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Abstract. The goal of this note is to explain a derivation of the formulas for the local Euler obstructions of
determinantal varieties of general, symmetric and skew-symmetric matrices, by studying the invariant de Rham
complex and using character formulas for simple equivariant D-modules. These calculations are then combined
with standard arguments involving Kashiwara’s local index formula and the description of characteristic cycles
of simple equivariant D-modules. The formulas are implicit in the work of Boe and Fu, and in the case of
general matrices they have also been obtained recently by Gaffney–Grulha–Ruas, for skew-symmetric matrices
by Promtapan and Rimányi, and for all cases by Zhang.

1. Introduction

Let X be a smooth complex algebraic variety. To any closed subvariety V ⊆ X one can associate a
constructible function EuV , whose value EuV (p) at a point p is called the local Euler obstruction of V at p, and
represents a measure of the singularity of V at p. Local Euler obstructions were introduced by MacPherson
using transcendental methods in [Mac74, Section 3], and were later given a purely algebraic description
([GS81, Section 4.3], [Sab85, Ken90]). After giving a quick review of the theory of local Euler obstructions,
our goal is to illustrate the theory by computing the local Euler obstructions for the determinantal varieties
of general, symmetric and skew-symmetric matrices. The results for general matrices have appeared in
[GGR19, Theorem 2.17], [Zha21, Theorem 3], for skew-symmetric matrices in [Pro19, Theorem 9.11] and
[PR22, Theorem 8.1], and for all three cases in the recent work of Zhang [Zha20, Section 6]. Here we follow
a different approach using D-module and representation-theoretic methods based on the invariant de Rham
complex, thus providing a recipe for dealing with other representations with finitely many orbits as well (see
Corollary 2.5). The symmetric case is especially interesting because simple equivariant D-modules supported
on symmetric determinantal varieties can have reducible characteristic varieties, which is the main obstacle
for computing the local Euler obstructions directly from Kazhdan–Lusztig theory (see for instance the proof
of [MS20, Theorem 10.4]). Further, this case provides supporting evidence for the recent positivity conjecture
of Mihalcea–Singh concerning the local Euler obstructions associated to the Schubert stratification of the
Lagrangian Grassmannian [MS20, Conjecture 10.2], which was verified in [LR21].

Throughout this work, X will denote one of the following affine spaces:

(1) Xm,n ' Cm ⊗ Cn – the space of m× n matrices, where m ≥ n.
(2) Xn,symm ' Sym2(Cn) – the space of n× n symmetric matrices.

(3) Xn,skew '
∧2(Cn) – the space of n× n skew-symmetric matrices.

In each of the cases above, we will consider the rank stratification on X, denote the strata by Xi and their
closures by Vi = Xi. More precisely:

(1) If X = Xm,n then Xi denotes the stratum of rank i matrices, for 0 ≤ i ≤ n.
(2) If X = Xn,symm then Xi denotes the stratum of rank i symmetric matrices, for 0 ≤ i ≤ n.
(3) If X = Xn,skew then Xi denotes the stratum of rank 2i skew-symmetric matrices, for 0 ≤ i ≤ bn/2c.
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The local Euler obstruction functions EuVi are constant along each stratum (see for instance [BS81, Corol-
laire 10.2]), so we can define

ei,j = EuVj (xi) for any xi ∈ Xi. (1.1)

Since Xi ⊆ Vj if and only if i ≤ j, and Xi is the non-singular locus of Vi, it follows from [Mac74, Section 3]
that

ei,i = 1 and ei,j = 0 for i > j.

If we write 1Xi for the indicator function of the stratum Xi, then (1.1) is equivalent to the expression

EuVj =

j∑
i=0

ei,j · 1Xi .

The following theorem records the values of the local Euler obstructions for determinantal varieties (see also
[Zha21,GGR19,Pro19,PR22,Zha20]) – note that ei,j ≥ 0 in all cases, and see [MS20, Conjecture 10.2].

Theorem on local Euler obstructions. The local Euler obstructions for determinantal varieties are given
as follows.

(1) If X = Xm×n, m ≥ n, then for all 0 ≤ i ≤ j ≤ n we have

ei,j =

(
n− i
j − i

)
.

(2) If X = Xn,symm then

ei,j =


0 if n− i is even and n− j is odd;(bn−i2 c
b j−i2 c

)
otherwise.

(3) If X = Xn,skew and m = bn/2c then for all 0 ≤ i ≤ j ≤ m we have

ei,j =

(
m− i
j − i

)
.

Due to the fact that our matrix spaces are naturally identified with open subsets of classical Grassmannians
(see the discussion below), the formulas in the theorem above are implicit in [BF97, Section 6]. Similarly to
[BF97], our strategy is to exploit the connection between ei,j and two closely related invariants of stratifica-
tions: characteristic cycles and intersection cohomology. Following [Gin86, p. 331], we consider the following
commutative diagram associated to X:

perverse sheaves
on X

χ

��

SS

%%

regular holonomic
DX–modules

DR
∼

oo

CC

��

constructible functions
on X

S
∼

// Lagrangian cycles
in T ∗X
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Here DR denotes the de Rham functor, CC(M) is the characteristic cycle of a DX -moduleM , or equivalently,
the singular support (SS) of the associated perverse sheaf DR(M) (see [HTT08, Section 2.2, Chapter 7],
[KS90, Chapters V and IX]). The map χ associates to a perverse sheaf, or more generally to a constructible
complex F•, the local Euler characteristic function

x 7→ χx(F•) :=
∑
i

(−1)i · dimH i (F•x) ,

where F•x denotes the stalk at the point x. A key fact in the diagram above is that SS factors through χ, and
the local Euler obstruction function EuV is the unique constructible function (the reader can take this as the
definition of EuV ) with the property that

S(EuV ) = (−1)dimV · T ∗VX, (1.2)

where T ∗VX denotes the closure of the conormal bundle to the regular locus V reg ⊆ V (see [Sab85], [Ken90,
Lemma 4 and Section 4] and [KS90, Section 9.7]).

Returning to our matrix spaces X with their natural rank stratification, we let IC•Vi denote the intersection
cohomology complex associated to Vi. Let Di be the simple, regular holonomic DX -module associated to
IC•Vi through the Riemann–Hilbert correspondence [HTT08, Theorem 7.2.5] (called the Brylinski–Kashiwara
module of Vi ⊂ X, see [BK81, Section 8]). We define the microlocal indices mi,j via

SS(IC•Vj ) = CC(Dj) =
∑
i

mi,j · T ∗ViX, (1.3)

We have mi,j = 0 for i > j, as well as the following.

Theorem on characteristic cycles of simple DX-modules. The microlocal indices mi,j for determinantal
varieties are as follows.

(1) If X = Xm×n then mi,i = 1 and mi,j = 0 for i 6= j.
(2) If X = Xn,symm then mi,i = 1 for all i,

mi−1,i = 1 if n− i is odd,

and mi,j = 0 otherwise.

(3) If X = Xn,skew then mi,i = 1 and mi,j = 0 for i 6= j.

The description of characteristic cycles in the theorem above is noted in [Rai16, Remark 1.5] (see also
[LW19, Corollary 3.19 and Section 5] and [Bra95, Section 3.4]). In general, establishing the irreducibility of
characteristic cycles, or identifying the non-trivial components when they exist, is quite a difficult task! We
have the following:

(1) The main result of [BFL90] gives the irreducibility of the characteristic cycles for the Schubert strati-
fication of the (type A) Grassmannian. Since Xm,n can be identified with the opposite big cell in the
Grassmannian G(n,m+n) in such a way that the Schubert stratification refines the rank stratification
(see [LR08, Section 5.2.2]), part (1) of the theorem above is a special case of [BFL90, Theorem 0.1].

(2) The characteristic cycles for the (type C) Lagrangian Grassmannian LG(n, 2n) are described combi-
natorially in [BF97, Theorem 7.1D], and they may be reducible. Since Xn,symm is the opposite big
cell of LG(n, 2n) (see [LR08, Section 6.2.5]), one can then derive (with a little work) conclusion (2) of
the theorem above.

(3) Finally, it follows from [BF97, Theorem 7.1A] that the characteristic cycles for the (type D) orthogonal
Grassmannian OG(n, 2n) are irreducible. Since Xn,skew is the opposite big cell in OG(n, 2n) (see
[LR08, Section 7.2.5]), conclusion (3) of the theorem above follows.
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For more non-trivial calculations of characteristic cycles, see [KS97, Section 7], [Bra95,EM99,Tim19].
The final ingredient in our discussion is given by the intersection cohomology local Euler characteristics

χi,j = χxi(IC
•
Vj ) for any xi ∈ Xi. (1.4)

If we write di = dim(Vi) then we have

χi,i = (−1)di and χi,j = 0 for i > j.

Theorem on intersection cohomology local Euler characteristics. The intersection cohomology local
Euler characteristics for determinantal varieties are computed as follows.

(1) If X = Xm×n, m ≥ n, then for all 0 ≤ i ≤ j ≤ n we have

χi,j = (−1)dj ·
(
n− i
j − i

)
.

(2) If X = Xn,symm then

χi,j = (−1)dj ·
(bn−i2 c+ ε

b j−i2 c

)
, where ε =

{
1 if (j − i) is even and (n− i) is odd;

0 otherwise.

(3) If X = Xn,skew and m = bn/2c then for all 0 ≤ i ≤ j ≤ m we have

χi,j = (−1)dj ·
(
m− i
j − i

)
.

For the Schubert stratification, the local intersection cohomology groups are computed as coefficients of
Kazhdan–Lusztig polynomials [KL80, Theorem 4.3], [HTT08, Theorem 12.2.5]. Using the identification of
our matrix spaces with opposite cells in an appropriate Grassmannian, it follows that χi,j is equal up to
a sign with the value at 1 of a corresponding Kazhdan–Lusztig polynomial. Explicit descriptions of these
polynomials are given for G(n,m+ n) in [LS81, Théorème 7.8], for LG(n, 2n) in [Boe88, Theorem 3.13], and
for OG(n, 2n) in [Boe88, Theorem 4.1]. In the case of matrix spaces we will give an alternative derivation of
the Kazhdan–Lusztig polynomials and the invariants χi,j based on a study of the invariant de Rham complex.

The connection between the three theorems listed above comes from the Kashiwara microlocal index formula
[Kas73, Section 2], [BDK81, Théorèmes 1, 2], [Gin86, Theorem 8.2], which in our case can be phrased as the
following identity:

χi,j =

j∑
k=i

(−1)dk · ei,k ·mk,j . (1.5)

Equivalently, if we consider the upper-triangular matrices

X = (χi,j), E = (ei,j), M =
(

(−1)dimi,j

)
then we have the identity

X = E ·M. (1.6)

Example 1.1. Consider the space X2,symm of 2×2 symmetric matrices. We have d0 = 0, d1 = 2, d2 = 3, and

X =

1 1 −1
0 1 −1
0 0 −1

 , E =

1 0 1
0 1 1
0 0 1

 , M =

1 1 0
0 1 0
0 0 −1

 .
We single out the local Euler obstruction e0,1 = EuV1(0) = 0, where V1 is a quadric cone (defined by the
vanishing of the determinant of the 2 × 2 symmetric matrix), and 0 is the vertex of V1. It was noted in
[Mac74, Section 3] that if V is the cone with vertex 0 over a non-singular plane curve of degree d, then
EuV (0) = 2d− d2, so our example coincides with the special case d = 2.
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Using the inductive structure of determinantal varieties, it is not difficult to reduce the calculation of the
invariants χi,j to that of χ0,j−i for a smaller matrix space. For this reason, it is enough to compute the
local Euler characteristic of the stalk at 0 for each IC•Vj , which in turn gets identified via the C∗-action with

the global intersection cohomology Euler characteristic of Vj . The intersection cohomology of Vj agrees (up
to a shift) with the de Rham cohomology of the associated simple D-module Dj , and it is encoded by a
Kazhdan–Lusztig polynomial. We show that it can be computed by restricting to the invariant de Rham
complex (Corollary 2.2), which we determine explicitly and observe that it has no non-zero differentials.

Theorem on de Rham cohomology of simple DX-modules. If we write hidR(Dp) for the dimension of
H i
dR(Dp), and Ωi

X for the module of i-differentials on X, then we have.

(1) If X = Xm×n, m ≥ n, and G = GLm×GLn, then for all 0 ≤ p ≤ n we have∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =
∑
i≥0

hidR(Dp) · qi =

(
n

p

)
q2
· q(m−p)·(n−p).

(2) If X = Xn,symm and G = GLn, then for all 0 ≤ p ≤ n we have∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =
∑
i≥0

hidR(Dp) · qi =

(
bn2 c+ ε

bp2c

)
q4
· q(

n−p+1
2 ),

where ε = 1 if p is even and n is odd, and ε = 0 otherwise.
(3) If X = Xn,skew, G = GLn, and m = bn/2c, then for all 0 ≤ p ≤ m we have∑

i≥0

dim(Ωi
X ⊗Dp)

G · qi =
∑
i≥0

hidR(Dp) · qi =

(
m

p

)
q4
· q(

n
2)−p(2n−2p−1).

Organization. We have no additional input regarding the calculation of the multiplicities mi,j , for which
we refer the reader to the cited sources. In Section 2 we discuss equivariant D-modules and the invariant de
Rham complex, and in Section 3 we recall some basics on representations of the general linear group. We
then discuss the calculation of Kazhdan–Lusztig polynomials via the invariant de Rham complex, along with
the invariants χi,j and ei,j : the case X = Xm,n is treated in Section 4, the case X = Xn,symm in Section 5,

and the case X = Xn,skew in Section 6.

2. Equivariant D-modules and the invariant de Rham complex

Let X be an irreducible smooth complex affine variety of dimension d and let D = DX denote the sheaf of
differential operators on X. Throughout we make an identification between quasi-coherent OX -modules and
their global sections. For a D-module M , we consider the (algebraic) de Rham complex

DR(M) : 0 −→M −→ Ω1
X ⊗OX

M −→ · · · −→ Ωd
X ⊗OX

M −→ 0, (2.1)

where Ωi
X is the module of i-differential forms and is placed in cohomological degree i. Writing π+(M) for the

D-module-theoretic derived integration (pushforward), we have an identification of the de Rham cohomology
groups H i

dR(M) ' H i−d(π+(M)) for all i. In particular, if M is holonomic then each H i
dR(M) is finite-

dimensional [HTT08, Theorem 3.2.3].
The corresponding analytic de Rham complex plays a fundamental role in the Riemann–Hilbert corre-

spondence [HTT08, Theorem 7.2.5]. In the special case when M = OX is the structure sheaf, the celebrated
comparison theorem of Grothendieck [Gro66] implies that the space H i

dR(OX) agrees with the (singular) coho-
mology group H i(X,C). More generally, for an irreducible closed subvariety Y ⊂ X there is a corresponding
simple D-module L(Y,X) (called the Brylinski–Kashiwara module [BK81, Section 8]) whose associated de
Rham complex is, up to a shift, the middle perversity intersection cohomology complex IC•Y . In particular,
the de Rham cohomology groups of L(Y,X) agree with the intersection cohomology groups of Y (see for
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instance [HTT08, Theorem 7.1.1]). As we explain in Section 2.2, in the presence of a (connected, reductive)
group action it suffices to work with the invariant de Rham complex in order to compute cohomology, the
advantage being that this complex is in general much smaller than (2.1).

2.1. Equivariant D-modules. In this section we provide some background on equivariant D-modules (for
more details, see [LW19, Section 2.1]). We assume that G is a connected algebraic group acting on X, and
we say that M is a (strongly) G-equivariant D-module if there exists a DG×X -isomorphism

τ : p∗M → m∗M, (2.2)

where p and m are the projection and multiplication maps

p : G×X → X, m : G×X → X

respectively, and τ satisfies the usual compatibility conditions on G×G×X [HTT08, Definition 11.5.2].
We call a (possibly infinite-dimensional) vector space V a rational G-module if V is equipped with a linear

action of G, such that every v ∈ V is contained in a finite-dimensional G-stable subspace W , where the
G-action on W is given by a morphism G→ GL(W ) of algebraic varieties. If we let g denote the Lie algebra
of G, then by differentiating the action of G on X we get a map g → DX . Equivariance of a D-module M
amounts to M having a rational G-module structure such that differentiating the action of G on M coincides
with the action of g induced from g→ DX . In particular, if a map τ as in (2.2) exists then it must be unique,
hence the notion of a D-module being equivariant should be thought of as a property the module, rather than
as additional data. Therefore, coherent equivariant D-modules form a full subcategory modG(DX) of the
category mod(DX) of coherent DX -modules. Moreover, if f is any G-equivariant map f : X → X ′ between
smooth G-varieties X,X ′, then the D-module-theoretic direct image f+ preserves equivariance.

2.2. Invariant de Rham complex. One of the most basic results in algebraic topology is that (co)homology
groups of a topological space are homotopy-invariant. Moreover, homotopic maps between two spaces induce
identical maps on the level of cohomology. An immediate consequence of this is that the action of a connected
group G on X induces the trivial action on the cohomology groups H i(X,C). This can be viewed as a special
case (with M = OX) of the following result.

Lemma 2.1. Let M be a G-equivariant DX-module, and assume that G is connected. The induced action of
G on H i

dR(M) is trivial for all i ≥ 0.

Proof. Let π : X → {pt} be the map to the point, which is G-equivariant. Since the pushforward preserves
equivariance (Section 2.1), the spaces Hk(π+(M)) are equivariant Dpt-modules, for all k ∈ Z. The map
g → Dpt = C is zero, hence g, and consequently G acts trivially on any equivariant Dpt-module. Since we

have H i
dR(M) = H i−d(π+(M)) for all i, the desired conclusion follows. �

It is clear that the differentials in the de Rham complex (2.1) are G-equivariant. The following result shows
that in order to compute de Rham cohomology, it is enough to consider the G-invariant part of this complex.

Corollary 2.2. With the notation as in Lemma 2.1, assume in addition that G is reductive. For each i, we
have that H i

dR(M) is isomorphic to the ith cohomology of the invariant de Rham complex

DR(M)G : 0 −→MG −→ (Ω1
X ⊗M)G −→ · · · −→ (Ωd

X ⊗M)G −→ 0, (2.3)

Proof. By Lemma 2.1 we have H i
dR(M) = H i

dR(M)G = H i(DR(M))G = H i(DR(M)G), where the last
equality follows from the fact that taking G-invariants is an exact functor when G is reductive. �

Next, we illustrate the effectiveness of calculating with the invariant de Rham complex.

Proposition 2.3. Suppose that G is a connected, reductive group, acting on X with finitely many orbits. For
any M ∈ modG(DX), each term in the complex DR(M)G from (2.3) is finite-dimensional.
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Proof. We write S = OX , and we show that if A is any finitely-generated S-module with a compatible rational
G-module structure (such as Ωi

X), then (A⊗S M)G is finite-dimensional. By choosing a G-equivariant finite
dimensional space of generators V of A, we get a surjective G-equivariant map of S-modules

S ⊗C V � A.

This in turn induces a surjective map (V ⊗CM)G � (A⊗SM)G. Hence, it is enough to prove that (V ⊗M)G

is finite dimensional.
For an irreducible representation Z of G, let [V : Z] (resp. [M : Z]) denote the multiplicity of Z in the

G-decomposition of V (resp. M). Let I denote the finite set of isomorphism classes of irreducible G-modules
W that appear in the decomposition of V (that is, [V : W ] ≥ 1). We have

dim(V ⊗M)G =
∑
W∈I

[V : W ] · [M : W∨],

which is finite, since M is a multiplicity-finite G-module by [LW19, Proposition 3.14]. �

Remark 2.4. Under the assumptions of Proposition 2.3, any M ∈ modG(DX) is in fact (regular) holonomic
by [HTT08, Theorem 11.6.1], hence the finiteness of hidR(M) follows readily. Nonetheless, the conclusion of

Proposition 2.3 is stronger, as the finiteness occurs already at the level of the complex DR(M)G.

We thus obtain a representation-theoretic approach for computing the intersection cohomology local Euler
characteristic of strata at the most singular point.

Corollary 2.5. Assume that X is a representation of a connected, reductive group G with finitely many orbits.
For an orbit O ⊂ X, let DO denote the corresponding Brylinski–Kashiwara DX-module. The intersection
cohomology local Euler characteristic of O at 0 is given by

χ0,O =
d∑
i=0

(−1)d−i · dimC (DO ⊗C

i∧
X∨)G.

Proof. From Corollary 2.2 and Proposition 2.3 we get

d∑
i=0

(−1)i · hidR(DO) =
d∑
i=0

(−1)i · dimC(DO ⊗C

i∧
X∨)G.

Furthermore, from the discussion above we have hi−d
(
IC•

O

)
= hidR(DO) for all i. Since X has finitely

many orbits, O is stable under the action of C∗. Then global intersection cohomology agrees with the stalk
intersection cohomology at 0 (see [HTT08, (13.2.40)]), hence the conclusion. �

3. Preliminaries on representations of the general linear group

In this section we recall some basic facts and notation regarding partitions and the representation theory
of GLn(C). We write Zndom for the set of dominant weights in Zn:

Zndom = {λ = (λ1, · · · , λn) ∈ Zn : λ1 ≥ λ2 ≥ · · · ≥ λn}.
When each λi ≥ 0, we identify λ with a partition with (at most) n parts, and write λ ∈ Nndom. We let
|λ| := λ1 + · · ·+ λn denote the size of the partition λ, and write λ ` k when |λ| = k. We identify a partition
λ with its Young diagram, consisting of left-justified rows of boxes, where row i consists of λi boxes. For
example, λ = (5, 3, 3, 2) has Young diagram

.
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The Durfee size of λ is the largest s with the property λs ≥ s, and it corresponds to the largest s× s square
contained in the Young diagram of λ. We have for instance that λ = (5, 3, 3, 2) has Durfee size 3. We write λ′

for the conjugate partition of λ, where λ′i counts the number of parts λj with λj ≥ i. We note that the Young
diagram of λ′ is obtained by transposing the one of λ, and that in particular, the Durfee size of λ′ is equal to
that of λ. For example, we have

(5, 3, 3, 2)′ = (4, 4, 3, 1, 1).

We partially order Zndom (and Nndom) by declaring that λ ≥ µ if λi ≥ µi for all i = 1, · · · , n. If a ≥ 0 then we
write a × b or (ba) for the sequence (b, b, · · · , b) where b is repeated a times. With this notation, the Durfee
size of λ ∈ Nndom is the largest s for which λ ≥ (ss).

If F is a vector space with dim(F ) = n and λ ∈ Zndom, then we write SλF for the corresponding irreducible
representation of GL(F ) (or Schur functor). Our conventions are such that if λ = (k, 0, · · · , 0) then we have
SλF = Symk F , while for λ = (1r, 0n−r) we have SλF =

∧r F . For a weight λ ∈ Zn, we define its dual to be

λ∨ = (−λn,−λn−1, · · · ,−λ1),

and we have an isomorphism

Sλ(F∨) ' Sλ∨(F ) for all λ ∈ Zndom. (3.1)

Moreover, we have by Schur’s lemma that if we let G = GL(F ) then

(
SλF∨ ⊗ SµF

)G
= HomG (SλF, SµF ) =

{
C if λ = µ;

0 otherwise.
(3.2)

When m ≥ n, we will think of Nndom as a subset of Nmdom by adding trailing zeroes, and think of the union of
all Nndom as the set of partitions. For a partition λ we can then think of Sλ as a functor of finite dimensional
vector spaces (of any dimension), with

SλF = 0 if λi 6= 0 for some i > dim(F ). (3.3)

Note that when λ = (1r), the formula above states the familiar fact that
∧r F = 0 when r > dim(F ).

3.1. Plethysm formulas. We next record some fundamental plethysm formulas that will be used in analyzing
the invariant de Rham complex for matrix spaces. Suppose first that we have two finite dimensional vector
spaces F1, F2. The structure of the exterior powers on F1 ⊗F2 as representations of G = GL(F1)×GL(F2) is
governed by Cauchy’s formula [Wey03, Corollary 2.3.3]:

i∧
(F1 ⊗ F2) =

⊕
λ`i

SλF1 ⊗ Sλ′F2, for all i ≥ 0. (3.4)

If we let m = dim(F1) and n = dim(F2), then using (3.3) we can restrict (3.4) to those partitions λ with
λ ≤ (nm): if λm+1 6= 0 then SλF1 = 0, while if λ1 > n then Sλ′F2 = 0.

The next plethysm formulas concern a single vector space F . We have by [Wey03, Proposition 2.3.9(a)]

i∧(
Sym2 F

)
=

⊕
λ∈Y(2i)

SλF, for all i ≥ 0, (3.5)
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where Y(2i) denotes the set of partitions λ ` 2i of some Durfee size r ≥ 0 for which there is a partition
α ≤ (n− r)r such that

λj =

{
r + 1 + αj for j = 1, · · · , r,
α′j−r for j = r + 1, · · · , n,

or pictorially λ :

α′

r × r
r
×
1

α

(3.6)

Similarly, the exterior powers of
∧2 F are given by [Wey03, Proposition 2.3.9(b)]:

i∧(
2∧
F

)
=

⊕
λ∈Z(2i)

SλF, for all i ≥ 0, (3.7)

where Z(2i) denotes the set of partitions λ ` 2i of some Durfee size r ≥ 0 for which there is a partition
α ≤ (n− r − 1)r such that:

λj =


r + αj for j = 1, · · · , r,
r for j = r + 1,

α′j−r−1 for j = r + 2, · · · , n,
or pictorially λ :

α′

1× r

r × r α

(3.8)

3.2. q-binomial coefficients. For a ≥ b ≥ 0 we define the Gaussian (or q-)binomial coefficient
(
a
b

)
q

to be the

polynomial in Z[q] defined as (
a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)
.

These polynomials are generalizations of the usual binomial coefficients, satisfying the relations(
a

b

)
q

=

(
a

a− b

)
q

,

(
a

a

)
q

=

(
a

0

)
q

= 1, and

(
a

b

)
1

=

(
a

b

)
, (3.9)

and the recursion (
a

b

)
q

=

(
a− 1

b− 1

)
q

+

(
a− 1

b

)
q

· qb. (3.10)

One significance of the q-binomial coefficients is that
(
a
b

)
q2

describes the Poincaré polynomial of the Grass-

mannian G(b, a) of b-dimensional subspaces of Ca. As such, the coefficient of qj in
(
a
b

)
q

computes the number

of Schubert classes of (co)dimension j, or equivalently the number of partitions λ of size j contained inside
the rectangular partition (a− b)× b. We get(

a

b

)
q

=
∑

λ≤(ba−b)

q|λ|. (3.11)
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4. General matrices

In this section we consider X = Xm,n, the affine space of complex m × n matrices, and we assume that
m ≥ n ≥ 1. For a coordinate independent notation, we consider complex vector spaces F1, F2, dim(F1) = m,
dim(F2) = n, we let S = Sym(F1 ⊗ F2) and identify X with Spec(S). We write G = GL(F1) × GL(F2) and
consider its natural action on X. The rank stratification of X agrees with the orbit stratification relative to
the G-action. The dimensions of the strata are given by

dp = dim(Xp) = p · (m+ n− p) for p = 0, · · · , n.
The module of differential forms on X is naturally isomorphic to

Ω1
X = F1 ⊗ F2 ⊗ S,

and using (3.4) with µ = λ′, we have for 0 ≤ i ≤ mn that

Ωi
X =

i∧
Ω1
X =

⊕
µ`i

Sµ′F1 ⊗ SµF2 ⊗ S. (4.1)

Each stratum gives rise to a simple object in modG(DX), the Brylinski–Kashiwara module Dp := L(Vp, X).
As a G-representation, Dp has a decomposition into a direct sum of irreducible representations given by (see
[Rai16, Section 5], and also [RW14, Theorem 6.1], [RW16, Main Theorem(1)], [Rai17, Theorem 5.1])

Dp =
⊕

λ∈A(p)

Sλ(n−p)F
∨
1 ⊗ SλF∨2 , (4.2)

where
A(p) = {λ ∈ Zndom : λn−p ≥ m− p and λn−p+1 ≤ n− p},

and where for 0 ≤ s ≤ n we denote

λ(s) = (λ1 − (m− n), · · · , λs − (m− n), sm−n, λs+1, , · · · , λn) ∈ Zm.
Notice that for λ ∈ A(p) we have that λ(n − p) is dominant, so the corresponding Schur functor in (4.2) is
defined. We are now ready to analyze the invariant de Rham complex (2.3) and compute de Rham cohomology
for the simples Dp.

Theorem 4.1. For 0 ≤ p ≤ n ≤ m, we have∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(
n

p

)
q2
· q(m−p)·(n−p). (4.3)

In particular, the differentials in the invariant de Rham complex DR(Dp)
G are identically zero, and∑

i≥0

hidR(Dp) · qi =

(
n

p

)
q2
· q(m−p)·(n−p). (4.4)

Proof. It follows from (3.2), (4.1), and (4.2) that dim(Ωi
X ⊗Dp)

G is equal to the number of partitions µ ` i
satisfying

µ ∈ A(p), and µ′ = µ(n− p).
Note that the conditions µn−p ≥ m − p ≥ n − p and µn−p+1 ≤ n − p imply that µ has Durfee size (n − p),
while the condition µ′ = µ(n− p) is equivalent to

µ′j =


µj − (m− n) for j = 1, · · · , n− p,
n− p for j = n− p+ 1, · · · ,m− p,
µj−(m−n) for j = m− p+ 1, · · ·m.

(4.5)
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Pictorially, the Young diagram of the partition µ′ must have the following shape:

µ′ :

β

(n− p)m−n

(n− p)n−p α

where α ∈ Nn−pdom is given by

αj = µ′j − (n− p) = µj − (m− p) for j = 1, · · · , n− p, (4.6)

and β ∈ Npdom satisfies (since the columns of µ′ are the rows of µ)

β′j = µj − (m− p) for j = 1, · · · , n− p. (4.7)

Comparing (4.5), (4.6), (4.7), we see that β′ = α, and therefore µ uniquely corresponds to α ≤ (pn−p). Since
µ ` i, we must have i = 2|α|+ (m− p) · (n− p). We obtain∑

i≥0

dim(Ωi
X ⊗Dp)

G · qi =
∑

α≤(pn−p)

q2|α|+(m−p)·(n−p) =

(
n

p

)
q2
· q(m−p)·(n−p),

where the last equality follows from (3.11) and proves (4.3).
Since the coefficient of qi is non-zero only for i ≡ (m− p) · (n− p) mod 2, it follows that every other term

in the invariant de Rham complex DR(Dp)
G is zero. This implies that the differentials are identically zero,

and therefore

hidR(Dp) = dim(Ωi
X ⊗Dp)

G for all i,

from which (4.4) follows. �

As a corollary, we derive the following well-known formula for the intersection cohomology of determinantal
varieties.

Corollary 4.2. We have ∑
i∈Z

hi
(
IC•Vp

)
· qi = q−dp ·

(
n

p

)
q2
.

Proof. Since dim(X) = mn, we have by the discussion in Section 2 that

hi−mn
(
IC•Vp

)
= hidR(Dp) for all i,

hence the conclusion follows from the fact that (m− p) · (n− p)−mn = −dp. �

We now explain the calculation of the invariants χi,j and ei,j discussed in the Introduction.

Corollary 4.3. For 0 ≤ i ≤ j ≤ n we have that

χi,j = (−1)dj ·
(
n− i
j − i

)
and ei,j =

(
n− i
j − i

)
.
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Proof. Recall that the microlocal indices mi,j are non-zero only when i = j, in which case mi,i = 1. It follows
from (1.5) that

χi,j = (−1)dj · ei,j for all i, j,

so the desired formula for χi,j is equivalent to that for ei,j .
Consider first the case i = 0, and note that hi(IC•Vj ) = hi(IC•Vj ,0): since Vj is invariant under the scaling

action of C∗, the global intersection cohomology agrees with the stalk intersection cohomology at 0 (see for
instance [HTT08, (13.2.40)]). The conclusion χ0,j = (−1)dj

(
n
j

)
then follows from Corollary 4.2 by taking

Euler characteristic by setting q = −1 (cf. Corollary 2.5). If i > 0 then we can compute the invariants after
restricting to the open set X \ Vi−1. This space is locally isomorphic to Xm−i,n−i × B for a smooth base

B, via an isomorphism compatible with the stratification: Xj = Xm,n
j corresponds to Xm−i,n−i

j−i × B (see for

instance [LR20, Section 2H]). Using the fact that IC•
Vm−i,n−i
j−i ×B

= IC•
Vm−i,n−i
j−i

� IC•B, and IC•B = C[dimB],

it follows that if (0, b) ∈ Xm−i,n−i
j−i ×B is the point corresponding to xi ∈ Xm,n

i then

hk
(
IC•Vm,n

j ,xi

)
= hk

(
IC•

Vm−i,n−i
j−i ×B,(0,b)

)
= hk−dim(B)

(
IC•

Vm−i,n−i
j−i ,0

)
.

By taking Euler characteristic, we then obtain

χm,ni,j = χm−i,n−i0,j−i · (−1)dimB

and the desired formula for χm,ni,j follows by induction on the size of the matrix space. Alternatively, using

properties 1. and 3. for local Euler obstructions from [Mac74, Section 3], we get that em,ni,j = em−i,n−i0,j−i . �

Remark 4.4. We conclude this section with several remarks:

(a) Via the identification of Xm,n with the big opposite cell in the Grassmannian G(n,m+ n), it follows
from [LS81, Section 11] that the intersection cohomology groups in Corollary 4.2 (as well as their local
versions) are computed by Kazhdan–Lusztig polynomials. The resulting Gaussian polynomials in our
formulas are then precisely the ones appearing in [LS81, Lemme 10.1].

(b) As mentioned in Section 3.2, the Gaussian polynomials are Poincaré polynomials of Grassmann vari-
eties. The determinantal variety Vp has a small resolution given by a vector bundle over the Grassman-
nian G(p, n) (see also [Zel83], [Wey03, Proposition 6.1.1], [PR21, Section 5.2]), which gives another
explanation for the formula in Corollary 4.2.

(c) If we write F for the Fourier transform (see [HTT08, Section 3.2.2], [Rai16, Section 2.5], [LW19,
Section 4.3]), then we have F(Dp) ∼= Dn−p for all p. The formula in (4.4) can then be recovered from
the case t = 0 of [LR20, Theorem 1.1] via an iteration of [HTT08, Proposition 3.2.6], which implies
that

Hk(π+(M)) ∼= Hk(Li∗F(M)),

where π : X → {0} is the projection and i : {0} → X the inclusion.
(d) The parity-vanishing of de Rham cohomology in (4.4) follows from the vanishing of odd-dimensional

intersection cohomology groups for spherical varieties [BJ01].

5. Symmetric matrices

In this section we consider the space X = Xn,symm of n × n symmetric matrices. We let F be a vector
space with dim(F ) = n, let S = Sym(Sym2 F ), and make the identification X = Spec(S). Let G = GL(F )
and consider its natural action on X, so that the rank stratification agrees with the orbit stratification for
the G-action. The dimensions of the strata are given by

dp =
p · (2n− p+ 1)

2
for p = 0, · · · , n. (5.1)
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By (3.5) the modules of differential forms are described by

Ωi
X =

i∧
Ω1
X =

⊕
µ∈Y(2i)

SµF ⊗ S. (5.2)

We consider as in Section 4 the simple modules Dp := L(Vp, X). Their decomposition as a direct sum of
irreducible G-representations is computed in [Rai16, Theorem 4.1], and is given as follows.

(1) If n− p is odd then

Dp =
⊕

λ∈C1(p)

SλF∨ (5.3)

where

C1(p) = {λ ∈ Zndom : λi
(mod 2)
≡ 0 for i = 1, · · · , n, λn−p ≥ n− p+ 1 ≥ λn−p+2}.

(2) If n− p is even then

Dp =
⊕

λ∈C2(p)

SλF∨ (5.4)

where

C2(p) =

{
λ ∈ Zndom : λi

(mod 2)
≡

{
1 for i ≤ n− p
0 for i ≥ n− p+ 1

, λn−p ≥ n− p+ 1, λn−p+1 ≤ n− p

}
.

Theorem 5.1. We let m = bn/2c, and for 0 ≤ p ≤ n, we set s = bp/2c, and

ε =

{
1 if p = 2s is even and n = 2m+ 1 is odd;

0 otherwise.

We have ∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(
m+ ε

s

)
q4
· q(

n−p+1
2 ). (5.5)

In particular, the differentials in the invariant de Rham complex DR(Dp)
G are identically zero, and∑

i≥0

hidR(Dp) · qi =

(
m+ ε

s

)
q4
· q(

n−p+1
2 ). (5.6)

Proof. We separate our analysis into two cases, according to the parity of n− p, and proceed as in the proof
of Theorem 4.1. We have using (3.2) and (3.5) that dim(Ωi

X ⊗ Dp)
G is equal to the number of partitions

λ ∈ Y(2i) with the property that SλF∨ appears as a summand of Dp. We consider any such λ and write r
for its Durfee size.

If n − p is even then we have by (5.4) that λ ∈ C2(p), hence λn−p ≥ n − p + 1, λn−p+1 ≤ n − p, forcing
r = n − p. With the notation (3.6), we have α ≤ (pn−p), and the condition λ ∈ C2(p) is then equivalent
to the fact that both α and α′ have even parts. The choice of α is then equivalent to that of a partition
β ≤

(
s(n−p)/2) with 4|β| = |α| (recall that s = bp/2c), via the rule

α2i−1 = α2i = 2βi for all i ≥ 1.

Using (3.11), we conclude that∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(n−p
2 + s

s

)
q4
· q

(n−p)·(n−p+1)
2 .
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To see that this agrees with (5.5), we first note that n − p even implies that ε = 0. If n = 2m is even then
p = 2s, hence n−p

2 + s = m, while if n = 2m+ 1 is odd then p = 2s+ 1, and we have again n−p
2 + s = m.

If n−p is odd then we have by (5.3) that λ ∈ C1(p). The condition λn−p ≥ n−p+ 1 ≥ λn−p+2 implies that
r ∈ {n− p, n− p+ 1}, so we have two type of contributions to (Ωi

X ⊗Dp)
G. Suppose first that r = n− p, and

let α as in (3.6). We have α ≤ (pn−p), and the condition λ ∈ C1(p) is again equivalent to the fact that both

α and α′ have even parts. The choice of α is equivalent as before to that of a partition β ≤
(
s(n−p−1)/2

)
with

4|β| = |α|, and varying α and using (3.11) we get a contribution to
∑

i≥0 dim(Ωi
X ⊗Dp)

G · qi of(n−p−1
2 + s

s

)
q4
· q

r2+r
2 =

(n−p−1
2 + s

s

)
q4
· q

(n−p)·(n−p+1)
2 . (5.7)

Suppose next that r = n − p + 1, so that α ≤
(
(p− 1)n−p+1

)
, α has odd parts, and α′ has even parts. If

we define α by αi = αi − 1 for i = 1, · · · , r then |α| = |α| − r, α ≤
(
(p− 2)n−p+1

)
, and both α and α′ have

even parts. The choice of α is then equivalent to that of β ≤
(
(s− 1)(n−p+1)/2

)
with 4|β| = |α|. We get from

(3.11) the second contribution to
∑

i≥0 dim(Ωi
X ⊗Dp)

G · qi of(n−p+1
2 + s− 1

s− 1

)
q4
· q

r2+r
2

+r =

(n−p+1
2 + s− 1

s− 1

)
q4
· (q4)

n−p+1
2 · q

(n−p)·(n−p+1)
2 . (5.8)

Using (3.9), and the recursion (3.10) with a = (n− p+ 1)/2 + s and b = (n− p+ 1)/2, we get(n−p−1
2 + s

s

)
q4

+

(n−p+1
2 + s− 1

s− 1

)
q4
· (q4)

n−p+1
2 =

(n−p+1
2 + s

s

)
q4
,

which combined with (5.7) and (5.8) implies that∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(n−p+1
2 + s

s

)
q4
· q

(n−p)·(n−p+1)
2 .

To see that this agrees with (5.5), we consider two cases. If n = 2m + 1 then p = 2s and hence ε = 1,

showing that n−p+1
2 + s = m + 1 = m + ε. If n = 2m then p = 2s + 1 and hence ε = 0, which shows that

n−p+1
2 + s = m = m+ ε, as desired.
It follows from (5.5) that there are no non-zero consecutive terms in the invariant de Rham complex, which

forces the differentials to be zero, which in turn implies (5.6) and concludes our proof. �

We can now derive the formula for the intersection cohomology of symmetric determinantal varieties.

Corollary 5.2. With the notation in Theorem 5.1, we have∑
i∈Z

hi
(
IC•Vp

)
· qi = q−dp ·

(
m+ ε

s

)
q4
.

Proof. Since dim(X) =
(
n+1

2

)
, and hi−dim(X)

(
IC•Vp

)
= hidR(Dp), it suffices by Theorem 5.1 to show that(

n− p+ 1

2

)
−
(
n+ 1

2

)
= −dp,

which follows from (5.1). �

We end this section with the calculation of the invariants χi,j and ei,j .
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Corollary 5.3. For 0 ≤ i ≤ j ≤ n we have that

χi,j = (−1)dj ·
(bn−i2 c+ ε

b j−i2 c

)
, where ε =

{
1 if (j − i) is even and (n− i) is odd;

0 otherwise.

Moreover, the local Euler obstructions are given by

ei,j =


0 if n− i is even and n− j is odd;(bn−i2 c
b j−i2 c

)
otherwise.

.

Proof. As in the proof of Corollary 4.3, the formula for χ0,j follows from Corollary (5.2) by taking p = j and
q = −1, and observing that via the C∗-action, the global intersection cohomology agrees with the local one at

the origin. For i > 0 we do induction on n, using the fact that χn,symm
i,j = χn−i,symm

0,j−i and en,symm
i,j = en−i,symm

0,j−i ,

which follows as in the proof of Corollary 4.3 using that Xn,symm \Vi−1 is locally isomorphic to Xn−i,symm×B
for a smooth base B.

It remains to check the formulas for e0,j , for which we apply (1.5) with i = 0. Using the Theorem on
characteristic cycles from the Introduction, we note that when n− j is even, mi,j = 0 for all i 6= j, hence

e0,j = (−1)dj · χ0,j =

(bn2 c
b j2c

)
,

where the last equality uses the fact that ε = 0 (if j was even and n odd then n− j would be odd).
Suppose now that n− j is odd, so that mj−1,j = mj,j = 1 and mi,j = 0 for i < j− 1. We have by (1.5) that

χ0,j = (−1)dj−1 · e0,j−1 + (−1)dj · e0,j .

Since we already know χ0,j and e0,j−1, and since (5.1) implies dj − dj−1 = n+ 1− j is even, we get

e0,j =

(bn2 c+ ε

b j2c

)
−
( bn2 c
b j−1

2 c

)
.

If n is even then j is odd, hence ε = 0 and b j2c = b j−1
2 c, and therefore e0,j = 0, as desired. If n is odd then j

is even, hence ε = 1 and b j−1
2 c = b j2c − 1, so

e0,j =

(bn2 c+ 1

b j2c

)
−
( bn2 c
b j2c − 1

)
=

(bn2 c
b j2c

)
,

which concludes our proof. �

6. Skew-symmetric matrices

In this section we consider the space X = Xn,skew of n× n skew-symmetric matrices. We let F be a vector
space with dim(F ) = n, let m = bn/2c, S = Sym(

∧2 F ), and identify X = Spec(S). We write G = GL(F )
and consider its natural action on X, so that the rank stratification on X agrees with the orbit stratification
for the G-action. The dimensions of the strata are given by

dp = p · (2n− 2p− 1) for p = 0, · · · ,m. (6.1)

By (3.7) the modules of differential forms are described by

Ωi
X =

i∧
Ω1
X =

⊕
µ∈Z(2i)

SµF ⊗ S. (6.2)
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The decomposition into irreducible G-representations of the modules Dp = L(Vp, X) is (see [Rai16, Section 6])

Dp =
⊕
λ∈B(p)

SλF∨, (6.3)

where if n = 2m is even then

B(p) = {λ ∈ Z2m
dom : λn−2p ≥ n− 2p− 1, λn−2p+1 ≤ n− 2p, λ2i−1 = λ2i for all i},

and if n = 2m+ 1 is odd then

B(p) = {λ ∈ Z2m+1
dom : λn−2p = n− 2p− 1, λ2i−1 = λ2i for i ≤ m− p, λ2i = λ2i+1 for i > m− p}.

We note that for p = m we have Dm = S and the formula in (6.3) is classical [Wey03, Proposition 2.3.8].

Theorem 6.1. For 0 ≤ p ≤ m, we have∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(
m

p

)
q4
· q(

n
2)−p(2n−2p−1). (6.4)

In particular, the differentials in the invariant de Rham complex DR(Dp)
G are identically zero, and∑

i≥0

hidR(Dp) · qi =

(
m

p

)
q4
· q(

n
2)−p(2n−2p−1). (6.5)

Proof. If we combine (3.2), (3.7), and (6.3) then it follows that dim(Ωi
X ⊗ Dp)

G is equal to the number of
partitions λ ∈ Y(2i) ∩ B(p). We consider any such λ and write r for its Durfee size, and divide our analysis
according to the parity of n.

If n = 2m + 1 then the condition λn−2p = n − 2p − 1 forces r = n − 2p − 1 = 2(m − p). If we let α as in

(3.8), then we have α ≤
(
(2p)2(m−p)) and the condition λ ∈ B(p) is equivalent to the fact that both α and

α′ have even parts. Therefore, α corresponds to a partition β ≤ (pm−p) with 4|β| = |α|, as in the proof of
Theorem 5.1, and we get ∑

i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(
m

p

)
q4
· q

r2+r
2 .

This agrees with (5.5) because(
n

2

)
− p(2n− 2p− 1) = m(2m+ 1)− p(4m− 2p+ 1) = (m− p)(2m− 2p+ 1) =

r(r + 1)

2
.

Suppose now that n = 2m, where the inequalities λn−2p ≥ n − 2p − 1, λn−2p+1 ≤ n − 2p imply that
r ∈ {n−2p−1, n−2p}. Consider first the case r = n−2p−1 and let α as in (3.8). We have α ≤

(
(2p)n−2p−1

)
,

and since r is odd we get

r + αr = λr = λr+1 = r,

forcing αr = 0. It follows that α ≤
(
(2p)2m−2p−2

)
, and both α, α′ have even parts, and using the standard

correspondence with partitions β ≤
(
pm−p−1

)
we get a contribution to

∑
i≥0 dim(Ωi

X ⊗Dp)
G · qi of(

m− 1

p

)
q4
· q

r2+r
2 =

(
m− 1

p

)
q4
· q(m−p)·(n−2p−1). (6.6)

Consider next the case r = n− 2p and let α as in (3.8), so that α ≤
(
(2p)n−2p

)
. Since r is even, we have

r = λr+1 = λr+2 = α′1,
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so αi ≥ 1 for 1 ≤ i ≤ r. We define α by αi = αi − 1, so |α| = |α| − r and α ≤
(
(2p− 1)n−2p

)
. Now α and α′

have even parts, so α corresponds to a partition β ≤ ((p− 1)m−p) with 4|β| = |α|. We get a contribution to∑
i≥0 dim(Ωi

X ⊗Dp)
G · qi of(

m− 1

p− 1

)
q4
· q

r2+r
2

+r =

(
m− 1

p− 1

)
q4
· (q4)(m−p) · q(m−p)·(n−2p−1). (6.7)

Summing (6.6) and (6.7) and using (3.10) with a = m and b = m− p we get∑
i≥0

dim(Ωi
X ⊗Dp)

G · qi =

(
m

p

)
q4
· q(m−p)·(n−2p−1).

This agrees with (5.5) because(
n

2

)
− p(2n− 2p− 1) = m(2m− 1)− p(4m− 2p− 1) = (m− p)(2m− 2p− 1).

Finally, (6.5) follows from (5.5) because DR(Dp)
G contains no two consecutive non-zero terms. �

As for the other matrix spaces, we get a formula for intersection cohomology as follows.

Corollary 6.2. With the notation in Theorem 6.1, we have∑
i∈Z

hi
(
IC•Vp

)
· qi = q−dp ·

(
m

p

)
q4
.

Proof. Since dim(X) =
(
n
2

)
, and hi−dim(X)

(
IC•Vp

)
= hidR(Dp), the conclusion follows from (6.1) and (6.5). �

Finally, we can derive the formulas for χi,j and ei,j from the Introduction.

Corollary 6.3. Let m = bn/2c. For 0 ≤ i ≤ j ≤ m we have that

χi,j = (−1)dj ·
(
m− i
j − i

)
, ei,j =

(
m− i
j − i

)
.

Proof. Since the characteristic cycles of the modules Dp are irreducible, we get from (1.5) that χi,j = (−1)djei,j ,
so it suffices to prove the formula for χi,j . When i = 0 we set q = −1 and p = j in Corollary (6.2), and use
the identification between global intersection cohomology and the stalk at 0. When i > 0 we use the inductive

structure as in the case of general and symmetric matrices, which gives χn,skew
i,j = χn−2i,skew

0,j−i . �
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matics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi.

[Kas73] M. Kashiwara, Index theorem for a maximally overdetermined system of linear differential equations, Proc. Japan Acad.
49 (1973), 803–804.

[KS90] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by C. Houzel.

[KS97] M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36.
[Ken90] G. Kennedy, MacPherson’s Chern classes of singular algebraic varieties, Comm. Algebra 18 (1990), no. 9, 2821–2839.
[KL80] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos.
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