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Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving 
nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can 
only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs 
with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial 
systems, and propose a new deep learning framework, named homotopy physics-informed neural networks 
(HomPINNs), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an 
HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named 
the starting neural network, and training processes of several PINNs with different tracking parameters. The 
starting neural network is to approximate a starting function constructed by the trivial solutions, while other 
PINNs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with 
different tracking parameters. These training processes are regraded as different steps of a homotopy process, 
and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural 
network is initialized using the default initialization method. Several numerical examples are presented to show 
the efficiency of our proposed HomPINNs, including reaction-diffusion equations with a heart-shaped domain.
1. Introduction

Nonlinear differential equations are used, in a wide variety of dis-
ciplines, from biology [1,2], economics [3,4], physics [5,6], chem-
istry [7–9], and engineering [10], to quantitatively model the important 
features of real-world phenomena, such as equilibrium, conservation, 
motion, diffusion, reaction, pattern. Since most nonlinear differential 
equations do not have explicit solutions, solving nonlinear differen-
tial equations has become a particularly challenging task, especially 
when interested in multiple solutions which widely exist in combustion 
theory, astrophysics, differential geometry, general relativity, mathe-
matical biology, general relativity, meteorology, shape optimization, 
and optimal transport [11–15]. Although that the solution existence 
and uniqueness can be proved for some time-dependent systems, most 
steady-state systems bring multiple solutions due to the non-linearity. 
There are many numerical approaches for computing the multiple so-
lutions of nonlinear differential equations: Time marching approach
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is to introduce the time evolution to the nonlinear differential equa-
tion and solve the parabolic system for any given initial condition until 
the solution does not change much. However, this approach cannot fil-
ter out the metastable solutions. Moreover, their performance highly 
depends on the initial conditions in [16]. A variational approach has 
been developed to study the variational problems [17–19], for instance, 
the energy functional is solved via characterizing a typically minimax 
type critical point by the Ljusternik-Schnirelman principle [20,21,19]. 
However, due to the high nonlinearity in infinite-dimensional spaces, 
the complexity of obtaining an initial guess sufficiently close to an un-
known saddle is commonly viewed as almost the same as that of finding 
the solution. This approach is for variational problems only and is hard 
to apply a general system that has no variational form [19]. Newton’s 
method has also been used to compute the multiple solutions but de-
pends on an initial guess, which severely reduces its effectiveness to 
find multiple solutions [22–24]. Some initial guesses have to be con-
structed based on the understanding of the nonlinear PDE [16], thus 
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obtaining an initial guess sufficiently close to an unknown solution is 
a very challenging job. Recently, a deflation technique that was intro-
duced to solve nonlinear equations [25] has been applied to nonlinear 
differential equations for computing multiple solutions and bifurcations 
[26,27]. However, this method introduces artificial singularities and 
may cause numerical instabilities, and cannot converge to another so-
lution if they are far away from each other [25].

All the above traditional methods highly depend on the initial guess 
which is often hard to choose if the system is not fully understood. In or-
der to solve this challenge, the homotopy continuation method has been 
developed for solving systems of nonlinear differential equation. As a 
classical numerical method, the homotopy continuation method is first 
applied to compute the isolated roots of polynomial systems [28–30], 
and then extended to solve multiple solutions of nonlinear differential 
equations by discretizing the differential equations with proper numer-
ical methods into polynomial systems [31,32]. The basic idea of the 
homotopy continuation method is to track the solutions of the target 
system from the simple starting system with known solutions. In addi-
tion, the so-called bootstrapping method [33] combined the homotopy 
continuation method and domain decomposition techniques to compute 
multiple solutions of nonlinear differential equations.

Neural network-based (NN-based) techniques have also been used 
to solve differential equations from a few decades ago [34–36]. As a 
combination of a series of linear functions and nonlinear activation 
functions, the deep neural network (DNN) has universal approximation 
property and can approximate any nonlinear functions [37–40].

Most recently, a new framework, so-called physics-informed neural 
networks (PINNs), is presented in [41] to learn the solutions of differen-
tial equations guided by governing equations and initial/boundary data 
thus has greatly improved the capability of neural networks in solving 
differential equations [34,35]. Many variants of PINNs have been pro-
posed to solve fractional partial differential equations [42], stochastic 
differential equations [43], the Euler equations with high-speed aerody-
namic flows [44], Boltzmann equation with the Bhatnagar-Gross-Krook 
collision model [45], and so on, which have shown the effectiveness 
of PINNs for solving a different kind of differential equations. PINNs 
also have many other applications, such as material identification [46], 
water waves inversion with multi-fidelity data [47]. Besides, Parallel 
PINNs and XPINNs frameworks are proposed in [48] and [49] based 
on domain decomposition, and they can also be used for conservation 
laws [50,51]. Recently, Error estimates for PINNs approximating the 
Navier-Stokes equations are presented in [52]. In addition, there are 
also some other NN-based approaches to approximate differential equa-
tions based on Galerkin methods [53], the Ritz method [54], just to 
mention a few. However, due to the implicit regularity of neural net-
work structure, all of those NN-based techniques usually can learn the 
flattest solution, i.e., low-frequency solution, of differential equations. 
Thus, it is very challenging to learning multiple solutions of nonlinear 
differential equations with DNNs.

In this work, we propose a new neural network framework to com-
pute multiple solutions of nonlinear differential equations by combining 
PINNs with the homotopy continuation method, i.e., homotopy physics-
informed neural networks (HomPINNs). The proposed framework is de-
signed firstly to approximate the starting function with a full-connected 
neural network, whose loss function is defined as mean square error 
between the output of neural network and the corresponding data of 
starting functions. Then, a homotopy function is defined to track the 
solutions of the target differential equation from the starting functions 
with tracking the homotopy parameter 𝑡. The homotopy process can 
be divided into several steps by discretizing the tracking parameter 𝑡. 
After training the starting neural network with the starting function, 
the other steps are trained as PINNs initialized with neural network pa-
rameters of the previous well-trained neural network. The loss functions 
are constructed by homotopy functions with corresponding tracking pa-
rameters and initial conditions. When the parameter 𝑡 satisfies 𝑡 = 1, 
the corresponding optimized neural network with a loss under preset 
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threshold is a solution of the nonlinear differential equation. Differ-
ent from the traditional homotopy continuation method which needs to 
discretize differential equations into polynomial systems before the ho-
motopy process, the NN-based homotopy process directly handles the 
homotopy function in differential equation form with the aide of au-
tomatic differentiation technique [55] involved in the backward prop-
agation. Because the starting function is endowed with randomness, 
different solutions can be obtained by repeating the homotopy process 
with different starting functions.

The proposed framework in this paper is general for computing mul-
tiple solutions of different kinds of nonlinear differential equations. To 
illustrate the idea of this framework, we consider the following nonlin-
ear elliptic differential equations:{

𝑢(𝐱) = 𝑓 (𝑢,𝐱), 𝐱 ∈Ω

𝑢(𝐱) = 𝑏(𝐱), 𝐱 ∈ 𝜕Ω
(1)

where  is a linear differential operator, for example Laplace operator 
Δ, 𝑓 (𝑢, 𝐱) is a nonlinear forcing term depending on both 𝑢 and 𝐱, 𝑢(𝐱) =
𝑏(𝐱) stands for the general boundary condition, and Ω is a bounded 
domain in ℝ𝑑 . There are several advantages of our proposed HomPINNs 
listed below:

1) HomPINNs can learn multiple solutions of nonlinear differential 
equation, while in most case, PINNs can only find the flattest solu-
tion;

2) Compared with existing traditional numerical methods, our pro-
posed HomPINNs are more efficient, e.g. uncover new solutions for 
the Henon equation in example 4.3;

3) HomPINNs are capable for solving nonlinear differential equation 
with arbitrary domains since the neural network discretization is a 
mesh free method, e.g., the heart-shaped domain in example 4.4.

4) HomPINNs are robust on different neural network structures for 
learning multiple solutions of the nonlinear differential equation, 
e.g., Table 1, Table 3 and Table 4 in section 4.

The remainder of this paper is organized as follows. The bases of our 
proposed HomPINNs, i.e., physics-informed neural networks and homo-
topy continuation method, are firstly introduced in Section 2. In Section 
3, the details about the construction of HomPINNs are presented with 
schematic and algorithm. In addition, the design of starting function 
with hat function or Gaussian function is also shown in this section. In 
section 4, we provide several numerical examples to show the efficiency 
of our proposed HomPINNs, including reaction-diffusion equations with 
the heart-shaped domain. Finally, the conclusion is presented in Sec-
tion 5.

2. Background

In this section, we introduce the PINNs which is designed to solve su-
pervised learning tasks with respect to the given differential equations, 
and the homotopy continuation method which is a typical technique to 
obtain multiple solutions of different kind of differential equations or 
polynomial systems.

2.1. Physics-informed neural networks

The physics-informed neural networks leverage the universal func-
tion approximation property of deep neural networks to represent the 
solutions of general linear and nonlinear partial differential equations, 
and its schematic is shown in Fig. 1. Compared with standard deep 
learning approaches, this framework builds the physical laws (govern-
ing equations and boundary conditions) into the loss function utilizing 
automatic differentiation techniques [55] which is available in many 
machine learning libraries, such as PyTorch [56] and TensorFlow [57]. 
For the nonlinear PDE (1) that we consider in this paper, the solution 
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Fig. 1. Schematic of physics-informed neural networks (PINNs): The orange part is a fully connected neural network 𝑢𝑁 (𝐱; 𝜃) (𝐱 = (𝑥, 𝑦)) which serves as a surrogate 
model of the PDE solution; the green part is informed physics described as governing equation and boundary condition which is used to define loss function by 
automatic differentiation [55].
can be approximated by a fully connected feed-forward neural network 
𝑢𝑁 (𝐱; 𝜃) in which the neural network parameters are optimized such 
that the resulting approximate solution will satisfy the governing equa-
tion and the boundary conditions, simultaneously.

Generally, there are two ways to approximate the solution 𝑢(𝐱; 𝜃). 
The first one is to build both the nonlinear differential equation and the 
boundary condition into the loss function together, namely,

𝐿(𝜃) = 1
𝑁𝑔

𝑁𝑔∑
𝑖=1

(
𝑢𝑁 (𝐱𝑔

𝑖
) − 𝑓 (𝑢𝑁 ,𝐱𝑔

𝑖
)
)2 + 𝛼

1
𝑁𝑏

𝑁𝑏∑
𝑗=1

(
𝑢𝑁 (𝐱𝑏

𝑗
) − 𝑏(𝐱𝑏

𝑗
)
)2
, (2)

where 𝑢𝑁 (𝐱; 𝜃) is an approximation of 𝑢(𝐱), {𝐱𝑔
𝑖
}𝑁𝑔

𝑖=1, and {𝐱
𝑏
𝑗
}𝑁𝑏

𝑗=1 are col-
location points of the governing equation and the boundary condition, 
respectively, and 𝛼 is the balance parameter between the governing 
equation and the boundary condition. This is the most primitive and 
universal idea of PINNs presented in [41] as shown in Fig. 1.

The second one is to restrict the boundary condition on the neu-
ral network by augmenting the generic neural network 𝑢𝑁 (𝐱; 𝜃) with 
several special designed functions to obtain the final neural network 
𝑢̃𝑁 (𝐱; 𝜃) which satisfies the boundary condition 𝑢̃𝑁 (𝐱; 𝜃)|𝛀 = 𝐛(𝐱), auto-
matically [42]. For example, if the boundary condition is 𝑢(0) = 𝑢(1) = 0
on [0, 1], then the final neural network is defined as 𝑢̃𝑁 (𝑥; 𝜃) = 𝑥(𝑥 −
1)𝑢𝑁 (𝑥; 𝜃). Then the loss function is defined based on the governing 
equation only, namely,

𝐿(𝜃) = 1
𝑁𝑔

𝑁𝑔∑
𝑖=1

(
𝑢̃𝑁 (𝐱𝑔

𝑖
) − 𝑓 (𝑢̃𝑁 ,𝐱𝑔

𝑖
)
)2
. (3)

2.2. Homotopy continuation method

Denoting the numerical solution as 𝐔, we have the following dis-
cretized polynomial system

𝐅ℎ(𝐔) ≡ ℎ𝐔− 𝑓ℎ(𝐔) = 0, (4)

where ℎ and 𝑓ℎ are the discretized operators of  and 𝑓 (⋅, 𝑥) by finite 
difference method [58], finite element method [59], or spectral method 
[60]. If 𝑓 (𝑢) is a polynomial function of 𝑢, then 𝐅ℎ is a polynomial 
system of 𝐔. In order to compute all solutions of the elliptic equation, 
we define the following homotopy equation

𝐇(𝐔, 𝑡) ∶= 𝑡𝐅ℎ(𝐔) + 𝛾(1 − 𝑡)𝐆ℎ(𝐔) = 0, (5)

where 𝐆ℎ(𝐔) = 0 is called the “starting system” [61], 𝑡 ∈ [0, 1] is called 
the homotopy parameter, and 𝛾 is a random complex number [61,62]. 
When 𝑡 = 0, Eq. (5) is the starting system 𝐆ℎ(𝐔) = 0. When 𝑡 = 1, Eq. (5)
recovers the target system (4), which is then solved by tracking solu-
tions with respect to the homotopy parameter 𝑡 from 0 to 1.
64
The starting system is chosen via closely mirroring the structure of 
𝐅ℎ(𝐔), such as the total degree start system 

(
𝐆ℎ(𝐔) has the same de-

gree as 𝐅ℎ(𝐔)
)
, the multi-homogeneous start system by dividing the 

variables 𝐔 into several homogeneous groups, the linear product start 
systems by dividing into several linear systems, and etc. Since both 
𝐆ℎ(𝐔) and 𝐅ℎ(𝐔)) are polynomials, all solutions of 𝐅ℎ(𝐔) can be the-
oretically guaranteed by the homotopy continuation due to Bertini’s 
theorem [61,63,64]. Roughly speaking, if two polynomials have no 
common solutions, a general linear combination of them, namely, the 
homotopy function, will define a smooth hypersurface. One choice of 
the starting system is so-called total degree system, namely,(
𝐆ℎ(𝐔)

)
𝑘
= (𝑈𝑘)𝑑𝑘 − 1, 𝑘 = 1,2,… , 𝑛, (6)

where 𝐔 = [𝑈1, ⋯ , 𝑈𝑛]𝑇 and 𝑑𝑘 is the degree of the k-th equation of 
𝐅ℎ(𝐔). The total degree system is guaranteed by Bézout’s Theorem [65]
to compute all the solutions of 𝐅ℎ(𝐔). Comparing to traditional meth-
ods that compute one single solution only, such as Newton-like methods 
and gradient methods, the disadvantage of using (6) is time consuming 
computations introduced by tracking Π𝑛

𝑘=1𝑑𝑘 solution paths when car-
rying out homotopy continuation, which could be very expensive for 
solving nonlinear PDEs on the fine grid. In order to speed up the com-
putation, we combine the PINNs with the homotopy method.

3. Homotopy physics-informed neural networks (HomPINNs) for 
computing multiple solutions

In this section, we will construct neural networks leveraging the 
homotopy method to compute multiple solutions of the nonlinear PDE 
(1).

3.1. The architecture of homotopy physics-informed neural networks 
(HomPINNs)

Let 𝐹 (𝑢) = 𝑢 − 𝑓 (𝑢, 𝐱) and 𝐺(𝑢) = 𝑢𝑘 − 𝑢𝑘
𝑠
, where 𝑘 is the degree of 

function 𝑓 about 𝑢 and 𝑢𝑠 are the given simple starting functions, for 
example, piecewise linear function for one dimensional situation. We 
can apply homotopy continuation method to obtain multiple solutions 
of nonlinear PDE (1). The homotopy function is constructed as

𝐻(𝑢, 𝑡) = 𝑡𝐹 (𝑢) + (1 − 𝑡)𝐺(𝑢), (7)

where 𝑡 ∈ [0, 1] is homotopy parameter.
By denoting the HomPINNs as 𝑢𝑁 (𝐱; 𝜃, 𝑡), the loss function of the 

HomPINNs is defined as

𝐿(𝜃, 𝑡) = 1
𝑁𝑔

𝑁𝑔∑
𝐻(𝑢𝑁 (𝐱𝑔

𝑖
;𝜃, 𝑡), 𝑡)2 + 𝛼

1
𝑁𝑏

𝑁𝑏∑(
𝑢𝑁 (𝐱𝑏

𝑗
;𝜃, 𝑡) − 𝑏(𝐱𝑏

𝑗
)
)2
, (8)
𝑖=1 𝑗=1
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Fig. 2. Schematic of homotopy physics-informed neural networks (HomPINNs): the left neural network NN is a general fully-connected neural network to approxi-
mate the starting function 𝑢𝑠; other neural networks are PINNs initialized with parameters of previous well-trained neural network; the homotopy process is from 
step 𝑡0 to step 𝑡𝑚, and if the final neural network with parameter 𝜃∗ satisfies the criteria in the green oval box, then it is a new learned solution of the target system 
to be added to solution set  .
where 𝑡 ∈ (0, 1], {𝐱𝑔
𝑖
}𝑁𝑔

𝑖=1 and {𝐱
𝑏
𝑗
}𝑁𝑏

𝑗=1 are collocation points of homotopy 
equation and boundary condition, respectively. In particular, if 𝑡 = 𝑡0 =
0, then the loss function is defined as

𝐿(𝜃,0) = 1
𝑁𝑔

𝑁𝑔∑
𝑖=1

(
𝑢𝑁 (𝐱𝑔

𝑖
;𝜃,0) − 𝑢𝑠(𝐱

𝑔

𝑖
)
)2
. (9)

Thus the starting neural network of HomPINNs is trained by minimiz-
ing the loss function (9) for different starting functions {𝑢𝑠,𝑖}

𝑚𝑠

𝑖=1. Then 
we track the solution path 𝑢𝑁 (𝐱; 𝜃, 𝑡) by optimizing the loss function 
(8) with respect to 𝑡 and recover (1) at 𝑡 = 1. Then the HomPINNs are 
trained for 𝑡 = 𝑡1, 𝑡2, ⋯ , 𝑡𝑚 where 0 < 𝑡1 < 𝑡2 <⋯ < 𝑡𝑚 = 1. In Step 𝑡𝑖, the 
network parameters 𝜃 are updated by

𝜃 ← 𝜃 − 𝜏𝑛∇𝜃𝐿(𝜃, 𝑡𝑖),

where 𝜏𝑛 is the learning rate in the 𝑛th iteration, 𝑛 = 1, 2, ⋯ , 𝑁𝐼,𝑖 and 
𝑖 = 0, 1, ⋯ , 𝑚. The schematic of the HomPINNs is illustrated in Fig. 2
and the training process of HomPINNs is summarized in Algorithm 1.

Algorithm 1 The training process of HomPINNs.
1: Input: collocation points {𝐱ℎ

𝑖
}𝑁ℎ

𝑖=1 , {𝐱𝑏𝑖 }
𝑁𝑏

𝑖=1 , homotopy step {𝑡𝑖}𝑚𝑖=0 , starting functions 
{𝑢𝑠,𝑖}

𝑚𝑠

𝑖=1 , the iteration number of every step {𝑁𝐼,𝑖}𝑚𝑖=0 , the tolerance 𝜀 of finial loss
2: Output: the learned solution set 
3: let 𝑢𝑠 = 𝑢𝑠,1 , 𝑝 = 0 and  = {} (empty set)
4: While 𝑝 < 𝑚𝑠 do

5: for 𝑘 = 1, 2, ⋯ , 𝑁𝐼,0 do

optimize the loss function 𝐿(𝜃, 0) (9) with Adam
end

6: for 𝑖 = 1, 2, ⋯ , 𝑚 do

for 𝑗 = 1, 2, ⋯ , 𝑁𝐼,𝑖 do

optimize the loss function 𝐿(𝜃, 𝑡𝑖) (8) with Adam
end

end

7: optimize 𝐿(𝜃, 1) with optimizer LBFGS to obtain 𝑢𝑁 (𝐱; 𝜃∗ , 1)
8: If 𝐿(𝜃∗ , 1) < 𝜀 & 𝑢𝑁 (𝐱; 𝜃∗ , 1) ∉ do

put 𝑢𝑁 (𝐱; 𝜃∗ , 1) into solution set 
end

9: 𝑝 = 𝑝 + 1
end
65
3.2. Starting functions

Since  in Eq. (7) is a linear operator and does not contribute to the 
non-linearity, we may choose 𝐺(𝑢) = 𝑓 (𝑢). Thus the homotopy function 
becomes

𝐻(𝑢, 𝑡) ≡ 𝑡𝑢+ 𝑓 (𝑢) = 0. (10)

In this case, we construct a starting function 𝑢𝑠(𝐱) with 𝑓 (𝑢𝑠(𝐱)) = 𝟎 for 
any given coarse point 𝐱. In numerical computation, we construct the 
starting functions by randomly choosing the trivial solutions 𝑓 (𝑢𝑠(𝐱𝑖)) =
0 on the coarse gird points 𝐱𝑖, 𝑖 = 1, 2, ⋯ , 𝑚𝑐 , where 𝑚𝑐 is the number of 
coarse grid points.

3.2.1. 1D starting function
Suppose the 1D domain is [𝑎, 𝑏], and 𝑐0, 𝑐1, ⋯ , 𝑐𝑚𝑐−1 are uniformly 

coarse points satisfying 𝑎 = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑚𝑐−1 = 𝑏, and ℎ = 𝑐𝑖+1 − 𝑐𝑖 =
(𝑏 − 𝑎)∕(𝑚𝑐 − 1), 𝑖 = 0, 1, ⋯ , 𝑚𝑐 − 2. The 1D hat basis functions on the 
interval [𝑎, 𝑏] are defined as follows [66]:

𝜙0(𝑥) =

{
(𝑐1 − 𝑥)∕ℎ, 𝑎 ≤ 𝑥 ≤ 𝑐1,

0, otherwise;
, (11)

𝜙𝑚𝑐−1(𝑥) =

{
(𝑥− 𝑐𝑚𝑐−1)∕ℎ, 𝑐𝑚𝑐−2 ≤ 𝑥 ≤ 𝑏,

0, otherwise,
(12)

and

𝜙𝑖(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑥− 𝑐𝑖−1)∕ℎ, 𝑐𝑖−1 ≤ 𝑥 ≤ 𝑐𝑖,

(𝑐𝑖+1 − 𝑥)∕ℎ, 𝑐𝑖 ≤ 𝑥 ≤ 𝑐𝑖+1,

0, otherwise,

(1 ≤ 𝑖 ≤𝑚𝑐 − 2). (13)

A example of 1D hat functions 𝜙𝑖−1 and 𝜙𝑖 on points 𝑐𝑖−1 and 𝑐𝑖 is 
illustrated on Fig. 3a. Then, the starting function 𝑢𝑠 is defined as a linear 
combination of 1D hat basis functions {𝜙𝑖}

𝑚𝑐−1
𝑖=0 , i.e.,

𝑢𝑠(𝑥) =
𝑚𝑐−1∑

𝑣𝑖𝜙𝑖, (14)

𝑖=0
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Fig. 3. Different starting functions: (a) 1D hat functions 𝜙𝑖−1 and 𝜙𝑖 on points 𝑐𝑖−1 and 𝑐𝑖 , respectively; (b) 2D hat function 𝜙𝑖,𝑗 on point (𝑐𝑖, 𝑐𝑗 ); (c) 2D gaussian 
function 𝜓𝑖 on point (𝑥𝑖, 𝑦𝑖) and 𝜎 = 0.15.

Fig. 4. The first solution with different homotopy parameter 𝑡 = 𝑡𝑖 (𝑖 = 0, 2, 4, 6, 8, 10) (Left), the corresponding training loss with different 𝑡𝑖 (Middle), and absolute 
error between learned solution and real solution (Right) for example 4.1.

Fig. 5. The second solution with different homotopy parameter 𝑡 = 𝑡𝑖 (𝑖 = 0, 2, 4, 6, 8, 10) (Left), the corresponding training loss with different 𝑡𝑖 (Middle), and absolute 
error between learned solution and real solution (Right) for example 4.1.
where 𝑣𝑖 is randomly chosen from trivial solution set 0 defined by 
the nonlinear forcing term. For example, 0 = {1, −1} if the nonlinear 
forcing term is taken as 𝑓 (𝑢) = 𝑢2 − 1.

3.2.2. 2D starting function
Similar to 1D starting function, the starting function on the 2D do-

main [𝑎, 𝑏] × [𝑎, 𝑏] is based on 2D hat basis functions which are defined 
as

𝜙𝑖,𝑗 (𝑥, 𝑦) = 𝜙𝑖(𝑥)𝜙𝑗 (𝑦), 0 ≤ 𝑖, 𝑗 ≤𝑚𝑐 − 1, (15)

where 𝜙𝑖(𝑥) and 𝜙𝑗 (𝑦) are 1D hat basis functions. A 2D hat function 
𝜙𝑖,𝑗 on point (𝑐𝑖, 𝑐𝑗 ) is shown in Fig. 3b. Then, the 2D starting function 
becomes
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Table 1

The loss of two solutions of example 4.1 with different network structures.
width (# neurons) 10 30 50

2 layers
solution one 1.18𝑒−5 2.86𝑒−6 4.08𝑒−6
solution two 5.11𝑒−5 1.50𝑒−5 9.19𝑒−6

3 layers
solution one 6.61𝑒−6 4.31𝑒−7 8.27𝑒−8
solution two 1.79𝑒−5 2.37𝑒−7 1.12𝑒−7

𝑢𝑠(𝑥, 𝑦) =
𝑚𝑐−1∑
𝑖=0

𝑚𝑐−1∑
𝑗=0

𝑣𝑖,𝑗𝜙𝑖,𝑗 (𝑥, 𝑦), (16)

coefficient 𝑣𝑖,𝑗 is randomly chosen from trivial solution set 0.
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Fig. 6. Multiple solutions of example 4.2 with different parameters 𝑝 (a-c) and the solution behavior with respect to the parameter 𝑝 (d): (a) only one solution for 
𝑝 = 3; (b) three solutions for 𝑝 = 10; (c) seven solutions for 𝑝 = 18; (d) ∫ 1

0 𝑢(𝑥, 𝑝)𝑑𝑥 v.s. 𝑝.
Table 2

The numerical errors in 𝐿2 norm of example 4.1 with different network struc-
tures.

width (# neurons) 10 30 50

2 layers
solution one 4.80𝑒−5 2.54𝑒−5 1.54𝑒−5
solution two 2.96𝑒−5 2.29𝑒−5 1.30𝑒−5

3 layers
solution one 3.90𝑒−5 1.56𝑒−5 0.41𝑒−5
solution two 2.93𝑒−5 2.08𝑒−5 1.19𝑒−5

For arbitrary 2D domains, we choose 2D Gaussian functions as the 
basis function:

𝜓𝑖(𝑥, 𝑦;𝜎) = exp
(
−

(𝑥− 𝑥𝑖)2 + (𝑦− 𝑦𝑖)2

2𝜎2
)
, 𝑖 = 1,2,⋯ ,𝑚𝑐 , (17)

where {(𝑥𝑖, 𝑦𝑖)}
𝑚𝑐

𝑖=1 are uniform or nearly uniform coarse points, 𝜎 is the 
Gaussian parameter which depends on the density of coarse points, and 
𝑚𝑐 is the number of all coarse points. An illustration of a 2D gauss 
function 𝜓𝑖 on point (𝑥𝑖, 𝑦𝑖) is presented in Fig. 3c with 𝜎 = 0.15. Then, 
the corresponding starting functions are constructed as

𝑢𝑠(𝑥, 𝑦) =
𝑚𝑐∑
𝑖=1

𝑣𝑖𝜓𝑖(𝑥, 𝑦;𝜎), (18)

with coefficient 𝑣𝑖 randomly chosen from trivial solution set 0.
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Remark 1. The hat and Gaussian functions are widely used basis functions. 
Besides, the random selection of coefficients in the starting function makes 
HomPINNs learn different solutions of nonlinear differential equations.

4. Numerical examples

In this section, several examples are presented to show the robust-
ness and the efficiency of HomPINNs for learning multiple solutions of 
nonlinear PDEs. The first two examples are 1D nonlinear PDEs with 
mixed boundary conditions, and they are implemented on a personal 
computer with a 5G Quadro P2000 GPU. The third example is the 
2D Henon equation with Dirichlet boundary conditions and nine non-
trivial solutions. The last example is the stationary spatial patterns of 
the well-known Gray-Scott model with Neumann boundary condition 
on a heart-shaped domain. Both of the two 2D examples are imple-
mented on a scientific workstation with a 24G Titan RTX GPU. All the 
examples are performed in Python 3.8 utilizing Pytorch library.

In addition, we state some basic setting for all the examples as fol-
lows:

1) neural network setting
We use 3 hidden layer neural networks with 30 neurons per layer 
for 1D examples, 80 neurons per layer for 2D examples, and the 
corresponding activation function is chosen as a hyperbolic tangent 
function. All the neural networks are initialized using He initializa-
tion [67], a default initialization method in the Pytorch library.
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Fig. 7. Three solutions with 𝑝 = 10 and the corresponding loss during the homotopy processes in example 4.2.
Table 3

The average loss of multiple solutions example 4.2 for different parameter 𝑝
with different network structures.

width(# neurons) 10 30 50

𝑝 = 18 2 layer 3.7487𝑒− 4 3.9978𝑒− 4 4.9444𝑒− 4
3 layers 2.9744𝑒− 4 1.4039𝑒− 4 3.8864𝑒− 5

𝑝 = 10 2 layer 3.2129𝑒− 4 8.8537𝑒− 5 2.4777𝑒− 5
3 layers 1.6417𝑒− 4 8.0367𝑒− 6 8.4730𝑒− 6

𝑝 = 3 2 layer 8.5049𝑒− 6 2.2326𝑒− 6 3.3666𝑒− 5
3 layers 8.0059𝑒− 6 1.3030𝑒− 6 1.2209𝑒− 6

2) hyperparameters of homotopy process
In all the examples, we set 𝛼 = 10 and 𝑚 = 10, i.e.,there are 11 
steps in a homotopy process, namely, 𝑡𝑖 = 0.1 × 𝑖, 𝑖 = 0, 1, ⋯ , 10. The 
numbers of collocation points are set as 𝑁𝑔 = 100 and 𝑁𝑏 = 2 for 
1D examples, 𝑁𝑔 = 5000 and 𝑁𝑏 = 500 for example 3 in Subsection 
4.3, and 𝑁𝑔 = 9768 and 𝑁𝑏 = 630 for example 4 in Subsection 4.4. 
The number of starting functions are set as 𝑚𝑠 = 20 in the initial 
iteration and 𝑚𝑠 = 10 for later iteration until the solution set keeps 
unchanged in Algorithm 1. In each homotopy process, the numbers 
of iterations are set as 𝑁𝐼,𝑖 = 20000 for 𝑖 = 0, 1, ⋯ , 9 and 𝑁𝐼,10 =
40000.

3) optimizer setting
We use the Adam training algorithm [68] in the Pytorch li-
brary with the following parameters: betas = (0.9, 0.999), eps =
10−8, weight_decay = 0, amsgrad = False, maximize = False, to solve the 
optimization problem {𝐿(𝜃, 𝑡𝑖)}𝑚𝑖=0 defined in (8) and (9). The learn-
ing rate is set as 𝜏𝑛 = 𝜏𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × 𝛾

[ 𝑛Δ ], which means that we decay the
learning rate by 𝛾 every Δ iterations. In all examples and for ev-
ery homotopy Step 𝑡𝑖, we set 𝜏initial = 0.002 and Δ = 1000, while 
decaying rates 𝛾 = 0.85 for 1D examples and 𝛾 = 0.95 for 2D exam-
ples. Besides, after optimizing by Adam, the solutions are refined 
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Table 4

The average loss of multiple solutions in example 4.3 with different network 
structures.

width (# neurons) 50 80 100

2 layers 2.58𝑒−3 1.32𝑒−3 8.11𝑒−4

3 layers 9.98𝑒−4 6.34𝑒−4 4.81𝑒−4

by LBFGS, a quasi-Newton method available in Pytorch library 
with parameters max_iter = 10000 for 1D examples, max_iter = 50000
for 2D examples, tolerance_grad = 1.0 × np.finfo(float).eps, to obtain a 
better accuracy.

4.1. A 1D example with two solutions

We first consider a 1D nonlinear differential equation on [0, 1] with 
mixed boundary condition as follows{

𝑢𝑥𝑥 = −1.2(1 + 𝑢4), 𝑥 ∈ [0,1]

𝑢′(0) = 𝑢(1) = 0.
(19)

It is shown in [33] that this example has two analytical solutions. 
Since Eq. (19) does not have real trivial solutions, we define 0 =
{1, −1, 

√
2, −

√
2} by solving 𝑓 (𝑢) = (𝑢2 − 1)(𝑢2 − 2) = 0. The learning 

processes of these two solutions and the corresponding loss at each 
homotopy step are illustrated in Fig. 4 and Fig. 5. The loss and the 
numerical errors in 𝐿2 norm are shown in Tables 1 and 2, respectively 
and demonstrate the good accuracy of HomPINNs on different network 
structures.

Recently, a network-based structure probing deflation method was 
proposed to identify multiple solutions of differential equations in [69]. 
The idea is to deflate from one solution to find other solutions. In this 
example, the first solution 𝑢1 can be found by PINN but the neural 
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Fig. 8. Nine different solutions of Henon equation (22) in example 4.3: every pair of solutions {𝑢𝑖, 𝑢10−𝑖} are symmetric about the x-y plane, 𝑖 = 1, 2, 3, 4; Compared 
with traditional numerical method [72], one more solution 𝑢5 is learned by the proposed HomPINNs.
network deflation is hard to find the other solution because these two 
solutions are too close to each other [69].

4.2. A 1D example with multiple solutions

Consider the following parametric nonlinear differential equation 
with multiple solutions,{

𝑢𝑥𝑥 = 𝑢2(𝑢2 − 𝑝), 𝑥 ∈ (0,1)

𝑢′(0) = 0, 𝑢(1) = 0
(20)
69
with parameter 𝑝 > 0 [70,71]. For any given parameter 𝑝, there exist 
multiple solutions 𝑢, moreover, the number of solutions increases as 𝑝
goes large. In order to compute the multiple solutions with different 
parameters of equation (20), we take the trivial solution set as 0 =
{1, −1, 

√
𝑝, −

√
𝑝} by solving a modified nonlinear term (𝑢2 − 1)(𝑢2 − 𝑝) =

0.
The proposed HomPINNs learn one, three and seven solutions for 

𝑝 = 3, 𝑝 = 10, and 𝑝 = 18. These results consist with the existing theoreti-
cal analysis in [71]. The solutions learned by HomPINNs with different 
parameters are shown in Fig. 6, and the learning processes of three so-
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Fig. 9. The computational heart-shaped domain Ω for Gray-Scott model (24) in 
example 4.4.

lutions at 𝑝 = 10 is presented in Fig. 7. We also summarize the average 
loss of different solutions for different neural network structures in Ta-
ble 3 which confirms the robustness of HomPINNs on neural network 
structures. In addition, to analyze the solution behavior with respect to 
the parameter 𝑝, we define a new loss function with parameter 𝑝 below:

𝐿̃(𝜃, 𝑝) = 1
𝑁𝑔

𝑁𝑔∑
𝑖=1

(
𝑢𝑁 (𝐱𝑔

𝑖
;𝜃, 𝑝) − 𝑓 (𝑢𝑁 (𝐱𝑔

𝑖
;𝜃, 𝑝), 𝑝)

)2
+ 𝛼

1
𝑁𝑏

𝑁𝑏∑
𝑗=1

(
𝑢𝑁 (𝐱𝑏

𝑗
;𝜃, 𝑝) − 𝑏(𝐱𝑏

𝑗
)
)2
,

(21)

where 𝑢𝑁 (𝐱𝑔
𝑖
; 𝜃, 𝑝) is the solution of Eq. (21) with any given parameter 

𝑝. By tracking the solutions from 𝑝 = 18 down to 𝑝 = 0, we discretize the 
parameter 𝑝 as 𝑝 = 𝑝0, 𝑝1, ⋯ , 𝑝𝑚𝑝

, where 𝑝0 = 18, 𝑝𝑚𝑝
= 0 and 𝑚𝑝 +1 is the 

number of discrete points of parameter 𝑝. Then we have initial seven 
solutions {𝑢𝑖(𝐱; 𝜃𝑖, 𝑝0)}7𝑖=1 learned by HomPINNs and compute 𝑢(𝐱; 𝜃𝑗 , 𝑝𝑗 )
(𝑗 > 0) by taking 𝑢(𝐱; 𝜃𝑗−1, 𝑝𝑗−1) as the initial guess for the optimization 
solver until 𝑗 = 𝑚𝑝. Thus we obtain the solution behavior of parametric 
differential equation (20) shown in Fig. 6d.

4.3. The 2D Henon equation with nine solutions

Next, we consider the following Henon equation [72]{
Δ𝑢+ |x|7𝑢3 = 0, 𝐱 ∈Ω

𝑢|𝜕Ω = 0,
(22)

where Ω = {x = (𝑥, 𝑦) ∈ ℝ2 ∶ |x| ≤ 1} and |x| = √
(𝑥2 + 𝑦2). The trivial 

solution set is given as 0 = {20, −20, 0} by solving 𝑢(𝑢 − 20)(𝑢 + 20) = 0
which has the same degree as 𝑢3.

Nine different solutions have been learned by the proposed
HomPINNs and are presented in Fig. 8. Interestingly, solution 𝑢𝑖 is sym-
metric to solution 𝑢10−𝑖 about the 𝑥-𝑦 plane, 𝑖 = 1, 2, 3, 4. The traditional 
method proposed in [72] only discovers eight solutions {𝑢𝑖, 𝑢10−𝑖}4𝑖=1
appearing in pairs which may be caused by some transformations be-
fore computation. We do not have any transformations in HomPINNs 
and define the loss function by using the nonlinear differential equa-
tion (22) directly. This is one advantage of the proposed HomPINNs 
to compensate traditional methods for computing multiple solutions of 
nonlinear systems. Moreover, we also test the robustness of HomPINNs 
on different neural network structures and summarize the average loss 
of different solutions in Table 4.

4.4. Stationary spatial patterns of the Gray-Scott model

The Gray-Scott model, proposed by Gray and Scott [7–9] to describe 
autocatalytic reactions, takes the following form:
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⎧⎪⎨⎪⎩
𝜕𝐴

𝜕𝑡
=𝐷𝐴Δ𝐴+𝑆𝐴2 − (𝜇 + 𝜌)𝐴,

𝜕𝑆

𝜕𝑡
=𝐷𝑆Δ𝑆 − 𝑆𝐴2 + 𝜌(1 − 𝑆).

(23)

The steady-state systems with no-flux boundary conditions are written
as⎧⎪⎪⎨⎪⎪⎩
𝐷𝐴Δ𝐴+ 𝑆𝐴2 − (𝜇 + 𝜌)𝐴 = 0,

𝐷𝑆Δ𝑆 − 𝑆𝐴2 + 𝜌(1 − 𝑆) = 0,
𝜕𝐴

𝜕𝑥
|𝜕Ω = 𝜕𝑆

𝜕𝑥
𝑆|𝜕Ω = 0,

(24)

where the domain Ω is set as a heart-shaped domain in ℝ2 (shown in 
Fig. 9) formulated by

Ω= {(𝑥, 𝑦) ∈ℝ2 ∶ (𝑥2 + 𝑦2 − 1)3 − 𝑥2𝑦3 = 0}.

Following [73], the parameters values are set as

𝐷𝐴 = 2.5 × 10−4, 𝐷𝑆 = 5 × 10−4, 𝜌 = 0.04, and 𝜇 = 0.065.

Since the diffusion coefficients are small, we normalize the equa-
tions to avoid the loss of (24) be too small by dividing the diffu-
sion coefficients. Moreover, to avoid converging to the trivial solution 
(𝐴, 𝑆) = (0, 1). we introduce re-scaled variables, 𝐮̃ = (𝐴̃, 𝑆̃), such that 
𝐴̃ = 2𝐴 and 𝑆̃ = 2𝑆. Thus the system of nonlinear differential equations 
becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩

1(𝐴̃, 𝑆̃) = Δ𝐴̃+ 1
4𝐷𝐴

𝑆̃𝐴̃2 − 𝜇 + 𝜌

𝐷𝐴

𝐴̃ = 0,

2(𝐴̃, 𝑆̃) = Δ𝑆̃ − 1
4𝐷𝑆

𝑆̃𝐴̃2 + 𝜌

𝐷𝑆

(2 − 𝑆̃) = 0,

𝜕𝐴̃

𝜕𝑥
|𝜕Ω = 𝜕𝑆̃

𝜕𝑥
|𝜕Ω = 0,

(25)

The proposed HomPINNs are firstly used to solve the system (25)
by constructing neural networks 𝐮̃(𝐱; 𝜃) with a two width output layer 
to represent two components 𝐴̃ and 𝑆̃, respectively. The trivial solu-
tion set of 1(𝐴̃, 𝑆̃) is 0 = {−1, 0, 2} by solving (𝐴̃+ 1)𝐴̃(𝐴̃− 2) = 0. The 
starting function 𝐴𝑠 of 𝐴 is constructed with Gaussian basis functions 
by randomly choosing coefficients from 0, and the starting function 
of 𝑆 is defined as 𝑆𝑠 = 2 − 𝐴𝑠. The HomPINNs learn 25 different solu-
tions which are shown in Figs. 10 and 11 for both 𝐴(𝑥, 𝑦) and 𝑆(𝑥, 𝑦) by 
choosing 60 starting functions. The average loss of the 25 learned neu-
ral networks is 6.40 × 10−4, and the average residual of the governing 
equations is 3.83 × 10−4.

5. Conclusion

The homotopy continuation method has shown advantages for com-
puting multiple solutions of nonlinear differential equations. The NN-
based techniques, including physics-informed neural networks, have 
demonstrated the effectiveness of learning the solution of differen-
tial equations. By combining the homotopy continuation method and 
physics-informed neural networks, we developed a new deep learn-
ing framework, HomPINNs, in this manuscript for solving multiple 
solutions of nonlinear differential equations. In particular, the pro-
posed HomPINN generally contains several sub-networks: the first one 
is called starting neural network which is to approximate the starting 
functions, and the other networks gradually the target system which is 
the nonlinear differential equation that we want to solve. For the train-
ing process, we use the previous well-trained sub-network as the initial 
guess to train the current sub-network and eventually recover the mul-
tiple solutions of nonlinear differential equations. We have tested the 
HomPINNs on various numerical benchmark problems to show the ca-
pability of HomPINNs for learning multiple solutions and the robustness 
of HomPINNs on different network structures. Moreover, it also shows 
the efficiency of solving nonlinear differential equations on arbitrary 
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Fig. 10. The contour plots of 𝐴(𝑥, 𝑦) for example 4.4.

Fig. 11. The contour plots of 𝑆(𝑥, 𝑦) for example 4.4.
71
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domains which is difficult for traditional methods. In the future, we will 
apply the HomPINNs to other differential operators and other problems 
involving multiple solutions such as eigenvalue problems of differential 
equations. Another future direction is to explore the effect of different 
activation functions on HomPINNs, for instance, the adaptive activation 
functions introduced in [74,75,47]. More, the choice of starting func-
tions needs to be further studied to better capture solution structures of 
nonlinear PDEs.
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