian mixture models inspired by Ref. [38]. The studied examples
are (i,ii,iii) a two-dimensional octagonal distribution, and (iv,v,vi) a two-dimensional 5 × 5 distribution. Note that antipodal points on
(iii) and (vi) represent the same reflection.
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nontrivial question, one we can seek to address through
SymmetryGAN.

A. Dataset and preprocessing

This case study is based on dijet events. Jets are
collimated sprays of particles produced from the fragmen-
tation of quarks and gluons, and pairs of jets are one of the
most common configurations encountered at the LHC.
With a suitable jet clustering algorithm, each jet has a well-
defined momentum, and we can search for symmetries of
the jet momentum distributions.
The dataset we use is the background dijet sample from

the LHC Olympics anomaly detection challenge [42,43].
These events are generated using PYTHIA8.219 [44,45] with
detector simulation provided by DELPHES3.4.1 [46–48] The
reconstructed particlelike objects in each event are clus-
tered into R ¼ 1 anti-kT [49] jets using FastJet 3.3.0 [50,51].
All events are required to satisfy a single pT > 1.2 TeV jet
trigger, and our analysis is based on the leading two jets in
each event, where leading refers to the ones with largest
transverse momenta (p2

T ¼ p2
x þ p2

y).
Each event is represented as a four-dimensional vector:

X ¼ ðp1x; p1y; p2x; p2yÞ; ð29Þ

where p1 refers to the momentum of the leading jet, p2

represents the momentum of the subleading jet, and x and y
are the Cartesian coordinates in the transverse plane. We
focus on the transverse plane because the jets are typically
back-to-back in this plane as a result of momentum
conservation. The longitudinal momentum of the parton-
parton interaction is not known and so there is no
corresponding conservation law for pz.

7

Since we have a four-dimensional input space, a natural
search space for symmetries is SOð4Þ, the group of all
rotations on R4. Before exploring the whole candidate
symmetry space, we first consider an SOð2Þ × SOð2Þ sub-
space where the two leading jets are independently rotated.

B. SOð2Þ × SOð2Þ subspace
Because of momentum conservation, we expect that only

those rotations that simultaneously rotate both jets by the
same angle will be symmetries. We start from a generic
SOð2Þ × SOð2Þ group element:

gθ1;θ2

2
6664
p1x

p1y

p2x

p2y

3
7775¼

2
6664

cosθ1 sinθ1 0 0

−sinθ1 cosθ1 0 0

0 0 cosθ2 sinθ2
0 0 −sinθ2 cosθ2

3
7775
2
6664
p1x

p1y

p2x

p2y

3
7775;

ð30Þ

where ðθ1; θ2Þ ∈ ½0; 2πÞ2. We expect the symmetries to
correspond to the subgroup fgθ1;θ2 jθ1 ¼ θ2g ≅ SOð2Þ. This
prediction is borne out in Fig. 11(i).
We can also study the training dynamics of the

SymmetryGAN. More information about this proce-
dure is given in the Appendix, but the idea is to find a
symmetry discovery map Ω∶SOð2Þ × SOð2Þ → SOð2Þ,
ðθ1i; θ2iÞ ↦ θf, that describes how the initial parameters
map to the learned ones. We propose the map given by

Ωðθ1; θ2Þ ¼
(

θ1þθ2
2

jθ1 − θ2j < π;
θ1þθ2

2
− π jθ1 − θ2j > π;

ð31Þ

where there is only one output angle even though the output
space is two-dimensional. Thismapposits that the final angle
will bisect the smaller angle between θ1 and θ2, which is
validated by the empirical results shown in Fig. 11(ii).

C. SOð4Þ search space

We now turn to the four-dimensional rotation group.
SOð4Þ is a six parameter group, specified by fθig6i¼1, which
parametrizes the six independent rotations:

R1∶p1x ⇝ p1y; R2∶p1x ⇝ p2x; ð32Þ

R3∶p1x ⇝ p2y; R4∶p1y ⇝ p2x; ð33Þ

R5∶p1y ⇝ p2y; R6∶p2x ⇝ p2y; ð34Þ

where the notation R∶a ⇝ b means

RðaÞ ¼ a cos θ þ b sin θ; ð35Þ

RðbÞ ¼ b cos θ − a sin θ: ð36Þ

One way to describe a generic generator gθ is by

gθðXÞ ¼ R1R2R3R4R5R6X: ð37Þ

It is not easy to visualize a six-dimensional space, and
the symmetries discovered by SymmetryGAN do not lie
in any single 2-plane or even 3-plane. Therefore, we need
alternative methods to verify that the maps discovered by
the neural network are indeed symmetries.
One verification strategy is to visually inspect X and

gθðXÞ to see if the spectra look the same. In Fig. 12, we
show a projection of the distribution of X and one instance
of gθðXÞ, which suggests that the found gθ is indeed a
symmetry.
Another verification strategy is to test if the discovered

symmetries preserve special projections of the dataset. Each
of the two jets has an azimuthal angleϕj ¼ arctan2ðpjy;pjxÞ
for j ¼ 1, 2 that is uniformly distributed over ½−π; πÞ, where
arctan 2 is the two argument arctangent function, which

7In principle, we could use SymmetryGAN to confirm the
absence of a symmetry in pz.
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returns the principal value of the polar angle θ ∈ ð−π; π�.
Symbolically, the data can be represented as

X ¼

2
6664
p1x

p1y

p2x

p2y

3
7775 ¼

2
6664
p1T cosϕi1

p1T sinϕ1

p2T cosϕ2

p2T sinϕ2

3
7775; ϕj ∼ U½−π; πÞ; ð38Þ

where pjT is the transverse momentum of each jet (which is
approximately the same for both jets since they are roughly
back to back). If one applies an arbitrary rotation, there is no
reason the new azimuthal angles,

ϕ̃1 ¼ arctan 2ðgθðXÞ2; gθðXÞ1Þ; ð39Þ

ϕ̃2 ¼ arctan 2ðgθðXÞ4; gθðXÞ3Þ; ð40Þ

FIG. 11. (i) Empirically discovered symmetries in the LHC Olympics dijet dataset. The final values of θ1 and θ2 from the
SymmetryGAN are plotted over the line θ1 ¼ θ2. (ii) The map between initial and final symmetry parameters. The final rotation angle is
the average of the initialized rotation angles, offset by π if the angle between the initialized angles is reflex.

FIG. 12. Two-dimensional projection of (i) the original LHC Olympics dijet dataset and (ii) its transformation by one of the generators
discovered by the SymmetryGAN. Here, we plot the momenta of the two leading jets in the transverse plane.
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should be uniformly distributed anymore, as Fig. 13 dem-
onstrates. If one of the symmetry rotations discovered by the
neural network is applied to X, however, ϕ̃j must remain
uniformly distributed, as shown in Fig. 14.
This effect can be quantified by computing the Kullback-

Leibler (KL) divergence of the two ϕ̃j distributions against
that of ϕj. In Fig. 15, we see that the KL divergence of the
symmetries is much smaller than the KL divergence of the

random rotations. Also plotted on the same figure is the
KL divergence of two samples drawn from U½−π; πÞ, which
represents the irreducible effect from considering a finite
dataset. This would be the KL divergence of ϕ̃j obtained
from applying an ideal analytic symmetry to X, against ϕj.
It is instructive to consider the means of the histo-
grams. The KL divergence of randomly selected ele-
ments of SOð4Þ has means of 0.37 (0.34) for the leading

FIG. 13. An example of the jet azimuthal angle distributions, (i) ϕ̃1 and (ii) ϕ̃2, of the LHC Olympics dijet data rotated by a randomly
selected rotation in SOð4Þ. The distribution is not uniform, so a random rotation is not a symmetry.

FIG. 14. An example of the jet azimuthal angle distributions, (i) ϕ̃1 and (ii) ϕ̃2, of the LHC Olympics dijet data rotated by a symmetry
rotation in SOð4Þ. The distribution is uniform, so this rotation is a candidate symmetry.
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(subleading) jet, while the KL divergence of symmetries in
SOð4Þ has respective means 0.0058 (0.0090). The irreduc-
ible statistical noise has a mean of 0.0010.
Clearly, the symmetries reconstruct the distribution

much better than randomly selected elements of SOð4Þ,
and are in fact quite close to the irreducible KL divergence
due to finite sample size. Note that the x axis of Fig. 15 is
logarithmic, which magnifies the region near zero, so the
difference between the symmetry histogram and the stat-
istical noise histogram is smaller than it might appear.
A final method to independently verify that the rotations

SymmetryGAN finds are symmetries of the LHC Olympics
data is by computing the loss function. As discussed at the
end Sec. VA, when g represents a symmetry and d is
an ideal discriminator, the binary cross entropy loss is
2 log 2. By training a post hoc classifier, we can therefore
compute the loss of a specific symmetry generator.8 In
Fig. 16, we compare the loss of randomly sampled rotations
from SOð4Þ to the loss of rotations discovered by
SymmetryGAN. The latter is quite close to the analytic
optimum, 2 log 2.
From these tests, we conclude that SymmetryGAN has

discovered symmetries of the LHC Olympics dataset. As
discussed further in Sec. VII below, though, discovering
symmetries is different from inferring the structure of the
found subgroup from the six-dimensional search space.
Mimicking the study from Fig. 6(i), we can study its Z2

subgroups, through the loss function in Eq. (18) with
q ¼ 2. The backbone of this subgroup is expected to be the
reflections p1k ↔ p2k (because both jets have approxi-
mately the same momenta) and pjx ↔ pjy (because sinϕ
and cosϕ look the same upon drawing sufficiently many
samples of ϕ). The learning process reveals a much larger
group, though. There is in fact a continuous group of Z2

symmetries, which combine an overall azimuthal rotation

FIG. 15. The KL divergence between the jet azimuthal angle distribution before and after a random rotation or a symmetry rotation, for
the (i) leading jet and (ii) subleading jet. The KL divergence between two samples drawn from U½−π; πÞ is shown for comparison.

FIG. 16. The loss of random rotations in SOð4Þ compared to the
loss of rotations learned by SymmetryGAN, overlaid with the
analytic loss of a symmetry, 2 log 2.

8In principle, one could look at the value of the loss after
training the discriminator. In practice, a post hoc classifier yields
more reliable behavior; see related discussion in Ref. [52].
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and one of the aforementioned backbone reflections. In
retrospect, theseZ2 symmetries should have been expected,
since they are compositions of well-known symmetry
transformations. This example highlights the need to go
beyond symmetry discovery and towards symmetry
inference.

VII. TOWARDS SYMMETRY INFERENCE

The examples in Secs. V and VI highlight the potential
power of SymmetryGAN for discovering symmetries using
deep learning. Despite the many maps discovered by the
neural network, though, it is difficult to infer, for example,
the precise Lie subgroup of SOð4Þ respected by the LHC
Olympics data. This highlights a limitation of this approach
and the distinction between “symmetry discovery” and
“symmetry inference.” Though SymmetryGAN can iden-
tify points on the Lie group manifold, there is no simple
way to infer precisely which Lie group has been discov-
ered. While symmetry discovery is sufficient for the data
augmentation described in previous sections to facilitate
data analysis, it is of theoretical interest to infer which
formal Lie groups comprise the symmetries of our collider
data. In this section, we mention three potential methods to
assist in the process of symmetry inference.

A. Finding discrete subgroups

One way to better understand the structure of the learned
symmetries is to look for discrete subgroups. As already
shown in Fig. 6 and mentioned in the particle physics case,
we can identify discrete Zq symmetry transformations by
augmenting the loss with Eq. (18). By forcing the sym-
metries to take a particular form, we can infer the presence
(or absence) of such a subgroup.
It is interesting to consider possible modifications to

Eq. (18) to handle non-Abelian discrete symmetries. The
goal would be to learn multiple symmetries simultaneously
that satisfy known group theoretic relations. For example in
the Abelian case, a loss term like

−
α

N

X
x∈fxigNi¼1

ðg1 ∘ g2ðxÞ − g2 ∘ g1ðxÞÞ2 ð41Þ

could be used to identify any two symmetries g1 and g2 that
commute. We leave a study of these possibilities to
future work.

B. Group composition

By running SymmetryGAN a few times, one may
discover a few points on the symmetry manifold. By
composing these discovered symmetries together, one
can rapidly increase the number of known points on the
manifold because the discovered symmetries are elements
of a group, by construction, so their composition is still an
element of the group.

This notion is quite powerful. The ergodicity of the orbits
of group elements is a richly studied and complex area of
mathematics (see e.g., Ref. [53]). Many groups of physical
interest are locally connected, compact, and have additional
structure. In that context, it is likely that the full symmetry
group is generated by fr1;…; rνg, where ri is randomly
drawn from the group and ν is the product of the
representation dimension and the number of connected
components.
For example, consider the group Uð1Þ ≅ SOð2Þ, which

has ν ¼ 1. Almost any element of Uð1Þ; eiθ, has rotation
angle which is an irrational multiple of π; θπ ∈ RnQ. We can
therefore approximate any element eiϕ ∈ Uð1Þ by repeated
applications of eiθ:

∀ eiϕ ∈ Uð1Þ ∀ ϵ > 0 ∃ n ∈ Nkeiϕ − einθk < ϵ: ð42Þ

In other words, the subgroup generated by eiθ is dense
in Uð1Þ.

In practice, the symmetries discovered by SymmetryGAN
will be not be exact due to numerical considerations. Since
the network learns approximate symmetries with some
associated error, each composition compounds this error.
Thus, there are practical limits on the number of composi-
tions that can be carried out with numeric data.

C. The symmetry discovery map

So far, we have initialized a SymmetryGAN with
uniformly distributed values of certain parameters, and
then trained it to return the values of those parameters that
constitute a symmetry. We can define a symmetry discovery
map, which connects the initialized parameters of g to the
parameters of the learned function:

Ω∶Rk → Rk; ð43Þ

where k is the dimension of the parameter space. This is a
powerful object not only for characterizing the learning
dynamics but also to assist in the process of symmetry
discovery and inference.
There are at least two distinct reasons why knowledge of

this symmetry discovery map is useful. First, the map is of
theoretical interest. We discussed in Sec. VA the impor-
tance of understanding the topology of the symmetry
group. The symmetry discovery map induces a deformation
retract from the search space to the symmetry space. Every
deformation retract is a homotopy equivalence, and by the
Eilenberg-Steenrod axiom of homotopy equivalence [54],
the homology groups of the symmetry group can be
constructed from the homology groups of the search space.
Even in low dimensions, the topology of the symmetry
group can be nontrivial (cf. Sec. V B for an example in 2D).
The topology of GLnðRÞ, however, has been studied for
over half a century, and the homotopy and homology
groups of several nontrivial subgroups of AffnðRÞ have
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been fully determined [55]. Hence, if the symmetry discov-
ery map were known, one could leverage the full scope of
algebraic topology and the known results for the linear
groups to understand the topology of the symmetry group.
Second, this map has practical value. Every time a

SymmetryGAN is trained, it must relearn how to move
the initialized values of g to the final values. Intuitively,
nearby initial values should map to nearby final values, so
learning the symmetry discovery map should enable a more
efficient exploration of the symmetry group. In practice,
this can be accomplished by augmenting the loss function
in Eq. (13). Let gðxjcÞ be the symmetry generator, with
the parameters c made explicit. Let ΩðcÞ be a neural net-
work representing the symmetry discovery map. Sampling
parameters from the space of parametersRk and data points
from X, we can optimize the following loss:

L½Ω; d� ¼ −
X

c∈fcag

X
x∈fxig

½logðdðxÞÞ

þ logð1 − dðgðxjΩðcÞÞÞÞ�: ð44Þ
Note that this loss is now a functional of Ω instead of g. If
ΩðcÞ can be initialized to the identity function, then
gradient descent acting on ΩðcÞ is (asymptotically) the
same as gradient descent acting on the original parameters.
Thus, as long as ΩðcÞ has a sufficiently flexible para-
metrization, the learned ΩðcÞ will be a good approximation
to the symmetry discovery map learned by the original
SymmetryGAN.
We defer a full exploration of the symmetry discovery

map to future work. Preliminary analytic and numerical
studies of the symmetry discovery map are shown in the
Appendix.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we provided a rigorous statistical defini-
tion of the term “symmetry” in the context of probability
densities. This is highly relevant for the field of high
energy collider physics where the key objects of study
are scattering cross sections. We proposed SymmetryGAN
as a novel, flexible, and fully differentiable deep learning
approach to symmetry discovery. SymmetryGAN showed
promising results when applied to Gaussian datasets as
well as to dijet events from the LHC, conforming with
our analytic predictions and providing new insights in
some cases.
A key takeaway lesson is that the symmetry of a

probability density only makes sense when compared to
an inertial density. For our studies, we focused exclusively
on the inertial density corresponding to the uniform
distribution on (an open subset of) Rn, since Euclidean
symmetries are ubiquitous in physics. Furthermore, we
only considered area preserving linear maps on Rn, a
simple yet rich group of symmetries that maintain this
inertial density. This method has great utility for data

analysis. The symmetries of a dataset discovered by
SymmetryGAN can be used to augment a dataset, thereby
increasing its statistical power substantially. Conversely,
it could be used to preprocess the data to explicitly pro-
ject out symmetries and fix a preferred reference frame,
thereby once again boosting the data analysis process
substantially. Moving forward, there are many opportuni-
ties to further develop the concepts introduced in this paper.
As a straightforward extension, nonlinear equiareal maps
over Rn could be added to the linear parametrizations
we explored, as could Lorentz-like symmetries. In more
complex cases where there is no obvious notion of an
inertial density, one could study the relative symmetries
between two different datasets. It would also be interesting
to discover approximate symmetries and rigorously quan-
tify the degree of symmetry breaking. This is relevant in
cases where the complete symmetry group is obscured by
experimental acceptances and efficiencies.
A key open question is how to go beyond symmetry

discovery and towards symmetry inference. We showed
how one can introduce loss function modifications to
emphasize the discovery of discrete subgroups. One could
imagine extending this strategy to continuous subgroups
to gain a better handle on group theoretic structures. The
symmetry discovery map is a potentially powerful tool
for symmetry inference, since it in principle allows the
entire symmetry group to be discovered in a single training.
In practice, though, we found learning the symmetry
discovery map to be particularly challenging. We hope
future algorithmic and implementation developments will
enable more effective strategies for symmetry discovery
and inference, in particle physics and beyond.

The code for this paper can be found online at [56].
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APPENDIX: EXPLORATIONS OF THE
SYMMETRY DISCOVER MAP

In this Appendix, we initiate a study of the symmetry
discovery map from Sec. VII C, both analytically and
numerically.

1. One-dimensional Gaussian

In the simplest cases, the symmetry discovery map can
be determined analytically, and a neural network can be
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used to independently verify that the proposed map is
indeed the symmetry discovery map. For example, consider
the one-dimensional Gaussian example from Sec. VA,
where the probability distribution is Nð0.5; 1Þ and the
candidate symmetry transformations take the form gðxÞ ¼
bþ cx for ðb; cÞ ∈ R2. There are two symmetries in this
case: the identity and gðxÞ ¼ 1 − x.

In Sec. VA, we conjectured that the learned symmetry is
the one on the same side of the loss barrier at c ¼ 0 as the
initialization. This means that independent of bi, if ci > 0,
then g will be the identity and if ci < 0, g will be the
inversion map. Symbolically, the symmetry discovery map
Ω∶R2 → R2;Ω∶ðbi; ciÞ ↦ ðbf; cfÞ takes the form

Ωðb; cÞ ¼
� ð0; 1Þ c > 0;

ð1;−1Þ c < 0:
ðA1Þ

The numerical results already shown in Fig. 3 verify that Ω
is indeed the correct symmetry discovery map.

2. Two-Dimensional Gaussian

We next consider one of the two-dimensional Gaussian
examples from Sec. V B. The probability distribution is
N1;1 and the candidate symmetry transformations are

gðXÞ ¼
�

c s

−s c

�
X; ðc; sÞ ∈ R2: ðA2Þ

From analyzing the loss landscape, we expect the neural
network to map the initialized point to the nearest point on

SOð2Þ along a radius of the unit circle. This leads to the
symmetry discovery map:

Ωðc; sÞ ¼
�

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ s2

p ;
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ s2
p

�
: ðA3Þ

In Fig. 17(i), we show the numerical mapping between
initial and final parameters, corresponding to the plot in
Fig. 5(i). The radial behavior is clearly visible, although
there are some outliers that could be due to incomplete
training and the stochastic nature of the gradient decent.
We can gain more insight by studying this behavior in

polar coordinates:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ s2

p
; θ ¼ arctan 2ðs; cÞ: ðA4Þ

Going back to c and s can be done with the inverse
mapping c ¼ r cos θ and s ¼ r sin θ. In polar coordinates,
the symmetry discovery map is rather simple:

Ωðr; θÞ ¼ ð1; θÞ: ðA5Þ

The numerics support this prediction, as shown in
Fig. 17(ii). The initialized and learned points collect around
the line of constant polar angle.

3. Learning the symmetry discovery map

Ultimately, the symmetry discovery map will be most
useful if it can be learned from a single training run.

FIG. 17. Symmetry discovery maps for the standard two-dimensional Gaussian. (i) Motion from the initialized parameters to the
learned parameters. (ii) Transforming to polar coordination, the initialized and learned values of the polar angle.
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In preliminary studies, however, we encountered two key
challenges.
The first challenge is that, for Ω to approximate the

symmetry discovery map, it needs to be initialized to the
identity function. If the goal is just to find a family of
symmetries, then it would be fine to start from a randomly
initialized neural network. In that case, gðxjΩðcÞÞ would
be a parametrized symmetry network, in the spirit of
Ref. [58]. But for the goal of finding the symmetry
discovery map, one needs a parametrization of Ω that is
flexible enough to describe the map, but simple enough that
it can be initialized close to the identity.
The second challenge is that performing min-max

optimization of Eq. (44) seems particularly finicky.
GANs are known to exhibit issues like mode collapse,
and because the target space of the symmetry discovery
map is often disjoint, these kinds of issues seem to arise in
our case as well.
Consider the simple case of learning the symmetry

discovery map for data X ∼N ð0; 1Þ and the generator
gðxÞ ¼ cx. We know that the symmetries of X are
gðxÞ ¼ �x. Therefore, the symmetry discovery map should
be the step function ΩðcÞ ¼ signðcÞ:

ΩðcÞ ¼
�
1 c > 0;

−1 c < 0:
ðA6Þ

The form in Eq. (A6) is not so easy to learn with any of the
standard neural network activation functions, though. The
one exception is unit step activation, of course, but this
activation is far from the identity and therefore difficult to
use for finding a symmetry discovery map.

One approach to this problem is to use a custom
activation function:

ΩðcÞ ¼ λReLUðcÞ − μReLUð−cÞ þ ρ: ðA7Þ

This can be initialized at λ ¼ μ ¼ 1, ρ ¼ 0 so that in the
beginning Ω ¼ 1. As λ moves away from μ, this function
develops a nonlinearity as desired. With a single layer, this
form is not sufficient to learn the correct answer, though it
may be possible that with a deep network stacked with
these components, the correct map could be learned.
Another approach to this problem is to use polynomial

activation,

ΩðcÞ ¼ λcþ μc2 þ νc3 þ � � � þ ζc11; ðA8Þ

initialized with λ ¼ 1; μ ¼ ν ¼ … ¼ ζ ¼ 0. A step func-
tion is not within this class of functions, but with such a
high degree polynomial, it is expected to be a reasonable
approximation. This was in fact the case, though the result
was far from satisfactory.
Finally, as a proof of principle, we tested the simplified

ansatz:

ΩðcÞ ¼ λcþ ð1 − λÞsignðc − μÞ: ðA9Þ

When initialized with the identity function (λ ¼ 1, μ ¼ 0),
gradient descent indeed converges to Eq. (A6) (λ ¼ 0,
μ ¼ 0). This ansatz is too contrived to draw any robust
conclusions, but is does motivate future exploration of
more complex architectures and training protocols to learn
the symmetry discovery map.
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