EULER OBSTRUCTIONS FOR THE LAGRANGIAN GRASSMANNIAN

PAUL LEVAN AND CLAUDIU RAICU

ABSTRACT. We prove a case of a positivity conjecture of Mihalcea—Singh, concerned with the local Euler ob-
structions associated to the Schubert stratification of the Lagrangian Grassmannian LG(n,2n). Combined with
work of Aluffi-Mihalcea—Schiirmann—Su, this further implies the positivity of the Mather classes for Schubert
varieties in LG(n,2n), which Mihalcea—Singh had verified for the other cominuscule spaces of classical Lie type.
Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to
show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing
Kazhdan-Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for LG(n,2n) the
Euler obstructions ey, may vanish for certain pairs (y,w) with y < w in the Bruhat order. Our combinatorial
description allows us to classify all the pairs (y,w) for which ey ., = 0. Restricting to the big opposite cell in
LG(n,2n), which is naturally identified with the space of n X n symmetric matrices, we recover the formulas for
the local Euler obstructions associated with the matrix rank stratification.

1. INTRODUCTION

The goal of this note is to study the local Euler obstructions associated with the Schubert stratification of the
Lagrangian Grassmannian X = LG(n,2n). It was conjectured by Mihalcea—Singh [MS20, Conjecture 10.2]
that these invariants are non-negative, in the more general context when X is a cominuscule space (also
referred to as a compact Hermitian symmetric space in the literature). The conjecture was verified in [MS20,
Theorem 10.4] for the cominuscule spaces of classical Lie type other than LG(n,2n), mainly as a consequence
of the work of Boe and Fu [BF97], and of Bressler—Finkelberg-Lunts [BFL90] for the type A Grassmannian.
The case X = LG(n,2n) is also considered in [BF97], where a recursive and a combinatorial description of the
local Euler obstructions is given, both of which are based on formulas with positive and negative contributions.
Our input is to explain how to make these formulas positive, and in particular to confirm the Mihalcea—Singh
conjecture for LG(n, 2n). We are moreover able to completely classify when the Euler obstructions vanish, and
to recover the explicit formulas from [Zha20, Theorem 6.6] and [LR21, Corollary 5.3] for the corresponding
invariants associated to the rank stratification on the space of n x n symmetric matrices.

Following [Boe88, Section 3], we index the Schubert cells by words w of size n in the alphabet {«, 5}, write
X,, for the cell corresponding to w, and X, for its closure. Every word w is uniquely represented by a path
in the 2-plane starting at the origin, where each « represents a line segment from (a,b) to (a + 1,b — 1), and
B represents a line segment from (a,b) to (e +1,b+ 1). We denote the path associated to w by path(w), and
we have for instance

w = BaaafBalS — path(w) =
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The Bruhat order, given by y < w if X, C X, can be interpreted pictorially by the fact that no point on
path(y) lies strictly above path(w). We define the local Euler obstructions coefficients

eyw = Bug, (p) for p € Xy,

where Euy denotes MacPherson’s local Euler obstruction function associated to a subvariety V' [Mac74, Sec-
tion 3]; see also [LR21] for a leisurely treatment, with extensive references, of the theory of Euler obstructions
in the closely related case of matrix spaces. We write |w| for the size of the word w, and whenever we write
eyw we implicitly assume that |y| = |w|. We will also write |w|, for the number of o’s in w, and define
|w|g similarly. Our first result is the following positive recursion for the local Euler obstructions (see also
[BF97, Section 6] for a set of recursive relations involving both positive and negative contributions).

Theorem 1.1. The local Euler obstructions are uniquely determined by the following recursive relations.
(1) eww =1 and ey =0 if y £ w.
(2) fy=ya and w=w'p then ey, = eyg-
3) If y=vy'aBy” and w = w'orw” with |y'| = |w'| and o7 € {acw, B, BB} then ey = ey pay w-
(4) If y =y aBy" and w = w'afw” with |y'| = |w'| then eyw = €y gay’ w + €yy” wu -
5) If y =y acv and w = w'Ba then ey = ey pg.1-
6) If y =y acv and w = w'aae then ey = €y ap.w + €y -
In particular, ey, > 0 for all y, w

The non-negativity of Euler obstructions in Theorem 1.1 was conjectured in [MS20, Conjecture 10.2] in
the more general setting of cominuscule spaces, and was verified in [MS20, Theorem 10.4] for the classical
Lie types A, B and D. Mihalcea and Singh also obtained significant computational evidence in support of
the conjecture for LG(n,2n) (type C) and for the Cayley plane (type Eg). One of their motivations was
to establish positivity properties for Mather classes [MS20, Conjecture 1.2(a)]. Using the positivity of the
Schubert expansion of Chern-Schwartz—MacPherson classes of Schubert cells [AMSS17, Corollary 1.4], the
result for Mather classes can be deduced from the positivity of local Euler obstructions [MS20, Proposition
10.3(a)]. In particular, it follows from Theorem 1.1 that [MS20, Conjecture 1.2(a)] also holds for LG(n,2n).

We illustrate Theorem 1.1 with some examples (which can be checked against [MS20, Table 3]).

Example 1.2. We consider y = acafl, w = fBaf and denote for clarity (y,w) := ey . To help clarify the
use of the recursive formulas, we underline the subword in y to be changed and the corresponding position in
w, and we mark each resulting change in y in red:

(4

Nt

(caaf, Bfaf) = aafa, BBaf) + (aa, B5)
(3),(2) afaa, BBap) + (af, BS)
B3 (Baoa, BBap) + (Ba, BB)
@ )+ (85, 88)

(BaBa, BBaB) + (Ba, BB)] + 1
Blaw, BBaf) + (B, 5) + 1
BBas, BBaf) +2 =3

If we keep y the same and take w = Bfaq, then (with some steps omitted) we have that

(aaaB, BBac) 2 (Baaa, BBac) L (BB, BBaa) + (Ba, 88) 2P 0 + (88, 88) 2 1

(
(
(
=" (Baas, Baf
[
(
(
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and if we take y = aaaa, w = 55, then

(aana, 3580) 2 (aap, Bopa) 2 (Bpaa, B3pa) 2 (8886, 6660) D o.

Even though Theorem 1.1 completely settles the non-negativity of Euler obstructions, it is difficult to use in
practice, for instance in order to understand when e, ,, = 0. Our next goal is then to obtain a non-recursive,
combinatorial description of the obstructions e, .. To do so, based on the standard combinatorial models
from [LS81,Boe88, BF97] we associate to every word w a rooted tree A(w), and to every pair (y,w) a diagram
(decorated tree) A(w/y), consisting of the tree A(w) together with some additional data at each leaf, called the
capacity of the corresponding terminal edge. We refer the reader to Section 3 for the details of the construction
and terminology, but we show here an example to give a flavor of the combinatorics involved.

Example 1.3. Let w = ffafacafacfaBBa, and y = afacacaafacaaaf. The paths of y and w, as well
as the corresponding capacities, and the decorated tree A(w/y) are pictured below.

The definition of capacities is given in (3.3), (3.4), the dotted edges E1, E9, F3 are called distinguished edges,
while the remaining ones are regular edges. The terminal edges are the ones incident to leaves of the tree, and
we write cap(T") for the capacity of a terminal edge T'.

We can now define admissible labelings, which are essential to our non-recursive description of the local
Euler obstructions. For edges F, F’, we write F' < F’ if F' belongs to the shortest path joining F” to the root.

Definition 1.4. We write E, - - - , E, for the distinguished edges in A(w/y). An admissible labeling of A(w/y)
is a function that assigns to each edge F' a non-negative integer ¢(F’), satisfying the following properties:

(1) If F < F' then ¢(F) < ((F").

(2) If F' is a regular terminal edge, then ¢(F) < cap(F).

(3) If E, is a terminal edge then ¢(E;) = cap(E1).

(4) For every odd distinguished edge E9;_1, i > 1, we have

K(E%_l) = mln{K(F) F > Egi_l},
with the exception when ¢ = 1 and Ej is terminal, in which case ¢(E;) was given in (3).
(5) For every i > 1 we have
g(EQi_l) = E(EQZ) (mod 2),

where we make the convention that ¢(E;) = 0 for j > r (hence ((E;) is even if 7 is odd).
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If A(w/y) has no edges then the empty labeling is the unique admissible labeling of A(w/y).

We will show that the diagram A(w/y) in Example 1.3 has 124 admissible labelings (see Example 3.4), but
for now we illustrate Definition 1.4 with two examples.

admissible non-admissible

There are several reasons why the diagram on the right is non-admissible: it fails condition (3) because
((Ey) = 3 # 4 = cap(Ey), it fails condition (5) because r = 3 and ¢(FE3) is odd, and it fails condition (1)
because of the existence of edges F, F’ with {(F) =2, {(F') =1 and F < F".

The next result establishes the relationship between labelings and local Euler obstructions.

Theorem 1.5. The local Euler obstruction ey, is equal to the number of admissible labelings of A(w/y).

For the Grassmannians in type A and D with their corresponding Schubert stratifications, we have e, ,, > 0
whenever y < w, due to the fact that the Euler obstructions can be calculated as the value at 1 of Kazhdan—
Lusztig polynomials (see [BF97, Remark 6.1B], [MS20, Theorem 10.4]). By contrast, for LG (n, 2n) the relation
with Kazhdan—Lusztig polynomials is more subtle, due to the presence of reducible characteristic cycles for
the intersection cohomology sheaves of the strata. In particular, the Euler obstructions can often be 0, and
it is interesting to study when this occurs. The next result identifies the main source of vanishing for Euler
obstructions (see Theorem 4.1 for the complete characterization).

Theorem 1.6. Suppose that path(y) lies strictly below path(w), that is, y < w and (0,0) is the only point that
path(y) and path(w) have in common. We have that ey, = 0 if and only if the following conditions hold:

e the number of distinguished edges in A(w/y) is odd,
e Ey is a terminal edge and cap(E) is odd,
e for all i > 1, the unique node incident to Fo; and Eo;y1 is not incident to any other edge.

If we consider the diagram A(w/y) in Example 1.3 and we change the capacity of E; to an odd number,
then the resulting diagram satisfies all the conditions in Theorem 1.6, and in particular it corresponds to a
vanishing Euler obstruction (see also Example 4.2).

As a final application, we consider the space of n X n symmetric matrices, equipped with the rank stratifica-
tion, and we define e; ; to be the corresponding local Euler obstructions. It is shown in [Zha20, Theorem 6.6]
and [LR21, Corollary 5.3] that

0 if n — ¢ is even and n — j is odd;
e, . = n—i
I L EJ otherwise.
7
2
Using the fact that the space of symmetric matrices arises naturally as the big opposite cell in LG(n,2n), we
explain in the last section of the paper how the formula above is a direct consequence of Theorem 1.5.
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Organization. In Section 2 we explain how the work of Boe and Fu leads to a positive recursion for the
local Euler obstructions, and in particular it implies their positivity properties. In Section 3 we explain
the combinatorics of decorated trees and admissible labelings, and prove Theorem 1.5. We then apply this
theorem in Section 4 to characterize all the pairs (y,w) for which ey, = 0, and we conclude in Section 5 with
the derivation of the local Euler obstructions for symmetric matrices.

2. THE RECURSION FOR LOCAL EULER OBSTRUCTIONS

The goal of this section is to explain how the results of [BF97] lead to a proof of Theorem 1.1. We begin by
recalling basic facts about the Lagrangian Grassmannian LG(n,2n) and its associated Schubert stratification.
We fix the symplectic vector space (C%", w), where

1 i+j=2n+1,i<n,
w(€ €) =4 —1 i+j=2n+1,i>n+1,
0 otherwise,

and {€;}; denotes the standard basis in C2". A subspace L C C?" is isotropic if w(f,g) = 0 for all f,g € L. We
say that L is Lagrangian if L is isotropic and is maximal with respect to inclusion. The variety X = LG(n,2n)
is the parameter space for Lagrangian subspaces in C?".

The Schubert stratification of X is naturally indexed by symmetric partitions A = (Ag, -+, \,,) with

n>A > >\, > 0.
Here, symmetric means that A = ), where )\’ is the conjugate partition given by
N =1 X > g}
An example of such a partition is A = (7,6,6,3,3,3,1). If we write
C*® = Span(éey, - -, €s)
then the Schubert cell corresponding to A is given by

Xy = {L e LG(n,2n) ( dim (L N (CA"H*Z'“) —iforie{l,... ,n}} . (2.1)

The closure of these cells are the corresponding Schubert varieties X, which can be described by replacing
the equality above with >.

It will be useful to use a different parametrization of the Schubert cells, using words w of size n in the
alphabet {a, 5} (see also [Boe88, Section 3|, [BF97, p457]). The relation between a word w and path(w) was
described in the introduction, and passing from a symmetric partition to the path of the corresponding word
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is illustrated best through an example.

path(w)

w = faffaca

A= (7,6,6,3,3,3,1)

To construct path(w) for the word w corresponding to y, we imagine the Young diagram of the symmetric
partition A embedded into an n x n square, which we picture rotated by a 45° angle. The (now) vertical
diagonal of the square becomes an axis of symmetry for (the Young diagram of) \. Starting at the left corner
of the rectangle, we follow the boundary of the rectangle until we reach A, and then follow A, stopping when
the axis of symmetry is reached. Our convention is that the left corner of the square has coordinates (0,0),
which is the starting point of every path(w).

From now on we write X,, for X, where w is the word corresponding to A. The Bruhat order, given by
y < w if and only if (Jy| = |w| and) X, C X,,, can be rephrased by the condition that path(y) lies on or below
path(w). In particular, this is compatible with concatenation of words:

y/ S w/ and y// g w// = y/y// g w/w//.

Thinking of LG(n,2n) as a homogeneous space for the symplectic group Sp(2n) preserving the form w, we
get a natural action of the associated Weyl group C),. Recall that C,, is the hyperoctahedral group of signed
permutations, and it is generated by simple reflections s1,-- -, s,. The (right) action of the simple reflections
on the Schubert cells, or the corresponding words, is given as follows (see [Boe88, (2.1) and (3.3)]):

e If i < n then ws; is the word given by swapping the ith and (i + 1)st symbols of w.
e ws,, is the word given by changing the last symbol in w from o to 7 where {0, 7} = {«, 5}.

In the 2-plane, we think of the vertical line over (i,0) as corresponding to s; as the action by this element
will either interchange a local maximum of path(w) with a local minimum where path(w) intersects this line
(and vice versa) or leave path(w) unchanged if it has no local extremum along this line. A local minimum in
path(w) will be called a trough, which corresponds to a subword af occurring in w. Given two words y < w,
with a trough of path(w) occurring along the line corresponding to s; we define the capacity of path(w) over
path(y) at s;, denoted capg, (y,w), to be half the vertical distance from path(y) up to path(w) along the line

at s;. If we write y = y'y” and w = w'w” with |y/| = |w'| =i then

Capsi(va) = ’y/’a - ’w/’a'

To prove Theorem 1.1, we will need the following two lemmas which are immediate consequences of [BF97,
Lemmas 6.2C, 6.2D].

Lemma 2.1. If y < w and if s is a simple reflection such that w £ ws then ey, = €ysw-
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Lemma 2.2. Suppose that y < w, that s = s; is a simple reflection such that
y < ys and w < ws, (2.2)

and let ¢ = cap,(y,w) be the capacity corresponding to s. There exist words §,w of smaller size such that

c ifi=mn;

_ o, _ )

eyw = eysw + (—1) eyw, wherer = )
0 otherwise.

o If1<i<n then (2.2) implies w = w'afw” and y = y'aBy” where |W'| = |y'| =i — 1. In this case,
one can take w = w'w” and y = y'y".

o If s = s,, then the conditions above imply w = w'a and y = y'a where |w'| = || = n — 1. In this
case, one can take W = w' and y =1y’ .

The results above allow us to establish the recurrence relations stated in Theorem 1.1, which combined

together will imply the non-negativity of ey .
Proof of Theorem 1.1(1). Since X, is smooth, it is contained in the regular locus of X, which implies
eww = 1 [Mac74, Section 3]. If y £ w then X, is disjoint from X, hence ey, = 0. O
Proof of Theorem 1.1(2). If we consider the action of the simple reflection s,, then we get
ysn = (Y a)s, =9/ B, and ws, = (w'B)s, = wa < w.

If we apply Lemma 2.1 with s = s, then the desired conclusion follows. ]
Proof of Theorem 1.1(3). Consider the action of the simple reflection s;, where i = |y/| + 1. We have

ysi = (Y aBy”)s; = y' Bay”, and ws; = (w'oTw”)s; = w'row” < w,

where the last inequality follows from the fact that 7o < o7, which holds since o7 # 5. We may therefore
conclude again by applying Lemma 2.1. O

Proof of Theorem 1.1(4). If we let s = s;, where i = |[¢/| + 1 < n, then we have

y=1v'aBy’ <y pay’ =ys and w = wapuw” < w'Baw’ = ws.
The conclusion the follows from Lemma 2.2, noting that r = 0 since i < n. O
Proof of Theorem 1.1(5-6). We write w = w'oa, where o € {«, 8} and let

¢ = cap,, (¥, w) = [Yla — |wla-
Using the fact that
y =1y aa <yaB =ys, and w =w'oa < wof = wsy,,

we can apply Lemma 2.2 with s = s, to conclude that

eyw = eyapw T (—1)eyauwo & ey Ba,w + (—1)eyauwo- (2.3)
Repeating the calculation above with y replaced by v/ B«, and using the fact that
cap,, (y' Ba, w) = |y Bala — Jwla = c— 1,
we find that
€y Bayw = €y BBw + (*1)6_1€y’,8,w’m
which combined with (2.3) yields

Cyw = €y BBw T (_1)cey’a,w’a + (_1)Ciley’6,w’a’ (2.4)
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To conclude, we analyze separately the two choices for o. If 0 = 8 then the previously established recursion
(2) yields
Ey'aw'c = €y B o
so we get a cancellation in (2.4) that proves ey ., = e,/33, which establishes recursion (5) in our theorem.
Suppose now that o = «, observe that |y/a| = |w'a| = n — 1, and apply Lemma 2.2 to the action of the
simple reflection s,_; (in the corresponding smaller Weyl group). We have

capsnil(y'a, w'a) = ¢,
and therefore
eyawa = €ypua+ (—1)ey w.
Multiplying the equality above by (—1)¢ and combining it with (2.4) for o = «, we obtain
Eyw = €y'pw + (*1)2061/710’ + (=1)%eyguwa + (*1)C_ley’ﬁ,w’a = ey ppuw T Cy s
proving recursion (6). O

To finish the proof of Theorem 1.1, we have to explain why the recursive relations (1-6) completely determine
the local Euler obstructions, which we do next.

Conclusion of the proof of Theorem 1.1. We prove that the relations (1-6) determine e, ,,, by induction on
the pair (|y|,y) with the order given by

(Iyl,y) < (9], 9) <= (lyl <9]) or (ly| = |g| and y = g).

Based on relation (1), we may assume that y < w. If y contains the subword af, then we can either apply
relation (3) or (4) and induction to compute e, using the fact that

y'Bay” > y'apy” and |y'y"| < |yl.
We can therefore assume that y = 8- fa-- - «, and since y < w, y must contain at least one a. If w ends in
B then we apply relation (2) and induction, using the fact that 'S > y.
We may therefore further assume that w ends in «, and since y < w, we get that the last two letters in y

are aa. We can then compute e, ,, by applying either relation (5) or (6). Noting that y/88 > y and |y/| < |y,
we can apply induction again to conclude our proof. [l

3. TREES AND ADMISSIBLE LABELINGS

The goal of this section is to give a combinatorial interpretation of the local Euler obstructions for LG(n, 2n)
as the number of admissible labelings of some tree diagrams associated with a pair of words (y,w) (Theo-
rem 1.5). The combinatorics that we employ is familiar in Kazhdan-Lusztig theory (see [LS81], [Boe88]), and
it was used in [BF97] to provide a description of the local Euler obstructions as a signed count of diagram
labelings. Our contribution is to find an appropriate modification of the combinatorial constructions in order
to obtain a positive count of diagrams that elucidates the non-negativity of the local Euler obstructions. In
particular, this will allow us in Section 4 to completely characterize the pairs (y,w) for which ey, = 0.

We let Z denote the center of the cycle monoid of Lascoux and Schiitzenberger [LS81, Section 4], which is
the smallest set of words in v and 3 satisfying the following properties (see also [Boe88, (3.7)]):

e The empty word () is in Z.
e If z € Z then azf isin Z.
e 7 is closed under concatenation (it is a submonoid of the free group on «a, f3).

Every word z € Z can be encoded using a rooted tree A(z) constructed recursively as follows:
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e For the empty word, A(()) = e consists of only the root and no edges.

e The tree A(az/3) is obtained by introducing a new root, and joining it to the root of A(z) by an edge.

o If 21,290 € Z then A(z122) is obtained by glueing A(z1) and A(z2) at their root. In this case we will
always draw the edges coming from A(z1) on the left, and those coming from A(z2) on the right.

Example 3.1. Applying the recursive construction above, we obtain the tree A(z) associated to the word
z = afaafaBf as follows:

w | 0]ab afap aafapfp afaaBapp

Aw) | o I ./\

Conversely, every word z € Z can be uniquely recovered from the tree A(z), as follows (see also [LS81,
Exemple 6.2]). We consider a tubular neighborhood of A(z), and travel around its boundary while observing
the following set of rules:

e we start at the root of A(z) and first move along the leftmost edge;

e we always stay to the right of an edge in the direction of travel;

e every time we move downward along an edge we write the label «, and we write  when we move
upward along an edge. The resulting sequence of labels is the word z.

For the tree A(z) in our example, we obtain the following diagram

One can see from the description above that words z € Z can be characterized by the condition that path(z)
starts at (0,0) and ends at (|z|,0), and has the property that no point on path(z) lies above the z-axis.

We next define Z to be the set of words obtained by concatenating words in Z and words consisting only of
the letter 8. Equivalently, Z is the monoid under concatenation generated by Z and by the one-letter word f.
A typical element Z € Z has the form

F= 2,8 Bzg 1B Brea - 218 Bro, (3.1)
where some of the sequences of 5’s may be empty. We associate to Z the rooted tree
A(Z) = A(zszs—1 - 2120)-
Unlike for words in Z, it is no longer possible to recover Z from its tree. The reader can check that
z = papppaapappp
has the property that A(Z) = A(z), where z is as in Example 3.1.
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If w is now an arbitrary word in o and 3, then it can be expressed uniquely as
W= zpQz_q0 - qzizg, with z; € Z for i =0,--- ,r—1, and 2, € Z, (3.2)

where some of the z; may be empty. To understand this decomposition and compute it efficiently, we can
use the identification of words in Z with valid parenthesized expressions as in [LS81, Section 6], where
a corresponds to an open parenthesis “(” and f corresponds to a closed parenthesis “)”. To obtain the
decomposition (3.2) for a word w, proceed as follows:

e surround in parentheses subwords of the form «f appearing in w.

e remove the parenthesized terms and proceed inductively with the new smaller word.

e after all possible pairs are removed, thus ending with a word of the form 53 --- Baa - - - «, substitute
back in all terms with their associated parentheses.

e each subword surrounded by parentheses is a valid parenthesized expression giving an element of Z.

e the (distinguished) «’s that are not immediately preceded by “(” are the ones shown in (3.2), and
they separate the subwords zg, - - - , 2.

Example 3.2. For the word w = SBafacafaafafBa, we identify the maximal valid parenthesized subex-
pressions as follows:

BB(ap)aalap)(alab)(ab)b)a,

so w is obtained by inserting words from Z into SfSaaa. With the notation (3.2), we have » = 3 and
20 =10, 21 = (aB)(a(af)(aB)B), z2 =10, 23 = BB(ap).

To any word w as in (3.2) we associate a rooted tree A(w), with

e Distinguished nodes Vj, - - - , V., where V, is the root of the tree A(w).

e Distinguished edges E1,---, E,., where E; joins V;_1 to V;, and corresponds to the letter o in the
expression (3.2) which is located immediately to the left of z;_;.

e A subtree A(z;) attached at node V; (so that V; is the root of A(z;)) for each i =1,--- ,r. We call the
edges occurring in the subtrees A(z;) regular edges, and the nodes different from V; regular nodes.

Example 3.3. The word w = pfafacafacfaffa from Example 3.2 corresponds to the following tree,
where we represent the distinguished edges E1, E3, E’3 using dashed lines, and we highlight the nodes Vg, --- , V3
where the trees corresponding to the subwords z; get attached (note that zy and 29 are empty, while the word
z1 and the corresponding subtree A(z;) of A(w) are as in Example 3.1).

Ej

.
~
.
. 2
~
.
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A leaf of A(w) is a node which is incident to a unique edge and it is different from the root of A(w). The
unique edge incident to a leaf is called a terminal edge. In Example 3.3 there are five terminal edges: four of
them are regular edges, and one is distinguished (namely E7). In general E; will be a terminal edge if and
only if the word zp in (3.2) is empty. The distinguished edges FE; with ¢ > 2 will never be terminal. It will
be important to notice that the regular terminal edges in A(w) are in bijection with subwords af of w (or
equivalently, with troughs of path(w)).

There is a natural partial order on the edges of A(w), where F < F’ if F is contained in the unique
path joining F’ to the root of A(w). We have for instance that the distinguished edges are linearly ordered
(B, < --- < Ep), and that terminal edges are pairwise incomparable. In Example 3.3, we have Fy < F for
every F'in the subtree A(z;) with root Vi, but Ej is incomparable to every such F.

We next consider a pair (y,w) of words of the same size. We define a capacity (relative to y) for every
terminal edge of A(w) as follows:

e If F is a regular terminal edge, corresponding to a trough af, then we write w = w'afBw” and
y =y'ory” with || = |w'| and 0,7 € {«, 8}, and let (see also [Boe88, Example 3.9])

cap(F) = cap, (F) := |y'ola — |w'ala. (3.3)
e If F| is a terminal edge then we let
cap(E1) = capy(E1) := |yla — |wla- (3.4)

We let A(w/y) denote the tree A(w) together with the additional data of the capacities of its terminal edges.
We will refer to A(w/y) as a diagram or decorated tree.

When picturing A(w/y) we will often omit the labels for nodes and edges unless we need to specifically
refer to them, and we will indicate the capacities of the terminal edges by placing a number representing the
capacity at the leaf incident to each terminal edge. We now encourage the reader to revisit Example 1.3 in
the Introduction, where the word w is the same as the one in Example 3.3. Before stating the main result of
the section, we ask the reader to recall Definition 1.4, and we illustrate it with a count of admissible labelings
in an example.

Example 3.4. We claim that the number of admissible labelings of the diagram A(w/y) in Example 1.3 is
124. Note that if Fj is the unique regular edge incident to the root then ¢(Fy) € {0,1}, and either choice is
compatible with the labelings of the remaining edges. It is then enough to check that the remaining part of
the diagram has 62 admissible labelings. We have ¢(E;) = 4 by condition (3) in Definition 1.4, ((E3) < 4
is even by (1) and (5), and ¢(Es3) = ((E3) by (4). We therefore need to count admissible labelings of the
decorated subtree A(z;) below, where the labels are greater than or equal to ¢(E3).

B I

B/ \F,

It is clear that if /(E2) = 4 then no such labelings exist. If /(E2) = 2 then there are exactly two labelings:

2 2 2 2

and
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If £(E2) = 0 then we have ¢(Fy) € {0,1,2} and each choice is independent of the rest of the labelings, so we
need to show that the labels for Fy, F3, F) can be chosen in 20 ways. Indeed, if /(F5) = i then there are 3 — i
choices for ¢(F3) and 4 — i choices for ¢(Fy), for a total of
2
D (3 —i)-(4—i) =12+ 6+ 2 = 20 labelings.
i=0
We next move closer toward the goal of this section, which is the proof of Theorem 1.5, for which we

establish several preliminary results.

Lemma 3.5. Suppose that y = y'afy” and w = w'afw”, where |y'| = |w'|, and let F denote the terminal
edge of A(w) corresponding to the trough af between w' and w”. We have a bijection between admissible
labelings ¢ of A(w/y) with {(F) = cap(F) and admissible labelings of A(w'w" /y'y").

Proof. We have that A(w'w”) is obtained from A(w) by removing the terminal edge F', so we have a natural
restriction map from labelings ¢ of A(w) to labelings ¢’ of A(w'w”). Moreover, every labeling ¢’ of A(w'w")
extends uniquely to a labeling ¢ of A(w) with ¢(F) = cap(F). We will show that this correspondence
establishes the desired bijection for admissible labelings.

We let V' denote the node incident to F' which is not a leaf of A(w). If V is the root of A(w) then F is
incomparable to every other edge G of A(w), hence its label is only subject to condition (2) in Definition 1.4,
and we get the desired bijection with labelings of A(w'w”). We therefore assume that V' is not the root of
A(w), and let F’ denote the unique edge incident to V with F’ < F:

F/
|4
F

We note that the existence of F’ implies that w’ contains at least one a. We also note that every terminal
edge T' # F of A(w) is also a terminal edge in A(w'w”), and it satisfies cap, (T') = cap,,»(T), making the
notation cap(7") unambiguous. We write ¢ = cap, (F).

If V is a leaf of A(w'w”) then we have cap,,(F') = ¢, hence every admissible labeling ¢’ of A(w'w")
satisfies #/(F") < ¢ by Definition 1.4(2). This is enough to conclude that the correspondence between labelings
¢ of A(w/y) with £(F) = ¢ and labelings of A(w'w”/y'y") remains a bijection when restricting to admissible
labelings.

If V is not a leaf of A(w'w”) then we will prove that there exists a terminal edge 7' with F/ < T and
cap(T) < c. It then follows from Definition 1.4(1) that every admissible labeling ¢ of A(w'w”) satisfies
VU(F") < /U(T) < ¢, and we conclude as in the previous paragraph. To find the terminal edge T', we note that
the assumption that V is not a leaf of A(w'w”) implies that either w’ ends with 8 or that w” starts with «. If
w’ ends with 3, consider the last o in w’, which is necessarily followed by a £, hence it determines a trough.
If we let T' be the corresponding terminal edge then cap(T) < cap,(F) = ¢, as desired. If w” starts with a
and contains at least one 8 we consider the first such, which is necessarily preceded by «. As in the previous
case, this determines a terminal edge T' with cap(T) < ¢, as desired. Finally, if w” contains no 3 then we take
T = E1 to be the distinguished terminal edge, concluding the proof. ([l

Lemma 3.6. Suppose that y = y'ac and w = w'fa, so that Ey is a distinguished terminal edge in A(w). If
we let ¢ = cap(F1) and if A(w) has at least two distinguished edges, then every admissible labeling of A(w/y)
satisfies £(Fy) < c— 2.
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Proof. We use the notation (3.2), and observe that our assumption that A(w) has at least two distinguished
edges, together with the fact that w ends in Sa, implies that 21 # (). If we let a3 be the last trough of w
then the corresponding terminal edge F' lies in the subtree A(z1) and moreover we have

cap(F) < cap(En).

Since F' € A(z1) we have Ey < F, and parts (1) and (3) of Definition 1.4 imply that for every admissible
labeling of A(w/y) we have

E(EQ) < g(F) < K(El) =c.
Using Definition 1.4(5) with ¢ = 1, we conclude that ¢(E2) < ¢ — 2, as desired. O

Lemma 3.7. Suppose that y = y'ac and w = w'aa, so that Ey is a distinguished terminal edge in A(w).
If we let ¢ = cap(F4) then we have a bijection between admissible labelings of A(w/y) with ¢(E2) = ¢ and
admissible labelings of A(w'/y').

Proof. Note that our hypotheses imply that with the notation (3.2) we have r > 2 and 29 = 23 = 0, and
that for every admissible labeling ¢ of A(w/y) we have ¢(E;) = c. If A(w) has only two distinguished edges,
and ((E3) = ¢, then conditions (3), (4), (5) in Definition 1.4 are satisfied. Using the fact that A(w'/y’) is
obtained from A(w/y) by removing F; and FEs, it is clear that restricting an admissible labeling ¢ of A(w/y)
to A(w'/y’") provides the desired bijection.

Suppose from now on that A(w) has at least three distinguished edges. If zo = (), or equivalently Ej is a
terminal edge of A(w’), then for every admissible labeling ¢ of A(w/y) we have ¢(FEs3) = ¢(Es). Moreover, we
have cap,,(FE3) = ¢ and therefore every admissible labeling ¢ of A(w'/y’) satisfies £'(E3) = c. By restricting
labelings of A(w/y) with ¢(E2) = ¢ to A(w'/y’) we get the desired bijection.

Finally, suppose that zo # () and let F' denote the terminal edge in A(z3) corresponding to the last trough
of A(w). We have cap(F') < ¢ and since F3 < F, every admissible labeling ¢ of A(w/y) satisfies {(E3) < c.
Since Fj3 is an odd distinguished edge in A(w’) but not terminal, it follows that by restricting labelings of
A(w/y) with £(E3) = ¢ to A(w'/y") we get the desired bijection. O

Proof of Theorem 1.5. We denote by ¢, ,, the number of admissible labelings of A(w/y) and prove that they
satisfy the recursions of e, ,, from Section 2. We divide our analysis into several cases.

Case 1: y = w. For every terminal edge F' we have cap(F') = 0, hence Definition 1.4(1) and (2) implies that
¢(G) = 0 for every edge G. This is an admissible labeling, and we get £, ., = 1.

Case 2: y £ w. We will show that ¢, ,, = 0. We have that some parts of path(y) lie above path(w), and
without loss of generality, we may assume that either

e w contains a trough a/f that lies below path(y), in which case the corresponding regular terminal edge
F has cap(F') < 0, and no admissible labelings exist by Definition 1.4(2); or

e Ej is a terminal edge (that is, w ends in the letter ) and cap(F;) < 0, in which case no admissible
labelings exist by Definition 1.4(3).

For the remaining cases we will assume that y < w.
Case 3: y = - - fa. The condition w > y means that w = - -- 8, thus A(w/y) has no edges and ¢, ,, = 1.
Case 4: We next show that if y = '« and w = w’f then

eva = Ey/ﬂ:w' (35)

Note that since w ends in 8, F; is not a terminal edge. For a regular terminal edge F', the definition (3.3) of
cap(F') does not involve the last letter in y and w, hence A(w/y) = A(w/y'B), which proves (3.5).
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Case 5: Suppose next that y = y’afy” and w = w'orw”, where |y/| = |w'| and o7 € {aa, fa, B8}. We show
that

Cyo =Ly oy (3.6)
It follows from (3.4) that if E; is terminal then cap(F;) is not affected by permutations of the letters in y.
Moreover, since o7 is not a trough of w, the capacities of regular edges relative to y and y’Say” coincide. We
conclude that A(w/y) = A(w/y' Bay”), which proves (3.6).
Case 6: Suppose now that y = y'afy” and w = w'afw”, where |y| = |w'|. We show that

ey,w = gy’ﬁay”,w + gy’y”,w’w”- (37)
We let F' denote the regular terminal edge corresponding to the trough af between w’ and w”. If we
write cap, (G) (resp. cap;(G)) for the capacity of a terminal edge G relative to y (resp. § = y'Say”) then
cap;(F') = cap, (F) — 1 and cap;(G) = cap, (G) for all G # F. It follows that £, ,, — £y/gay~ .« is non-negative,
and it counts admissible labelings of A(w/y) for which ¢(F') = cap(F'). Applying Lemma 3.5 we get (3.7).
Case 7: y = y'aa and w = w'Ba. We show that

byw = Ly pp,w-

Let § = '8, let ¢ = cap,(E1), and note that cap;(E1) = ¢—2, and cap, (F) = cap;(F) for all terminal edges
F # E,. By Definition 1.4(3), every admissible labeling ¢ of A(w/y) has ¢(E1) = ¢, while every admissible
labeling £ of A(w/7y) has E(El) = ¢ — 2. Since ¢ and ¢ — 2 have the same parity, we get a bijection between
admissible labelings [ of A(w/§) and ¢ of A(w/y) by letting ¢(G) = £(G) for all G # E;. Indeed, if E; is the
only distinguished edge of A(w) then it is clear that ¢ is admissible if and only if £ is, and if A(w) has at least
two distinguished edges then the same conclusion follows using Lemma 3.6.

Case 8: y = y'aa and w = w’'aa. We show that

Cyw =Ly gBaw + by - (3.8)
If we let § = 3’88 and ¢ = cap,(E1), then cap;(E1) = ¢ — 2, and cap, (F) = cap;(F) for all terminal edges
F # Ey. Tt follows that every admissible labeling ¢ of A(w/§) gives rise to an admissible labeling ¢ of A(w/y)
by letting £(Ey) = ¢ = £(Ey) + 2, and 4(G) = /(G) for G # Ey. Moreover, the difference £, — £ygp.0
counts admissible labelings ¢ of A(w/y) for which changing ¢(F;) to ¢ — 2 results in an inadmissible labeling
of A(w/y), that is, for which ¢(F2) = c¢. Applying Lemma 3.7, we get (3.8). O

4. VANISHING OF LOCAL EULER OBSTRUCTIONS

The goal of this section is to characterize the pairs (y,w) with y < w for which the corresponding local
Fuler obstructions vanish. More precisely, we use Theorem 1.5 to prove the following.

Theorem 4.1. Consider words y,w with y < w.
(1) Suppose that path(y) lies strictly below path(w). If we let w as in (3.2) then

eyw =0 <= |yla — |wl|a is odd, 7 is odd, and z9; =0 for all i. (4.1)

(2) Write y = y'y" and w = w'w” such that |y | = |w'|a, and path(y”) lies strictly below path(w”). We
have that
Cyw = 0 <= Ey w!' = 0. (4.2)

Proof. We begin by proving (4.1), noting that the hypothesis that path(y) lies strictly below path(w) implies
that cap(T) > 0 for every terminal edge T of A(w) (where cap(T') = cap,(T)). If 2o # 0 then we get an
admissible labeling ¢ of A(w/y) by defining ¢(G) = 0 for all G, which by Theorem 1.5 implies e, ,, > 1. We
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may therefore assume that A(w) contains at least one distinguished edge and that Fj is a terminal edge, and
we write ¢ = |y|lo — |w|a = cap(E1). If ¢ is even then if we let £(E;) = ¢ and ¢(G) = 0 for all G # Ej, then
¢ is admissible and we conclude again that e, ,, > 1. We may thus further assume that c is odd. If r is even,
then using the fact that all capacities are positive, we get that ¢(E1) = ¢, £(G) = 1 for G # E, defines an
admissible labeling, so e, ,, > 1. We may thus further assume that r is odd.

If z9; # 0 for some 7, we choose 7 minimal with this property, and note that i > 0 since zg # (). If we let

¢ ij=1 1 i GeAlz), j<2i
UE) =<1 if1<j<2i, and for each regular edge G let ¢(G) = 1 ) ‘7,_ Z,’
0 if i 92 0 if G e A(zj), j > 2i,

g 2

then ¢ is admissible, which implies e, ,, > 1. We may then further assume that zp; = () for all 4, hence all
the conditions on the right hand side of (4.1) are satisfied. To conclude, we have to prove that e, ., = 0, or
equivalently, that there is no admissible labeling of A(w/y).

Suppose by contradiction that ¢ is an admissible labeling of A(w/y). For each i > 0, z9; = () implies that
the only edges incident to Va; are the distinguished edges FEa; and FEa;11, hence Fs; is the unique maximal
edge which is strictly larger than FEo;, and condition (4) in Definition 1.4 implies that ¢(Eg;+1) = £(F2;).
Combining this with condition (5) in the same definition, and with the fact that ¢(E;) = ¢ is odd, we conclude
that ¢(E};) is odd for all 1 < j <r. Moreover, since r is odd we get also that

0=4{(Er11) =L(E,) (mod2),

which is a contradiction and concludes the proof of (4.1).

To prove part (2) of the theorem, notice that the hypothesis implies that y” starts with «, while w” starts
with 3. If |w'|o = 0 then w’ =y = -3, hence A(w/y) = A(w”/y") and (4.2) follows from Theorem 1.5.
We may therefore assume that |w’|, > 0 and consider the last « in w’, which is necessarily followed in the
word w by 8. We get a trough af of w and let F' denote the corresponding regular terminal edge. With the

/i

notation (3.2), we have that I € A(z;) for a unique j. We can write z; as the concatenation 2}z, with 2} a

(possibly empty) subword of w", z; and w" have no a in common, and z},27 € Z if j <r, while 27, 27 € Zif
j =r. We have that A(z;) is obtained by glueing the trees A(z}) with A(2}) at their root, and that F' € A(z}).
Moreover, A(w") is the subtree of A(w) consisting of the following:

e distinguished edges Eq,--- , E; (incident to the distinguished nodes Vg, ---,V}).

e the subtree A(2;) attached to V; for i < j, and the subtree A(z}) attached to V;.

Moreover, since |y/|, = |w|q, the capacity of a terminal edge T in A(w”) relative to y” is the same as that
relative to y when we view 7" as an edge in A(w). Moreover, since F' corresponds to the last trough of w not
in w”, |y]a = |w']a and ¢ < w', we must have cap(F) = 0 (see also Example 4.2 below, where j = 3 and
A(z}) consists precisely of the edges labeled G and F).

With the notation above, we can now prove (4.2). Suppose first that e, ,, > 1 and let £ be an admissible
labeling of A(w/y). Since cap(F) = 0, we get ¢(F) = 0, hence for ¢ > j we have F; < F, which yields
¢(E;) = 0. This implies that if we restrict ¢ to a labeling ¢ of A(w”/y"), then ¢” still satisfies condition
(5) in Definition 1.4. The remaining conditions are easily seen to be preserved by the restriction, hence ¢” is
admissible and ey v > 1.

Conversely, suppose that ey ,» > 1, and consider an admissible labeling ¢ of A(w”/y"). We extend ¢
to a labeling ¢ of A(w/y) by setting ¢(E;) = 0 for i > j and ¢(G) = 0 for all G € A(z;) with ¢ > j, and for
all G € A(2}). Note that £ satisfies conditions (1)—(3) in Definition 1.4. It also satisfies condition (4), with a
potential exception for the edge E; 1 if j + 1 = 2¢ — 1 is odd: since the tree A(z}) contains at least the edge
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F > Ej;1, our construction of the labeling has ¢(F;;1) = 0 = {(F), hence (4) in fact holds. Similarly, it is
clear that condition (5) in Definition 1.4 holds for ¢, with a potential exception when 2i — 1 = j is odd: in
this case, the fact that ¢” is admissible together with our convention in (5) implies that ¢”(E}) is even, hence
((E;) ={"(Ej) and {(Ej4+1) = 0 have the same parity, so in fact (5) holds for ¢. It follows that ¢ is admissible,
and therefore e, ,, > 1, concluding the proof. (|

Example 4.2. Let w = w'w”, where

w = paBpacaf and w” = paafafBacaa,
and let y = 'y, where

y = aaBaBaBfp and y" = accaafaBBaac.

We have y < w, |y/|o = |w'|a = 4, and path(y”) lies strictly below path(w”), so the hypothesis of Theo-
rem 4.1(2) holds. The paths y and w, together with the relevant capacities, are pictured as follows.

< >

path(w’) < ,

< >

The associated diagram A(w/y) is given below, where F,G, H and Ej are the edges of A(w) which do not
belong to A(w").

The reader can check by an argument similar to the one in Example 3.4 that e, ., = 32 and ey ,,» = 16. To
see at least that ey, = 2eyr ,», it suffices to observe that every admissible labeling of A(w”/y") extends in
two ways to an admissible labeling of A(w/y), namely by letting ¢(F) = ¢(G) = ¢(E4) = 0 and ¢(H) € {0,1}.

We can make a slight modification to 3”, which results in a dramatic change of the corresponding Euler
obstruction. If we change the last letter of 3’ from « to 3, then the capacity of the distinguished terminal
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edge becomes cap(F1) = 1, which is odd. Part (1) of Theorem 4.1 then implies that e, ,,» = 0, and by part
(2) we get that ey, = 0 as well.

Remark 4.3. A careful analysis of the proof of Theorem 4.1 and Example 4.2 shows that in fact under the
hypothesis in case (2) of Theorem 4.1, ey, is always an integer multiple of e, ., as follows. If we let a;
(resp. a}) denote the number of admissible labelings of the subdiagram corresponding to A(z;) (resp. A(2})),
then we have

Eyw = a;- TAG1 Qg2 Ay gyl gyt (4.3)
A more geometric interpretation of this expression, suggested to us by the referee, is as follows — we will
assume that the reader has some familiarity with the work [LS81] for the type A Grassmannian. If we write
Y,W for the Schubert varieties corresponding to y,w, then the normal slice N, ,, of Y in W is naturally a
product Nyf,’w, X Ny, where Nyf,vw, is a normal slice for Schubert varieties in the type A Grassmannian,
and Ny, is a normal slice for a smaller Lagrangian Grassmannian (see [BF97, Sections 3.2, 5.1]). We get

Eyw = 621/710’ s eyl
where eé, o can be computed, based on [BF97, Remark 6.1B], as the value at ¢ = 1 of the Kazhdan-
Lusztig polynomial associated to the corresponding pair Y/ C W' of type A Schubert varieties. By [LS81,
Theorem 7.8], this is the number of admissible labelings of a diagram A(w’/y’) as discussed in [LS81, Section 6].
The conclusion (4.3) follows from the fact that the diagram A(w'/y’) is obtained by joining at their root the
trees A(2}), A(zj+1),- -+, A(zr), hence an admissible labeling of A(w'/y’) occurs by independently labeling
each of the trees involved, that is,
eéf’w, = a; CQi41 A2t Qe

5. SYMMETRIC MATRICES

Consider the complex vector space U of n X n symmetric matrices, with its rank stratification where U;
denotes the stratum of rank ¢ matrices. We let

€ij = Euﬁj (z;) for x; € Uy,
where U; = U LI - - - L U; is the variety of matrices of rank at most j.

Theorem 5.1 ([Zha20, Theorem 6.6], [LR21, Corollary 5.3]). The local Euler obstructions for the rank
stratification of the space of symmetric matrices are given for i > j by e; ; =0, and for 0 <i¢ < j <n by

0 ifn—1 is even and n — j is odd;
cis=1 (1]
7 < jzi > otherwise.
ol
Proof. Following [LRO8, Section 6.2.5], we can realize U as an open subset of LG(n,2n) (the dense orbit

relative to the action of the opposite Borel), and moreover, if we restrict the Schubert stratification to U then
we get a refinement of the rank stratification. More precisely, we have that

XwﬁUng<:>‘w|,3:j.
In particular, the largest word w with X, "U C Uj is given by
w:ﬁ...ﬁa...azgjanfj’ (5.1)

and therefore we have that
XwNU =Uj.
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If we take y = B'a™ %, i < j, and let w as in (5.1), then we then obtain

eivj = eva’

which we then compute using Theorem 1.5. We note that A(w/y) has a simple form, namely it consists only
of n — j distinguished edges, and the capacity of E; is given by cap(E;) = j — i

q~ En—j

If we write ¢, = ¢(E;) then an admissible labeling corresponds to a sequence
J—i=lbi >l =Ll3 2>y ="l52> -

where all ¢; have the same parity, and ¢,,_; is even when n — j is odd. This is impossible if both (j —4) and

(n —j) are odd, or equivalently, if (n — i) is even and (n — j) is odd, proving that e; ; = ey, = 0 in that case.

Otherwise, if we let a; = [f2:+1/2], then the choice of the labeling ¢ is equivalent to the choice of an integer

sequence satisfying

V ;ZJ > a1 > a2 0.

It follows from Theorem 1.5 that

o (V‘?J fL%) _ (L'%;%J)
S el 151/
where the last equality uses the fact that not both (j — i) and (n — j) are odd. O
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