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Abstract

The identification and description of point sources is one of the oldest problems in astronomy, yet even today the correct
statistical treatment for point sources remains one of the field’s hardest problems. For dim or crowded sources, likelihood-
based inference methods are required to estimate the uncertainty on the characteristics of the source population. In this
work, a new parametric likelihood is constructed for this problem using compound Poisson generator (CPG) functionals
that incorporate instrumental effects from first principles. We demonstrate that the CPG approach exhibits a number of
advantages over non-Poissonian template fitting (NPTF)—an existing method—in a series of test scenarios in the context
of X-ray astronomy. These demonstrations show that the effect of the point-spread function, effective area, and choice of
point-source spatial distribution cannot, generally, be factorized as they are in NPTF, while the new CPG construction is
validated in these scenarios. Separately, an examination of the diffuse-flux emission limit is used to show that most
simple choices of priors on the standard parameterization of the population model can result in unexpected biases: when a
model comprising both a point-source population and diffuse component is applied to this limit, nearly all observed flux
will be assigned to either the population or to the diffuse component. A new parameterization is presented for these priors
that properly estimates the uncertainties in this limit. In this choice of priors, CPG correctly identifies that the fraction of
flux assigned to the population model cannot be constrained by the data.

Unified Astronomy Thesaurus concepts: Astrostatistics strategies (1885); Prior distribution (1927); Parametric
hypothesis tests (1904); Bayesian statistics (1900); X-ray telescopes (1825); Spatial point processes (1915); X-ray
point sources (1270)

1. Introduction

A practical and unbiased method of point-source inference is
central to the task of recovering the physical characteristics of point-
source populations. When point sources are bright and well-
separated in the sky, their identification and cataloging is
straightforward and requires little statistics beyond quantification
of uncertainties on location and brightness. The primary difficulty
arises when point sources are dim, where one must distinguish a
putative source from a background fluctuation and account for the
possibility of multiple closely overlapping sources—called a
crowded field. The calculation of the uncertainty on the number
of sources is particularly demanding, as the number of sources is a
discrete parameter. Parametric point-source inference methods, such
as the non-Poissonian template fitting (NPTF) method (Lee et al.
2016), sidestep this issue by specifying a likelihood conditioned on
the characteristics of a population. In particular, the likelihood can
be expressed in terms of the mean number of sources—a
continuous parameter for which uncertainty calculation is con-
siderably easier.

NPTF is currently the most widely applied parametric point-
source inference method in gamma-ray and neutrino astronomy,
especially in the analysis of gamma-rays from the Galactic Center.
However, there is growing concern that results obtained with

NPTF must be interpreted cautiously to avoid potential biases; see
the discussion in Leane & Slatyer (2019, 2020a, 2020b), Chang
et al. (2020), and Buschmann et al. (2020). In the present work, we
will identify several clear biases of the NPTF framework that
become most obvious in the following three specific test scenarios
motivated by X-ray astronomy: (i) a spatially nonuniform point-
source population model; (ii) a nonisotropic instrumental point-
spread function (PSF); and (iii) variation in the instrumental
detector response, namely the effective area, on scales smaller than
the choice of binning—that is typically, in turn, on the scale of the
PSF. In all cases, we observe a bias in the recovered number of
point sources as summarized in Figure 1.
To resolve these biases, we develop a new parametric point-

source inference likelihood called the compound Poisson
generator (CPG) likelihood. This new likelihood addresses
the biases in the NPTF apparent in the X-ray domain, and
further provides a rigorous treatment of several approximations
made in the conventional NPTF approach. In addition, we
demonstrate the importance of a carefully chosen prior
parameterization in Bayesian analyses. Priors chosen directly
on the standard parameterization of the differential source-
count function can, in the limit where these models are
formally indistinguishable, lead to posteriors where the
observed flux is assigned to either the point-source population
model or an associated diffuse emission model. We define a
new coordinate system for the specification of priors that
removes this unwanted effect as summarized in Figure 2.
This work does not address biases that may result from

incorrect modeling of the spatial distributions of populations
(see, in particular, Leane & Slatyer 2020a, 2020b), effective
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area, exposure area, or the PSF. Such biases are not limitations
of the point-source inference method; instead, they are
concerns for individual applications of point-source inference
to specific analyses—although they are no less important for
obtaining correct results. In this work, we assume that these
effects are modeled correctly, and investigate the statistical
methodology of point-source inference.

We organize the remainder of the discussion as follows.
Section 2 reviews the current state of point-source inference,
with a more detailed discussion on the concerns with NPTF,
where the CPG enters, and how it resolves some of these
issues. Section 3 outlines the point-source population model
and the various instrumental effects introduced by standard
X-ray instruments such as the NuSTAR satellite telescope,
which we use as an example. Having outlined the background
and challenges, in Section 4 the CPG likelihood is constructed
from first principles. Section 5 introduces the priors on the
population model parameters and demonstrates how the new
coordinate system correctly handles the combination of point
source and diffuse models. The NPTF method is introduced in
more detail in Section 6, where we consider several scenarios
motivated by instrumental effects, results from CPG and NPTF
on these cases are directly compared, and the general efficacy
of the new likelihood is demonstrated. An implementation of
the CPG is made publicly available here.7

2. Review of Point-source Inference

To begin with, we will review the history and current state of
point-source inference as it applies to parametric inference in
the regime of dim sources and crowded fields. In this regime,

automated source extraction is most commonly employed. This
involves such methods as thresholding, peak searches, and
wavelet decomposition, among others (Masias et al. 2012).
Source-extraction algorithms can be broadly categorized as
point-estimation methods—they produce a single best-fit or
most-significant solution, and this solution can be represented
as a point in the parameter space of point sources. For example,
in thresholding and peak searches, a pixel is considered part of
a source if the measured pixel intensity exceeds some defined
threshold, which may be manually selected or defined by a
statistical significance estimated from the image. The set of
pixels that are classified as belonging to a source constitute a
single point in the parameter space of all such sets of pixels,
and may be further transformed into point-source locations by
taking the pixels in each set, and for example, computing the
centroid of those pixels. The resultant point in parameter space
is the algorithm’s best guess as to the true parameters.
However, this guess is just that: an estimate of the true
locations of the point sources in an image. As such, the
calculation of uncertainties is required in order to quantify the
quality of this single best guess.
In this problem, there are two classes of parameters: the

individual point-source parameters, ϑ, such as location and
brightness, which are continuous quantities; and the number of
sources in the image, Ñ , which is a discrete quantity. The
measured data, such as the observed image, will be distributed
according to the likelihood ( ∣ ˜ { }) Jd N , i , where {ϑi} is a set of
size Ñ , one for each of the Ñ sources. The pair ( ˜ { })JN , i form
a point in the parameter space of the likelihood, and this point
is often referred to as a catalog. When it comes to the
calculation of uncertainties, discrete and continuous parameters
must be handled in different ways.

Figure 1. The recovered posterior in the number of point sources in the population, N, for both the novel CPG construction and the existing NPTF approach, for the
three test scenarios considered in this work. Upright distributions are the posteriors for individual trials from the CPG construction. Inverted distributions are the
posteriors recovered by NPTF. A clear bias away from the true number of sources, Ntrue (red line), is observed from NPTF. We will describe the results shown here in
detail in Section 6. For example, the extension of many posteriors to N ? Ntrue is explained in Section 6.3.

7 https://github.com/ghcollin/cpg_likelihood
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Deriving uncertainties on the continuous individual source
parameters is the easier of the two methods. Assuming the
likelihood distribution is available, uncertainties can be derived
using variational methods, or confidence regions can be
constructed should Wilks’ theorem apply. Deriving uncertain-
ties on the discrete number of sources, Ñ , is more fraught. The
calculation of uncertainty on a discrete parameter is equivalent
to the problem of model selection. Each choice for the number
of sources should be considered as a separate model. Two
choices for the number of sources may then be compared using
a likelihood ratio between the likelihoods for each of the
associated models. This likelihood ratio is a test statistic, and
the probability distribution for the ratio must be known if it is
to be converted to a p-value. The p-values may then be used to
construct a confidence interval on the number of sources. Most
often, Wilks’ theorem is used to assume that the likelihood
ratio is χ2 distributed; however, this is only guaranteed in the
asymptotic limit and any deviation of the true distribution from
this assumption will result in incorrect confidence intervals.

An alternative approach to model selection is the calculation
of marginal likelihoods:8

( ∣ ˜ ) ( ∣ ˜ { })[ ( ) ] ( )
˜

 ò J J J=
=

d dN N p d, , 1i
i

N

i i
1

where p(ϑi) is a prior on the individual source parameters.
From this expression, the posterior ( ˜ ∣ )dp N can be found
through Bayes’ theorem, and so a credible region can be
constructed on the number of sources—avoiding the need for a
test statistic as in the likelihood ratio case. Variational methods
provide only a lower bound on the marginal likelihood of the
model, and thus provide no more than an estimate for the
posterior distribution on the number of sources.
A more common approach is to sample the posterior

({ }∣ ˜ )J dp N,i directly using nested sampling (Skilling 2004)
or a Markov Chain Monte Carlo (MCMC). Nested sampling
provides an estimate of the marginal likelihood directly, while
various techniques exist for deriving the marginal likelihood
from MCMC—for details, consult the review by Gelman &
Meng (1998). Although this provides the most principled
approach to the problem for small numbers of sources, in
practice it exhibits a critical flaw. When the number of sources
is potentially large, a marginal likelihood must be computed for
each possible choice of Ñ—a flaw also shared by the
variational and likelihood ratio methods. For hundreds of
sources, this can rapidly become computationally infeasible.
Ultimately, this flaw can be understood to be a manifestation

of a one-dimensional grid search over Ñ . In fact, MCMC is
designed to avoid grid searches by concentrating sampling on
regions of parameter space that are most likely; however, the
MCMC algorithm is designed exclusively for continuous
parameters, while Ñ is a discrete parameter that, when varied,
also modifies the number of ϑ parameters. The Reversible
Jump Markov Chain Monte Carlo (RJMCMC) algorithm is an
extension of MCMC to discrete parameters that control the

Figure 2. The median recovered posterior for the novel natural coordinate system (top) and standard coordinate system (bottom), for multiple choices of priors on the
number of sources (N, natural only), flux (F), and differential source-count function normalization (A, standard only). The posterior is shown for the fraction of flux
assigned to the population model, as compared to a diffuse background model. In this scenario, only diffuse flux is present, and so these posteriors should be uniform,
as diffuse emission is formally indistinguishable from a population of dim point sources. This is observed only for the natural coordinate system, with one exception
discussed further in Section 5.

8 Point-source inference can be approached in a frequentist or Bayesian
framework, and we will use the language of both throughout. Nevertheless,
when adopting a Bayesian approach—as has commonly been done for the
NPTF—priors must be chosen carefully, as we discuss in Section 5.
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number of parameters in the distribution (Green 1995).
Probabilistic cataloging (Daylan et al. 2017; Portillo et al.
2017) is the application of RJMCMC to the problem of point-
source inference. While the point-estimation methods produce
a single best-guess catalog, probabilistic cataloging produces
posterior samples in the space of all possible catalogs. From
this catalog posterior, a posterior on the number of sources can
be calculated. A catalog posterior provides—essentially by
definition—the most general solution to the problem of point-
source inference. This generality comes at a high cost: the
transdimensional parameter transformations required by
RJMCMC has to be carefully selected, as they must be tuned
to the specific application to ensure that transdimensional
moves are efficient. In addition, the dimensionality of the
likelihood is at least two or three times larger than the number
of sources—depending on the number of parameters per
source. For thousands of sources, it can be unrealistic to
assume that the RJMCMC will properly equilibrate for even a
given number of sources, let alone across the number of
sources; the application of RJMCMC will require careful and
extensive diagnostics, none of which are foolproof.

The solution to this problem requires a revisitation to the
stated inference goal. If the goal truly necessitates the location
and intensity of each individual source, then probabilistic
cataloging is necessary. But in this problem area, where the
number of sources is large, they also likely form a crowded
field. In this case, locations of individual sources will be poorly
defined, as they form a near-uniform density within which
sources are easily interchangeable. Instead of attempting to
track each individual source, a model can be defined for the
entire population of sources. The most common choice of
model is a differential source-count function: ( )J qdN d . This
function then has its own parameters, θ, which are character-
istics of the population as a whole, such as the spatial
distribution of sources, or the average flux of the population.
The differential source-count function gives the density of
sources as a function of ϑ given θ, and thus implicitly defines a
probability distribution:

( ) ( ∣ ) ( )
J

q J q=
dN

d
Np , 2

where N is the mean number of sources in the population. This
allows marginalization of the likelihood over both the set of θ
and further the possible number of sources,

( ∣ ) ( ∣ ˜ { })[ ( ∣ ) ] ( ˜ ∣ ) ( )
˜

 òå q J J q J=
=

d d N p d p N N, , 3
N

i
i

n

i i
1

where ( ˜ ∣ )p N N is a prior on the number of sources given the
mean number of sources—usually assumed to be a Poisson
distribution. Thus, sampling directly from the posterior of

( ∣ ) qd reduces the high-dimensional nonparametric sampling
problem in the space of all possible catalogs to a low-
dimensional parametric sampling problem in θ. However, to
achieve this we have marginalized out the ϑ parameters, and so
identification of the location or brightness of individual sources
is no longer possible—the inference problem is now on the
population itself.

To achieve this vast simplification, the likelihood ( ∣ ) qd
must be constructed directly so that it may be evaluated without
computing the multidimensional integrals in Equation (3). An
early attempt at this construction, called the P(D) method

(Scheuer 1957; Miyaji & Griffiths 2002; Barcons 1992), used
instrument simulations to numerically estimate the likelihood
as a histogram over the number of detected photons. This
procedure estimates ( ∣ ) qd by sampling d from the right-hand
side of Equation (3). As this is effectively equivalent to an
importance-weighted integration of those multidimensional
integrals, this method ultimately carries the same computa-
tional burden of probabilistic cataloging.
In Malyshev & Hogg (2011), the authors noted that the

number of detected photons is a sum of the number of detected
photons produced by each source—itself distributed by a
Poisson distribution. This allows the likelihood to be
constructed using probability generating functions, and pro-
vides an analytic formula for ( ∣ ) qd assuming a perfect
instrument. To incorporate instrumental effects, a heuristic
argument is used to justify a semi-analytic expression for the
likelihood in terms of a detector effect correction function,
ρ( f ), that is generated through Monte Carlo simulation.
This method was further extended by Lee et al. (2016) to

images of multiple pixels by parameterizing the source count
function in terms of a spatial template. Known as NPTF, this is
currently a leading method for parametric point-source
inference in gamma-ray astronomy, and the method has also
been applied to the search for astrophysical neutrino point
sources in data from the IceCube telescope (Aartsen et al.
2020). The NPTF was primarily developed to analyze the
excess of Galactic Center (GCE) gamma-rays observed by the
Fermi telescope (Goodenough & Hooper 2009; Hooper &
Goodenough 2011; Hooper & Linden 2011; Abazajian &
Kaplinghat 2012; Hooper & Slatyer 2013; Gordon &
Macias 2013; Abazajian et al. 2014, 2015; Daylan et al.
2016; Calore et al. 2015; Ajello et al. 2016; Linden et al. 2016;
Macias et al. 2018; Clark et al. 2018), and concluded that the
observed excess was better described by a population of point
sources, in comparison to a dark matter annihilation origin (Lee
et al. 2015, 2016; see also Bartels et al. 2016).9 An approach
similar to the NPTF that has also been widely used is the one-
point fluctuation analysis or one-point PDF method; see, for
example, Lee et al. (2009), Feyereisen et al. (2015, 2017),
Zechlin et al. (2016a, 2016b, 2018), Manconi et al. (2020), and
Calore et al. (2021). In the present work, we will focus on
comparisons between the CPG and the NPTF, but many of our
conclusions would be similar if we compared to these
alternative approaches.
Recent investigations have suggested that the NPTF results

must be interpreted carefully, raising the possibility that the
nature of the GCE has not yet been conclusively resolved. First,
Leane & Slatyer (2019) demonstrated that the NPTF could
attribute an injected dark matter signal to the point-source
model, although it appears this concern can be addressed. In
particular, an improved treatment of the background models
largely resolves the issue (Buschmann et al. 2020), and further,
as was emphasized in Chang et al. (2020), a degree of
confusion is unavoidable given the inherent degeneracy
between purely Poisson emission and a population of point
sources that produce at most one photon each in the data set.
Nevertheless, when performing a Bayesian analysis, confusion
between point-source and pure Poisson emission can be
exacerbated by a poor choice of priors—a point we will return

9 The NPTF has also been applied to the problem of determining the point-
source contribution to the extragalactic gamma-ray background (Lisanti et al.
2016).
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to in Section 5. An additional concern regarding the NPTF that
has not yet been addressed is that it appears the presence of an
unmodeled asymmetry in the data can significantly bias the
method, in that the asymmetry leads the NPTF to return strong
evidence for a point-source population, even when there is
none (Leane & Slatyer 2020a, 2020b). Taken together, the
above results emphasize that the output of the NPTF must be
interpreted cautiously—indeed, whether the GCE contains the
first hints of the particle nature of dark matter remains an open
problem that even more recent wavelet (Zhong et al. 2020) and
machine-learning (List et al. 2020) approaches have not
conclusively resolved.

Nevertheless, as yet, the modeling of the detector effect
correction function of NPTF, ρ( f ), has not been questioned,
despite the heuristic justification for its original inclusion in the
method. In this work, we will show that there are instances
where the NPTF construction explicitly breaks down as a result
of the mathematical construction of ρ( f ), and that this
represents an obstacle to extending the method to X-ray data
sets. In detail, we present a first-principles construction of the
parametric likelihood in Equation (3), which incorporates the
correction of detector effects in a statistically justified manner.
The result, which we call the Compound Poisson Generator,
includes a new detector effect correction function that is an
analytic expression of the basic components of instrumental
effects: the PSF, effective area, and photon detection
probability. The new construction demonstrates that the spatial
distribution of the point-source population cannot be disen-
tangled from the detector effect correction function, nor can the
PSF be disentangled from the effective area. This shows that
the NPTF—which factorizes the spatial distribution, PSF, and
effective area—cannot describe point-source statistics in
general. To show this lack of generality, the NuSTAR X-ray
telescope is used as a test case for both the CPG and NPTF.
The substantial differences between the detector response in
NuSTAR and Fermi will reveal the stated deficiencies
in NPTF.

As for the effect of unmodeled asymmetries, these occur
when the spatial distribution for an emitter is specified
incorrectly. As NPTF and CPG have additional explanatory
power above that of a simple Poisson model, they will produce
a better fit to the data even if the emission is truly diffuse. This
same effect would be observed when using probabilistic
cataloging, as the location of the sources will migrate to
explain the deviation from the specified spatial distribution.
The CPG likelihood does not address this issue, as it is, in fact,
not an issue with the point-source model at all. To see this,
consider the following analogy with statistical mechanics. We
would be surprised to observe a box where all gas molecules
are located in one corner, as this situation is a very unlikely
macrostate for a gas. On the other hand, from the perspective of
the microstate description of the gas, the gas is in as likely a
configuration as any other configuration including those where
the system is more thoroughly mixed. Probabilistic cataloging,
NPTF, and CPG all specify the likelihood of the data, which is
a microstate description of the population. Thus, a configura-
tion where all sources are on one side of the image is as likely
as any other, and these methods make no distinction.

The problem here lies in the diffuse model that these
population models are compared to. The introduction of an
unmodeled asymmetry will have only a small effect on the
population likelihood; in comparison, the likelihood for the

diffuse model will suffer greatly due to this mismodeling.
When the two models are compared, it appears that the
population model is erroneously describing sources, but it is the
diffuse model that is erroneously rejecting the diffuse
hypothesis. To resolve the issue, the spatial distribution must
be given additional degrees of freedom so that the diffuse
model can account for deviations from the expected spatial
distribution. Much like in statistical mechanics, care can be
taken by examining the macrostate of the fitted population. The
quantities analogous to macrostates in point-source inference
are the population parameters. The differential source-count
function can be adjusted to include, for example, an Ntop and
Nbottom for the top and bottom of the image. The ratio of these
means can then be computed, and an unlikely value for this
ratio will form a diagnostic signal for a mismodeling issue.

3. Point-source Population and Instrument Models

This section describes the point-source population model
that will be used in this investigation, as well as the instrument
model that is necessary to generate simulated observations. The
instrument model is also needed in Section 4 to incorporate a
detector correction into the likelihood.

3.1. Population Model

In the parametric approach, an assumption must be made to
select a model that describes the population of sources. Here,
we describe the population using a differential source-count
function: dN dF . This function describes the number of
sources, N, as a differential over the individual point-source
flux, F.
The point-source flux F is defined as a normalization factor

in a power-law flux energy spectrum:

( )F
=

g-d

dE
F

E

E
, 4

0

⎜ ⎟
⎛
⎝

⎞
⎠

where Φ is the number of photons per unit area and time, E is
the photon energy, E0 is the power-law scale, and γ is the
power-law index (also known as the photon index). As a result,
the dimensions of F are photons per unit area, time, and energy.
Power-law spectra are common for the high-energy tails of
X-ray sources (Fleishman & Bietenholz 2007; Mukai 2017;
Hong et al. 2016), due to various processes such as synchrotron
emission and inverse Compton scattering, and thus make a
natural choice for this investigation. A power-law index of
γ= 1.5 is used for all scenarios, as spectra with this index are
common near the Galactic Center (Hong et al. 2016), and the
power-law scale is set to E0= 1 keV.
The contribution of each source to the image is determined

by converting the flux of the individual source to an expected
number of photons based on the response of the detector. For a
telescope, this response is commonly specified in terms of the
exposure time, texp, which is the time the instrument spent
collecting the flux of interest, and further, the effective area,
eff , which is the collecting area of an equivalent idealized
telescope that detects all incident photons, such that the
effective area is strictly less than the actual size of the real
instrument. The mean number of detected photons (also called
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the mean number of counts), S, is then

( ) ( )ò=
F

S t dE E
d

dE
, 5

E

E

exp eff
i

f

where the number of counts is defined within an energy band of
interest, Eä [Ei, Ef]. As the only model parameter in this equation
is F—through dΦ/dE—this expression can be simplified to
S=Fκ, where κ is called the detector response. Generally
speaking, the exposure time and effective area are position-
dependent, so this is a function of position in the image, x:

( ) ( ) ( ) ( )òk =
g-

x x xt dE E
E

E
, . 6

E

E

exp eff
0i

f

⎜ ⎟
⎛
⎝

⎞
⎠

Equations (4) and (5) are not necessary choices for the
methods employed in this investigations. All that is required is
for the number of counts, Sx, received at location x to be able to
be specified in terms of the individual source model parameter
F and another quantity κ(x). The value of κ(x) need not even
be based on an assumed energy spectrum, it must only be
known and calculable for any location x and satisfy the relation
Sx= κ(x)F.

As reviewed above, for a single source, the key parameter
dictating how many photons we expect to observe is the flux,
F. When studying a population of sources, these fluxes can
vary between the individual sources. The distribution of fluxes
is described with a differential source-count function, dN dF ,
which encodes the number of sources with flux between F and
F+ dF. For the investigations in this article, the differential
source-count function is assumed to be a broken power law. A
singly broken power law has the following form:

( )
( )

( )

( )
( )



=

<

-

-
dN

dF
A

F

F
F F

F

F
F F,

7
b

n

b

b

n

b

2
2

2
2

2

1

⎜ ⎟

⎜ ⎟

⎧

⎨

⎪⎪

⎩
⎪
⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where A is a normalization factor, Fb(2) is the location of the
break in flux, n1 is the power index after the break, and n2 is the
index before the break. The generalization of this distribution
to multiple breaks is discussed in Section 5. The ultimate goal
is then to infer the dN dF model parameters, denoted in
aggregate by the vector θ, from the statistics of the number of
counted photons received by the telescope or detector. To be
explicit, for the parameterization given in Equation (7), θ= {A,
Fb(2), n1, n2}.

Generally, the differential source-count function can be
posed in terms of a distribution, p(F), which gives the
probability density of an individual source having flux, F,
through the relation

( ) ( )=
dN

dF
Np F , 8

where N is the mean number of sources. This representation is
more useful when describing the statistical process underlying
point sources.

Another common representation is the cumulative source-
count function (also called simply the source-count function):

( ) ( )ò¢ > =
¢

¢
¥

N F F
dN

dF
dF , 9

F

which specifies the number of sources in the population with a
flux greater than F. If the population is large in spatial extent,
this may be written as the areal source-density function,

( )¢ >n F F , often in numbers of sources per steradian or
arcminutes squared.
Power-law-type source-count functions are common for

astrophysical populations generally, and for X-ray emitter
populations specifically (Mukai 2017; Hong et al. 2016). This
is not unexpected, as the inverse square reduction in apparent
brightness with distance will give most populations a power-
law-like distribution in the observed brightness. More gen-
erally, power-law distributions are common in nature (see, for
example, the Pareto distribution) and are the maximum entropy
distributions for a logarithmic parameter with a specified mean.

3.2. X-Ray Instrumentation

Although the P(D) method has been used extensively to
study X-ray sources (Miyaji & Griffiths 2002), the current
leading parametric inference method, NPTF, has yet to be
applied to this regime. X-ray astronomy poses a number of
novel complications—not present in gamma-ray and neutrino
astronomy—to the application of parametric point-source
inference. Overcoming these challenges is one of the central
aims of this work.
The NuSTAR telescope (Harrison et al. 2013; Wik et al.

2014; Madsen et al. 2015, 2017), in particular, possesses most
of these complications; for this reason, NuSTAR is used as
detector model to explore the effect that these complications
have on parametric point-source inference. As compared to
gamma-ray and neutrino astronomy, the NuSTAR X-ray data
set presents the following unique challenges:

1. NuSTAR, like most X-ray telescopes, has a far narrower
field of view (FOV) of 12′ per side, with hard edges due
to the use of a detector plane with focusing optics. Fermi
and IceCube have FOVs of approximately 40° and the
full sky, respectively;

2. Although NuSTAR has a much narrower angular resolu-
tion, the NuSTAR PSF is a larger fraction of the FOV
compared to Fermi and IceCube;

3. The NuSTAR PSF varies significantly as a function of
position on the detector plane within a given observa-
tion; and

4. To compensate for the narrow FOV, multiple observations
are often compiled together into a mosaic. This creates a
complex and discontinuous detector response, with multi-
ple overlapping PSFs for each observation. While the
instrument response of both Fermi and particularly IceCube
do vary across the sky, the variation is significantly
smoother than common for X-ray data sets.

In order to study all of these effects, we have developed a
detector simulation suite for NuSTAR. This simulation injects
point sources into an binned map that forms a image. In this
investigation, the bin sizes are much larger than the pixelization10

of the NuSTAR X-ray detectors, and so the effect of this
intrinsic pixelization on the image binning is not considered

10 For the remainder of this article, “pixel” will be used to refer to the physical
detector pixelization of the NuSTAR detector, while “bin” will refer the
aggregation of pixels according to a scheme chosen by the analyzer. For the
investigations presented here, the bins are 20 or more times larger than the
physical pixelization.
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here. The NuSTAR effective area—including vignetting effects
—and PSF are incorporated into the simulation, and can be
individually altered or simplified to assess the effect of each on
the performance of the point-source methods investigated here.
The simulation also requires a spatial distribution for the point-
source population, as well a dN dF function as defined by
Equation (8). Further details on NuSTAR and the simulation
procedure are given in Appendix A.

An example image generated by the simulation is shown in
Figure 3. This image demonstrates many of the complications
arising from the NuSTAR telescope. Multiple observations are
stacked into a mosaic, and the boundaries between the
observations, shown by gray dashed lines, cause discontinuities
in the images of nearby point sources. In addition, the
anisotropic PSF of NuSTAR causes complicated PSF shapes
for sources near these boundaries, as shown in the red inset.
The white dotted lines within the inset highlight one particular
source that lies on the boundary of an observation. Two
observations contribute to the image of this source, and so two
PSF shapes (along the dotted lines) combine to create a highly
irregular PSF shape.

The X-ray data will contain emission from contributions
other than point sources. In particular, we expect both detector
backgrounds to populate the collected data, as well as smooth
astrophysical emission associated with, for instance, the cosmic
X-ray background. We collectively refer to these non-point-
source flux contributions as diffuse emission. The total diffuse
emission will have an associated spatial map that specifies the
mean expected flux at each location, which we can then
combine with the detector response—as we did for the point-
source flux F—to determine the mean predicted diffuse counts
at each location. Simulation of these contributions is then
performed by generating a map that is a draw from a Poisson
distribution that is associated with the mean value of the
diffuse map.

4. Derivation of the CPG Likelihood

We now turn toward the central goal of this paper, the
construction of the CPG likelihood. The construction of the
likelihood will heavily involve the use of probability-generat-
ing functions and functionals, as we will exploit their useful
properties for constructing compound distributions. Generating
functions are an alternative representation of a discrete
probability distribution over non-negative integers. Suppose
we have a distribution P(k), which determines the probability
of observing an integer k. The generating function is then
defined by the Z-transform of the distribution:

( ) [ ] ( ) ( ) å= =
=

¥

G z z P k z . 10k

k

k

0

For example, the generating function for the Poisson distribu-
tion with mean λ is

!
( )( )å l

=l l

=

¥
- -

k
e z e . 11

k

k
k z

0

1

The generating function approach will be convenient for a
number of reasons; however, a central property that we will
exploit is as follows. Consider forming a sum ofM independent
and identically distributed random variates, each of which has a
generating function G1(z), however with M itself an indepen-
dent random variate, with its own generating function G2. Then
the generating function for the sum is given by G2(G1(z)),
which follows directly from the expectation value definition of
the generating function and the law of total expectation. For the
problem at hand, this will arise in the context of counting the
total number of counts detected from a population of point
sources, for which the number of sources is itself a random
variable.
We will build up the full CPG likelihood over the course of

several steps, where each part describes the distributions and

Figure 3. Multiple simulated observations are formed into a mosaic for the final image. The color scale shows the total number of detected photons per bin. The gray
dashed lines show the individual observations that comprise the mosaic. The axes are centered around an arbitrary sky location in units of arcminutes. The red inset
shows the details of a few sources in this image. The color scale of the inset has been scaled by a square root to improve contrast. For one particular source within the
inset, the white dotted lines are each perpendicular to the optical axes of the nearby observations, and show the direction along which the PSF lies for that observation.
The simulation details are the same as Section 6.5, except that the density of sources is five times less, the average flux per source 600 times greater, and the bin size is
five times smaller than the NuSTAR detector pixelization.
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generating functions for a major concept in the construction.
Specifically, we divide the discussion as follows.

1. 4.1: Generating function for a single point source.
2. 4.2: Generating function for multiple sources.
3. 4.3: Definition of the detector effect correction.
4. 4.4: Calculation of the single-bin likelihood from the full

generating function.
5. 4.5: Extending the single-bin likelihood to an image.
6. 4.6: Incorporating multiple population and diffuse emis-

sion models.

The goal of this section is to build an intuition for the
moving parts of this construction. A more direct, but abstract,
construction is provided in Appendix B, along with further
discussion of the properties of generating functions and
functionals. In that appendix, we also show the unbinned
likelihood, as well as the likelihood that accounts for the
correlations point sources induce between neighboring bins, as
well as a discussion on why these correlations must be ignored
for computational reasons in these demonstrations.

4.1. Single-source Generating Function

To begin with, consider the emission from a single source
located at a position x. The number of detected photons from a
time-integrated observation of that source follows a Poisson
distribution. This is a result of the exponential nature of the
interdetection time distribution, and the statistical indepen-
dence of multiple detections conditioned on the mean number
of detected photons, SB. Here, the index B denotes the spatial
bin in which the counts are detected. Continuing, let PP(sB|SB)
be the probability mass function for the Poisson distribution
describing sB detected photons with mean SB. Then, given the
true spatial location of the source, x, the probability mass
function for sB at this location is

( ∣ ) ( ∣ ) ( ∣ ) ( )ò=x xP s dS P s S p S . 12B B P B B B

Here, we introduced p(SB|x), which is the probability
distribution for the mean, SB, for a given source location of x,
i.e., given a point source at x, it is the probability that it
produces a mean number of counts SB in the bin B. As the exact
value of SB is unknown, we marginalize over it in the above
expression. The exact configuration is shown in Figure 4(a),
where a source at location x contributes sB detected photons via
the distribution P(sB|x) to bin B, which has a spatial size ΩB.

We can move from the expected number of counts from a
source, SB, to the physical flux F, by combining a conditional
distribution p(SB|F, x) and a distribution over source flux, p(F),
as follows:

( ∣ ) ( ∣ ) ( ) ( )ò=x xp S dFp S F p F, . 13B B

This construction explicitly assumes that the flux distribution is
isotropic, such that p(F|x)= p(F), an assumption that holds
when the sources are themselves identically distributed—a key
property that will be needed in the next section, and which we
will assume throughout. The flux distribution itself has already
been defined: it is given by the differential source-count
function, dN dF , in Equation (8). The conditional distribution
p(SB|F, x), however, will depend centrally on the detector
effect correction—as discussed already, the conversion from

flux to counts intimately depends on the detector response—
and it will determine the amount of flux F that contributes to
the bin B. For the moment, we will leave it unspecified,
postponing a definition until Section 4.3.
Combining Equations (12) and (13), we have

( ∣ ) ( ∣ )

( ∣ ) ( ) ( )

ò
ò

=

´

x

x

P s dS P s S

dFp S F p F, , 14

B B P B B

B

which fully specifies the probability of observing sB counts
from a single point source in terms of the differential source-
count function, in p(F), the instrumental response, in p(SB|F,
x), and of course, the Poisson distribution, PP(sB|SB). From
this, we can immediately determine the generating function for
a single source located at a given position x, ( )∣G zxsB ,

( ) [ [ [ ]]]

( ∣ ) ( ) ( )

∣ ∣ ∣

( )

  

ò ò
=

= - x

G z z

dS e dFp S F p F, , 15

x xs F S F s S
n

B
S z

B

,

1

B B B B

B

which follows as the generating function for the Poisson
distribution PP(sB|SB), that is, [ ]∣

( ) = -z es S
n S z 1

B B
B .

4.2. Multiple-source Generating Function

We next extend the discussion to account for the emission
detected from a population of sources. Statistically, the
locations of these point sources follows a spatial Poisson point
process. This follows from the observation that:

1. The number of sources can be any non-negative integer.11

2. The occurrence of each source is independent from other
sources. The presence of a point source does not have an
effect on the probability of a new source forming.

3. Two sources never occupy the same spatial location. An
infinitesimal area on the sky has only zero or one sources
in it.

Spatial clustering of sources may violate the last two
assumptions. If the clustering is known in advance (e.g., it is
known that the sources cluster around the galactic center), then
the construction presented here will render the source locations
independent by conditioning on the spatial distribution of the
sources. Some clustering processes cannot be made condition-
ally independent in this way; e.g., if the presence of one source
increases the probability of further sources forming nearby. In
this case, the construction presented here does not apply for
counting sources. Instead, the method can count entire clusters
as single sources, and the flux distribution, p(F), would
describe the flux of clusters. The size of this effect will depend
on the degree to which the spatial distribution assumption is
violated by the clustering. As an explicit example, the presence
of binary emitters would violate these assumptions, and the
CPG will count binary systems, rather than sources.12

To proceed, let T(x) denote the spatial distribution for the
location of a source (or system) in the population. In terms of
T(x), often referred to as the spatial template of the point

11 In reality, there will be a physical upper bound to the number of sources one
can find in most populations. Nevertheless, the number typically is sufficiently
large that an unbounded process is an excellent approximation.
12 For this caveat to be relevant, both objects must be emitters that can be
detected by the instrument. If only one object in a binary is an emitter, the
presence of the other is irrelevant to these assumptions.
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sources, the source intensity function is NT(x), so that the
integral of the source intensity function is equal to the mean
number of sources, N.13 In more detail, T(x) carries units of
[sr−1], so that NT(x) has dimension [sources sr−1].

Now, let the template

( ) ( )ò=
W

x xT d T 16B
B

be the fraction of the spatial distribution in bin B with bin
extents ΩB. We will use this to construct a generating function

that accounts for sources located in surrounding bins that
contribute flux to the current bin.
We define ki→B as the number of counts that all sources

located in bin i contributes to bin B. As there can be more than
one source in bin i, ki→B is a sum ofMi random variates,14 ( )

si B
j :

( )( )å=
=

k s , 17i B
j

M

i B
j

1

i

as shown in Figure 4(b).

Figure 4. A relational diagram of the terms defined and used in Section 4 and Appendix B, demonstrating the relationship between the terms graphically. (a) A single
source located at x contributes sB counts to bin B as defined by the bin extents ΩB (solid square). The number of counts is determined by the Poisson distribution P(sB|
x) as defined in the text. (b) Multiple sources located at {xl} each contribute { }( )

si B
j counts to bin B, creating a total of kB counts in the bin. (c) A Poisson process

describes sources spatially distributed according to T(x) (sketched by shaded region). Each source may contribute multiple photons to the bin, which are recorded as
counts at locations {yj}. (d) A single photon created by a source at x1 is converted to an expected number of counts using the following detector effects: the detector
response (effective area and exposure time), κ(x1), that is evaluated at the source location; the PSF distribution f(y2|x1) evaluated at the location where the photon
lands, y2, and conditioned on the source location; the detector efficiency, η(y2), that is evaluated where the photon lands.

13 We leave the region over which T(x) is normalized unspecified. In general,
it need not correspond to the region within which the analysis is being
performed. For example, when studying an extragalactic source class, it may be
convenient to normalize T(x) over the full sky, even if this is larger than the
region over which the data is collected.

14 Here, we are calculating the likelihood exclusively for the bin B, and as such
Mi is formally the number of sources in bin i that contribute counts to B.
Accordingly, Mi is implicitly defined as a random variable in the context of
calculating the likelihood for B. As this particular approach to the construction
does not take into account correlations, there is a separate and independent
random variate of Mi for each B.
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Now, note that the spatial distribution for a source, when
conditioned on it being located in bin i, is

( ∣ )
( )

( )=
Î W

x
x

x
T i

T

T
0 otherwise.

18i
i⎧

⎨
⎩

Then, each ( )
si B
j is identically distributed according to the

generating function Gsi B. This generating function is formed
by taking the expectation of the generating function15 ∣G xsi B

over T(x|i)—the spatial distribution conditioned on the source
being located in bin i:

( ) ( ∣ ) ( ) ( )∣ò= x xG z d T i G z 19xs si B i B
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d
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
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S z
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1i B

where

( ∣ ) ( ) ( ∣ ) ( )ò= 
W

x
x

xp S F d
T

T
p S F, 22i B i B

i
i B

i

is now the instrument response for bin i contributing to bin B. This
object can be intuitively thought of as the average response in bin
B, from sources located in bin i, marginalized over the probability
of a source appearing at any specific location within bin i.

As emphasized already, the number of sources, Mi, is itself a
random variate distributed according to a Poisson distribution
with mean NTi, recalling that N is the mean number of sources
for the total population. Thus, the generating function for Mi is

( ) ( )( )= -G z e . 23M
NT z 1

i
i

Now, the generating function for the sum ki→B is the
composition of the generating functions for Mi and

( )
si B
j :

( ) ( ( )) ( )= G z G G z . 24k M si B i i B

The total number of counts in bin B, denoted by kB, is then the
sum of all the ki→B across all bins:

( )å= k k . 25B
i

i B

Note that this sum must range over the full domain of the
template, Ti. Primarily, this ensures that the recovered value of
N is correctly normalized to the template, but it can also be
understood to ensure that the contribution from any source—no
matter where it may be in the spatial distribution of the
population—is counted correctly, as the PSF generally allows
contributions to kB from anywhere in the spatial distribution.

Thus, the generating function for kB is the product of the
generating functions for ki→B:

( )

( ) ( )


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⎠

⎤

⎦
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as ∑iTi= 1.
At this stage, we could substitute into this expression

( )G zs Bi as given in Equation (21). Before doing so, however,
let us capture into a single function the detector response as it
would appear in Equation (26):

( ∣ ) ( ∣ ) ( )å=  p S F T p S F 27B
i

i i B i B

( ) ( ∣ ) ( )ò= x x xd T p S F, . 28B

Using this, we can write the full generating function for kB as

(
)
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The distribution for kB is known as a compound Poisson
distribution (Daley & Vere-Jones 2003), and so GkB is a
compound Poisson generator. As shown in Appendix B, this
compound Poisson distribution actually describes a compound
Poisson point process. The process gives the probability
density of finding a detected count at location y as shown in
Figure 4(c). Equation (29) generates the probability of finding
kB such detected counts, { }¼y y, , k1 B

, anywhere in ΩB.

4.3. Detector Effect Correction

In the discussion thus far, we have determined the generating
function associated with a population of sources, specified by a
differential source-count function. The final aspect of
Equation (29) we have avoided confronting is the instrument
response, which we turn to now. Recall that we codified the
instrumental effects as follows:

( ∣ ) ( ) ( ∣ ) ( )ò= x x xp S F d T p S F, , 30B B

where, as defined above, T(x) is the spatial point-source
template, and p(SB|F, x) accounts for how the instrument
converts a flux F from a source at location x into an expected
number of counts in bin B. In general, the instrument response
and the spatial template cannot be fully factorized, as they are
in the NPTF approach to the problem. We will see this
explicitly in the discussion that follows.
Our treatment will consider four separate detector effects: the

exposure time, which converts flux to time-integrated flux; the
effective area, which converts time-integrated flux to expected
photons incident on the detector; the PSF, which gives the
probability density for the deviation of a photon’s recorded
direction of arrival from its true incident direction; and the
detector efficiency, which gives the probability of a single
incident photon being detected. Both the exposure time and
effective area are merged into a single detector response value,
κ(x), which converts flux to mean counts for a point-source at
location x, and was discussed in Section 3. The PSF is a
probability density, f(y|x), for a count detected at location y
conditioned on its parent point source at location x. The
detector efficiency, η(y), is the probability of a count being
detected conditioned on the location of detection y. The
geometry of each function is shown in Figure 4(d), and
examples of how these quantities combine for mosaiced images
are shown in Figure 5.

15 The index j does not parameterize this generator, as each ( )
si B
j is a specific

realization of the random variate si→B.
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To give a concrete example of these terms in the context of
NuSTAR (Fermi, IceCube): a source is located in the direction
of x and emits a primary X-ray (γ-ray, neutrino) from the
direction of x. This primary interacts with the optics (detector,
ice) and produces a secondary X-ray (electron, lepton) that is
scattered in the direction of y according to the PSF f(y|x). This
secondary interacts with the active detector, causing a count to
be recorded with probability η(y).

In terms of these individual detector responses, the expected
number of incident photons produced by a point source
at location x with flux F is Sx,F= κ(x)F, and then the mean
detected photon density at location y will be Sx,F(y)=
η(y)f(y|x)Sx,F. As a result, the mean number of detected
photons in bin B is

( ) ( )ò=
W

y yS d S , 31xB F,
B

and the associated distribution, p(SB|F, x), must be

( ∣ ) ( ) ( ) ( ∣ ) ( )òd k h f= -
W

x x y y y xp S F S F d, , 32B B
B

⎛
⎝

⎞
⎠

which then determines the marginal form as given in
Equation (30).

Direct substitution of this result into Equation (29) is not
immediately helpful, as it results in a double integral over
spatial coordinates that must be evaluated during the computa-
tion of the likelihood. Instead, all of the detector effects can be
encoded into a single measure, which we denote μB(ε), over an
effective detector response variable, ε, such that SB= εF. In
particular, we define

( ) ( ) ( ) ( ) ( ∣ ) ( )ò òm e d e k h f= -
W

x x x y y y xd T d . 33B
B

⎛
⎝

⎞
⎠

In terms of the new measure, we can restate Equation (30) as

( ∣ ) ( ) ( ) ( )ò em e d e= -p S F d S F . 34B B B

Then, substitution of this form of p(SB|F) into Equation (29)
reframes the CPG as

( )
( )

( ) ( ) ( )( )ò ò e m e= -e -

G z

N dF d e p Fexp 1 , 35
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F z
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1

B

⎡
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⎤
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which only involves integrals over the effective detector
response ε and source flux F.
Importantly, the detector correction function, μB(ε), can be

precalculated, thus saving considerable computation time
during likelihood evaluation. As it is rare to have closed form
expressions for κ(x) and f(y|x) in most experiments, μB(ε) will
almost always need to be numerically estimated. This
estimation can proceed by effectively evaluating the integrals
over x and y in Equation (33) through Monte Carlo integration.
Samples are drawn from T(x), and then—conditioned on these
values of x—samples are drawn from f(y|x). The values of y
are accumulated to create a value of ε, and the resulting ε
values are histogrammed to create a density estimate over ε—
which is μB(ε). This process, and an explicit algorithm for
construction μB(ε), is detailed in Appendix E. As emphasized
at the outset, the detector response involves the source template
intimately. This is distinct from the handling of the detector
response in NPTF, which occurs through the function ρ( f ), and
we will explore the differences between these two approaches
in Section 6.

4.4. Calculation of the Single-pixel Likelihood

Once μ(ε) has been constructed, evaluation of the CPG in
Equation (35) requires the integrals over ε and F to be
performed. As μ(ε) is numerically constructed, the integral over
ε will also be performed numerically. The remaining integral

Figure 5. Two separate observations with dashed boundaries form a mosaic. (a) In areas where the observations overlap, the PSF will be an appropriate mixture of the
PSF for each observation. Near the edge of the observation, we show an example of how the PSF can be highly distorted in the radial direction, as expected for
NuSTAR observations. The mixture forms a cross, with the PSF from the left observation lying diagonally NW–SE and the PSF from the right observation lying
diagonally SW–NE. (b) The detector response, κ(x), is a sum of the response for each observation, and varies smoothly across the mosaic as the response extends
outside the observation boundaries. (c) In contrast, the detector efficiency, η(y), has a sharp transition from unity to zero at the observation boundary, and will
generally be nonsmooth across any bin that straddles these boundaries.
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over F may then be performed numerically, or analytically, if
the assumed form of p(F) is amenable to such treatment. For
the examples in this investigation, p(F) is assumed to follow a
broken power-law distribution, in which case the evaluation
can be performed analytically as detailed in Appendix C. In this
section, the only assumption required is that this evaluation
produces a power series in z:

( )
!
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( )
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B
m
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B
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⎣⎢

⎤
⎦⎥

This is a fairly mild assumption, as it only requires that the
expression within the square brackets of Equation (35) be an
analytic function of z. This is easily satisfied when the moments
of p(F) and μB(ε) are finite. For now, this power series will be
assumed to be infinite in order; later, it will be shown that only
a finite order is required in practice.

The goal is to find P(kB), the probability of measuring kB
detected photons, from this generating function. Recall that a
generating function is defined as

( ) ( ) ( )å=
=

¥

G z P k z . 37
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k

0

The relationship between the power series in Equation (36) and
the power series in Equation (37) is given by the Bell
polynomials (Comtet 1974):
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Thus, by inspection, we have in this case ( ) =P kB
( ) !( ) ( )¼B a a k, ,k B B

k0 , and note that from Equation (37), for a
bin with k counts, only the first k terms of the power series in
Equation (36) need to be calculated. The evaluation of the Bell
polynomials can be performed using recurrence relations, as we
demonstrate in Appendix D.

4.5. Whole-image Likelihood

Through Equation (38) and the results preceding it, we have
achieved our aim of writing the single-bin likelihood, P(kB|θ),
where θ are the model parameters for the population,
as encoded in dN dF . A likelihood for the whole image,

{ } = "k B:B , can be constructed as a simple product over the
bins,

( ∣ ) ( ∣ ) ( )


q q=
Î

P P k . 39
k

B

B

Importantly, though, this construction does not take into
account the correlations between the bins, which may be
induced by the PSF. Indeed, it assumes that the kB are
statistically independent, which will be not be true unless the
PSF is a delta-function distribution. Such a delta distribution
ensures that sources at the edge of a pixel only deposit flux in a
single bin.

The effect of this broken assumption is that the resulting
posterior distribution on θ will be narrower than the true
posterior if these correlations were accounted for—by treating
every pixel as independent, we have assumed there is more
available information than is actually present in the image. This
will underestimate the uncertainty on the model parameters, as
sources that overlap bins are effectively counted as multiple

independent observations of the same source, instead of the
true single observation—a similar effect to double-counting
data. The degree to which the posterior is narrowed will depend
on the chosen bin size, as smaller bins—relative to the PSF—
will be more strongly correlated. The test cases in Section 6
show that this is not a significant effect for the bin sizes chosen
in this investigation, which are several times larger than
the PSF.
In principle, there are other ways correlations between pixels

can be induced that would invalidate the factorization in
Equation (39)—for instance, an incorrect template for one of
the Poisson models, or perhaps other instrumental effects. The
reason we single out the PSF is that it is never truly a delta-
function distribution in any real instrument, and this represents
the most significant correlation that can only be mitigated by
appropriate choice of bin sizes.
While this is an unambiguous deficiency of the above

derivation, so far no computationally feasible method has been
proposed to account for the correlations in a binned analysis.
Indeed, the most obvious extensions of the above construction
require the computation of every possible combination of how
a source can distribute its counts to all bins in the image. As
stated, in the present work, we will work with a binning such
that this shortcoming is suppressed, but we caution that, for a
general binning, the biases associated with this effect must be
considered.

4.6. Multiple-emission Models

It is a common occurrence for an image to have contribu-
tions from both populations of point sources as well as purely
Poisson emission or background components. As such, it is
important to be able to accommodate this reality in the
likelihood, as we do so in this subsection. Let kB,j be the
number of counts that population j contributes to bin B, and
ϖB,l be the number of counts that Poisson component l
contributes to the same bin. Then the total number of counts in
this bin is simply a sum over the contribution from each
component,

( )å å v= +K k . 40B
j

B j
l

B l, ,

In turn, the generating function for the combined emission,
KB, is

( ) ( ( ))( ( )) ( ) = vG z G z G z . 41K
j

k
l

B B j B l, ,

For point-source populations, the generating function is as
derived earlier in this section, whereas ( ) =vG zB l,

[ ( )]l -zexp 1B l, is the generating function for ϖB,l, and

( ) ( )òl =
W

y yd I 42B l l,
B

is the integral of the intensity function Il(y) for Poisson
component l in bin B, which parameterizes the mean of ϖB,l.
Recall that a single point source in the population is specified
by a flux F, which carried dimensions of [photons cm−2 s−1].
In comparison, the Poisson diffuse-emission component is an
extended source and has a differential flux of FPTP(x) with
dimensions [photons cm−2 s−1 sr−1]. Here, TP(x) is the tem-
plate for the Poisson emission, which may or may not be the
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same as the spatial distribution of the source population, T(x). It
does, however, have the same units of [sr−1], so that F and FP

will also carry the same dimensions. In terms of these
quantities, the Poisson intensity is given by

( ) ( ) ( ∣ ) ( ) ( ) ( )òh f k=y y x y x x xI d F T , 43P P

as photons from the diffuse component are also scattered by the
PSF. The mean can then be written more compactly as

( ) ( )òl e e m e= F d , 44B l P l B l, , ,

where FP,l is the flux for Poisson component l, and μB,l is the
detector correction function for template TP,l. As for the point-
source population, we envision the spatial template as fixed,
which leaves a single model parameter for the emission, FP.

Combining these results, the generating function for KB can
be written in the same form as Equation (36):
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and the same likelihood evaluation method of Section 4.4 can
be employed, thereby completely specifying the CPG
likelihood.

5. Biases Induced by Common Prior Parameterizations

In this section, the priors on the population model parameters
—necessary for a Bayesian analysis—are discussed. Our focus
will be to demonstrate that poorly chosen priors on a common
combination of the population flux and background flux can
lead to misleading posterior distributions. We further introduce
a set of priors where these issues can be reduced, and advocate
for their use more generally in population studies.

Let us make a general point at the outset. In Bayesian
analyses, one is free to choose any set of priors. Priors can be
adopted that reflect a preference toward either hypothesis. The
Poisson hypothesis may be preferred for its simplicity, or
alternatively one may wish the results to reflect an underlying
bias toward the point-source model, given that in many
situations it is known that unresolved point sources must be
present. Whatever set of priors is adopted, however, the
preference they reflect should be considered. As we will show
in this section, taking simple priors on the parameters that
describe the point-source model can induce a complex bias in
the question of which model is generating the flux. The priors
we will introduce instead place the Poisson and point-source
models on equal footing at the outset, and if not adopted
directly, at the very least represent a starting point for adopting
a principled set of priors for Bayesian point-source inference.

For the remainder of this investigation, we will restrict the
model under question to at most one population of point
sources and one Poisson component, that both share a common
template, i.e., T(x)= TP(x). Realistic analyses are more
complicated than this restriction; for instance, existing NPTF

Fermi analyses involve two (or three) point-source population
models and multiple Poisson components, while the NPTF IceCube
analysis used one population with multiple Poisson components.
However, common to both analyses was the use of a point-source
population model and Poisson component with an identical spatial
distributions. This is the situation where the particular bias we will
discuss can emerge, justifying our restriction.
Fundamentally, such a scenario arises when the underlying

nature of flux distributed according to T(x) is unknown, and the
question of interest is whether it is due to a measurable population
of sources, purely diffuse emission, or instead a mixture of the two.
By using a common template for the two possible emission
sources, the flux could be assigned to either, or some fraction to
both. For example, in the case of Fermi, the fundamental question
was determining whether the anomalous flux at the Galactic Center
was attributable to a population of sources, such as millisecond
pulsars, or instead to diffuse dark matter emission that would be
Poisson-distributed. For the example of IceCube, the goal has been
to determine whether a measurable fraction of the astrophysical
neutrino flux can be assigned to a population of sources.
To begin the investigation, the differential source-count

function must be parameterized in order to evaluate the power-
series terms, ( )aB

m as given in Equation (45), and accordingly the
CPG likelihood. Note that, while we will use the CPG likelihood
in order to demonstrate the potential prior bias, the effects we
reveal are equally applicable to other point-source likelihoods
such as the NPTF. The use of the CPG also furnishes us with an
example to demonstrate the application of the likelihood. In the
Fermi and IceCube analyses, the following standard form was
used for the source-count distribution:
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This defines a broken power law with m− 1 breaks in flux,
specified by Fb(m),K,Fb(2);m power-law indices, parameterized
by nm,K,n1; and a scale factor A, which is related to the
expected number of sources in the population. The break
parameters have the same units as F, while A has units of
sources per inverse units of F. Note this is a generalization of
the singly broken power law given in Equation (7).
With this parameterization, Fermi and IceCube analyses—

see, for example, Lee et al. (2016) and Aartsen et al. (2020),
respectively—have used a Bayesian inference framework. In
both cases, uniform priors on the indices, ni, and log-uniform
priors on A were chosen. For the Fermi analysis, the flux
breaks, Fb(2), and Poisson component flux FP were given
uniform and log-uniform priors, respectively, whereas in the
IceCube analysis, Fb(2) was given a log-uniform prior while FP

was given a uniform prior.

13

The Astrophysical Journal Supplement Series, 260:29 (35pp), 2022 June Collin et al.



5.1. A Sketch of Poor Prior Parameterization

Let us first outline where the issues associated with the poor
prior parameterization originate. For simplicity, we will
concentrate on a single-break differential source-count func-
tion; however, the arguments here generalize to multiple
breaks. It is important to note that the total flux of the point-
source population, FPS, is not proportional to Fb(2), and also
depends on A,

( )( )=
-

+
-

F AF
n n

1

2

1

2
. 47bPS 2

2

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

Already from this expression we can make the following
observation: a uniform prior chosen for Fb(2) will not, in
general, uniformly weight values of FPS after the change in
coordinates.

Consider a situation in which this model is used to analyze
data that have no distinct population of sources, such that the
data are entirely consistent with a Poisson distribution. Clearly,
the model can explain these data by assigning the entirety of
the flux to the Poisson component; however, this is not the only
solution for this inference problem. In particular, if we have a
population of dim sources, there is a limit in which the sources
are so dim that this distribution becomes indistinguishable from
Poisson emission. To provide an explicit example, if we had a
population with N expected sources, each of which produces μ
counts on average, then the mean number of counts produced
by the population is λ= Nμ. In the limit where μ= 1, such
that all sources produce either 0 or 1 counts only, then the
point-source likelihood exactly reduces to the Poisson
distribution with mean λ, and the two hypotheses are formally
indistinguishable in the data. Note that, for λ to stay finite, we
require a large N when μ= 1. Returning to our single-break
scenario, note that

( )( )=
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and so for this point-source Poisson degeneracy regime to be
achieved here, the prior on A must be sufficiently large. But so
long as it is, then in principle data associated with Poisson
emission can be equally well described by the diffuse or point-
source hypothesis.

Ideally, in this situation, the posterior should show complete
uncertainty on FP and FPS, with a perfect anticorrelation that
corresponds to the total flux in the image.16 However, if the
same kind of prior is chosen for Fb(2) and FP—for example, if
both are log-uniform—then the corresponding prior on FPS

may have a different form than the prior on FP. In this case, the
posterior will show a preference to assigning flux to either the
population or the Poisson component. If the difference between
the priors is substantial, essentially all of the flux will be
assigned to one of the two components, despite the data having
no power to distinguish them.

Unless this subtlety in choice of prior is accounted for, the
result may be unexpected, potentially leading an experimenter

to erroneously conclude that the data support a population of
sources where there are none, or vice versa. This is the bias we
will explore in more detail below, and then outline priors that
can be chosen such that the two hypotheses remain
indistinguishable given uninformative data.

5.2. Prior Effect Demonstration

In order to investigate in detail the potential bias induced by
the choice of prior parameterization as discussed in the
previous subsection, we consider simulated NuSTAR data sets
(for details of the NuSTAR simulation see Appendix A). For
this scenario, the vignetting is disabled so that the detector
response is uniform across the image. In addition, the PSF is
locked to the on-axis PSF of NuSTAR, so that the PSF does not
change as a function of source location. These simplifications
are chosen to ensure that the effect of prior parameterization is
not obscured.
The spatial distribution for both the population model and

the Poisson component is specified as a uniform distribution
concentric with the image and with a width and height twice
that of the field of view. As this demonstration requires data
that are indistinguishable from a Poisson distribution, no point
sources are injected and only a uniform Poisson background is
used to generate the image. Further details are given in Table 1.
Given this scenario, we perform a Bayesian analysis of the

resulting images using the CPG, but taking four variations on
the choice of prior, considering variations for the prior of the
amplitude A and the flux parameters Fb(2) and FP. The same
form of prior is used for Fb(2) and FP. We consider the four
combinations resulting from a uniform linear or log-uniform
prior on the amplitude and flux parameter. The detailed prior
ranges are given in Table 2. We take the same lower limit for
both flux priors. The upper limit of the FP prior is extended
because this parameter captures the total flux of the Poisson
component, while Fb(2) is more closely related to the average
flux of a single source in the population, so we allow for a
lower value. The upper and lower limits for the priors on each
parameter are identical across variations. Uniform priors are
chosen for the power-law indices, ni. Of course, the results
from running point-source inference on one simulated image
may not be representative, as the simulation is a Monte Carlo
procedure that may produce an outlier image. To capture the
variation in the simulation, for each choice of priors, six images
are generated and a posterior is sampled for each of these trials.
The posteriors are sampled using the emcee Affine Invariant
MCMC (Foreman-Mackey et al. 2013), discarding the first
90% of samples as burn-in.
From the resulting posteriors, we focus our attention on a

single parameter of interest: the proportion of the flux that is
assigned to the population model. In particular, we define
the fraction of flux assigned to the population as
ω= FPS/(FP+ FPS). For each of the trial images, a coordinate
transformation is applied to the posterior samples, to yield
samples in ω. These samples are then histogrammed, and from
the set of trials the median, 16% and 84% quantiles over the
histogram bins are computed and shown in Figure 6. The clear
trend observed here is a highly bimodal posterior in ω—the
model assigns essentially all of the flux to only the population
or the Poisson component in a situation where from the
perspective of the data, the two are indistinguishable. Unless
this behavior is anticipated, it could generate misleading
conclusions. Again, the data support both the population model

16 Of course, in principle one may wish to choose a prior that reflects a
preference for one of the two hypotheses. Nevertheless, this preference should
be placed in the priors in a principled manner—the point we are seeking to
emphasize in the present discussion is that existing priors adopted in the
literature represent a complicated transformation away from the natural
coordinate system we introduce, thereby introducing biases that could be
unintended.
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and the Poisson component, so one would expect the posterior
on ω to be close to uniform.

Recently, in the context of application of NPTF to the Fermi
GCE, concerns have been raised with regard to the possibility
that flux from a diffuse dark matter component could be
mistakenly attributed to the point-source population model.
Leane & Slatyer (2019) raised these concerns in relation to
mismodeling of the spatial distribution of sources, and the
authors show that a strong flux misattribution effect can result
from spatial mismodeling. The authors also examine the
attribution of flux when the spatial distribution is correctly
modeled. In particular, Figure S7 shows that, even with correct
modeling, some diffuse dark matter flux is attributed to the
point-source model—although it should be clarified that the
effect is considerably weaker than the spatial mismodeling
effect observed in the rest of the study. Figure S7 also shows
that, when the true flux of the diffuse dark matter component
exceeds the flux of the point-source population, the flux is then
attributed to the diffuse component of the model. We can
understand that this behavior is very likely impacted by the
choice of priors in that work, given their importance as
demonstrated above. In particular, Leane & Slatyer (2019)
placed a log-uniform prior on the diffuse emission and A, but a
uniform prior on Fb(2). The use of a uniform prior for the point-
source model flux break will place greater weight on this model
to describe the diffuse flux—when the dN dF for this model
can accommodate both the diffuse flux and the brighter point-
source emission favored by the data. Accordingly, when small
amounts of diffuse flux are injected, we would expect it to be
absorbed by the point-source model for this choice of priors.
However, once the diffuse flux is comparable to or larger than
the point-source flux, it becomes difficult to explain both the
population and the diffuse flux using the same power-law
dN dF . Thus, the model reverts to attributing the diffuse flux
to the Poissonian model.

The prior effect can be observed more clearly in Chang et al.
(2020). Figure 3 of this study shows the posterior distribution
for the flux of a point-source and Poissonian component for a
dark matter GCE scenario. Although this study concludes that
all flux is correctly attributed to the dark matter component in
the posterior, in fact, based on the previous arguments and

Figure 6, the unbiased posterior would uniformly assign the
flux between the point-source and dark matter components. The
observed posterior is instead likely driven entirely by the
chosen priors and the constraint that the flux of the population
and Poisson component must sum to the total flux in the image.
More generally, if we denote the total flux by FT, so that

FT= FPS+ FP—a diagonal line on the plane of FPS and FP—it
is clear that the only choice of flux priors that will result in the
expected behavior are ones that assign equal probability to all
values of FPS and FP that lie on this diagonal. Two choices of
priors satisfy this requirement: either both uniform priors or
both exponential priors on FPS and FP.

17 This may appear to
suggest that a flat posterior on ω should be observed in Figure 6
for the “Uniform F” cases. The nonuniform posterior in these
cases comes from a second effect: although the prior on the flux
break, Fb(2), is specified to be uniform, this does not mean the
prior on the total point-source flux is uniform, as emphasized
below Equation (47) above. Recall that the total flux is
proportional to ( )AFb 2

2 , so a uniform prior on A and Fb(2) is
effectively an -FT

1 prior on the total flux, resulting in the
observed concentration toward ω= 0.
A log-uniform prior on A with a uniform prior on F

effectively generates an N−2 prior on the mean number of
sources. Although this appears to be a uniform prior on the
total flux, one must consider how the boundary of the prior
transforms. The effect of the prior boundaries can be
incorporated by marginalizing out N from the joint prior,

Table 1
All Scenario Configuration Options

Setting Prior Demo Nonuniform Dist Anisotropic PSF Sub-bin Eff. Area ρ( f ) Scenario Realistic

Spatial dist. Uniform 5 Delta Uniform Uniform Uniform Uniform
Vignetting Off Off Off Checkerboard Off On
PSF Isotropic Isotropic NuSTAR Delta distribution Isotropic NuSTAR
Binning 9 × 9 9 × 9 9 × 9 4 × 4 9 × 9 10 × 10
Energy range 3–10 keV 3–10 keV 3–10 keV 3–10 keV 3–10 keV 3–10 keV
Energy spectrum E−1.5 E−1.5 E−1.5 E−1.5 E−1.5 E−1.5

Background 2 × 10−2 s−1 None None None None 8.73 × 10−2 s−1

CXB None None None None None 1.5 × 10−3

Exposure time 200 ks 200 ks 200 ks 200 ks 200 ks 200 ks
Exposures Single Single 4 × 2 adjacent tiled Single Single 4 × 2 tiled
A N/A 1.5 × 109 1.5 × 1012 N/A 8 × 1010 1012

Fb N/A 1.2 × 10−8 3 × 10−9 N/A 6 × 10−9 6 × 10−9

n1, n2 N/A 3, −2 3, −2 N/A 3, −2 3, −2
N N/A N/A N/A 1.2 × 104 N/A N/A
F N/A N/A N/A 3 × 10−10 N/A N/A

Note. Flux parameters are in units of [counts cm−2 keV−1 s−1]. A parameters are in units of the inverse of the flux units. CXB flux is given in units of [photons s−1

cm−2 deg−2]. For scenarios with mosaiced exposures, the binning value gives the equivalent bin size for one observation.

Table 2
Prior Ranges for the Demonstration Using the Standard Differential Source-

count Function Parameterization

Parameter Lower Limit Upper Limit

A 108 cm2 s 1014 cm2 s
Fb(2) 10−15 cm−2 s−1 10−3 cm−2 s−1

FP 10−15 cm−2 s−1 108 cm−2 s−1

n1 2 5
n2 −3 0

17 As for an exponential prior, ( ) ( )µ -p F Fexp , so the product of such priors
for FPS and FP is ( ) ( )µ - - = -F F Fexp expP TPS .
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which results again in an -FT
1 prior on the total flux.

Accordingly, none of the commonly existing prior choices
result in the desired flat ω distributions. Of course, the
particular priors existing choices achieve may be desirable in
certain circumstances. Nevertheless, when considering the
question of whether emission is fundamentally Poisson or
point-source, it is undoubtedly useful to have a system of priors
that generates a posterior where both are treated equally when
the data are uninformative. With this in mind, in the next
section we will introduce a new approach that involves
reparameterizing the priors entirely with a new coordinate
system.

5.3. Parameterizing Priors in a Natural Coordinate System

Much of the previous discussion has already suggested an
alternative approach. A natural way to describe the combina-
tion of both population and Poisson component is through the
coordinates of ω and FT, the relative and total flux,
respectively, so that the population model is specified in terms
of FPS. From ω and FT, the flux of either component is
straightforward to calculate, although we caution that, given the
inherent degeneracy, the individual fractions must be inter-
preted carefully. Nevertheless, as it is considerably easier to
define and compute the likelihood using the A, ni, and Fb(i)
coordinates, a coordinate transform is needed from FPS.

First, the complete coordinate system for the population
model must be defined. A natural complement to FPS is N, the
expected number of sources. From this, the average flux per

source can be readily determined. Next, the position of the
breaks must be defined. For m− 1 breaks, m− 1 coordinates
are required. The FPS coordinate is necessarily involved,
leaving m− 2 remaining coordinates to specify. These are
defined as a series of fractions, βi, that give the location of each
break relative to the previous break:

( )( )

( )
b = +F

F
. 49i

b i

b i

1

These coordinates define a system of equations from which the
break locations can be solved. The full transformation is
detailed in Appendix G.
Finally, the power-law indices must be specified. These

could be left as the {ni} in Equation (46); however, we take the
opportunity to correct another subtle issue with the priors. The
most common choice of prior on ni is a uniform prior. Suppose
that such a uniform prior is chosen for n1 in the range of 2–100.
The uniform prior assigns nearly 10 times as much prior
probability to 10< n1< 100 as it does to 2< n1< 10. This is
despite the fact that most observed power-law indices are less
than 10; thus, a uniform prior is contrary to our prior
knowledge of these physical systems. Instead, the index can
be specified as an angle, ψi, and the index defined as

y=n tani i. A uniform prior on ψi now places as much
probability to 2< ni< 4 as it does to 4< ni< 38. The intuition
is also clear, on a log–log plot of the source-count function, the
prior is uniform on the angle of the line formed by the power
law. This should not be taken as an objectively better choice,

Figure 6. The posterior for the fraction of flux assigned to the point-source population, ω = FPS/(FP + FPS), when analyzing data sets generated from purely a
Poisson distribution, but analyzed with both a Poisson and point-source template using the CPG likelihood. The median posterior (over multiple random trials, for
each bin) is shown by the solid line, while the 16% to 84% quantile range is shown by the fill. The four panels correspond to different prior choices, representative of
common choices in the literature. None of the choices of prior result in a uniform posterior for ω; instead, the posterior is biased toward assigning all flux to one model
component or another, which could easily be misleading unless accounted for.

16

The Astrophysical Journal Supplement Series, 260:29 (35pp), 2022 June Collin et al.



and there may be scenarios where a uniform prior on the
power-law index is a preferable. However, the uniform prior is
all too often used without much consideration, and the intention
here is to provide a principled alternative.

In summary, we propose defining the priors on the broken
power law with m− 1 flux breaks, as defined in Equation (46),
using the coordinate system {N, FPS, β2,K,βm−1, ψ1,K,ψm},
rather than {A, Fb(2),,K, Fb(m), n1,K,nm}. A Poisson comp-
onent may be added to these coordinates through the ω flux
fraction parameter. The FPS parameter is then replaced by an FT

parameter that represents the combined flux of the point-source
population and the Poisson component. Then, during the
likelihood evaluation, a coordinate transform is applied using
FPS= ωFT and FPoiss= (1− ω)FT. When considering a popu-
lation model plus Poisson component, the new coordinate
system we advocate for has parameters {ω, N, FT, β2,K,βm−1,
ψ1,K,ψm}, which may be compared to the equivalent in the
standard coordinate system: {FPoiss, A, Fb(2),,K, Fb(m),
n1,K,nm}.

In the next subsection, we will demonstrate that, within this
arguably more natural coordinate system for point-source
distributions, priors can be chosen where the degeneracy
inherent in the physics is faithfully represented in the
posteriors.

5.4. Demonstration of Bias Removal

We consider a simulation scenario identical to that defined in
Section 5.2, except we now approach it using priors defined in
the natural coordinate system. A unit uniform prior was chosen
for ω, and uniform priors are chosen for the ψi coordinates. As
before, we consider four prior variations, which result from
considering combinations of linear or log-flat priors on N and
FT. Specifics are provided in Table 3.

The results are shown in Figure 7, in the same format as
those in Figure 6. As the prior on ω is uniform, we observe that
the posterior on ω is now generally uniform when the data has
no preference for the population or Poisson component.

There is, however, one exception to this behavior that occurs
for the combination of a log-uniform prior on N and a uniform
prior on F. In that case, the results demonstrate a clear bias in
the posterior toward assigning all of the flux to the point-source
template. The cause is a combination of effects from both
priors. The log-uniform prior on N allows for small values of N.
In particular, when N< 1, the probability that there will be no
sources in the image becomes significant. If there are no
sources, the flux on the source population cannot be
constrained, and any value on F is allowed. In such a case, if
the prior on F is also log-uniform, then large values of F are
relatively less weighted than they would be with a uniform
prior, resulting in this lack of constraint having little effect on
the posterior. However, when the prior on F is uniform, large
values of F are encouraged, and the posterior assigns
significant probability to N< 1 and FPS? FP, as shown by
Figure 8. This issue may be avoided in two ways: choose either
a uniform prior on N or a log-uniform prior on F, or
alternatively, set the lower bound of the prior on N to be
larger than one.

Regardless, beyond this specific case, the desired diffuse and
point-source degeneracy can be readily be achieved in this
coordinate system, and as such, we advocate for its use
generally over the existing choices.

5.5. Degeneracies between Multiple Components

This section has concentrated on the effect of the prior
parameterization on a Poisson and point-source population
component with identical spatial distributions. Certainly, one
can expect similar problems if two Poisson components have
identical spatial distributions, or if the spatial distributions for
two point-source population components are identical, and we
briefly comment on these scenarios here.
Caution should even be taken even for components that do

not share a spatial distribution. If the spatial distributions for
two components—Poisson or point-source—are similar to the
degree that the distributions cannot be distinguished from each
other given the available data, then we can also expect a prior
effect to manifest. Even if the spatial distributions for each
component in the model are highly distinct, a degeneracy
between the distributions can arise if the set of distributions is
not linearly independent. This degeneracy allows multiple
solutions for the given data, and so the prior effect may also
manifest. If the spatial distributions are nearly linearly
dependent—as measured by the statistical power to distinguish
them—then they should also be considered potentially
problematic.
Therefore, when constructing a model, care should be taken

to avoid near-linear dependence between the spatial distribu-
tions. If the hypothesis in question requires such linear
dependence, then the prior parameterization we have intro-
duced provides a solution that ensures that any physical
degeneracy is faithfully represented in the posterior for the flux
assigned to each source.

6. CPG Performance and Comparison with Existing
Methods

In this section, a mathematical connection is drawn between
the CPG construction and previous approaches to the problem
of parametric point-source inference. In particular, we will
consider a number of scenarios that highlight expected
problems with the existing methods, and a performance
comparison with the CPG is made using simulations. To
highlight that these limitations arise from the likelihood
construction, the natural coordinate system described in
Section 5 is employed for all simulations shown here.
As the NPTF method is the current leading parametric point-

source inference method in high-energy astrophysics, this
comparison will focus on the essentials of how the NPTF
likelihood relates to the CPG construction. For a complete
explanation of the NPTF method, we refer the reader to
Mishra-Sharma et al. (2017). The NPTF likelihood is specified
in Mishra-Sharma et al. (2017) as a generating function. The
NPTF generator, Ĝ, is written as an exponential of a power

Table 3
Prior Ranges for the Demonstration Using the Natural Coordinate System for

Specifying the Priors

Parameter Lower Limit Upper Limit

N 0.1 1020

FT 10−15 cm−2 s−1 10−3 cm−2 s−1

ψ1 ( )arctan 2 ( )arctan 5
ψ2 ( )-arctan 3 ( )arctan 0
ω 0 1
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series, but can be equivalently written as
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which are the average detector response and template in the bin
of interest, respectively.

The NPTF generator in Equation (50) also depends on ρ( f ), a
function introduced to correct for the PSF. This PSF correction
encodes the fraction, f, of point-source flux that migrates out of
or into a bin due to the finite angular resolution of the
instrument. To build intuition for the effect this correction
function aims to address, consider a single point source that is
located in a bin, B. Not all of the flux generated with this point
source will fall within B: one can find the captured flux by
integrating the PSF over the extent of the bin. The expected
observed counts from the point source within B is then the
product of this flux fraction and the total expected counts from
the source. If another point source is in an adjacent bin, then the
PSF can cause a fraction of the flux to leak into B. The leakage
would cause the flux of the original point source to be
overestimated unless accounted for, so the PSF needs to be

integrated again—now centered somewhere in the adjacent bin
—to find the fraction of flux that leaks into B. This fraction is
again multiplied by the appropriate counts of this second source
—as determined by the dN dF that is specified for the entire
population—so that this extra flux is properly accounted for. The
value of ρ( f ) is proportional to the frequency of occurrence for a
point source contributing the fraction, f, of flux to a bin. The
correction function is not a probability, however. The normal-

ization of ρ( f ) is fixed so that ( )ò r =f f df 1
0

1
, which ensures

both that the flux of the population is conserved and that the
number of sources in the population is not overestimated.

Figure 7. The posterior for the fraction of flux assigned to the point-source population, ω = FPS/(FP + FPS), under the natural coordinate system. The median
posterior (over multiple random trials, for each bin) is shown by the solid line, while the 16% to 84% percentile range is shown by the fill. Ideally, the posterior for ω
should be uniform, as the diffuse emission cannot be distinguished from a below-threshold point-source population, and unlike the standard system shown in Figure 6,
the new natural coordinate system recovers a uniform posterior—with the exception of the log-uniform N, uniform F priors, as discussed further in the text.

Figure 8. The posterior for the mean number of sources N, and total flux FT,
under the natural coordinate system for the log-uniform N, uniform F prior
scenario. The total flux is tightly constrained for N > 1; however, it becomes
completely unconstrained once the mean number of sources is less than one in
the whole population (N < 1).
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The statistical justification for ρ( f ) is not given in Malyshev
& Hogg (2011), where it was introduced, nor any subsequent
works. Instead, ρ( f ) is defined as an infinitesimal limit of a
numerical estimation for the fraction of flux that a point source
will contribute to a pixel after accounting for the PSF. This
procedure is constructed as a simulation, and the complete
details of the algorithm are given in Appendix F. To provide a
brief description, the algorithm places a point source some-
where on the sky, and counts associated with this source are
drawn from the PSF and placed in the image bins. All bins are
then divided by the total number of simulated counts, so that
each bin now contains the fraction of flux that the source
contributes to that bin. These flux fractions are then
histogrammed, and the final estimate is an average over
multiple repetitions of this procedure, so that the histogrammed
flux fractions capture multiple possible source locations. The
final result is a numerical estimate of ρ( f ) that is normalized
such that ( )ò r =f f df 1

0

1
.

A direct comparison of the CPG and NPTF generating
functions, as given in Equations (35) and (50), reveals that a
clear difference lies in the quantities k̄B, TB, and ρ( f ), which
only appear for the NPTF. In the NPTF construction, the
detector effects are captured in k̄ and ρ( f ). One might imagine
that a connection to μB(ε) of Equation (35) could be made
through ¯e k=d dfb . However, ρ( f ) is not specified per bin;
instead, it is an average over all bins. Indeed, the CPG
construction reveals that the detector effects cannot, in general,
be averaged over bins in this way.

As an example, consider data that are binned irregularly (for
instance, into bins of significantly differing size). The
construction of ρ( f ) does not produce a correction function
that represents any bin under consideration, and as a result, the
likelihood does not describe the statistics of the data. In the
case of NuSTAR, the field of view for the instrument is narrow
enough that a Euclidian coordinate system can be used as a
good approximation to the angular sky coordinates—allowing
a regular binning. However, instruments such as Fermi and
IceCube measure the entire sky. As a regular tiling of a sphere
is impossible, data from these experiments must be irregularly
binned, usually with the use of a HEALPix map (Górski et al.
2005). As NuSTAR does not suffer from this issue, an in-depth
examination of it is outside the scope of this investigation.
However, one should not expect this to have a particularly large
effect on the Fermi GCE analysis or most of the results from
the recent IceCube analysis. Both analyses generally prioritize
the region of the sky around the Galactic Center, using
templates that place the most weight in this region. The
HEALPix maps employed were centered on the galactic
coordinate system, placing the Galactic Center at the center of
the HEALPix maps, where the maps have the most regular
tiling.18 Thus, for both analyses, the tiling is close to regular
where the templates under consideration have the greatest
weight. (One IceCube analysis considered a uniform all-sky
template, for which the irregular HEALPix binning could
produce issues.) In the case of the IceCube analysis, the
construction of the ρ( f ) was further weighted by the spatial
template under consideration, ensuring it more closely reflected
the binning in this region. It should be noted that the
irregularity of the HEALPix binning is reduced—both in terms

of average bin shape and average number of neighbors—for
large numbers of bins. However, the potential for the regularity
to be an issue must still be considered—especially for analyses
where important information is present in the poles, or where
bin sizes are large.
Extending NPTF to use a per-bin PSF correction, ρB( f ),

would address this problem, but limitations in such an NPTF-
like method remain. The primary limitation of the NPTF
construction is the use of an integrated value for the spatial
distribution—the template. The CPG construction shows that
the spatial distribution and detector response cannot, in general,
be factorized into two separate terms. We will demonstrate this
explicitly by considering a number of examples in the
following subsections.

6.1. Nonuniform Spatial Distribution

To begin with, we consider an edge case that illustrates the
problems that arise from the factorization of the template from
the detector effects. Consider a spatial population that occupies
only a single bin, l= 0, such that Tl= δl0. In addition, suppose
the PSF is broad enough that a non-negligible amount of flux
migrates out of bin 0. As the population does not exist outside
of bin 0, out-migration is the only effect of the PSF for this bin.
This implies that flux is not conserved for this bin: the flux
captured by this bin is always less than the flux of the
population. The other bins, in turn, are only affected by in-
migration. According to the spatial template, Tl = 0 for these
bins, and so the population fluxes for these bins are also equal
to zero. Thus, flux is not conserved for these bins either, as they
receive flux from adjacent bins. Both of these effects are
illustrated in Figure 9.
Conservation of flux is only a property of the entire image,

and cannot be enforced on a bin-by-bin basis through ρ( f ). The
distribution of flux fractions that these bins receive is clearly a
function of the bin in question, and so the average over all bins,
ρ( f ), will not describe any bin in the image. In addition, the
distribution of flux fractions for each bin clearly depends on the
distance of that bin from bin 0, demonstrating manifestly why
the spatial distribution of the population cannot be factorized
out of the detector response.
Although this edge case is artificially extreme—in order to

bring out the effect—it is not uncommon for scenarios to have
much of the spatial distribution concentrated in a single bin.
Any sharply peaked spatial distribution will suffer this problem
to an extent; for example, the GCE spatial profile has a sharp
peak at the Galactic Center.
A scenario was constructed in the NuSTAR simulation

(described in detail in Appendix A.1) in order to investigate the
potential bias this may induce. In this scenario, five bins have
equally nonzero share of the population. Multiple bins are
necessary for point-source population reconstruction, and the
bins are spaced far enough apart that the demonstrated effect
will be largely similar to the single-bin scenario. The edge case
as described above can only be meaningfully analyzed with the
CPG likelihood. The NPTF method will fail entirely and result
in zero probability for all parameter values. The reason for this
is that, as it can be seen from Equation (50), the NPTF predicts
zero flux in any bin with TB= 0, for any value of the model
parameters. If any of these bins record counts due to the finite
PSF, then these are events the NPTF simply cannot reconstruct.
In order to allow for a comparison with the NPTF, we rescale
the template so that no bins are exactly zero, but rather have

18 The HEALPix tiling is most irregular near the poles of the maps, and has
greater regularity near the equator, which contains the Galactic Center when
galactic coordinates are mapped onto the HEALPix coordinate system.
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small nonzero values of TB that cumulatively add up to no more
than 1% of the template. Further details on the scenario setup
are given in Table 1.

The NPTF method was implemented by estimating ρ( f )
according to the algorithm in Appendix F, and then transform-
ing it to an equivalent CPG representation through

( ) ( ¯ ) ¯r e r e k k= TB B B B. In this way, the exact same computa-
tional implementation of the likelihood and Bayesian analysis
procedure can be used to evaluate both the NPTF and CPG
methods. Thus, any differences observed can be entirely
attributed to the NPTF ρ( f ) construction, and are not due to
any subtle differences in the software implementation of the
likelihood and MCMC. The generation of μ(ε) required
approximately 100 CPU hours;19 however, in practice,
excellent results can be achieved with significantly less time
—as little as five CPU hours. As ρ( f ) is shared between bins, it
requires substantially less time to generate: in this case, less
than one CPU hour total. These times are highly application-
dependent, as they are almost an entirely a function of the
computational complexity of the detector simulation, and in the
case of μ(ε), the chosen binning scheme.
The natural coordinate system employed in the prior effect

demonstrations of Section 5.4 was used, with the exception of
the Poisson component. Thus, the priors used here are also
described by Table 3, other than for ω, which is not needed, and
the flux parameter is referred to as FPS instead of FT. The
posteriors were sampled using the emcee Affine Invariant
MCMC (Foreman-Mackey et al. 2013). A total of 200,000

steps were taken with 64 walkers, and the first 90% of samples
were discarded as burn-in.
The results are shown in Figure 10(a). The true source-count

function parameters are shown by a solid red line. The dotted
and dashed lines describe the recovered posterior, where each
color represents one trial image. The dashed lines are the 1σ
Highest Posterior Density (HPD) regions, while the dotted lines
define the 2σ HPD regions. The NPTF posterior is biased
toward a high number of sources with an approximately correct
total flux. In comparison, CPG does not exhibit the same bias.
Here, bias is defined as an overall shift in the recovered
parameters across multiple trials. We can see that the yellow
CPG trial is well outside the true parameters, while the purple
NPTF trial is inside the true parameters. This is to be expected
due to the random variations between trials. However, as a
group, the NPTF trials are clearly recovering a number of
sources greater than the true N. In Figure 10(b), we further
show the difference between the CPG μB(ε) and the equivalent
NPTF ρB(ε). Each color represents the μB(ε) measure for a bin
in the scenario. As NPTF averages the PSF correction over bins
and the effective area is isotropic, the equivalent ρB(ε) is the
same for all bins up to the two unique template values of TB.
The averaging approximation used in the NPTF construction

is clearly deficient in this edge case. The inference is driven by
the five bins that contain the population. The μB(ε) for these
bins is heavily weighted toward high ε. The NPTF ρ(ε) is
heavily weighted toward low ε, due to averaging over the
larger number of bins that do not contain the population. The

normalization condition, ( )ò r =df f f 1
0

1
, imposed on ρ( f )

modifies the overall normalization of the function so that flux is
conserved in all bins. However, as described above, the flux is
manifestly not conserved on a bin-by-bin basis in this scenario.

Figure 9. Left: A template has all of its probability concentrated in a single bin, shown as the 2D histogram on the left. As such, all three sources, {x1, x2, x3}, are
located within this bin. Each has an associated PSF shown as the solid distribution centered on the source location. Top Right: The probability distribution for the
number of counts in the central bin. The distribution for conserved flux, as in the NPTF construction, is shown in dotted red. The actual distribution is shown in black,
with a smaller mean. Bottom Right: The distribution for an adjacent bin. The red dotted line shows the distribution for the NPTF construction with a zero mean. The
black shows the actual distribution, which has a nonzero mean.

19 Under 2 hr wall-clock time using an AMD Ryzen Threadripper 3990X 64-
core processor.
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In Equation (50), a change in the normalization of ρ( f ) is
equivalent to a change in N, as this generator can also be
written as

( )
ˆ ( )
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Thus, the normalization effectively drives ρB(ε) at high ε down,
causing the posterior on N to be driven up to compensate. This
leads to the observed overestimation bias in the number of
sources.

The posteriors in Figure 10(a) show a between-trial variation
that is on the same scale as the posteriors themselves. We can
rule out statistical fluctuations as the dominant cause, as the
variations are an order of magnitude in N for the NPTF
posteriors. Instead, these variations are due to the small amount
of information that is present in only five bins, which leads to
poor recovery of the total number of sources. We should expect
the posteriors to overlap (and they mostly do for CPG), but as
the NPTF likelihood does not describe the data, we cannot
expect the posteriors to be well-behaved.

6.2. Anisotropic PSF

In the standard NPTF construction, ρ( f ) is common to all
bins, and thus it can, at best, capture the average PSF
throughout the image. The following scenario examines the

bias that this approximation may introduce to the inference of
the source-count function model parameters when an aniso-
tropic PSF is present—as arises, for instance, in NuSTAR.
We consider a scenario largely identical to that in

Section 5.2, with details given in Table 1. In this scenario,
multiple exposures are overlaid into a mosaic, forming a single
binned image. This increases the amount of anisotropy in the
PSF, as sources can bleed across the boundaries of the
exposures. When a source contributes to two or more
exposures, an appropriate mix of PSFs is required, leading to
more complicated PSF distributions. For this scenario, we wish
to only test the effect of an anisotropic PSF. Thus, the
exposures are perfectly aligned edge-to-edge in a grid with no
gaps or overlaps. This, along with the lack of vignetting,
ensures that the effective area is uniform across the entire
image. We note that this is not a natural arrangement—most
mosaics involve a degree of overlap between exposures.
The results of analyzing the resulting data sets are shown in

Figure 11(a). A high degree of bias toward a low number of
sources is observed in the NPTF posterior, while CPG is
largely consistent with the true population parameters.
Figure 11(b) further shows that the equivalent NPTF ρB(ε) is
much closer to the CPG μB(ε) in this scenario as compared to
the previous nonuniform spatial template scenario. However,
the shape of ρB(ε) is significantly different from μB(ε) near the
highest ε. Unlike before, the normalization of ρB(ε) will be
correct here: the uniform spatial distribution ensures that flux is
conserved on a bin-by-bin basis. While this normalization
ensures that the average ε is correct, the distribution of ε is not.

Figure 10. The results of applying the CPG μB(ε) construction and the NPTF ρ( f ) construction to the nonuniform spatial distribution scenario. The CPG posteriors are
clustered around the injected population, while the NPTF posteriors show a bias toward higher N. The averaging procedure in constructing ρ( f ) results in a detector
correction that is not representative of any of the bins in the image, as shown by the μB(ε) functions. Left: The recovered posterior for both the CPG μB(ε) construction
and the NPTF ρ( f ) construction. The solid red line shows the (true) injected source-count function. Each of the colored dashed and dotted lines are the 1σ and 2σ HPD
regions, respectively, for separate trials. Right: The detector effect correction function for both the CPG μB(ε) construction and the NPTF ρ( f ) construction (converted
to ρB(ε) for comparison as described in the text). Here, each colored line corresponds to the function for a bin in the image.
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Observe that μB(ε) generally has a cusp at high ε, while ρB(ε)
shows no cusp. This lack of cusp causes the NPTF likelihood to
be driven by lower ε in comparison, and so the posterior drives
up the average flux per source and drives down the number of
sources in order to maintain the conservation of flux. Note that
the quantity shown in Figure 11(a) is the total flux of the entire
population, so when the number of sources, N, reduces, it is the
average flux per source, roughly proportional to FPS/N, that
increases.

6.3. Sub-bin Effective Area

The prescribed construction of ρ( f ) in the NPTF method
does not include any accounting for the effective area, exposure
time, or detector efficiency of the instrument and observation.
This may lead to an incorrect construction of the likelihood
distribution, as the following scenario illustrates.

Consider an instrument where the effective area varies
sharply within a bin, and a population that is spatially uniform.
Thus, the distribution of fluxes for a source is not a function of
position within this bin. However, the distribution of expected
counts will be a function of position within the bin, as the flux
must be converted to a number of photons using the effective
area. In particular, take a scenario where there is no PSF,
f(y|x)= δ(y− x); and the injected source population has no
variation in flux, ( ) ( ¯ )d= -p F F FPS . In order to generate the
effect of interest, we then let the detector response change
discontinuously at some point within the bin, between the
values of κ0 and κ1. If a source is located where κ(x)= κi, then
the distribution of the detected number of counts at this location
is ( ∣ ) ( ¯ )d k= -xp S S FB B i PS , with i= 1 or 2. The distribution
for the whole bin is found by integrating the position-

dependent distribution over T(x). Let the spatial template be
uniform. Then the whole bin distribution is a mixture of the
previous two distributions:

( ) ( ¯ ) ( ) ( ¯ ) ( )d k d k= - + - -p S C S F C S F1 , 54B B B0 PS 1 PS

where C is some mixture fraction that depends on what area of
the bin has a detector response of κ0.
For this scenario, the NPTF calculates the average detector

response across the bin, k̄, and uses this to find
( ) ( ¯ ¯ )d k= -p S S FB B PS . This will not result in the correct

distribution of photon number; for example, if κ0= 0, then the
NPTF construction preserves the total flux of the bin, but will
overestimate the flux of sources within that bin, as k̄ k< 1. A
comparison between the exact and mean distributions is shown
in Figure 12. It should be noted here that, due to computational
constraints, the effective area is rarely considered on a bin-by-
bin basis in the NPTF construction. Instead, it is averaged over
larger “exposure regions,” as the computational complexity of
the NPTF power-series calculation depends on the number of
bins. Although these noncontiguous regions are chosen by the
similarity of the effective area of each bin within the regions,
this necessarily reduces the accuracy of the likelihood
evaluation further. In contrast, CPG requires no exposure
regions, as the computational complexity of the CPG power
series calculation does not depend on the number of bins and is
computed only once for each likelihood evaluation. As
exposure regions only enter into NPTF due to computational
constraints, they are not, by themselves, an intrinsic limitation
of NPTF; therefore, we do not consider the effect of taking a
number of exposure regions smaller than the number of pixels
in this investigation.

Figure 11. As in Figure 10, but for the anisotropic PSF scenario. The injected population is well recovered by CPG, while the NPTF posteriors are clearly biased
toward low N. The cusp structure visible in each μB(ε) is smeared out in ρB(ε). Left: the recovered posterior for both the CPG μB(ε) construction and the NPTF ρ( f )
construction. Right: the detector effect correction function for both the CPG μB(ε) construction and the NPTF ρ( f ) construction.
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To test this scenario, the simulated vignetting was modified
into a checkerboard pattern, taking values of either κ0 or κ1.
Each square of the checkerboard was defined to be equal to the
bin size, but with an offset so that the checkerboard boundaries
lie within the bins of the image. This causes the effective area
to change discontinuously across most bins of the image. The
remaining scenario parameters are largely identical to those in
Section 5.2, with details given in Table 1.

The results are shown in Figure 13(a). Here, NPTF fares
significantly better when compared to the previous scenarios.
However, a recognizable bias is still present in the recovered
posteriors. CPG, on the other hand, is considerably closer to the
true population parameters. The detector effect correction
functions are shown in Figure 13(b). Clearly, the CPG μB(ε)
has the two expected modes corresponding to the sub-bin
effective area variation. In contrast, the equivalent NPTF ρB(ε)
has a single mode corresponding to the average effective area.
Thus, the likelihood is driven by a lower ε, and so the average
flux per source is driven up while the number of sources is
driven down to compensate.

The CPG posteriors in Figure 13(a) display a long tail
toward high N. This same behavior can be observed to a lesser
extent in Figure 11(a) (anisotropic PSF scenario). The summary
in Figure 1 shows this effect most clearly. As discussed in
Section 5, the discrimination ability of the CPG likelihood is
reduced at high N as the population model approaches the
diffuse limit. In contrast, population models with N less than
the true value will be highly disfavored, as they produce
sources with high flux. In these scenarios, the prior on N is log-
uniform and does not discourage models with high N.
Therefore, an asymmetry in the posterior toward high N is
expected. This effect is also present in Figure 10(a) (nonuni-
form template scenario), but the small number of bins with
useful data causes a wide variation in the posteriors that largely
hides the effect.

6.4. A Scenario where ρ( f ) Is Valid

The three previous scenarios demonstrate the biases
introduced into NPTF by the failure to correctly model the
effective area, PSF, and the spatial distribution of sources, as
well as how the comprehensive approach of CPG resolves
these issues. When these complications are not present,
however, it is expected that the NPTF construction will be
equivalent to CPG. To confirm this, we consider a scenario
where the population is spatially uniform, the PSF is isotropic,
and the effective area is constant throughout the image. The
details are given in Table 1, and the results are shown in
Figure 14. Both NPTF and CPG display no bias, and each trial
is equivalent—up to slight variations—between the two
methods. This shows that, under these conditions, the more
general CPG reduces to NPTF, and NPTF does indeed work
correctly.

6.5. Realistic Scenario

Finally, we turn to a realistic scenario, where all NuSTAR
detector effects are enabled and a Poisson background is
injected. This results in a realistic simulation of a NuSTAR
observation. Eight observations are combined into a mosaic
that exhibits the overlapping diamond pattern that is common
to composite NuSTAR images—see Hong et al. (2016) for one
such instance.

For this scenario, there are two Poisson background
components: the intrinsic detector background, which is
uniform within each observation, and the the Cosmic X-ray
Background (CXB), which is a flux that is multiplied by the
effective area of the instrument. Both components scale with
the exposure time, and their respective rates and fluxes are
detailed in Table 1. The background rate was chosen to be
representative of an observation with NuSTAR. The CXB flux
was derived from Krivonos et al. (2021) by integrating over the
3–10 keV energy window.
The CXB is incorporated into the model using a shared flux

parameter in the natural coordinate system discussed in
Section 5. The intrinsic background, in contrast, is not specified
as part of the natural coordinate system. The natural coordinate
system divides a total amount of flux between multiple models,
but this background component is not described in terms of a
flux, as it is not astrophysical in origin. Thus, it was given a
separate uniform prior around the known background rate, and
is parameterized by λbkg, a count rate for the entire detector,
which is multiplied by the exposure time and divided by the
relative bin size to get a mean number of counts per bin. The
injected source-count function was selected to be similar to the

Figure 12. Bottom: The detector response, κ(x), varies sharply over bin b. The
average detector response for this bin, k̄b, is shown by the dashed line. Top: If
the average detector response is used to convert flux to counts, the probability
distribution follows the red dotted comb; however, the within-bin variation of
the detector response must create two modes in the distribution, shown by the
black comb.

23

The Astrophysical Journal Supplement Series, 260:29 (35pp), 2022 June Collin et al.



observed population of X-ray sources near the Galactic Center
(Hong et al. 2016). Further details are given in Table 1, and the
prior ranges are shown in Table 4.

The results—derived with both the CPG μB(ε) and NPTF
ρ( f ) constructions—are shown in the upper half of Figure 15 as
a source-count density function. Each color represents one of
six trial images, and the dashed lines show the 16% and 84%
percentiles for the source-count function recovered from the
posterior. The solid red line shows the true population source-
count function. The top of the gray fill is the mean of the 84%
percentiles for each trial, while the bottom of the gray fill is the
mean of the 16% percentiles.

For the CPG construction, there is a large uncertainty on the
location of the flux break itself, and below the break, there is an
underestimation in the number of sources. This is unsurprising,
as the uniform prior on the flux fraction parameter between the
point-source and CXB component, ω, gives weight to models
where a significant amount of flux is carried by the CXB,
which corresponds to the below-threshold point-source flux
being assigned to the CXB component.

This effect can be reduced by placing a more informative
prior on ω, but this is not as easy at it may first appear. Even if
the CXB flux is well-known, placing a prior on ω requires prior
knowledge of the relative total flux between the population and
the CXB. If the prior is informed only by an estimate of this
relative flux, then an incorrect value could exacerbate the
effect. Alternatively, the prior on ω could be conditioned on the
total flux FT such that the inferred total flux informs the prior
on the estimated flux of the point-source population.

Figure 13. As in Figure 10, but for the variation in sub-bin effective area scenario. The CPG posteriors are clustered around the injected population, while the NPTF
posteriors exhibit a small bias toward low N. The bimodal effective area is shown clearly by μB(ε), while for ρB(ε) this structure is removed by the averaging the
effective area, resulting in a single mode. Left: the recovered posterior for both the CPG μ(ε) construction and the NPTF ρ( f ) construction. Right: the detector effect
correction function for both the CPG μ(ε) construction and the NPTF ρ( f ) construction.

Figure 14. The recovered source-count function for both the CPG μB(ε)
construction and the NPTF ρ( f ) construction in the ρ( f ) scenario, described in
the text. When all conditions for the construction of ρ( f ) are met, both CPG
and NPTF produce posteriors clustered around the injected population.
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We can also imagine a similar problem occurring for the
intrinsic detector background, in that below-threshold sources
could be confused with the intrinsic background model. The
solution here, which has been employed in this scenario, is to
use a tight prior on the intrinsic detector background based on
previous measurements. This is simple to implement, as the
intrinsic detector background is not specified in the natural
coordinate system—and thus has an independent prior.

In the end, this is not an issue with the CPG construction, it
is simply the nature of Bayesian analyses. We can see this more
clearly by conditioning the posterior on ω> 0.9. This, in effect,
largely removes the CXB from the model. The result is shown
in the lower half of Figure 15. The uncertainty on the flux break
is greatly reduced, and the total number of sources is now
accurately recovered to within the percentiles.

However, the power index, n1, sits just outside the
percentiles. This turns out to be a generally unavoidable effect.

The large bin sizes cause the brightest sources to be washed out
by the large number of dimmer sources. For this reason, the
model cannot distinguish between a few bright sources and
many dim ones, and so the posterior is extended to larger n1,
thereby pushing the true n1 outside of the percentile interval.
This effect can be reduced by reducing the bin size, so that
bright sources make up a greater fraction of the total flux in
each bin. Unfortunately, as discussed in Section 4.5, smaller
bins will cause the statistics to be overcounted, making the
posteriors artificially small.
Thus, when applying CPG to a realistic scenario with a

Poisson background that has a poorly informed prior, care must
be taken in interpreting the number of very low-flux sources. In
addition, the prior on the detector background should be chosen
to incorporate as much information as possible that is known
about the background rate. Finally, one must take care in the
selection of the bin size. When the goal is to recover the
population parameters, smaller bins should be chosen in order
to retain more information on the high-flux sources. Any
reported results should then caution of the between-bin
correlation effect elaborated on in Section 4.5. If model
selection is the aim and marginal likelihoods are in use, it may
be better to use larger bins, as a high degree of overcounting of
statistics may result in an erroneous marginal likelihood.
In comparison, the NPTF ρ( f ) construction has poorer

performance. The same underestimation of the number of
sources below the break is observed, but to a larger degree. In
addition, the location of the break and index of the power law
above the break is incorrectly estimated, and the true source-

Table 4
Prior Ranges for the Realistic Scenario

Parameter Lower Limit Upper Limit

N 0.1 108

FT 10−15 cm−2 s−1 10−3 cm−2 s−1

ψ1 ( )arctan 2 ( )arctan 10
ψ2 ( )-arctan 5 ( )arctan 0
ω 0 1
λbkg 6.984 × 10−2 s−1 10.476 × 10−2 s−1

Figure 15. The recovered source-count function (as defined in Equation (9)) for the CPG μB(ε) construction (top left) and the NPTF ρ( f ) construction (top right) in the
realistic NuSTAR scenario. Each color represents a different random trial, with the 16% and 84% percentiles shown as dashed lines derived from the posterior. The
true source-count function is shown in solid red. The gray fill shows the average percentile band, as a guide. The ρ( f ) construction clearly recovers the incorrect
source-count function, as the slope of the power-law is well outside all percentile bands. In comparison, the CPG construction is generally more accurate. The
underestimation of sources in both methods is further discussed in the text. The same results, with the posterior conditioned to ω > 0.9, are shown in the bottom left
and bottom right for CPG and NPTF, respectively. With this conditioning, the recovery of the total number of sources is drastically improved for the CPG.
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count function lies well outside all of the recovered source-
count functions in the region above the break. Conditioning the
posterior on ω> 0.9 does not improve the situation appreci-
ably: the total number of sources now lies within the percentiles
(although the uncertainty is much larger than when using
CPG), but the region above the break is still incorrectly
recovered. In this instance, while the total number of sources is
approximately correct, the total flux of the population is
overestimated.

7. Conclusion

In this paper, we have introduced a new approach to the age-
old problem of point-source population inference. In particular,
we constructed a new likelihood using CPG functionals. To
complement this likelihood, a new natural coordinate system
has been developed for parameterizing Bayesian priors on
point-source population models where a Poisson background
component is also present. In particular, we revealed that
existing prior choices often result in posteriors that assign all
flux to either the point-source population or the Poisson
background model. The new natural coordinate system
produces posterior distributions that correctly capture the
uncertainty on the population model in this circumstance.
Combined with this new prior formulation, the CPG likelihood
has been shown to correctly handle a series of test scenarios
that each exhibit a particular edge case that is common in
astronomical instrumentation. For these scenarios, a compar-
ison was made to non-Poissonian template fitting (NPTF)—a
current leading parametric point-source inference method. In
contrast to CPG, the NPTF method has been shown to produce
biases in the recovered posterior distributions, specifically the
mean number of sources. These biases are attributed to
limitations in the construction of the NPTF likelihood, which
factorizes the spatial distribution, PSF, and effective area. The
CPG derivation shows how these contributions to the like-
lihood cannot be factorized in general. An implementation of
the CPG is made publicly available here.20

Our focus in the present work has been on the construction
of the CPG and on demonstrating the improvements it brings.
However, given the general importance of point-source studies,
applying this new method to actual data is an important open
direction, and may even be able to finally shed light on open
questions such as the nature of the GCE.
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Appendix A
NuSTAR Observatory and Simulation Procedure

The NuSTAR observatory comprises of two adjacent aligned
telescopes. Each telescope consists of a grazing incidence
X-ray optics module and a focal plane module (FPM) that
houses four pixelated CdZnTe semiconductor detectors. For
both telescopes, these elements are separated by a single shared
extended mast. For this investigation, only one of these
telescopes will be considered, in order to simplify the
simulation.
The optics focus X-rays via grazing reflections from two sets

of concentric shells arranged in an approximate Wolter-I
geometry. When an X-ray is reflected by both shells, it will be
correctly focused onto the detector plane. An X-ray may only
undergo one reflection in the optics. These X-rays are poorly
focused and are called ghost rays. The observatory does not
have an enclosed barrel, and the majority of the length of the
telescope is open to space. A series of aperture stops collimate
incoming X-rays, preventing most X-rays from entering the
FPM through the sides of the telescope. However, a small
window remains, allowing X-rays that pass close to the optics
modules to strike the detector without passing through the
optics. Known as stray light, X-rays that enter the FPM this
way are unfocused.
The four detectors in each FPM are arranged in a 2× 2 grid.

Each detector is composed of 32× 32 pixels, and subpixel
positional information is available. The gap between the
detectors is small, and is ignored in this study. Further details
on the observatory can be found in Harrison et al. (2013), Wik
et al. (2014), and Madsen et al. (2015, 2017).

A.1. Simulation

Use of NuSTAR as a test case requires a simulation of the
detector in order to create observations where the parameters of
the injected point-source population are known exactly. The
simulation draws a number of point sources from a given
differential source-count function using a Poisson distribution
with mean N. The flux of each source is also drawn from the
p(F), and the location of each source is drawn from a given
spatial distribution specified by the template. The simulation
constructs an image according to the NuSTAR field of view,
and with an adjustable bin size. The detector response is
extracted from the NuSTAR CALDB (Harrison et al. 2013)
FPM data using the vignetting-corrected effective area. The
energy spectrum is assumed to take the power-law form given
in Equation (4) with E0= 1 keV and γ= 1.5, whereas the
energy range and exposure time are scenario-dependent.
Once the mean counts for a given source, S, has been

determined, a number of photons are then drawn from a
Poisson distribution with mean S, and these photons are placed
into the image according to locations drawn from the CALDB
PSF. This PSF is generated by a physics-based simulation of
the X-ray optics. If a photon lies outside the field of view, the
photon is discarded. The NuSTAR PSF is nonisotropic, and
varies according to the distance of the source from the optical
axis of the telescope. At the optical axis, the PSF is radially
symmetric. As the source moves toward the edge of the image,
it is distorted radially, creating a fish-eye effect.
Apart from the point-source population, multiple other

effects can cause the real or apparent detection of photons.
Astrophysical backgrounds and foregrounds may include20 https://github.com/ghcollin/cpg_likelihood
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extended sources such as gas clouds, or very bright point
sources that are not part of the population such as magnetars.
These can be modeled as Poisson distributions with appropriate
flux maps. As they are highly scenario-dependent, these effects
are not modeled in this investigation. Ghost rays and stray light
are usually only visible when bright sources are in or around
the FOV; assuming the sources can be located, their
contribution can be modeled by a Poisson distribution with
an appropriate flux map. The effect of ghost rays from
population sources is incorporated into the PSF by construc-
tion. The CXB is a significant source of stray-light-induced
background. This stray-light contribution can be modeled much
like other astrophysical backgrounds—with a Poisson distribu-
tion using an appropriate CXB flux. As with the other sources
of astrophysical background, the effect of stray-light CXB is
not considered in this investigation. NuSTAR also suffers from
a detector background caused by spaceborne radiation. This
background enters through the FPM shielding, and is not
associated with the X-ray optics. Thus, the background is
uniformly distributed across each detector, and varies across
each of the detectors in the FPM. It can be simulated by
drawing counts from a Poisson distribution according to an
appropriate background count rate.

Position information of photons beyond the detector
pixelization is not available; however, in this simulation, the
effect of pixelation is not considered and the photons are
directly processed into bins. The size of these bins is scenario-
dependent, but they are generally much larger than the detector
pixels, thus the effect of pixelation is considered small and the
additional complications involved in the pixel subdivisions are
avoided.

If the scenario calls for multiple observations, then the above
procedure is repeated for each observation minus the final
binning. This creates a list of photons from all observations,
which are then transformed into a shared coordinate system for
all of the observations and then binned into a shared binning
scheme. An example of this is shown in Figure 3, with a
binning scheme chosen to be approximately the same as the
NuSTAR subpixelation, in order to show the PSF.

Appendix B
Generating Functions and Functionals

In this appendix, a full derivation of the CPG generating
function without approximations will be presented. From this
generating function, an unbinned likelihood and a binned
likelihood can be derived, both taking into account correlations
between pixels. Unfortunately, these likelihoods are intractable,
and so the derivation in Section 4 is shown to be a tractable
mean-field approximation for the likelihoods here.

Generating functions are a useful representation for a
discrete probability distribution when complex constructions
are required. In this appendix, we provide a more expansive
discussion of these objects than appeared in the main body. The
generating function, G(z), is defined as the z-transform of a
discrete distribution, P(n), over its support  :
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G z P n z z . B1
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Typically,  Ì 0, with  =inf 0. The probability distribution
can be recovered from the generating function via higher-order

derivatives evaluated at z= 0:
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Chief among the generating function’s useful properties is
the sum-of-random-variates rule. Let each Xi be one of M
random variates, drawn from the distribution Pi(x) with
generating function Gi(z). The generating function for the
sum of these variates,
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This property has an analogy in the characteristic function of
continuous distributions; where the distribution for a sum of
two random variates is the convolution of the two distributions,
the characteristic function is defined as the Fourier transform of
the distribution function, so that the characteristic function for
the sum of the variates is the product of the characteristic
functions via the convolution theorem.
If the Xi are identically distributed—that is, drawn from the

same distribution PX(x)—and the number of variates to sum,M,
is itself a random variate drawn from a distribution PM(m) with
generating function GM(z), then the generating function for the
sum
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is provided by the nested expression,

( ) ( ( )) ( )=G z G G z . B6K M X

When PM(m) is a Poisson distribution, GK(x) is known as a
compounded generator.
As a simple example, for the Poisson distribution,
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with λ the mean of the distribution, the generating function is

( ) ( )( )= l -G z e . B8z 1

Poisson distributions count the number of events that occur in a
defined interval—most often in time, but we are also interested
in space intervals. The above properties work well when the
underlying Poisson process—the mechanism that generates
these events—is homogeneous in this interval.
When the Poisson process is inhomogeneous, a generating

functional can prove more useful. An inhomogeneous Poisson
process is defined by an intensity function Λ(x) with support Ξ.
The integral of this intensity function over the support gives the
expected number of events, λ= ∫ΞdxΛ(x). Thus, the distribu-
tion for the number of events is a Poisson distribution with
mean λ. The generating functional for the process in this case is
defined as

[ ] ( )( )( ( ) )ò= L -
XG f e , B9x x xd f 1
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where f (x) is a functional argument defined over the same support Ξ. The probability density function for finding an event at y is
given by the variational derivative of this functional:
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e , B10x xd
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where 0(x)= 0. The probability density for a set of events {yi} is the higher-order variational derivative
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The Poisson process is one kind of process that generates events—known generally as a point process. The concept of a generating
functional can be extended to all point processes.

The generating functional has a compounding property similar to that of the generating functions. Let GX be the generating
functional for a point process, while GM is the generating functional for another point process. If GM, rather than directly generating
events, instead generates point processes according to GX, then draws from GM will generate multiple events according to GX. The
generating functional for this compounded process is GK[f]=GM[GX[f]].

For a point-source population, the intensity function is

( ) ( ) ( )L =x xNT , B12

such that the intensity is distributed according to the spatial distribution, T(x), and the total of the intensity function over the support
of the spatial distribution is exactly the mean number of sources:

( ) ( )ò= Lx xN d . B13

Now, let Gx|N,T be the generating functional for sources from the population:

( )[ ] ( )( ( ) ) ( )∣ ò= -x x xG f N d T fexp 1 , B14x N T,

so that events drawn from this process define individual sources located at location x. Each source, accordingly, defines its own
generating functional:

( )[ ] ( ) ( ) ( ∣ )( ( ) ) ( )∣ òk h f= -x y y y x yG h F d hexp 1 , B15y xF,

from which events define counts detected at location y, given a source of flux F located at x. The population averaged source
functional is thus
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The total count generating functional is now a compound of these two generators (Daley & Vere-Jones 2003):
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The unbinned likelihood can be calculated using Gy|N,T,p(F); here, however, we are interested in the binned likelihood.
Consider the trivial generating function G(z)= z—a distribution with p(0)= 0 and p(1)= 1. Notice that

[ ( )] ( )∣
( )= -G G z e ; B18x N T

N z
,

1

that is, the compound of the generating functional Gx|N,T with the generating function G(z) gives the generating function for the
number of events generated by the Poisson process. We can interpret this as a compounding of a point process with a counting
process which records 100% of events, as p(1)= 1.

Direct substitution of this trivial generating function into Gy|N,T,p(F) would give the total number of counts in the entire image, as
the integral ∫dy runs over the entire support of η(y). To get the number of counts, kB, in bin B, we could perform this substitution, and
then alter the support of η(y) to ΩB. An alternative is to consider the slightly less trivial generating function

( ) ( )( ) ( )∣ = + -W yG z z11 1 , B19ykB B
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where 1 is the indicator function, which is equal to one when y äΩB and zero otherwise. Thus, the probability of recording an event
conditioned on the photon location y is ( ∣ ) ( )= Wy yp 11 B , which is equal to one when the photon is inside the bin and zero otherwise.

The conditional probability of discarding an event is ( ∣ ) ( )= - Wy yp 10 1 B , as expected. Using this, the generating function for the

number of counts in bin B is
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and after rearranging,
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From here, the μB(ε) measure defined in Equation (33) can be used to bring this into the expected form:
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For multiple bins, the indicator generating function is
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Substitution of this into Gy|N,T,p(F) gives the multiple-bin generating function. However, evaluation of the probabilities for such a
generating function would not only require a multidimensional μ({εi}) with an effective detector response for each bin, but would
also require computing many cross terms between the zi variables. For more than a few bins, this quickly becomes computationally
untenable. For this reason, the whole-image likelihood is constructed by taking the product of the single-bin likelihoods as in
Equation (39)—essentially a mean field approximation, where each bin is treated as statistically independent, removing the
correlations.

Appendix C
Evaluation of the Power Series

Here, we demonstrate how to analytically evaluate the CPG generating function when the source-count function takes the form of a
multiply broken power-law. First, we write the generating function for a point-source population as
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where
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As stated, we assume a broken power-law differential source-count function:
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This is equivalent to the broken power-law definition in Equation (46), with the ci introduced to account for the normalization factors.
From the relation ( ) =Np F dN dF , we have

( ) ( )( )òe = e -g z dFe
dN

dF
, . C4F z 1
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The solution to this integral has a closed form for this choice of source-count function:
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where, using Ji(ε, z)=− εFb(i)(z− 1) to shorten the notation,
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where Γ(n, x) and γ(n, x) are the upper and lower incomplete gamma functions. The form of these σ functions has been chosen such
that the following identities hold:
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The above results imply that an identification can be made with the power-series coefficients in Equation (36). For j> 0,
we have
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We postpone a discussion of the case of j= 0 for now. Note that g j(ε, 0) is not a function of B, the bin number. This allows the z-
series of g j to be computed once for the entire image; all of the bin-specific detector effects are contained in μB, which requires a
simple numerical integration against this series for each bin. This can be many orders of magnitude more computationally efficient
than NPTF, which requires the z-series to be computed for every bin.

The evaluation of upper and lower incomplete gamma functions is computationally expensive, and must be performed using
numerical approximations. Thus, it is desirable to avoid evaluating these special functions for every term in the z-series. There exists
a recurrence relation for the incomplete gamma functions, which is best exploited in terms of the scaled σ functions, ŝ:
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For ŝ1 and ŝi, the base case of j= 0 is first computed from
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where the exponential integral, En(x), is used to stabilize the calculation. Then, the higher-order ŝ1 and ŝi terms are found using the
above recurrence relations.

For ŝm, the initial case starts from the highest-order term required, which for the whole image is =j kmaxB B. This is computed
using Equation (C8), then the lower-order terms are found using the recurrence relations. The power-series coefficient for j= 0 also
includes the constant factor of N, which appeared in Equation (C1):

( ) ( ) ( )( ) ò e e m e= -a d g N, 0 . C19B b
0 0

If g0 is calculated using the above procedure, this factor of N will cause a catastrophic cancelation for very dim (i.e., below-threshold)
populations. This cancelation arises from the left-hand term of the right-hand side of this equation taking a value very close to N, such
that it is equal to N up to the machine precision of the floating-point data type used in the computation. A resolution to this
cancelation is achieved by incorporating the constant factor into the calculation of the exponential integral. The expected number of
sources, N, is first evaluated in closed form in terms of the source-count function parameters:
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Each term in this equation is incorporated into the corresponding ŝ0 function, to give the modified σ terms
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In the very dim below-threshold regime, Ji(ε, 0)= 1, and the exponential integral becomes dominated by a leading constant factor:
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Thus, the cause of the numerical instability is revealed. Define a modified exponential integral function, ˜ ( ) ( )= +E x y y E x,n n , so
that
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Now the modified σ terms can be written
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The numerical algorithm for approximating the exponential integral is based on Navas-Palencia (2018). This algorithm was
modified to calculate ˜ ( )E x y,n . For x= 1, series calculations are used by Navas-Palencia (2018); during evaluation of the first series
term, y is added so that the modification occurs before subsequent terms are added. The result is that the first term of the series is
canceled, allowing subsequent terms to accumulate without being lost in the machine precision. For other scales of x, non-series
calculations are used and so y is simply added to the final result—an acceptable solution, as catastrophic cancelation does not occur in
these regimes.
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When Ji(ε, 0)? 1, the exponential integral algorithm may overflow. This corresponds to populations with unrealistically high flux per
source. If this happens, a NaN is propagated through the likelihood-evaluation algorithm and is returned as the final probability. This allows
this failure mode to be caught and reported. In these investigations, the correct course of action was to simply reduce the range of the flux
prior, as the problem was always caused by the MCMC initialization drawing these unrealistically large flux values from the uniform prior.

With these modifications in place, the scaled power-series coefficients can be defined as
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We will use these expressions in Appendix D.

Appendix D
Evaluation of Bell Polynomials

The probability for kb counts from the CPG likelihood was shown to be given by

( )
( )

!
( )

( ) ( )
=

¼
P k

B a a

k

, ,
. D1B

k B B
k

B

1
B

B

This expression is written in terms of the Bell polynomials, which obey the recurrence relation
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Now, let l= kB− j− 1, so that
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where ( )n -
B
k lb are the scaled power-series coefficients from Appendix C. This recurrence relation is equivalent to that found in Mishra-

Sharma et al. (2017).
The numerical calculation of P(kB) is performed logarithmically,
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so as to ensure that numerical underflow does not occur if the scale of the likelihood is below that of the machine precision of the
floating-point data type used. A standard exponential sum algorithm is employed, which determines the scale of the sum terms in
advance; then, the terms are rescaled to avoid underflow before the summation is computed; last, the final result is scale-corrected.

Appendix E
Numerical Evaluation of μB(ε)

In this appendix, we outline how to numerically compute μB(ε). The process is detailed in algorithm 1, which constructs a
histogram density estimate ( )mB i. In detail, a simulated source is drawn from T(x), and the location x of this source is used to find the
detector response κ(x) and to select the appropriate PSF, f(y|x). This draw will form a sample from μB(ε), but as μB is a function of ε,
the corresponding value of ε must be determined.
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According to Equation (33), this requires an integral of the PSF and detector efficiency over the bin extents. This integral will also
be performed through Monte Carlo sampling: a number, Nsim counts, of samples are drawn from the PSF. Let {yl} be the set of these
samples. The detector response for bin b is calculated as

( ) ( ) ( ) ( )
{ }
åe k h=
Î

Wx y y
N

1
1

, E1
y ysim counts

l

B

where ( ) =W y1 1B
if y is within the bin extent ΩB and is zero otherwise.

Thus, a set {xj} of Nsim sources simulated sources yields a set of detector responses, {εj}. The empirical estimate of μb(ε) can now be
written as

( )
{ }

( ) ( )åm e
e e

d e e=
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1
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Although not strictly required, conversion of this empirical measure to a histogram, ( )mB i, will substantially speed up calculation of

the likelihood when Nsim sources and Nsim counts are large. For histogram bin i, the value of the bin is

( ) ( ) ( )
ˆ ˆòm em e=
e e +

d , E3B i B
,i i 1

where êi and ê +i 1 are the histogram bin edges.
Algorithm 1. Numerical ( )m eB

( )m ¬ "B i0 ,B i

loop Nsim sources times
e ¬ "B0B

(·)¬x Tsample from
loop Nsim counts times

(·∣ )f¬y xsample from
¬ ¢ Î W ¢yB B such that B

( ) ( )e e k h¬ + x y NB B sim counts

end loop
[ˆ ˆ )e e e¬ ¢ Î "¢ ¢+i i Bsuch that ,B B B i i 1B B

( ) ( )m m¬ + "N B1B i B i sim sourcesB B

end loop

Appendix F
Numerical Estimation of ρ( f )

For completeness, we also provide the algorithm for computing ρ( f ) as it appears in the NPTF. Again, this is computed
numerically and not analytically, using algorithm 2. This algorithm creates a density estimate for ρ( f ) in the form of a histogram ρi,
with bin edges f̂i .

Algorithm 2. Numerical ( )r f

r ¬ " i0i

loop Nsim sources times
¬ "f B0B

¬ Wx sample from
loop Nsim counts times

(·∣ )f¬y xsample from
¬ ¢ Î W ¢yB B such that B

¬ +f f N1B B sim counts

end loop
[ ˆ ˆ )¬ ¢ Î "¢ ¢+i i f f f Bsuch that ,B B B i i 1B B

r r¬ + "N B1i i sim sourcesB B

end loop
˜ ( ˆ ˆ )¬ + "+f f f i2i i i 1

( ˆ ˆ )D ¬ - "+f f ii i i1

˜r r r d¬ å "f ii i j j j j
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Appendix G
Natural Coordinate System

In this appendix, we provide additional details regarding the natural coordinate system introduced in Section 5 of the main text.
The mean number of sources is taken to be N, while here, FPS will be the total amount of flux emitted by the population of sources.
There will be m− 1 breaks, the locations of which will be defined by m− 2 numbers βiä (0, 1), where
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F
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b i

b i
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is the ratio of flux location of the (i+ 1)th break to the same for the ith break.
The conversion between this coordinate system and the standard coordinate system of Equation (46) requires finding A and all Fb(i)

in terms of N, FPS, and all βi. To do so, let
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be a similar ratio to βi but to the flux location of the first break, Fb(2), instead. Now we can write the mean number of sources as
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There is a similar expression for the total flux of the population:
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From the ratio of Equations (G6) and (G4), we can find Fb(2), then from either of these equations, we can find A. Finally, all
remaining flux break locations, Fb(i), can be found through Equation (G2).
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