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Physics-informed neural networks (PINNs) based machine learning is an emerging framework for solving
nonlinear differential equations. However, due to the implicit regularity of neural network structure, PINNs can
only find the flattest solution in most cases by minimizing the loss functions. In this paper, we combine PINNs
with the homotopy continuation method, a classical numerical method to compute isolated roots of polynomial
systems, and propose a new deep learning framework, named homotopy physics-informed neural networks
(HomPINNS), for solving multiple solutions of nonlinear elliptic differential equations. The implementation of an
HomPINN is a homotopy process that is composed of the training of a fully connected neural network, named
the starting neural network, and training processes of several PINNs with different tracking parameters. The
starting neural network is to approximate a starting function constructed by the trivial solutions, while other
PINNSs are to minimize the loss functions defined by boundary condition and homotopy functions, varying with
different tracking parameters. These training processes are regraded as different steps of a homotopy process,
and a PINN is initialized by the well-trained neural network of the previous step, while the first starting neural
network is initialized using the default initialization method. Several numerical examples are presented to show
the efficiency of our proposed HomPINNSs, including reaction-diffusion equations with a heart-shaped domain.

is to introduce the time evolution to the nonlinear differential equa-
tion and solve the parabolic system for any given initial condition until
the solution does not change much. However, this approach cannot fil-
ter out the metastable solutions. Moreover, their performance highly

1. Introduction

Nonlinear differential equations are used, in a wide variety of dis-
ciplines, from biology [1,2], economics [3,4], physics [5,6], chem-

istry [7-9], and engineering [10], to quantitatively model the important
features of real-world phenomena, such as equilibrium, conservation,
motion, diffusion, reaction, pattern. Since most nonlinear differential
equations do not have explicit solutions, solving nonlinear differen-
tial equations has become a particularly challenging task, especially
when interested in multiple solutions which widely exist in combustion
theory, astrophysics, differential geometry, general relativity, mathe-
matical biology, general relativity, meteorology, shape optimization,
and optimal transport [11-15]. Although that the solution existence
and uniqueness can be proved for some time-dependent systems, most
steady-state systems bring multiple solutions due to the non-linearity.
There are many numerical approaches for computing the multiple so-
lutions of nonlinear differential equations: Time marching approach
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depends on the initial conditions in [16]. A variational approach has
been developed to study the variational problems [17-19], for instance,
the energy functional is solved via characterizing a typically minimax
type critical point by the Ljusternik-Schnirelman principle [20,21,19].
However, due to the high nonlinearity in infinite-dimensional spaces,
the complexity of obtaining an initial guess sufficiently close to an un-
known saddle is commonly viewed as almost the same as that of finding
the solution. This approach is for variational problems only and is hard
to apply a general system that has no variational form [19]. Newton’s
method has also been used to compute the multiple solutions but de-
pends on an initial guess, which severely reduces its effectiveness to
find multiple solutions [22-24]. Some initial guesses have to be con-
structed based on the understanding of the nonlinear PDE [16], thus
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obtaining an initial guess sufficiently close to an unknown solution is
a very challenging job. Recently, a deflation technique that was intro-
duced to solve nonlinear equations [25] has been applied to nonlinear
differential equations for computing multiple solutions and bifurcations
[26,27]. However, this method introduces artificial singularities and
may cause numerical instabilities, and cannot converge to another so-
lution if they are far away from each other [25].

All the above traditional methods highly depend on the initial guess
which is often hard to choose if the system is not fully understood. In or-
der to solve this challenge, the homotopy continuation method has been
developed for solving systems of nonlinear differential equation. As a
classical numerical method, the homotopy continuation method is first
applied to compute the isolated roots of polynomial systems [28-30],
and then extended to solve multiple solutions of nonlinear differential
equations by discretizing the differential equations with proper numer-
ical methods into polynomial systems [31,32]. The basic idea of the
homotopy continuation method is to track the solutions of the target
system from the simple starting system with known solutions. In addi-
tion, the so-called bootstrapping method [33] combined the homotopy
continuation method and domain decomposition techniques to compute
multiple solutions of nonlinear differential equations.

Neural network-based (NN-based) techniques have also been used
to solve differential equations from a few decades ago [34-36]. As a
combination of a series of linear functions and nonlinear activation
functions, the deep neural network (DNN) has universal approximation
property and can approximate any nonlinear functions [37-40].

Most recently, a new framework, so-called physics-informed neural
networks (PINNs), is presented in [41] to learn the solutions of differen-
tial equations guided by governing equations and initial/boundary data
thus has greatly improved the capability of neural networks in solving
differential equations [34,35]. Many variants of PINNs have been pro-
posed to solve fractional partial differential equations [42], stochastic
differential equations [43], the Euler equations with high-speed aerody-
namic flows [44], Boltzmann equation with the Bhatnagar-Gross-Krook
collision model [45], and so on, which have shown the effectiveness
of PINNs for solving a different kind of differential equations. PINNs
also have many other applications, such as material identification [46],
water waves inversion with multi-fidelity data [47]. Besides, Parallel
PINNs and XPINNs frameworks are proposed in [48] and [49] based
on domain decomposition, and they can also be used for conservation
laws [50,51]. Recently, Error estimates for PINNs approximating the
Navier-Stokes equations are presented in [52]. In addition, there are
also some other NN-based approaches to approximate differential equa-
tions based on Galerkin methods [53], the Ritz method [54], just to
mention a few. However, due to the implicit regularity of neural net-
work structure, all of those NN-based techniques usually can learn the
flattest solution, i.e., low-frequency solution, of differential equations.
Thus, it is very challenging to learning multiple solutions of nonlinear
differential equations with DNNs.

In this work, we propose a new neural network framework to com-
pute multiple solutions of nonlinear differential equations by combining
PINNs with the homotopy continuation method, i.e., homotopy physics-
informed neural networks (HomPINNSs). The proposed framework is de-
signed firstly to approximate the starting function with a full-connected
neural network, whose loss function is defined as mean square error
between the output of neural network and the corresponding data of
starting functions. Then, a homotopy function is defined to track the
solutions of the target differential equation from the starting functions
with tracking the homotopy parameter . The homotopy process can
be divided into several steps by discretizing the tracking parameter ¢.
After training the starting neural network with the starting function,
the other steps are trained as PINNs initialized with neural network pa-
rameters of the previous well-trained neural network. The loss functions
are constructed by homotopy functions with corresponding tracking pa-
rameters and initial conditions. When the parameter ¢ satisfies 1 =1,
the corresponding optimized neural network with a loss under preset
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threshold is a solution of the nonlinear differential equation. Differ-
ent from the traditional homotopy continuation method which needs to
discretize differential equations into polynomial systems before the ho-
motopy process, the NN-based homotopy process directly handles the
homotopy function in differential equation form with the aide of au-
tomatic differentiation technique [55] involved in the backward prop-
agation. Because the starting function is endowed with randomness,
different solutions can be obtained by repeating the homotopy process
with different starting functions.

The proposed framework in this paper is general for computing mul-
tiple solutions of different kinds of nonlinear differential equations. To
illustrate the idea of this framework, we consider the following nonlin-
ear elliptic differential equations:

Lu(x)= f(u,x), x€Q
@

Bu(x) = b(x), x€0Q

where £ is a linear differential operator, for example Laplace operator
A, f(u,x) is a nonlinear forcing term depending on both u and x, Bu(x) =
b(x) stands for the general boundary condition, and Q is a bounded
domain in R¢. There are several advantages of our proposed HomPINNs
listed below:

1) HomPINNs can learn multiple solutions of nonlinear differential
equation, while in most case, PINNs can only find the flattest solu-
tion;

2) Compared with existing traditional numerical methods, our pro-
posed HomPINNSs are more efficient, e.g. uncover new solutions for
the Henon equation in example 4.3;

3) HomPINNSs are capable for solving nonlinear differential equation
with arbitrary domains since the neural network discretization is a
mesh free method, e.g., the heart-shaped domain in example 4.4.

4) HomPINNSs are robust on different neural network structures for
learning multiple solutions of the nonlinear differential equation,
e.g., Table 1, Table 3 and Table 4 in section 4.

The remainder of this paper is organized as follows. The bases of our
proposed HomPINNS, i.e., physics-informed neural networks and homo-
topy continuation method, are firstly introduced in Section 2. In Section
3, the details about the construction of HomPINNs are presented with
schematic and algorithm. In addition, the design of starting function
with hat function or Gaussian function is also shown in this section. In
section 4, we provide several numerical examples to show the efficiency
of our proposed HomPINNS, including reaction-diffusion equations with
the heart-shaped domain. Finally, the conclusion is presented in Sec-
tion 5.

2. Background

In this section, we introduce the PINNs which is designed to solve su-
pervised learning tasks with respect to the given differential equations,
and the homotopy continuation method which is a typical technique to
obtain multiple solutions of different kind of differential equations or
polynomial systems.

2.1. Physics-informed neural networks

The physics-informed neural networks leverage the universal func-
tion approximation property of deep neural networks to represent the
solutions of general linear and nonlinear partial differential equations,
and its schematic is shown in Fig. 1. Compared with standard deep
learning approaches, this framework builds the physical laws (govern-
ing equations and boundary conditions) into the loss function utilizing
automatic differentiation techniques [55] which is available in many
machine learning libraries, such as PyTorch [56] and TensorFlow [57].
For the nonlinear PDE (1) that we consider in this paper, the solution
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Fig. 1. Schematic of physics-informed neural networks (PINNs): The orange part is a fully connected neural network u, (x;6) (x = (x, y)) which serves as a surrogate
model of the PDE solution; the green part is informed physics described as governing equation and boundary condition which is used to define loss function by

automatic differentiation [55].

can be approximated by a fully connected feed-forward neural network
uy(x;0) in which the neural network parameters are optimized such
that the resulting approximate solution will satisfy the governing equa-
tion and the boundary conditions, simultaneously.

Generally, there are two ways to approximate the solution u(x;0).
The first one is to build both the nonlinear differential equation and the
boundary condition into the loss function together, namely,

Ng Nj
1 1
LO)= - ; (Lun ) =y x)* + o ; (Buy () = bxh)*, (@)

where u (x; 0) is an approximation of u(x), {xf }I_Zgl, and {xj?}j]ib are col-
location points of the governing equation and the boundary condition,
respectively, and « is the balance parameter between the governing
equation and the boundary condition. This is the most primitive and
universal idea of PINNs presented in [41] as shown in Fig. 1.

The second one is to restrict the boundary condition on the neu-
ral network by augmenting the generic neural network u (x;60) with
several special designed functions to obtain the final neural network
iy (x; 0) which satisfies the boundary condition Biiy (x; 0)|g = b(x), auto-
matically [42]. For example, if the boundary condition is u(0) = u(1) =0
on [0, 1], then the final neural network is defined as iy (x;0) = x(x —
Dupy(x;0). Then the loss function is defined based on the governing
equation only, namely,

N
IEENTP™ - 2
L®)= 5 ; (Liiy () = flay.xD)" ®)

2.2. Homotopy continuation method

Denoting the numerical solution as U, we have the following dis-
cretized polynomial system

(€]

where £, and f), are the discretized operators of £ and f(-,x) by finite
difference method [58], finite element method [59], or spectral method
[60]. If f(u) is a polynomial function of u, then F, is a polynomial
system of U. In order to compute all solutions of the elliptic equation,
we define the following homotopy equation

F,U)=L,U- f,(U)=0,

HU,?) :=1F,U)+y(1 -1)G,(U)=0, 5)

where G,(U) =0 is called the “starting system” [61], 7 € [0,1] is called
the homotopy parameter, and y is a random complex number [61,62].
When ¢ =0, Eq. (5) is the starting system G,(U) =0. When ¢ =1, Eq. (5)
recovers the target system (4), which is then solved by tracking solu-
tions with respect to the homotopy parameter 7 from O to 1.
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The starting system is chosen via closely mirroring the structure of
F,(U), such as the total degree start system (G (U) has the same de-
gree as F,(U)), the multi-homogeneous start system by dividing the
variables U into several homogeneous groups, the linear product start
systems by dividing into several linear systems, and etc. Since both
G, (U) and F,(U)) are polynomials, all solutions of F,(U) can be the-
oretically guaranteed by the homotopy continuation due to Bertini’s
theorem [61,63,64]. Roughly speaking, if two polynomials have no
common solutions, a general linear combination of them, namely, the
homotopy function, will define a smooth hypersurface. One choice of
the starting system is so-called total degree system, namely,
(Gh(U))k =UY% -1, k=1,2,....n, ©)
where U = [U;,-,U,]” and d, is the degree of the k-th equation of
F;,(U). The total degree system is guaranteed by Bézout’s Theorem [65]
to compute all the solutions of F,(U). Comparing to traditional meth-
ods that compute one single solution only, such as Newton-like methods
and gradient methods, the disadvantage of using (6) is time consuming
computations introduced by tracking II}_, d; solution paths when car-
rying out homotopy continuation, which could be very expensive for
solving nonlinear PDEs on the fine grid. In order to speed up the com-
putation, we combine the PINNs with the homotopy method.

3. Homotopy physics-informed neural networks (HomPINNs) for
computing multiple solutions

In this section, we will construct neural networks leveraging the
homotopy method to compute multiple solutions of the nonlinear PDE

0.

3.1. The architecture of homotopy physics-informed neural networks
(HomPINNs)

Let F(u) = Lu— f(u,x) and G(u) = u — u¥, where k is the degree of
function f about u and u are the given simple starting functions, for
example, piecewise linear function for one dimensional situation. We
can apply homotopy continuation method to obtain multiple solutions
of nonlinear PDE (1). The homotopy function is constructed as

H@u,t)=tFu)+ (1 -1)Gu), )

where 7 € [0, 1] is homotopy parameter.
By denoting the HomPINNs as uy(x;6,7), the loss function of the
HomPINNs is defined as
|G |G >
L®,1) = Fg z{H(uN(xf;H, N,0% + aVb 2{ (BuN(xlb.;B, H— b(xj?)) . (8
i= j=
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Fig. 2. Schematic of homotopy physics-informed neural networks (HomPINNs): the left neural network NN is a general fully-connected neural network to approxi-
mate the starting function u; other neural networks are PINNs initialized with parameters of previous well-trained neural network; the homotopy process is from
step 1, to step 7,,, and if the final neural network with parameter 6* satisfies the criteria in the green oval box, then it is a new learned solution of the target system

to be added to solution set V.

N . .
where 7 € (0,1], {xf }l_=g1 and {xj.’};vzl’l are collocation points of homotopy
equation and boundary condition, respectively. In particular, if t =¢, =
0, then the loss function is defined as

Ng

L(6,0)= NL D (un (x5:0.0) — 1, (x5)) .
8 i=1

9

Thus the starting neural network of HomPINNS is trained by minimiz-
ing the loss function (9) for different starting functions {us’,-}:';‘l. Then
we track the solution path uy(x;6,7) by optimizing the loss function
(8) with respect to ¢ and recover (1) at ¢ = 1. Then the HomPINNs are
trained for r =1,,t,,--+,1,, where 0 <1, <1, < --- <t, = 1. In Step t,, the
network parameters 6§ are updated by

0—0—1,V,L0.1,),

where 7, is the learning rate in the nth iteration, n=1,2,--,N;; and
i=0,1,---,m. The schematic of the HomPINNs is illustrated in Fig. 2
and the training process of HomPINNs is summarized in Algorithm 1.

Algorithm 1 The training process of HomPINNs.

1: Input: collocation points {x,”}f\’:”l, {xf],}i”l, homotopy step {7,}"

", starting functions
{u, ]:":‘I , the iteration number of every step {N;;}" , the tolerance ¢ of finial loss
2: Output: the learned solution set U
3: letu,=ug,, p=0and U = {} (empty set)
4: While p <m, do
5. fork=1,2,+,N;, do
optimize the loss function L(6,0) (9) with Adam
end
6: fori=1,2,-,mdo
for j=1,2,---,N,;; do
optimize the loss function L(6,1;) (8) with Adam
end
end
7:  optimize L(0, 1) with optimizer LBFGS to obtain u (x;6*,1)
8 If L(0*.1) <e &uy(x:0*,1) & U do
put uy (x;60*,1) into solution set U
end
9 p=p+1
end
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3.2. Starting functions

Since £ in Eq. (7) is a linear operator and does not contribute to the
non-linearity, we may choose G(u) = f(u). Thus the homotopy function
becomes

Hu,t)=tLu+ f(u)=0. (10)

In this case, we construct a starting function u (x) with f(u,(x)) =0 for
any given coarse point x. In numerical computation, we construct the
starting functions by randomly choosing the trivial solutions f(u,(x;)) =
0 on the coarse gird points x;, i = 1,2, -+, m,, where m, is the number of
coarse grid points.

3.2.1. 1D starting function

Suppose the 1D domain is [a,b], and €0s €1y Cpy, -y ATE uniformly
coarse points satisfying a=cy <c¢; <--<c¢, _;=b,and h=c;; —¢; =
(b-a)/(m,—1), i=0,1,--,m, — 2. The 1D hat basis functions on the
interval [a, b] are defined as follows [66]:

(¢; —=x)/h, a<x<cy,
Po(x) = , an
0, otherwise;
(x =y —)/hy €y <x<b,
b, 1 ()= a2
0, otherwise,
and
(x=c2)/h, ¢y <x=Z¢,
¢;(x) = (Ci+1 —x)/h, ¢ X< ¢Ciyps (1<i<m,-2). 13)
0, otherwise,

A example of 1D hat functions ¢;_; and ¢; on points ¢;_; and ¢; is
illustrated on Fig. 3a. Then, the starting function u, is defined as a linear
combination of 1D hat basis functions {¢; },'.":fl, ie.,

m.—1

u, ()= Y vy,

i=0

(14)
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Ci2 Cicq G Cisq

(a) 1D hat functions (b) 2D hat function (c) 2D gaussian function

Fig. 3. Different starting functions: (a) 1D hat functions ¢,_; and ¢, on points c;_; and ¢;, respectively; (b) 2D hat function ¢, ; on point (c;,¢;); (c) 2D gaussian
function y; on point (x;,y;) and ¢ =0.15.

15 10* 107
1 10
05 , 510°
10 >
- o >
El 8 E
107 2 .
-05 S 107
_4
4 10
71-50 0.2 0.4 0.6 0.8 1 10° 10770 0.2 0.4 0.6 0.8 1
} a0 } ot Lottt bttt } a0 )
(a) Solution 1 (b) Loss (c¢) Absolute error

Fig. 4. The first solution with different homotopy parameter r =1, (i =0,2,4,6,8,10) (Left), the corresponding training loss with different ¢, (Middle), and absolute
error between learned solution and real solution (Right) for example 4.1.

0.5

u(x)

|

o

o

N—' o

loss
absolute error

(a) Solution 2 (b) Loss (¢) Absolute error

Fig. 5. The second solution with different homotopy parameter t =1, (i =0,2,4,6,8, 10) (Left), the corresponding training loss with different ¢, (Middle), and absolute
error between learned solution and real solution (Right) for example 4.1.

where v; is randomly chosen from trivial solution set U;, defined by Table 1
the nonlinear forcing term. For example, U}, = {1,-1} if the nonlinear The loss of two solutions of example 4.1 with different network structures.
forcing term is taken as f(u) =u® — 1. width (# neurons) 10 30 50
X . 21 solution one 1.18e-5 2.86e—6 4.08¢—6
3.2.2. 2D starting function ayers solution two 5.11e-5 1.50e=5 9.19¢—6
Similar to 1D starting function, the starting function on the 2D do- i 6610t A3l I
. . . . . . solution one .Ole—! dle— 2le—
main [a, b] X [a, b] is based on 2D hat basis functions which are defined 3 layers solution two 1 79—5 2370 127
as
¢ (X, ) =¢;(x)p;(y), 0<i,j<m.—1, (15) me=1m.~1

where ¢,(x) and ¢;(y) are 1D hat basis functions. A 2D hat function us(x,y) = Z Z Vi jbij (X:¥), (16)

: . o . - =0 j=0
¢;; on point (c;, ¢;) is shown in Fig. 3b. Then, the 2D starting function
becomes coefficient v, ; is randomly chosen from trivial solution set V.

66
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Solutions at p=10

0 0.2 0.4 0.6 0.8 1

X

(b) p=10

Solution behavior along the path

branch 1
branch 2
branch 3
branch 4

-2
8

(d) Solution behaviors

Fig. 6. Multiple solutions of example 4.2 with different parameters p (a-c) and the solution behavior with respect to the parameter p (d): (a) only one solution for
p=3; (b) three solutions for p = 10; (c) seven solutions for p=18; (d) /01 u(x,p)dx v.s. p.

Table 2
The numerical errors in L, norm of example 4.1 with different network struc-
tures.

width (# neurons) 10 30 50
2 lavers solution one 4.80e—5 2.54e-5 1.54e-5
Y solution two 2.96¢-5 2.29¢-5 1.30¢-5
3 lavers solution one 3.90e-5 1.56e-5 0.4le-5
Y solution two 2.93¢-5 2.08¢-5 1.19¢-5

For arbitrary 2D domains, we choose 2D Gaussian functions as the
basis function:

(x—x)* + (v — y)?

202 a7)

Wi(x,y;a):exp(— ), i=1,2,-,m,,
where {(x;, y,.)}L'_":”1 are uniform or nearly uniform coarse points, ¢ is the
Gaussian parameter which depends on the density of coarse points, and
. is the number of all coarse points. An illustration of a 2D gauss
function y; on point (x;,y;) is presented in Fig. 3¢ with ¢ =0.15. Then,
the corresponding starting functions are constructed as

m

mL‘

MS(X, y) = Z Uil/’i(x7y; ‘7)’

i=1

(18)

with coefficient v; randomly chosen from trivial solution set .
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Remark 1. The hat and Gaussian functions are widely used basis functions.
Besides, the random selection of coefficients in the starting function makes
HomPINN s learn different solutions of nonlinear differential equations.

4. Numerical examples

In this section, several examples are presented to show the robust-
ness and the efficiency of HomPINNs for learning multiple solutions of
nonlinear PDEs. The first two examples are 1D nonlinear PDEs with
mixed boundary conditions, and they are implemented on a personal
computer with a 5G Quadro P2000 GPU. The third example is the
2D Henon equation with Dirichlet boundary conditions and nine non-
trivial solutions. The last example is the stationary spatial patterns of
the well-known Gray-Scott model with Neumann boundary condition
on a heart-shaped domain. Both of the two 2D examples are imple-
mented on a scientific workstation with a 24G Titan RTX GPU. All the
examples are performed in Python 3.8 utilizing Pytorch library.

In addition, we state some basic setting for all the examples as fol-
lows:

1) neural network setting
We use 3 hidden layer neural networks with 30 neurons per layer
for 1D examples, 80 neurons per layer for 2D examples, and the
corresponding activation function is chosen as a hyperbolic tangent
function. All the neural networks are initialized using He initializa-
tion [67], a default initialization method in the Pytorch library.
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Fig. 7. Three solutions with p =10 and the corresponding loss during the homotopy processes in example 4.2.

Table 3
The average loss of multiple solutions example 4.2 for different parameter p
with different network structures.

Table 4
The average loss of multiple solutions in example 4.3 with different network
structures.

width(# neurons) 10 30 50 width (# neurons) 50 80 100
—1s 2 layer 3.7487¢ — 4 3.9978¢ — 4 4.9444¢ — 4 2 layers 2.58¢-3 1.32¢-3 8.11e—4
P= 3 layers 2.9744e — 4 1.4039¢ — 4 3.8864e — 5
3 layers 9.98e—4 6.34e—4 4.81le—4
-1 2 layer 3.2129¢ — 4 8.8537¢—5 24777e -5
’ 3 layers 1.6417¢e —4 8.0367¢ — 6 8.4730e — 6
3 2 layer 8.5049¢ — 6 2.2326¢ — 6 3.3666¢ — 5 by LBFGS, a quasi-Newton method available in Pytorch library
= 3 layers 8.0059 — 6 1.3030e — 6 1.2209¢ - 6 with parameters max_iter = 10000 for 1D examples, max_iter = 50000

2) hyperparameters of homotopy process

In all the examples, we set « = 10 and m = 10, i.e.,there are 11
steps in a homotopy process, namely, t; =0.1 xi, i =0, 1, ---,10. The
numbers of collocation points are set as N, = 100 and N, =2 for
1D examples, N, = 5000 and N, =500 for example 3 in Subsection
4.3, and N, =9768 and N, = 630 for example 4 in Subsection 4.4.
The number of starting functions are set as m, = 20 in the initial
iteration and m, = 10 for later iteration until the solution set keeps
unchanged in Algorithm 1. In each homotopy process, the numbers
of iterations are set as N;; = 20000 for i =0,1,--,9 and N, ;=
40000.

optimizer setting

We use the Adam training algorithm [68] in the Pytorch li-
brary with the following parameters: betas = (0.9,0.999),eps =
1078, weight_decay = 0, amsgrad = False, maximize = False, to solve the
optimization problem {L(6,¢,)}" o defined in (8) and (9). The learn-

i=
ing rate is set as 7, = ;i X ¥ %], which means that we decay the
learning rate by y every A iterations. In all examples and for ev-
ery homotopy Step #;, we set 7;,;;,;, = 0.002 and A = 1000, while
decaying rates y = 0.85 for 1D examples and y = 0.95 for 2D exam-
ples. Besides, after optimizing by Adam, the solutions are refined

3

=

68

for 2D examples, rolerance_grad = 1.0 X np finfo(float).eps, to obtain a
better accuracy.

4.1. A 1D example with two solutions

We first consider a 1D nonlinear differential equation on [0, 1] with
mixed boundary condition as follows

=-12(1+u*), xe[0,1]

uXX
W' (0)=u(1)=0.

It is shown in [33] that this example has two analytical solutions.
Since Eq. (19) does not have real trivial solutions, we define U} =
{1,-1,v/2,-v/2} by solving f(u) = (@ — 1)@® — 2) = 0. The learning
processes of these two solutions and the corresponding loss at each
homotopy step are illustrated in Fig. 4 and Fig. 5. The loss and the
numerical errors in L, norm are shown in Tables 1 and 2, respectively
and demonstrate the good accuracy of HomPINNs on different network
structures.

Recently, a network-based structure probing deflation method was
proposed to identify multiple solutions of differential equations in [69].
The idea is to deflate from one solution to find other solutions. In this
example, the first solution u; can be found by PINN but the neural

19
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Fig. 8. Nine different solutions of Henon equation (22) in example 4.3: every pair of solutions {u;, u;,_;} are symmetric about the x-y plane, i = 1,2,3,4; Compared
with traditional numerical method [72], one more solution us is learned by the proposed HomPINNs.

network deflation is hard to find the other solution because these two
solutions are too close to each other [69].

4.2. A 1D example with multiple solutions

Consider the following parametric nonlinear differential equation
with multiple solutions,

Uy =12W? = p), x€(0,1)

(20)
u'(0)=0, u(1)=0

69

with parameter p > 0 [70,71]. For any given parameter p, there exist
multiple solutions u, moreover, the number of solutions increases as p
goes large. In order to compute the multiple solutions with different
parameters of equation (20), we take the trivial solution set as U} =
{1,—1,4/p,—+/p} by solving a modified nonlinear term @R -D?-p) =
0.

The proposed HomPINNs learn one, three and seven solutions for
p=3, p=10, and p = 18. These results consist with the existing theoreti-
cal analysis in [71]. The solutions learned by HomPINNs with different
parameters are shown in Fig. 6, and the learning processes of three so-
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Fig. 9. The computational heart-shaped domain Q for Gray-Scott model (24) in
example 4.4.

lutions at p = 10 is presented in Fig. 7. We also summarize the average
loss of different solutions for different neural network structures in Ta-
ble 3 which confirms the robustness of HomPINNs on neural network
structures. In addition, to analyze the solution behavior with respect to
the parameter p, we define a new loss function with parameter p below:
|
- 2
L@.p) = 5~ X (Lun(xf:0.p) = [l (x5:0.p).))
& i=1
1
b. b
+ N 2‘1 (Buy(x);0,p) = b(x)))
i=

(21
2

where uy (x%:6, p) is the solution of Eq. (21) with any given parameter
p. By tracking the solutions from p = 18 down to p =0, we discretize the
parameter p as p = py, p;, - Py where p, = 18, P, = 0and m,+1 is the
number of discrete points of parameter p. Then we have initial seven
solutions {u;(x;6;, 170)}1_7=1 learned by HomPINNs and compute u(x;6;,p;)
(j > 0) by taking u(x;0;_;,p;_,) as the initial guess for the optimization
solver until j = m,. Thus we obtain the solution behavior of parametric
differential equation (20) shown in Fig. 6d.

4.3. The 2D Henon equation with nine solutions

Next, we consider the following Henon equation [72]

Au+x"® =0, xeQ
(22)

ulygo =0,

where Q = {x = (x,y) € R? : |x| <1} and |x| = v/(x2 + y?). The trivial
solution set is given as U} = {20,-20,0} by solving u(u — 20)(u +20) =0
which has the same degree as u>.

Nine different solutions have been learned by the proposed
HomPINNs and are presented in Fig. 8. Interestingly, solution u; is sym-
metric to solution u,,_; about the x-y plane, i = 1,2,3,4. The traditional
method proposed in [72] only discovers eight solutions { ui’uIO—i};Ll
appearing in pairs which may be caused by some transformations be-
fore computation. We do not have any transformations in HomPINNs
and define the loss function by using the nonlinear differential equa-
tion (22) directly. This is one advantage of the proposed HomPINNs
to compensate traditional methods for computing multiple solutions of
nonlinear systems. Moreover, we also test the robustness of HomPINNs
on different neural network structures and summarize the average loss
of different solutions in Table 4.

4.4. Stationary spatial patterns of the Gray-Scott model

The Gray-Scott model, proposed by Gray and Scott [7-9] to describe
autocatalytic reactions, takes the following form:
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‘;_A =D AA+SA2 = (u+ A,
o DgAS — SA?+p(1-25).

The steady-state systems with no-flux boundary conditions are written
as

D AA+SA%—(u+p)A=0,

DgAS —SA?+p(1 - 5)=0, 249
JdA 25
- =—5 =
o 0= 55 Sla =0,

where the domain Q is set as a heart-shaped domain in R? (shown in
Fig. 9) formulated by

Q={(x,»)eR?: x*+y* -1 —x2’ =0).

Following [73], the parameters values are set as

D,=25x10"% Dg=5x10"%, p=0.04, and y = 0.065.

Since the diffusion coefficients are small, we normalize the equa-
tions to avoid the loss of (24) be too small by dividing the diffu-
sion coefficients. Moreover, to avoid converging to the trivial solution
(A,S) = (0,1). we introduce re-scaled variables, @ = (4,.5), such that
A=2A and § =25. Thus the system of nonlinear differential equations
becomes

N i I am Htp s
Fi(A,S)=AA+ —SA°——A=0,
1(4.5) 4D, D,

- & 1 &x P &
Fr(A,S)=AS — —SA°+ —2-95)=0, 2
2(A, ) D, DS( ) (25)
oA, 93, o

ox 9% x0T

The proposed HomPINNSs are firstly used to solve the system (25)
by constructing neural networks ii(x; #) with a two width output layer
to represent two components A and .S, respectively. The trivial solu-
tion set of (4, S) is Ay = {—1,0,2} by solving (4 + 1)A(A —2) = 0. The
starting function A of A is constructed with Gaussian basis functions
by randomly choosing coefficients from A, and the starting function
of S is defined as S; =2 — A,. The HomPINNs learn 25 different solu-
tions which are shown in Figs. 10 and 11 for both A(x,y) and S(x, y) by
choosing 60 starting functions. The average loss of the 25 learned neu-
ral networks is 6.40 x 1074, and the average residual of the governing
equations is 3.83 x 1074,

5. Conclusion

The homotopy continuation method has shown advantages for com-
puting multiple solutions of nonlinear differential equations. The NN-
based techniques, including physics-informed neural networks, have
demonstrated the effectiveness of learning the solution of differen-
tial equations. By combining the homotopy continuation method and
physics-informed neural networks, we developed a new deep learn-
ing framework, HomPINNSs, in this manuscript for solving multiple
solutions of nonlinear differential equations. In particular, the pro-
posed HomPINN generally contains several sub-networks: the first one
is called starting neural network which is to approximate the starting
functions, and the other networks gradually the target system which is
the nonlinear differential equation that we want to solve. For the train-
ing process, we use the previous well-trained sub-network as the initial
guess to train the current sub-network and eventually recover the mul-
tiple solutions of nonlinear differential equations. We have tested the
HomPINNSs on various numerical benchmark problems to show the ca-
pability of HomPINNS for learning multiple solutions and the robustness
of HomPINNSs on different network structures. Moreover, it also shows
the efficiency of solving nonlinear differential equations on arbitrary
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domains which is difficult for traditional methods. In the future, we will
apply the HomPINNs to other differential operators and other problems
involving multiple solutions such as eigenvalue problems of differential
equations. Another future direction is to explore the effect of different
activation functions on HomPINNS, for instance, the adaptive activation
functions introduced in [74,75,47]. More, the choice of starting func-
tions needs to be further studied to better capture solution structures of
nonlinear PDEs.
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