
EULER OBSTRUCTIONS FOR THE LAGRANGIAN GRASSMANNIAN

PAUL LEVAN AND CLAUDIU RAICU

Abstract. We prove a case of a positivity conjecture of Mihalcea–Singh, concerned with the local Euler ob-
structions associated to the Schubert stratification of the Lagrangian Grassmannian LG(n, 2n). Combined with
work of Aluffi–Mihalcea–Schürmann–Su, this further implies the positivity of the Mather classes for Schubert
varieties in LG(n, 2n), which Mihalcea–Singh had verified for the other cominuscule spaces of classical Lie type.
Building on the work of Boe and Fu, we give a positive recursion for the local Euler obstructions, and use it to
show that they provide a positive count of admissible labelings of certain trees, analogous to the ones describing
Kazhdan-Lusztig polynomials. Unlike in the case of the Grassmannians in types A and D, for LG(n, 2n) the
Euler obstructions ey,w may vanish for certain pairs (y, w) with y ≤ w in the Bruhat order. Our combinatorial
description allows us to classify all the pairs (y, w) for which ey,w = 0. Restricting to the big opposite cell in
LG(n, 2n), which is naturally identified with the space of n×n symmetric matrices, we recover the formulas for
the local Euler obstructions associated with the matrix rank stratification.

1. Introduction

The goal of this note is to study the local Euler obstructions associated with the Schubert stratification of the
Lagrangian Grassmannian X = LG(n, 2n). It was conjectured by Mihalcea–Singh [MS20, Conjecture 10.2]
that these invariants are non-negative, in the more general context when X is a cominuscule space (also
referred to as a compact Hermitian symmetric space in the literature). The conjecture was verified in [MS20,
Theorem 10.4] for the cominuscule spaces of classical Lie type other than LG(n, 2n), mainly as a consequence
of the work of Boe and Fu [BF97], and of Bressler–Finkelberg–Lunts [BFL90] for the type A Grassmannian.
The case X = LG(n, 2n) is also considered in [BF97], where a recursive and a combinatorial description of the
local Euler obstructions is given, both of which are based on formulas with positive and negative contributions.
Our input is to explain how to make these formulas positive, and in particular to confirm the Mihalcea–Singh
conjecture for LG(n, 2n). We are moreover able to completely classify when the Euler obstructions vanish, and
to recover the explicit formulas from [Zha20, Theorem 6.6] and [LR21, Corollary 5.3] for the corresponding
invariants associated to the rank stratification on the space of n× n symmetric matrices.

Following [Boe88, Section 3], we index the Schubert cells by words w of size n in the alphabet {α, β}, write
Xw for the cell corresponding to w, and Xw for its closure. Every word w is uniquely represented by a path
in the 2-plane starting at the origin, where each α represents a line segment from (a, b) to (a+ 1, b− 1), and
β represents a line segment from (a, b) to (a+ 1, b+ 1). We denote the path associated to w by path(w), and
we have for instance

w = βαααββαββ ←→ path(w) =
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The Bruhat order, given by y ≤ w if Xy ⊆ Xw, can be interpreted pictorially by the fact that no point on
path(y) lies strictly above path(w). We define the local Euler obstructions coefficients

ey,w = EuXw
(p) for p ∈ Xy,

where EuV denotes MacPherson’s local Euler obstruction function associated to a subvariety V [Mac74, Sec-
tion 3]; see also [LR21] for a leisurely treatment, with extensive references, of the theory of Euler obstructions
in the closely related case of matrix spaces. We write |w| for the size of the word w, and whenever we write
ey,w we implicitly assume that |y| = |w|. We will also write |w|α for the number of α’s in w, and define
|w|β similarly. Our first result is the following positive recursion for the local Euler obstructions (see also
[BF97, Section 6] for a set of recursive relations involving both positive and negative contributions).

Theorem 1.1. The local Euler obstructions are uniquely determined by the following recursive relations.

(1) ew,w = 1 and ey,w = 0 if y 6≤ w.
(2) If y = y′α and w = w′β then ey,w = ey′β,w.
(3) If y = y′αβy′′ and w = w′στw′′ with |y′| = |w′| and στ ∈ {αα, βα, ββ} then ey,w = ey′βαy′′,w.
(4) If y = y′αβy′′ and w = w′αβw′′ with |y′| = |w′| then ey,w = ey′βαy′′,w + ey′y′′,w′w′′ .
(5) If y = y′αα and w = w′βα then ey,w = ey′ββ,w.
(6) If y = y′αα and w = w′αα then ey,w = ey′ββ,w + ey′,w′.

In particular, ey,w ≥ 0 for all y, w.

The non-negativity of Euler obstructions in Theorem 1.1 was conjectured in [MS20, Conjecture 10.2] in
the more general setting of cominuscule spaces, and was verified in [MS20, Theorem 10.4] for the classical
Lie types A, B and D. Mihalcea and Singh also obtained significant computational evidence in support of
the conjecture for LG(n, 2n) (type C) and for the Cayley plane (type E6). One of their motivations was
to establish positivity properties for Mather classes [MS20, Conjecture 1.2(a)]. Using the positivity of the
Schubert expansion of Chern–Schwartz–MacPherson classes of Schubert cells [AMSS17, Corollary 1.4], the
result for Mather classes can be deduced from the positivity of local Euler obstructions [MS20, Proposition
10.3(a)]. In particular, it follows from Theorem 1.1 that [MS20, Conjecture 1.2(a)] also holds for LG(n, 2n).

We illustrate Theorem 1.1 with some examples (which can be checked against [MS20, Table 3]).

Example 1.2. We consider y = αααβ, w = ββαβ and denote for clarity (y, w) := ey,w. To help clarify the
use of the recursive formulas, we underline the subword in y to be changed and the corresponding position in
w, and we mark each resulting change in y in red:

(αααβ, ββαβ)
(4)
= (ααβα, ββαβ) + (αα, ββ)

(3),(2)
= (αβαα, ββαβ) + (αβ, ββ)

(3),(3)
= (βααα, ββαβ) + (βα, ββ)

(2),(2)
= (βααβ, ββαβ) + (ββ, ββ)

(4),(1)
=

[
(βαβα, ββαβ) + (βα, ββ)

]
+ 1

(3),(2)
= (ββαα, ββαβ) + (ββ, ββ) + 1

(2),(1)
= (ββαβ, ββαβ) + 2 = 3

If we keep y the same and take w = ββαα, then (with some steps omitted) we have that

(αααβ, ββαα)
(3)
= (βααα, ββαα)

(6)
= (βαββ, ββαα) + (βα, ββ)

(1),(2)
= 0 + (ββ, ββ)

(1)
= 1,
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and if we take y = αααα, w = βββα, then

(αααα, βββα)
(5)
= (ααββ, βββα)

(3)
= (ββαα, βββα)

(5)
= (ββββ, βββα)

(1)
= 0.

Even though Theorem 1.1 completely settles the non-negativity of Euler obstructions, it is difficult to use in
practice, for instance in order to understand when ey,w = 0. Our next goal is then to obtain a non-recursive,
combinatorial description of the obstructions ey,w. To do so, based on the standard combinatorial models
from [LS81,Boe88,BF97] we associate to every word w a rooted tree A(w), and to every pair (y, w) a diagram
(decorated tree) A(w/y), consisting of the tree A(w) together with some additional data at each leaf, called the
capacity of the corresponding terminal edge. We refer the reader to Section 3 for the details of the construction
and terminology, but we show here an example to give a flavor of the combinatorics involved.

Example 1.3. Let w = ββαβαααβααβαββα, and y = αβααααααβαααααβ. The paths of y and w, as well
as the corresponding capacities, and the decorated tree A(w/y) are pictured below.

1

2

path(y)

2

path(w)

3 4
←→

1

2

2 3

4

E1

E2

E3

A(w/y)

The definition of capacities is given in (3.3), (3.4), the dotted edges E1, E2, E3 are called distinguished edges,
while the remaining ones are regular edges. The terminal edges are the ones incident to leaves of the tree, and
we write cap(T ) for the capacity of a terminal edge T .

We can now define admissible labelings, which are essential to our non-recursive description of the local
Euler obstructions. For edges F, F ′, we write F ≤ F ′ if F belongs to the shortest path joining F ′ to the root.

Definition 1.4. We write E1, · · · , Er for the distinguished edges in A(w/y). An admissible labeling of A(w/y)
is a function that assigns to each edge F a non-negative integer `(F ), satisfying the following properties:

(1) If F ≤ F ′ then `(F ) ≤ `(F ′).
(2) If F is a regular terminal edge, then `(F ) ≤ cap(F ).
(3) If E1 is a terminal edge then `(E1) = cap(E1).
(4) For every odd distinguished edge E2i−1, i ≥ 1, we have

`(E2i−1) = min{`(F ) : F > E2i−1},
with the exception when i = 1 and E1 is terminal, in which case `(E1) was given in (3).

(5) For every i ≥ 1 we have
`(E2i−1) ≡ `(E2i) (mod 2),

where we make the convention that `(Ej) = 0 for j > r (hence `(Er) is even if r is odd).
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If A(w/y) has no edges then the empty labeling is the unique admissible labeling of A(w/y).

We will show that the diagram A(w/y) in Example 1.3 has 124 admissible labelings (see Example 3.4), but
for now we illustrate Definition 1.4 with two examples.

1

1

2

0

2

2

3

1

1
4

4

0

0

admissible

1

1

2

1

2

2

3

1

2
4

3

1

1

non-admissible

There are several reasons why the diagram on the right is non-admissible: it fails condition (3) because
`(E1) = 3 6= 4 = cap(E1), it fails condition (5) because r = 3 and `(E3) is odd, and it fails condition (1)
because of the existence of edges F, F ′ with `(F ) = 2, `(F ′) = 1 and F ≤ F ′.

The next result establishes the relationship between labelings and local Euler obstructions.

Theorem 1.5. The local Euler obstruction ey,w is equal to the number of admissible labelings of A(w/y).

For the Grassmannians in type A and D with their corresponding Schubert stratifications, we have ey,w > 0
whenever y ≤ w, due to the fact that the Euler obstructions can be calculated as the value at 1 of Kazhdan–
Lusztig polynomials (see [BF97, Remark 6.1B], [MS20, Theorem 10.4]). By contrast, for LG(n, 2n) the relation
with Kazhdan–Lusztig polynomials is more subtle, due to the presence of reducible characteristic cycles for
the intersection cohomology sheaves of the strata. In particular, the Euler obstructions can often be 0, and
it is interesting to study when this occurs. The next result identifies the main source of vanishing for Euler
obstructions (see Theorem 4.1 for the complete characterization).

Theorem 1.6. Suppose that path(y) lies strictly below path(w), that is, y ≤ w and (0, 0) is the only point that
path(y) and path(w) have in common. We have that ey,w = 0 if and only if the following conditions hold:

• the number of distinguished edges in A(w/y) is odd,
• E1 is a terminal edge and cap(E1) is odd,
• for all i ≥ 1, the unique node incident to E2i and E2i+1 is not incident to any other edge.

If we consider the diagram A(w/y) in Example 1.3 and we change the capacity of E1 to an odd number,
then the resulting diagram satisfies all the conditions in Theorem 1.6, and in particular it corresponds to a
vanishing Euler obstruction (see also Example 4.2).

As a final application, we consider the space of n×n symmetric matrices, equipped with the rank stratifica-
tion, and we define ei,j to be the corresponding local Euler obstructions. It is shown in [Zha20, Theorem 6.6]
and [LR21, Corollary 5.3] that

ei,j =


0 if n− i is even and n− j is odd;(bn−i2 c
b j−i2 c

)
otherwise.

Using the fact that the space of symmetric matrices arises naturally as the big opposite cell in LG(n, 2n), we
explain in the last section of the paper how the formula above is a direct consequence of Theorem 1.5.
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Organization. In Section 2 we explain how the work of Boe and Fu leads to a positive recursion for the
local Euler obstructions, and in particular it implies their positivity properties. In Section 3 we explain
the combinatorics of decorated trees and admissible labelings, and prove Theorem 1.5. We then apply this
theorem in Section 4 to characterize all the pairs (y, w) for which ey,w = 0, and we conclude in Section 5 with
the derivation of the local Euler obstructions for symmetric matrices.

2. The recursion for local Euler obstructions

The goal of this section is to explain how the results of [BF97] lead to a proof of Theorem 1.1. We begin by
recalling basic facts about the Lagrangian Grassmannian LG(n, 2n) and its associated Schubert stratification.
We fix the symplectic vector space (C2n, ω), where

ω(~ei, ~ej) =


1 i+ j = 2n+ 1, i ≤ n,
−1 i+ j = 2n+ 1, i ≥ n+ 1,

0 otherwise,

and {~ei}i denotes the standard basis in C2n. A subspace L ⊆ C2n is isotropic if ω(f, g) = 0 for all f, g ∈ L. We
say that L is Lagrangian if L is isotropic and is maximal with respect to inclusion. The variety X = LG(n, 2n)
is the parameter space for Lagrangian subspaces in C2n.

The Schubert stratification of X is naturally indexed by symmetric partitions λ = (λ1, · · · , λn) with

n ≥ λ1 ≥ · · · ≥ λn ≥ 0.

Here, symmetric means that λ = λ′, where λ′ is the conjugate partition given by

λ′j = |{i : λi ≥ j}|.

An example of such a partition is λ = (7, 6, 6, 3, 3, 3, 1). If we write

Cs = Span(~e1, · · · , ~es)

then the Schubert cell corresponding to λ is given by

Xλ =
{
L ∈ LG(n, 2n)

∣∣∣ dim
(
L ∩ Cλn+1−i+i

)
= i for i ∈ {1, . . . , n}

}
. (2.1)

The closure of these cells are the corresponding Schubert varieties Xλ, which can be described by replacing
the equality above with ≥.

It will be useful to use a different parametrization of the Schubert cells, using words w of size n in the
alphabet {α, β} (see also [Boe88, Section 3], [BF97, p457]). The relation between a word w and path(w) was
described in the introduction, and passing from a symmetric partition to the path of the corresponding word
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is illustrated best through an example.

λ = (7, 6, 6, 3, 3, 3, 1)

w = βαββααα

path(w)

To construct path(w) for the word w corresponding to y, we imagine the Young diagram of the symmetric
partition λ embedded into an n × n square, which we picture rotated by a 45◦ angle. The (now) vertical
diagonal of the square becomes an axis of symmetry for (the Young diagram of) λ. Starting at the left corner
of the rectangle, we follow the boundary of the rectangle until we reach λ, and then follow λ, stopping when
the axis of symmetry is reached. Our convention is that the left corner of the square has coordinates (0, 0),
which is the starting point of every path(w).

From now on we write Xw for Xλ, where w is the word corresponding to λ. The Bruhat order, given by
y ≤ w if and only if (|y| = |w| and) Xy ⊆ Xw, can be rephrased by the condition that path(y) lies on or below
path(w). In particular, this is compatible with concatenation of words:

y′ ≤ w′ and y′′ ≤ w′′ ⇒ y′y′′ ≤ w′w′′.

Thinking of LG(n, 2n) as a homogeneous space for the symplectic group Sp(2n) preserving the form ω, we
get a natural action of the associated Weyl group Cn. Recall that Cn is the hyperoctahedral group of signed
permutations, and it is generated by simple reflections s1, · · · , sn. The (right) action of the simple reflections
on the Schubert cells, or the corresponding words, is given as follows (see [Boe88, (2.1) and (3.3)]):

• If i < n then wsi is the word given by swapping the ith and (i+ 1)st symbols of w.
• wsn is the word given by changing the last symbol in w from σ to τ where {σ, τ} = {α, β}.

In the 2-plane, we think of the vertical line over (i, 0) as corresponding to si as the action by this element
will either interchange a local maximum of path(w) with a local minimum where path(w) intersects this line
(and vice versa) or leave path(w) unchanged if it has no local extremum along this line. A local minimum in
path(w) will be called a trough, which corresponds to a subword αβ occurring in w. Given two words y ≤ w,
with a trough of path(w) occurring along the line corresponding to si we define the capacity of path(w) over
path(y) at si, denoted capsi(y, w), to be half the vertical distance from path(y) up to path(w) along the line
at si. If we write y = y′y′′ and w = w′w′′ with |y′| = |w′| = i then

capsi(y, w) = |y′|α − |w′|α.

To prove Theorem 1.1, we will need the following two lemmas which are immediate consequences of [BF97,
Lemmas 6.2C, 6.2D].

Lemma 2.1. If y < w and if s is a simple reflection such that w ≮ ws then ey,w = eys,w.
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Lemma 2.2. Suppose that y < w, that s = si is a simple reflection such that

y < ys and w < ws, (2.2)

and let c = caps(y, w) be the capacity corresponding to s. There exist words y, w of smaller size such that

ey,w = eys,w + (−1)rey,w, where r =

{
c if i = n;

0 otherwise.

• If 1 ≤ i < n then (2.2) implies w = w′αβw′′ and y = y′αβy′′ where |w′| = |y′| = i − 1. In this case,
one can take w = w′w′′ and y = y′y′′.
• If s = sn, then the conditions above imply w = w′α and y = y′α where |w′| = |y′| = n − 1. In this

case, one can take w = w′ and y = y′.

The results above allow us to establish the recurrence relations stated in Theorem 1.1, which combined
together will imply the non-negativity of ey,w.

Proof of Theorem 1.1(1). Since Xw is smooth, it is contained in the regular locus of Xw, which implies
ew,w = 1 [Mac74, Section 3]. If y 6≤ w then Xy is disjoint from Xw, hence ey,w = 0. �

Proof of Theorem 1.1(2). If we consider the action of the simple reflection sn then we get

ysn = (y′α)sn = y′β, and wsn = (w′β)sn = w′α < w.

If we apply Lemma 2.1 with s = sn then the desired conclusion follows. �

Proof of Theorem 1.1(3). Consider the action of the simple reflection si, where i = |y′|+ 1. We have

ysi = (y′αβy′′)si = y′βαy′′, and wsi = (w′στw′′)si = w′τσw′′ ≤ w,
where the last inequality follows from the fact that τσ ≤ στ , which holds since στ 6= αβ. We may therefore
conclude again by applying Lemma 2.1. �

Proof of Theorem 1.1(4). If we let s = si, where i = |y′|+ 1 < n, then we have

y = y′αβy′′ < y′βαy′′ = ys and w = w′αβw′′ < w′βαw′′ = ws.

The conclusion the follows from Lemma 2.2, noting that r = 0 since i < n. �

Proof of Theorem 1.1(5–6). We write w = w′σα, where σ ∈ {α, β} and let

c = capsn(y, w) = |y|α − |w|α.
Using the fact that

y = y′αα < y′αβ = ysn and w = w′σα < w′σβ = wsn,

we can apply Lemma 2.2 with s = sn to conclude that

ey,w = ey′αβ,w + (−1)cey′α,w′σ
(3)
= ey′βα,w + (−1)cey′α,w′σ. (2.3)

Repeating the calculation above with y replaced by y′βα, and using the fact that

capsn(y′βα,w) = |y′βα|α − |w|α = c− 1,

we find that
ey′βα,w = ey′ββ,w + (−1)c−1ey′β,w′σ,

which combined with (2.3) yields

ey,w = ey′ββ,w + (−1)cey′α,w′σ + (−1)c−1ey′β,w′σ. (2.4)
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To conclude, we analyze separately the two choices for σ. If σ = β then the previously established recursion
(2) yields

ey′α,w′σ = ey′β,w′σ,

so we get a cancellation in (2.4) that proves ey,w = ey′ββ , which establishes recursion (5) in our theorem.
Suppose now that σ = α, observe that |y′α| = |w′α| = n − 1, and apply Lemma 2.2 to the action of the

simple reflection sn−1 (in the corresponding smaller Weyl group). We have

capsn−1
(y′α,w′α) = c,

and therefore

ey′α,w′α = ey′β,w′α + (−1)cey′,w′ .

Multiplying the equality above by (−1)c and combining it with (2.4) for σ = α, we obtain

ey,w = ey′ββ,w + (−1)2cey′,w′ + (−1)cey′β,w′α + (−1)c−1ey′β,w′α = ey′ββ,w + ey′,w′ ,

proving recursion (6). �

To finish the proof of Theorem 1.1, we have to explain why the recursive relations (1–6) completely determine
the local Euler obstructions, which we do next.

Conclusion of the proof of Theorem 1.1. We prove that the relations (1–6) determine ey,w, by induction on
the pair (|y|, y) with the order given by

(|y|, y) ≤ (|ỹ|, ỹ)⇐⇒ (|y| < |ỹ|) or (|y| = |ỹ| and y ≥ ỹ).

Based on relation (1), we may assume that y < w. If y contains the subword αβ, then we can either apply
relation (3) or (4) and induction to compute ey,w, using the fact that

y′βαy′′ > y′αβy′′ and |y′y′′| < |y|.
We can therefore assume that y = β · · ·βα · · ·α, and since y < w, y must contain at least one α. If w ends in
β then we apply relation (2) and induction, using the fact that y′β > y.

We may therefore further assume that w ends in α, and since y < w, we get that the last two letters in y
are αα. We can then compute ey,w by applying either relation (5) or (6). Noting that y′ββ > y and |y′| < |y|,
we can apply induction again to conclude our proof. �

3. Trees and admissible labelings

The goal of this section is to give a combinatorial interpretation of the local Euler obstructions for LG(n, 2n)
as the number of admissible labelings of some tree diagrams associated with a pair of words (y, w) (Theo-
rem 1.5). The combinatorics that we employ is familiar in Kazhdan–Lusztig theory (see [LS81], [Boe88]), and
it was used in [BF97] to provide a description of the local Euler obstructions as a signed count of diagram
labelings. Our contribution is to find an appropriate modification of the combinatorial constructions in order
to obtain a positive count of diagrams that elucidates the non-negativity of the local Euler obstructions. In
particular, this will allow us in Section 4 to completely characterize the pairs (y, w) for which ey,w = 0.

We let Z denote the center of the cycle monoid of Lascoux and Schützenberger [LS81, Section 4], which is
the smallest set of words in α and β satisfying the following properties (see also [Boe88, (3.7)]):

• The empty word ∅ is in Z.
• If z ∈ Z then αzβ is in Z.
• Z is closed under concatenation (it is a submonoid of the free group on α, β).

Every word z ∈ Z can be encoded using a rooted tree A(z) constructed recursively as follows:



EULER OBSTRUCTIONS FOR THE LAGRANGIAN GRASSMANNIAN 9

• For the empty word, A(∅) = • consists of only the root and no edges.
• The tree A(αzβ) is obtained by introducing a new root, and joining it to the root of A(z) by an edge.
• If z1, z2 ∈ Z then A(z1z2) is obtained by glueing A(z1) and A(z2) at their root. In this case we will

always draw the edges coming from A(z1) on the left, and those coming from A(z2) on the right.

Example 3.1. Applying the recursive construction above, we obtain the tree A(z) associated to the word
z = αβααβαββ as follows:

w ∅ αβ αβαβ ααβαββ αβααβαββ

A(w)

Conversely, every word z ∈ Z can be uniquely recovered from the tree A(z), as follows (see also [LS81,
Exemple 6.2]). We consider a tubular neighborhood of A(z), and travel around its boundary while observing
the following set of rules:

• we start at the root of A(z) and first move along the leftmost edge;
• we always stay to the right of an edge in the direction of travel;
• every time we move downward along an edge we write the label α, and we write β when we move

upward along an edge. The resulting sequence of labels is the word z.

For the tree A(z) in our example, we obtain the following diagram

α

β

α

β α

β

α

β

One can see from the description above that words z ∈ Z can be characterized by the condition that path(z)
starts at (0, 0) and ends at (|z|, 0), and has the property that no point on path(z) lies above the x-axis.

We next define Z̃ to be the set of words obtained by concatenating words in Z and words consisting only of
the letter β. Equivalently, Z̃ is the monoid under concatenation generated by Z and by the one-letter word β.
A typical element z̃ ∈ Z̃ has the form

z̃ = zsβ · · ·βzs−1β · · ·βzs−2 · · · z1β · · ·βz0, (3.1)

where some of the sequences of β’s may be empty. We associate to z̃ the rooted tree

A(z̃) := A(zszs−1 · · · z1z0).

Unlike for words in Z, it is no longer possible to recover z̃ from its tree. The reader can check that

z̃ = βαβββααβαβββ

has the property that A(z̃) = A(z), where z is as in Example 3.1.
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If w is now an arbitrary word in α and β, then it can be expressed uniquely as

w = zrαzr−1α · · ·αz1αz0, with zi ∈ Z for i = 0, · · · , r − 1, and zr ∈ Z̃, (3.2)

where some of the zi may be empty. To understand this decomposition and compute it efficiently, we can
use the identification of words in Z with valid parenthesized expressions as in [LS81, Section 6], where
α corresponds to an open parenthesis “(” and β corresponds to a closed parenthesis “)”. To obtain the
decomposition (3.2) for a word w, proceed as follows:

• surround in parentheses subwords of the form αβ appearing in w.
• remove the parenthesized terms and proceed inductively with the new smaller word.
• after all possible pairs are removed, thus ending with a word of the form ββ · · ·βαα · · ·α, substitute

back in all terms with their associated parentheses.
• each subword surrounded by parentheses is a valid parenthesized expression giving an element of Z.
• the (distinguished) α’s that are not immediately preceded by “(” are the ones shown in (3.2), and

they separate the subwords z0, · · · , zr.

Example 3.2. For the word w = ββαβαααβααβαββα, we identify the maximal valid parenthesized subex-
pressions as follows:

ββ(αβ)αα(αβ)(α(αβ)(αβ)β)α,

so w is obtained by inserting words from Z into ββααα. With the notation (3.2), we have r = 3 and

z0 = ∅, z1 = (αβ)(α(αβ)(αβ)β), z2 = ∅, z3 = ββ(αβ).

To any word w as in (3.2) we associate a rooted tree A(w), with

• Distinguished nodes V0, · · · , Vr, where Vr is the root of the tree A(w).
• Distinguished edges E1, · · · , Er, where Ei joins Vi−1 to Vi, and corresponds to the letter α in the

expression (3.2) which is located immediately to the left of zi−1.
• A subtree A(zi) attached at node Vi (so that Vi is the root of A(zi)) for each i = 1, · · · , r. We call the

edges occurring in the subtrees A(zi) regular edges, and the nodes different from Vi regular nodes.

Example 3.3. The word w = ββαβαααβααβαββα from Example 3.2 corresponds to the following tree,
where we represent the distinguished edges E1, E2, E3 using dashed lines, and we highlight the nodes V0, · · · , V3
where the trees corresponding to the subwords zi get attached (note that z0 and z2 are empty, while the word
z1 and the corresponding subtree A(z1) of A(w) are as in Example 3.1).

A(w) :

V3

V2

V1

V0

E1

E2

E3
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A leaf of A(w) is a node which is incident to a unique edge and it is different from the root of A(w). The
unique edge incident to a leaf is called a terminal edge. In Example 3.3 there are five terminal edges: four of
them are regular edges, and one is distinguished (namely E1). In general E1 will be a terminal edge if and
only if the word z0 in (3.2) is empty. The distinguished edges Ei with i ≥ 2 will never be terminal. It will
be important to notice that the regular terminal edges in A(w) are in bijection with subwords αβ of w (or
equivalently, with troughs of path(w)).

There is a natural partial order on the edges of A(w), where F ≤ F ′ if F is contained in the unique
path joining F ′ to the root of A(w). We have for instance that the distinguished edges are linearly ordered
(Er ≤ · · · ≤ E1), and that terminal edges are pairwise incomparable. In Example 3.3, we have E2 ≤ F for
every F in the subtree A(z1) with root V1, but E1 is incomparable to every such F .

We next consider a pair (y, w) of words of the same size. We define a capacity (relative to y) for every
terminal edge of A(w) as follows:

• If F is a regular terminal edge, corresponding to a trough αβ, then we write w = w′αβw′′ and
y = y′στy′′ with |y′| = |w′| and σ, τ ∈ {α, β}, and let (see also [Boe88, Example 3.9])

cap(F ) = capy(F ) := |y′σ|α − |w′α|α. (3.3)

• If E1 is a terminal edge then we let

cap(E1) = capy(E1) := |y|α − |w|α. (3.4)

We let A(w/y) denote the tree A(w) together with the additional data of the capacities of its terminal edges.
We will refer to A(w/y) as a diagram or decorated tree.

When picturing A(w/y) we will often omit the labels for nodes and edges unless we need to specifically
refer to them, and we will indicate the capacities of the terminal edges by placing a number representing the
capacity at the leaf incident to each terminal edge. We now encourage the reader to revisit Example 1.3 in
the Introduction, where the word w is the same as the one in Example 3.3. Before stating the main result of
the section, we ask the reader to recall Definition 1.4, and we illustrate it with a count of admissible labelings
in an example.

Example 3.4. We claim that the number of admissible labelings of the diagram A(w/y) in Example 1.3 is
124. Note that if F0 is the unique regular edge incident to the root then `(F0) ∈ {0, 1}, and either choice is
compatible with the labelings of the remaining edges. It is then enough to check that the remaining part of
the diagram has 62 admissible labelings. We have `(E1) = 4 by condition (3) in Definition 1.4, `(E2) ≤ 4
is even by (1) and (5), and `(E3) = `(E2) by (4). We therefore need to count admissible labelings of the
decorated subtree A(z1) below, where the labels are greater than or equal to `(E2).

2

F1

2

F3

3

F4

F2

It is clear that if `(E2) = 4 then no such labelings exist. If `(E2) = 2 then there are exactly two labelings:

2

2

2

2

3

2

2

and 2

2

2

2

3

3

2
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If `(E2) = 0 then we have `(F1) ∈ {0, 1, 2} and each choice is independent of the rest of the labelings, so we
need to show that the labels for F2, F3, F4 can be chosen in 20 ways. Indeed, if `(F2) = i then there are 3− i
choices for `(F3) and 4− i choices for `(F4), for a total of

2∑
i=0

(3− i) · (4− i) = 12 + 6 + 2 = 20 labelings.

We next move closer toward the goal of this section, which is the proof of Theorem 1.5, for which we
establish several preliminary results.

Lemma 3.5. Suppose that y = y′αβy′′ and w = w′αβw′′, where |y′| = |w′|, and let F denote the terminal
edge of A(w) corresponding to the trough αβ between w′ and w′′. We have a bijection between admissible
labelings ` of A(w/y) with `(F ) = cap(F ) and admissible labelings of A(w′w′′/y′y′′).

Proof. We have that A(w′w′′) is obtained from A(w) by removing the terminal edge F , so we have a natural
restriction map from labelings ` of A(w) to labelings `′ of A(w′w′′). Moreover, every labeling `′ of A(w′w′′)
extends uniquely to a labeling ` of A(w) with `(F ) = cap(F ). We will show that this correspondence
establishes the desired bijection for admissible labelings.

We let V denote the node incident to F which is not a leaf of A(w). If V is the root of A(w) then F is
incomparable to every other edge G of A(w), hence its label is only subject to condition (2) in Definition 1.4,
and we get the desired bijection with labelings of A(w′w′′). We therefore assume that V is not the root of
A(w), and let F ′ denote the unique edge incident to V with F ′ < F :

V

c F

F ′

We note that the existence of F ′ implies that w′ contains at least one α. We also note that every terminal
edge T 6= F of A(w) is also a terminal edge in A(w′w′′), and it satisfies capy(T ) = capy′y′′(T ), making the
notation cap(T ) unambiguous. We write c = capy(F ).

If V is a leaf of A(w′w′′) then we have capy′y′′(F
′) = c, hence every admissible labeling `′ of A(w′w′′)

satisfies `′(F ′) ≤ c by Definition 1.4(2). This is enough to conclude that the correspondence between labelings
` of A(w/y) with `(F ) = c and labelings of A(w′w′′/y′y′′) remains a bijection when restricting to admissible
labelings.

If V is not a leaf of A(w′w′′) then we will prove that there exists a terminal edge T with F ′ ≤ T and
cap(T ) ≤ c. It then follows from Definition 1.4(1) that every admissible labeling `′ of A(w′w′′) satisfies
`′(F ′) ≤ `′(T ) ≤ c, and we conclude as in the previous paragraph. To find the terminal edge T , we note that
the assumption that V is not a leaf of A(w′w′′) implies that either w′ ends with β or that w′′ starts with α. If
w′ ends with β, consider the last α in w′, which is necessarily followed by a β, hence it determines a trough.
If we let T be the corresponding terminal edge then cap(T ) ≤ capy(F ) = c, as desired. If w′′ starts with α
and contains at least one β we consider the first such, which is necessarily preceded by α. As in the previous
case, this determines a terminal edge T with cap(T ) ≤ c, as desired. Finally, if w′′ contains no β then we take
T = E1 to be the distinguished terminal edge, concluding the proof. �

Lemma 3.6. Suppose that y = y′αα and w = w′βα, so that E1 is a distinguished terminal edge in A(w). If
we let c = cap(E1) and if A(w) has at least two distinguished edges, then every admissible labeling of A(w/y)
satisfies `(E2) ≤ c− 2.
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Proof. We use the notation (3.2), and observe that our assumption that A(w) has at least two distinguished
edges, together with the fact that w ends in βα, implies that z1 6= ∅. If we let αβ be the last trough of w
then the corresponding terminal edge F lies in the subtree A(z1) and moreover we have

cap(F ) < cap(E1).

Since F ∈ A(z1) we have E2 ≤ F , and parts (1) and (3) of Definition 1.4 imply that for every admissible
labeling of A(w/y) we have

`(E2) ≤ `(F ) < `(E1) = c.

Using Definition 1.4(5) with i = 1, we conclude that `(E2) ≤ c− 2, as desired. �

Lemma 3.7. Suppose that y = y′αα and w = w′αα, so that E1 is a distinguished terminal edge in A(w).
If we let c = cap(E1) then we have a bijection between admissible labelings of A(w/y) with `(E2) = c and
admissible labelings of A(w′/y′).

Proof. Note that our hypotheses imply that with the notation (3.2) we have r ≥ 2 and z0 = z1 = ∅, and
that for every admissible labeling ` of A(w/y) we have `(E1) = c. If A(w) has only two distinguished edges,
and `(E2) = c, then conditions (3), (4), (5) in Definition 1.4 are satisfied. Using the fact that A(w′/y′) is
obtained from A(w/y) by removing E1 and E2, it is clear that restricting an admissible labeling ` of A(w/y)
to A(w′/y′) provides the desired bijection.

Suppose from now on that A(w) has at least three distinguished edges. If z2 = ∅, or equivalently E3 is a
terminal edge of A(w′), then for every admissible labeling ` of A(w/y) we have `(E3) = `(E2). Moreover, we
have capy′(E3) = c and therefore every admissible labeling `′ of A(w′/y′) satisfies `′(E3) = c. By restricting
labelings of A(w/y) with `(E2) = c to A(w′/y′) we get the desired bijection.

Finally, suppose that z2 6= ∅ and let F denote the terminal edge in A(z2) corresponding to the last trough
of A(w). We have cap(F ) ≤ c and since E3 ≤ F , every admissible labeling ` of A(w/y) satisfies `(E3) ≤ c.
Since E3 is an odd distinguished edge in A(w′) but not terminal, it follows that by restricting labelings of
A(w/y) with `(E2) = c to A(w′/y′) we get the desired bijection. �

Proof of Theorem 1.5. We denote by `y,w the number of admissible labelings of A(w/y) and prove that they
satisfy the recursions of ey,w from Section 2. We divide our analysis into several cases.
Case 1: y = w. For every terminal edge F we have cap(F ) = 0, hence Definition 1.4(1) and (2) implies that
`(G) = 0 for every edge G. This is an admissible labeling, and we get `y,w = 1.
Case 2: y 6≤ w. We will show that `y,w = 0. We have that some parts of path(y) lie above path(w), and
without loss of generality, we may assume that either

• w contains a trough αβ that lies below path(y), in which case the corresponding regular terminal edge
F has cap(F ) < 0, and no admissible labelings exist by Definition 1.4(2); or
• E1 is a terminal edge (that is, w ends in the letter α) and cap(E1) < 0, in which case no admissible

labelings exist by Definition 1.4(3).

For the remaining cases we will assume that y < w.
Case 3: y = β · · ·βα. The condition w > y means that w = β · · ·β, thus A(w/y) has no edges and `y,w = 1.
Case 4: We next show that if y = y′α and w = w′β then

`y,w = `y′β,w. (3.5)

Note that since w ends in β, E1 is not a terminal edge. For a regular terminal edge F , the definition (3.3) of
cap(F ) does not involve the last letter in y and w, hence A(w/y) = A(w/y′β), which proves (3.5).
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Case 5: Suppose next that y = y′αβy′′ and w = w′στw′′, where |y′| = |w′| and στ ∈ {αα, βα, ββ}. We show
that

`y,w = `y′βαy′′,w. (3.6)

It follows from (3.4) that if E1 is terminal then cap(E1) is not affected by permutations of the letters in y.
Moreover, since στ is not a trough of w, the capacities of regular edges relative to y and y′βαy′′ coincide. We
conclude that A(w/y) = A(w/y′βαy′′), which proves (3.6).
Case 6: Suppose now that y = y′αβy′′ and w = w′αβw′′, where |y′| = |w′|. We show that

`y,w = `y′βαy′′,w + `y′y′′,w′w′′ . (3.7)

We let F denote the regular terminal edge corresponding to the trough αβ between w′ and w′′. If we
write capy(G) (resp. capỹ(G)) for the capacity of a terminal edge G relative to y (resp. ỹ = y′βαy′′) then
capỹ(F ) = capy(F )− 1 and capỹ(G) = capy(G) for all G 6= F . It follows that `y,w − `y′βαy′′,w is non-negative,
and it counts admissible labelings of A(w/y) for which `(F ) = cap(F ). Applying Lemma 3.5 we get (3.7).
Case 7: y = y′αα and w = w′βα. We show that

`y,w = `y′ββ,w.

Let ỹ = y′ββ, let c = capy(E1), and note that capỹ(E1) = c−2, and capy(F ) = capỹ(F ) for all terminal edges
F 6= E1. By Definition 1.4(3), every admissible labeling ` of A(w/y) has `(E1) = c, while every admissible

labeling ˜̀ of A(w/ỹ) has ˜̀(E1) = c − 2. Since c and c − 2 have the same parity, we get a bijection between

admissible labelings l̃ of A(w/ỹ) and ` of A(w/y) by letting ˜̀(G) = `(G) for all G 6= E1. Indeed, if E1 is the

only distinguished edge of A(w) then it is clear that ˜̀ is admissible if and only if ` is, and if A(w) has at least
two distinguished edges then the same conclusion follows using Lemma 3.6.
Case 8: y = y′αα and w = w′αα. We show that

`y,w = `y′ββ,w + `y′,w′ . (3.8)

If we let ỹ = y′ββ and c = capy(E1), then capỹ(E1) = c − 2, and capy(F ) = capỹ(F ) for all terminal edges

F 6= E1. It follows that every admissible labeling ˜̀ of A(w/ỹ) gives rise to an admissible labeling ` of A(w/y)

by letting `(E1) = c = ˜̀(E1) + 2, and `(G) = ˜̀(G) for G 6= E1. Moreover, the difference `y,w − `y′ββ,w
counts admissible labelings ` of A(w/y) for which changing `(E1) to c− 2 results in an inadmissible labeling
of A(w/ỹ), that is, for which `(E2) = c. Applying Lemma 3.7, we get (3.8). �

4. Vanishing of local Euler obstructions

The goal of this section is to characterize the pairs (y, w) with y ≤ w for which the corresponding local
Euler obstructions vanish. More precisely, we use Theorem 1.5 to prove the following.

Theorem 4.1. Consider words y, w with y ≤ w.

(1) Suppose that path(y) lies strictly below path(w). If we let w as in (3.2) then

ey,w = 0⇐⇒ |y|α − |w|α is odd, r is odd, and z2i = ∅ for all i. (4.1)

(2) Write y = y′y′′ and w = w′w′′ such that |y′|α = |w′|α, and path(y′′) lies strictly below path(w′′). We
have that

ey,w = 0⇐⇒ ey′′,w′′ = 0. (4.2)

Proof. We begin by proving (4.1), noting that the hypothesis that path(y) lies strictly below path(w) implies
that cap(T ) > 0 for every terminal edge T of A(w) (where cap(T ) = capy(T )). If z0 6= ∅ then we get an
admissible labeling ` of A(w/y) by defining `(G) = 0 for all G, which by Theorem 1.5 implies ey,w ≥ 1. We
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may therefore assume that A(w) contains at least one distinguished edge and that E1 is a terminal edge, and
we write c = |y|α − |w|α = cap(E1). If c is even then if we let `(E1) = c and `(G) = 0 for all G 6= E1, then
` is admissible and we conclude again that ey,w ≥ 1. We may thus further assume that c is odd. If r is even,
then using the fact that all capacities are positive, we get that `(E1) = c, `(G) = 1 for G 6= E1, defines an
admissible labeling, so ey,w ≥ 1. We may thus further assume that r is odd.

If z2i 6= 0 for some i, we choose i minimal with this property, and note that i > 0 since z0 6= ∅. If we let

`(Ej) =


c if j = 1,

1 if 1 ≤ j ≤ 2i,

0 if j > 2i,

and for each regular edge G let `(G) =

{
1 if G ∈ A(zj), j ≤ 2i,

0 if G ∈ A(zj), j > 2i,

then ` is admissible, which implies ey,w ≥ 1. We may then further assume that z2i = ∅ for all i, hence all
the conditions on the right hand side of (4.1) are satisfied. To conclude, we have to prove that ey,w = 0, or
equivalently, that there is no admissible labeling of A(w/y).

Suppose by contradiction that ` is an admissible labeling of A(w/y). For each i > 0, z2i = ∅ implies that
the only edges incident to V2i are the distinguished edges E2i and E2i+1, hence E2i is the unique maximal
edge which is strictly larger than E2i, and condition (4) in Definition 1.4 implies that `(E2i+1) = `(E2i).
Combining this with condition (5) in the same definition, and with the fact that `(E1) = c is odd, we conclude
that `(Ej) is odd for all 1 ≤ j ≤ r. Moreover, since r is odd we get also that

0 = `(Er+1) ≡ `(Er) (mod 2),

which is a contradiction and concludes the proof of (4.1).
To prove part (2) of the theorem, notice that the hypothesis implies that y′′ starts with α, while w′′ starts

with β. If |w′|α = 0 then w′ = y′ = β · · ·β, hence A(w/y) = A(w′′/y′′) and (4.2) follows from Theorem 1.5.
We may therefore assume that |w′|α > 0 and consider the last α in w′, which is necessarily followed in the
word w by β. We get a trough αβ of w and let F denote the corresponding regular terminal edge. With the
notation (3.2), we have that F ∈ A(zj) for a unique j. We can write zj as the concatenation z′jz

′′
j , with z′′j a

(possibly empty) subword of w′′, z′j and w′′ have no α in common, and z′j , z
′′
j ∈ Z if j < r, while z′j , z

′′
j ∈ Z̃ if

j = r. We have that A(zj) is obtained by glueing the trees A(z′j) with A(z′′j ) at their root, and that F ∈ A(z′j).

Moreover, A(w′′) is the subtree of A(w) consisting of the following:

• distinguished edges E1, · · · , Ej (incident to the distinguished nodes V0, · · · , Vj).
• the subtree A(zi) attached to Vi for i < j, and the subtree A(z′′j ) attached to Vj .

Moreover, since |y′|α = |w′|α, the capacity of a terminal edge T in A(w′′) relative to y′′ is the same as that
relative to y when we view T as an edge in A(w). Moreover, since F corresponds to the last trough of w not
in w′′, |y′|α = |w′|α and y′ ≤ w′, we must have cap(F ) = 0 (see also Example 4.2 below, where j = 3 and
A(z′j) consists precisely of the edges labeled G and F ).

With the notation above, we can now prove (4.2). Suppose first that ey,w ≥ 1 and let ` be an admissible
labeling of A(w/y). Since cap(F ) = 0, we get `(F ) = 0, hence for i > j we have Ei ≤ F , which yields
`(Ei) = 0. This implies that if we restrict ` to a labeling `′′ of A(w′′/y′′), then `′′ still satisfies condition
(5) in Definition 1.4. The remaining conditions are easily seen to be preserved by the restriction, hence `′′ is
admissible and ey′′,w′′ ≥ 1.

Conversely, suppose that ey′′,w′′ ≥ 1, and consider an admissible labeling `′′ of A(w′′/y′′). We extend `′′

to a labeling ` of A(w/y) by setting `(Ei) = 0 for i > j and `(G) = 0 for all G ∈ A(zi) with i > j, and for
all G ∈ A(z′j). Note that ` satisfies conditions (1)–(3) in Definition 1.4. It also satisfies condition (4), with a

potential exception for the edge Ej+1 if j + 1 = 2i− 1 is odd: since the tree A(z′j) contains at least the edge
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F > Ej+1, our construction of the labeling has `(Ej+1) = 0 = `(F ), hence (4) in fact holds. Similarly, it is
clear that condition (5) in Definition 1.4 holds for `, with a potential exception when 2i − 1 = j is odd: in
this case, the fact that `′′ is admissible together with our convention in (5) implies that `′′(Ej) is even, hence
`(Ej) = `′′(Ej) and `(Ej+1) = 0 have the same parity, so in fact (5) holds for `. It follows that ` is admissible,
and therefore ey,w ≥ 1, concluding the proof. �

Example 4.2. Let w = w′w′′, where

w′ = βαββαααβ and w′′ = βααβαββαααβα,

and let y = y′y′′, where

y′ = ααβαβαββ and y′′ = αααααβαββααα.

We have y ≤ w, |y′|α = |w′|α = 4, and path(y′′) lies strictly below path(w′′), so the hypothesis of Theo-
rem 4.1(2) holds. The paths y and w, together with the relevant capacities, are pictured as follows.

1

1

2 1

2

path(y′)

path(y′′)

path(w′′)

path(w′)

The associated diagram A(w/y) is given below, where F,G,H and E4 are the edges of A(w) which do not
belong to A(w′′).

1

H

0

F

G

1 2

1
2

E1

E2

E3

E4

The reader can check by an argument similar to the one in Example 3.4 that ey,w = 32 and ey′′,w′′ = 16. To
see at least that ey,w = 2ey′′,w′′ , it suffices to observe that every admissible labeling of A(w′′/y′′) extends in
two ways to an admissible labeling of A(w/y), namely by letting `(F ) = `(G) = `(E4) = 0 and `(H) ∈ {0, 1}.

We can make a slight modification to y′′, which results in a dramatic change of the corresponding Euler
obstruction. If we change the last letter of y′′ from α to β, then the capacity of the distinguished terminal
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edge becomes cap(E1) = 1, which is odd. Part (1) of Theorem 4.1 then implies that ey′′,w′′ = 0, and by part
(2) we get that ey,w = 0 as well.

Remark 4.3. A careful analysis of the proof of Theorem 4.1 and Example 4.2 shows that in fact under the
hypothesis in case (2) of Theorem 4.1, ey,w is always an integer multiple of ey′′,w′′ , as follows. If we let ai
(resp. a′j) denote the number of admissible labelings of the subdiagram corresponding to A(zi) (resp. A(z′j)),
then we have

ey,w = a′j · aj+1 · aj+2 · · · ar · ey′′,w′′ . (4.3)

A more geometric interpretation of this expression, suggested to us by the referee, is as follows – we will
assume that the reader has some familiarity with the work [LS81] for the type A Grassmannian. If we write
Y,W for the Schubert varieties corresponding to y, w, then the normal slice Ny,w of Y in W is naturally a
product N I

y′,w′ × Ny′′,w′′ , where N I
y′,w′ is a normal slice for Schubert varieties in the type A Grassmannian,

and Ny′′,w′′ is a normal slice for a smaller Lagrangian Grassmannian (see [BF97, Sections 3.2, 5.1]). We get

ey,w = eIy′,w′ · ey′′,w′′ ,

where eIy′,w′ can be computed, based on [BF97, Remark 6.1B], as the value at q = 1 of the Kazhdan–

Lusztig polynomial associated to the corresponding pair Y ′ ⊂ W ′ of type A Schubert varieties. By [LS81,
Theorem 7.8], this is the number of admissible labelings of a diagram A(w′/y′) as discussed in [LS81, Section 6].
The conclusion (4.3) follows from the fact that the diagram A(w′/y′) is obtained by joining at their root the
trees A(z′j), A(zj+1), · · · , A(zr), hence an admissible labeling of A(w′/y′) occurs by independently labeling
each of the trees involved, that is,

eIy′,w′ = a′j · aj+1 · aj+2 · · · ar.

5. Symmetric matrices

Consider the complex vector space U of n × n symmetric matrices, with its rank stratification where Ui
denotes the stratum of rank i matrices. We let

ei,j = EuUj
(xi) for xi ∈ Ui,

where U j = U0 t · · · t Uj is the variety of matrices of rank at most j.

Theorem 5.1 ([Zha20, Theorem 6.6], [LR21, Corollary 5.3]). The local Euler obstructions for the rank
stratification of the space of symmetric matrices are given for i > j by ei,j = 0, and for 0 ≤ i ≤ j ≤ n by

ei,j =


0 if n− i is even and n− j is odd;(bn−i2 c
b j−i2 c

)
otherwise.

Proof. Following [LR08, Section 6.2.5], we can realize U as an open subset of LG(n, 2n) (the dense orbit
relative to the action of the opposite Borel), and moreover, if we restrict the Schubert stratification to U then
we get a refinement of the rank stratification. More precisely, we have that

Xw ∩ U ⊆ Uj ⇐⇒ |w|β = j.

In particular, the largest word w with Xw ∩ U ⊆ Uj is given by

w = β · · ·βα · · ·α = βjαn−j , (5.1)

and therefore we have that
Xw ∩ U = U j .
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If we take y = βiαn−i, i ≤ j, and let w as in (5.1), then we then obtain

ei,j = ey,w,

which we then compute using Theorem 1.5. We note that A(w/y) has a simple form, namely it consists only
of n− j distinguished edges, and the capacity of E1 is given by cap(E1) = j − i:

j − i

E1

E2

En−j

If we write `t = `(Et) then an admissible labeling corresponds to a sequence

j − i = `1 ≥ `2 = `3 ≥ `4 = `5 ≥ · · ·

where all `t have the same parity, and `n−j is even when n− j is odd. This is impossible if both (j − i) and
(n− j) are odd, or equivalently, if (n− i) is even and (n− j) is odd, proving that ei,j = ey,w = 0 in that case.
Otherwise, if we let at = b`2t+1/2c, then the choice of the labeling ` is equivalent to the choice of an integer
sequence satisfying ⌊

j − i
2

⌋
≥ a1 ≥ · · · ≥ ab(n−j)/2c ≥ 0.

It follows from Theorem 1.5 that

ei,j = ey,w =

(b j−i2 c+ bn−j2 c
b j−i2 c

)
=

(bn−i2 c
b j−i2 c

)
,

where the last equality uses the fact that not both (j − i) and (n− j) are odd. �
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