LOCAL EULER OBSTRUCTIONS FOR DETERMINANTAL VARIETIES

ANDRAS C. LORINCZ AND CLAUDIU RAICU

ABSTRACT. The goal of this note is to explain a derivation of the formulas for the local Euler obstructions of
determinantal varieties of general, symmetric and skew-symmetric matrices, by studying the invariant de Rham
complex and using character formulas for simple equivariant D-modules. These calculations are then combined
with standard arguments involving Kashiwara’s local index formula and the description of characteristic cycles
of simple equivariant D-modules. The formulas are implicit in the work of Boe and Fu, and in the case of
general matrices they have also been obtained recently by Gaffney—Grulha—Ruas, for skew-symmetric matrices
by Promtapan and Riményi, and for all cases by Zhang.

1. INTRODUCTION

Let X be a smooth complex algebraic variety. To any closed subvariety V' C X one can associate a
constructible function Euy, whose value Euy (p) at a point p is called the local Euler obstruction of V" at p, and
represents a measure of the singularity of V' at p. Local Euler obstructions were introduced by MacPherson
using transcendental methods in [Mac74, Section 3], and were later given a purely algebraic description
([GS81, Section 4.3], [Sab85,Ken90]). After giving a quick review of the theory of local Euler obstructions,
our goal is to illustrate the theory by computing the local Euler obstructions for the determinantal varieties
of general, symmetric and skew-symmetric matrices. The results for general matrices have appeared in
[GGR19, Theorem 2.17], [Zha2l, Theorem 3|, for skew-symmetric matrices in [Prol9, Theorem 9.11] and
[PR22, Theorem 8.1], and for all three cases in the recent work of Zhang [Zha20, Section 6]. Here we follow
a different approach using D-module and representation-theoretic methods based on the invariant de Rham
complex, thus providing a recipe for dealing with other representations with finitely many orbits as well (see
Corollary 2.5). The symmetric case is especially interesting because simple equivariant D-modules supported
on symmetric determinantal varieties can have reducible characteristic varieties, which is the main obstacle
for computing the local Euler obstructions directly from Kazhdan—Lusztig theory (see for instance the proof
of [MS20, Theorem 10.4]). Further, this case provides supporting evidence for the recent positivity conjecture
of Mihalcea—Singh concerning the local Euler obstructions associated to the Schubert stratification of the
Lagrangian Grassmannian [MS20, Conjecture 10.2], which was verified in [LR21].

Throughout this work, X will denote one of the following affine spaces:

(1) X™" ~C™ ® C™ — the space of m x n matrices, where m > n.

(2) X™symm ~ Gym?(C™) — the space of n x n symmetric matrices.

(3) Xmskew ~ AZ(C™) - the space of n x n skew-symmetric matrices.

In each of the cases above, we will consider the rank stratification on X, denote the strata by X; and their

closures by V; = X;. More precisely:

(1) If X = X™" then X; denotes the stratum of rank ¢ matrices, for 0 < i < n.

(2) If X = X™™™ then X, denotes the stratum of rank ¢ symmetric matrices, for 0 <1 < n.

(3) If X = X™k®W then X; denotes the stratum of rank 2i skew-symmetric matrices, for 0 <i < [n/2].
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The local Euler obstruction functions Euy, are constant along each stratum (see for instance [BS81, Corol-
laire 10.2]), so we can define

eij = Euy, (z;) for any z; € X;. (1.1)

Since X; C Vj if and only if 4 < j, and X; is the non-singular locus of V;, it follows from [Mac74, Section 3]
that

eii =1 and e; j = 0 for i > j.

If we write 1, for the indicator function of the stratum X, then (1.1) is equivalent to the expression

J
Euvj = E €ij - ]er
=0

The following theorem records the values of the local Euler obstructions for determinantal varieties (see also
[Zha21,GGR19,Prol19,PR22, Zha20]) — note that e; ; > 0 in all cases, and see [MS20, Conjecture 10.2].

Theorem on local Euler obstructions. The local Euler obstructions for determinantal varieties are given

as follows.
(1) If X = X™*", m >n, then for all 0 <i < j <n we have

n—1
eij = .
4,7 j*l

0 ifn—1is even and n — j is odd;
€ij = |25 ]
’ . otherwise.
J—1
5l

(3) If X = X™*V gnd m = |n/2| then for all 0 < i < j < m we have

m—1
e; i = )
2y ]—Z

Due to the fact that our matrix spaces are naturally identified with open subsets of classical Grassmannians
(see the discussion below), the formulas in the theorem above are implicit in [BF97, Section 6]. Similarly to
[BF97], our strategy is to exploit the connection between e; ; and two closely related invariants of stratifica-
tions: characteristic cycles and intersection cohomology. Following [Gin86, p. 331], we consider the following
commutative diagram associated to X:

(2) If X = Xmsymm ghen

perverse sheaves DR regular holonomic
on X ~ D x—modules
SS
X CC
constructible functions S Lagrangian cycles

on X ~ in T*X
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Here DR denotes the de Rham functor, CC(M) is the characteristic cycle of a Dx-module M, or equivalently,
the singular support (SS) of the associated perverse sheaf DR(M) (see [HTTO08, Section 2.2, Chapter 7],
[KS90, Chapters V and IX]). The map y associates to a perverse sheaf, or more generally to a constructible
complex F*, the local Euler characteristic function

r e X (F®) =Y (-1)'-dim H' (Fy),
where F» denotes the stalk at the point z. A key fact in the diagram above is that SS factors through x, and

the local Euler obstruction function Euy is the unique constructible function (the reader can take this as the
definition of Euy ) with the property that

S(Euy) = (~1)4mV . 7 x, (1.2)

where 71> X denotes the closure of the conormal bundle to the regular locus V** C V' (see [Sab85], [Ken90,
Lemma 4 and Section 4] and [KS90, Section 9.7]).

Returning to our matrix spaces X with their natural rank stratification, we let ICY, denote the intersection
cohomology complex associated to V;. Let D; be the simple, regular holonomic Dy-module associated to
ICY, through the Riemann-Hilbert correspondence [HTTO08, Theorem 7.2.5] (called the Brylinski-Kashiwara
module of V; C X, see [BK81, Section 8]). We define the microlocal indices m; ; via

SS(ICY,) = CC(Dy) =Y may- Ty X, (1.3)

We have m; j = 0 for i > j, as well as the following.

Theorem on characteristic cycles of simple Dx-modules. The microlocal indices m; ; for determinantal
varieties are as follows.

(1) If X = X"™" then m;; =1 and m; j =0 for i # j.
(2) If X = X™™ then m;; =1 for all 1,

mi—1,; =1 if n —1 is odd,

and m; ; = 0 otherwise.
(3) If X = X™*V then m;; =1 and m;; = 0 for i # j.

The description of characteristic cycles in the theorem above is noted in [Rail6, Remark 1.5] (see also
[LW19, Corollary 3.19 and Section 5] and [Bra95, Section 3.4]). In general, establishing the irreducibility of
characteristic cycles, or identifying the non-trivial components when they exist, is quite a difficult task! We
have the following:

(1) The main result of [BFLI0] gives the irreducibility of the characteristic cycles for the Schubert strati-
fication of the (type A) Grassmannian. Since X" can be identified with the opposite big cell in the
Grassmannian G(n, m+n) in such a way that the Schubert stratification refines the rank stratification
(see [LROS, Section 5.2.2]), part (1) of the theorem above is a special case of [BFL90, Theorem 0.1].

(2) The characteristic cycles for the (type C) Lagrangian Grassmannian LG(n,2n) are described combi-
natorially in [BF97, Theorem 7.1D], and they may be reducible. Since X™%™™ ig the opposite big
cell of LG(n,2n) (see [LRO8, Section 6.2.5]), one can then derive (with a little work) conclusion (2) of
the theorem above.

(3) Finally, it follows from [BF97, Theorem 7.1A] that the characteristic cycles for the (type D) orthogonal
Grassmannian OG(n,2n) are irreducible. Since X™kV is the opposite big cell in OG(n,2n) (see
[LROS8, Section 7.2.5]), conclusion (3) of the theorem above follows.
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For more non-trivial calculations of characteristic cycles, see [KS97, Section 7], [Bra95, EM99, Tim19).
The final ingredient in our discussion is given by the intersection cohomology local Euler characteristics

Xoj = X, (IC},) for any ; € Xi. (1.4)
If we write d; = dim(V;) then we have
Xii = (=1)% and xi,; = 0 for i > j.
Theorem on intersection cohomology local Euler characteristics. The intersection cohomology local

Euler characteristics for determinantal varieties are computed as follows.
(1) If X = X™ ™ m >n, then for all 0 <i < j < n we have

Xij = (—1)% - (n B Z)
j —1
(2) If X = Xmsymm thep

i = (—1)b - (L 2'7J' e)’ where ¢ — if (J z) is even and (n —1i) is odd;
’ | 5] 0 otherwise.

(3) If X = X™*Y and m = |n/2| then for all 0 <1i < j < m we have

=0 (5)

For the Schubert stratification, the local intersection cohomology groups are computed as coefficients of
Kazhdan-Lusztig polynomials [KL80, Theorem 4.3], [HTT08, Theorem 12.2.5]. Using the identification of
our matrix spaces with opposite cells in an appropriate Grassmannian, it follows that x;; is equal up to
a sign with the value at 1 of a corresponding Kazhdan—Lusztig polynomial. Explicit descriptions of these
polynomials are given for G(n,m + n) in [LS81, Théoreme 7.8], for LG(n,2n) in [Boe88, Theorem 3.13], and
for OG(n,2n) in [Boe88, Theorem 4.1]. In the case of matrix spaces we will give an alternative derivation of
the Kazhdan-Lusztig polynomials and the invariants x; ; based on a study of the invariant de Rham complex.

The connection between the three theorems listed above comes from the Kashiwara microlocal index formula
[Kas73, Section 2], [BDK81, Théoremes 1, 2], [Gin86, Theorem 8.2], which in our case can be phrased as the
following identity:

J
Xig = D _(=1)% i - my ;. (1.5)
k=i
Equivalently, if we consider the upper-triangular matrices

X=(xig) €= (eig) M= ((-1)%my;)
then we have the identity

X =& M. (1.6)

Example 1.1. Consider the space X 2™ of 2 x 2 symmetric matrices. We have dy =0, d; = 2, do = 3, and
11 -1 1 01 11 0
X=(01 -1, &=1(0 1 1|, M=1]0 1 0
0 0 -1 0 01 0 0 -1

We single out the local Euler obstruction ep; = Euy; (0) = 0, where V; is a quadric cone (defined by the
vanishing of the determinant of the 2 x 2 symmetric matrix), and 0 is the vertex of Vj. It was noted in
[Mac74, Section 3] that if V is the cone with vertex 0 over a non-singular plane curve of degree d, then
Euy (0) = 2d — d?, so our example coincides with the special case d = 2.
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Using the inductive structure of determinantal varieties, it is not difficult to reduce the calculation of the
invariants x;; to that of xoj_; for a smaller matrix space. For this reason, it is enough to compute the
local Euler characteristic of the stalk at 0 for each I C’"/j , which in turn gets identified via the C*-action with
the global intersection cohomology Euler characteristic of Vj. The intersection cohomology of V; agrees (up
to a shift) with the de Rham cohomology of the associated simple D-module D;, and it is encoded by a
Kazhdan-Lusztig polynomial. We show that it can be computed by restricting to the invariant de Rham
complex (Corollary 2.2), which we determine explicitly and observe that it has no non-zero differentials.

Theorem on de Rham cohomology of simple Dx-modules. If we write héR(Dp) for the dimension of
H'n(D,), and QY for the module of i-differentials on X, then we have.

(1) If X = X™" m >n, and G = GL,, X GL,,, then for all 0 < p < n we have

S dim(@ @ D,)¢ ¢ = 3 hig(D,) ¢ = (Z) ),
q2

>0 >0
(2) If X = X™™™ gnd G = GL,, then for all 0 < p < n we have

Zdlm Q% ® D,)E - ¢ _Zh gt = (L2jp+6> .q(n_§+1),
i>0 i>0 5] qt

where e =1 if p is even and n is odd, and € = 0 otherwise.
(3) If X = X"V G = GL,, and m = |n/2], then for all 0 < p < m we have

q4

i>0 i>0

Organization. We have no additional input regarding the calculation of the multiplicities m; ;, for which
we refer the reader to the cited sources. In Section 2 we discuss equivariant D-modules and the invariant de
Rham complex, and in Section 3 we recall some basics on representations of the general linear group. We
then discuss the calculation of Kazhdan—Lusztig polynomials via the invariant de Rham complex, along with
the invariants x; ; and e; ;: the case X = X"™" is treated in Section 4, the case X = X™*™" in Section 5,
and the case X = X™*V in Section 6.

2. EQUIVARIANT D-MODULES AND THE INVARIANT DE RHAM COMPLEX

Let X be an irreducible smooth complex affine variety of dimension d and let D = Dx denote the sheaf of
differential operators on X. Throughout we make an identification between quasi-coherent O x-modules and
their global sections. For a D-module M, we consider the (algebraic) de Rham complex

DR(M) : 0— M — Q@0 M — - — Q4 @0, M — 0, (2.1)

where QY% is the module of i-differential forms and is placed in cohomological degree i. Writing m (M) for the
D-module-theoretic derived integration (pushforward), we have an identification of the de Rham cohomology
groups Hip(M) ~ H"%(7.(M)) for all i. In particular, if M is holonomic then each H’p(M) is finite-
dimensional [HTT08, Theorem 3.2.3].

The corresponding analytic de Rham complex plays a fundamental role in the Riemann—Hilbert corre-
spondence [HTTO08, Theorem 7.2.5]. In the special case when M = Ox is the structure sheaf, the celebrated
comparison theorem of Grothendieck [Gro66] implies that the space H’,(Ox) agrees with the (singular) coho-
mology group H*(X,C). More generally, for an irreducible closed subvariety Y C X there is a corresponding
simple D-module L(Y,X) (called the Brylinski-Kashiwara module [BK81, Section 8]) whose associated de
Rham complex is, up to a shift, the middle perversity intersection cohomology complex ICY.. In particular,
the de Rham cohomology groups of £(Y, X) agree with the intersection cohomology groups of Y (see for
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instance [HTTO08, Theorem 7.1.1]). As we explain in Section 2.2, in the presence of a (connected, reductive)
group action it suffices to work with the invariant de Rham complex in order to compute cohomology, the
advantage being that this complex is in general much smaller than (2.1).

2.1. Equivariant D-modules. In this section we provide some background on equivariant D-modules (for
more details, see [LW19, Section 2.1]). We assume that G is a connected algebraic group acting on X, and
we say that M is a (strongly) G-equivariant D-module if there exists a Dgx x-isomorphism

T:p*M — m*M, (2.2)
where p and m are the projection and multiplication maps
p:GxX — X, m:Gx X —> X

respectively, and 7 satisfies the usual compatibility conditions on G x G x X [HTTO08, Definition 11.5.2].

We call a (possibly infinite-dimensional) vector space V' a rational G-module if V' is equipped with a linear
action of G, such that every v € V is contained in a finite-dimensional G-stable subspace W, where the
G-action on W is given by a morphism G — GL(W) of algebraic varieties. If we let g denote the Lie algebra
of GG, then by differentiating the action of G on X we get a map g — Dx. Equivariance of a D-module M
amounts to M having a rational G-module structure such that differentiating the action of G on M coincides
with the action of g induced from g — Dx. In particular, if a map 7 as in (2.2) exists then it must be unique,
hence the notion of a D-module being equivariant should be thought of as a property the module, rather than
as additional data. Therefore, coherent equivariant D-modules form a full subcategory modg(Dx) of the
category mod(Dy) of coherent Dx-modules. Moreover, if f is any G-equivariant map f : X — X’ between
smooth G-varieties X, X', then the D-module-theoretic direct image f, preserves equivariance.

2.2. Invariant de Rham complex. One of the most basic results in algebraic topology is that (co)homology
groups of a topological space are homotopy-invariant. Moreover, homotopic maps between two spaces induce
identical maps on the level of cohomology. An immediate consequence of this is that the action of a connected
group G on X induces the trivial action on the cohomology groups H*(X,C). This can be viewed as a special
case (with M = Ox) of the following result.

Lemma 2.1. Let M be a G-equivariant Dx-module, and assume that G is connected. The induced action of
G on Hjjp(M) is trivial for all i > 0.

Proof. Let m : X — {pt} be the map to the point, which is G-equivariant. Since the pushforward preserves
equivariance (Section 2.1), the spaces H¥(my(M)) are equivariant Dy-modules, for all k € Z. The map
g — Dy = C is zero, hence g, and consequently G acts trivially on any equivariant Dp;-module. Since we
have HYp(M) = H'=%(r(M)) for all i, the desired conclusion follows. O

It is clear that the differentials in the de Rham complex (2.1) are G-equivariant. The following result shows
that in order to compute de Rham cohomology, it is enough to consider the G-invariant part of this complex.

Corollary 2.2. With the notation as in Lemma 2.1, assume in addition that G is reductive. For each i, we
have that H},(M) is isomorphic to the ith cohomology of the invariant de Rham complex

DR(M)® 0— MY — QoMY — ... — (4 oMY —0, (2.3)
Proof. By Lemma 2.1 we have Hip(M) = Hip(M)¢ = HY(DR(M))® = HY(DR(M)%), where the last
equality follows from the fact that taking G-invariants is an exact functor when G is reductive. O

Next, we illustrate the effectiveness of calculating with the invariant de Rham complex.

Proposition 2.3. Suppose that G is a connected, reductive group, acting on X with finitely many orbits. For
any M € modg(Dx), each term in the complexr DR(M)C from (2.3) is finite-dimensional.
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Proof. We write S = Ox, and we show that if A is any finitely-generated S-module with a compatible rational
G-module structure (such as %), then (A ®g M )¢ is finite-dimensional. By choosing a G-equivariant finite
dimensional space of generators V of A, we get a surjective G-equivariant map of S-modules

S®RcV — A

This in turn induces a surjective map (V @c M)¢ — (A®g M)Y. Hence, it is enough to prove that (V @ M)%
is finite dimensional.

For an irreducible representation Z of G, let [V : Z] (resp. [M : Z]) denote the multiplicity of Z in the
G-decomposition of V' (resp. M). Let Z denote the finite set of isomorphism classes of irreducible G-modules
W that appear in the decomposition of V' (that is, [V : W] > 1). We have

dim(V @ M)% = Y [V : W] [M: W],
WweT
which is finite, since M is a multiplicity-finite G-module by [LW19, Proposition 3.14]. O
Remark 2.4. Under the assumptions of Proposition 2.3, any M € modg(Dy) is in fact (regular) holonomic

by [HTTO08, Theorem 11.6.1], hence the finiteness of h’(M) follows readily. Nonetheless, the conclusion of
Proposition 2.3 is stronger, as the finiteness occurs already at the level of the complex DR(M )G.

We thus obtain a representation-theoretic approach for computing the intersection cohomology local Euler
characteristic of strata at the most singular point.

Corollary 2.5. Assume that X is a representation of a connected, reductive group G with finitely many orbits.
For an orbit O C X, let Do denote the corresponding Brylinski-Kashiwara Dx-module. The intersection
cohomology local Fuler characteristic of O at 0 is given by

d i
Xo0 = Z(_l)d_i -dime (Do ®c /\ X¥)%.
Proof. From Corollary 2.2 and Propositi:):nOQ.?) we get
d d i
D (1) hip(Do) = (~1) - dime(Do @¢ A X¥)¢.
i=0 i=0
Furthermore, from the discussion above we have hi~¢ (I C%) = hijp(Do) for all i. Since X has finitely

many orbits, O is stable under the action of C*. Then global intersection cohomology agrees with the stalk
intersection cohomology at 0 (see [HTTO8, (13.2.40)]), hence the conclusion. O

3. PRELIMINARIES ON REPRESENTATIONS OF THE GENERAL LINEAR GROUP

In this section we recall some basic facts and notation regarding partitions and the representation theory
of GL,(C). We write Z}; = for the set of dominant weights in Z":

dom =AA=(A1,- -, An) €EZ" : X1 > Xg > - > A\ 1
When each A; > 0, we identify A\ with a partition with (at most) n parts, and write A € N We let

dom*
|A] := A1 + -+ + A, denote the size of the partition A\, and write A - k when |\| = k. We identify a partition
A with its Young diagram, consisting of left-justified rows of boxes, where row ¢ consists of A; boxes. For

example, A\ = (5,3,3,2) has Young diagram
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The Durfee size of A is the largest s with the property A; > s, and it corresponds to the largest s X s square
contained in the Young diagram of A\. We have for instance that A = (5, 3,3, 2) has Durfee size 3. We write X\’
for the conjugate partition of A, where A} counts the number of parts A\; with A\; > i. We note that the Young
diagram of X" is obtained by transposing the one of )\, and that in particular, the Durfee size of )\’ is equal to
that of X\. For example, we have

(5,3,3,2) = (4,4,3,1,1).

We partially order Z; ~ (and N} ) by declaring that A > pif \; > p; for all i =1,--- ,n. If a > 0 then we
write a x b or (b%) for the sequence (b,b,--- ,b) where b is repeated a times. With this notation, the Durfee
size of A € NJj_ is the largest s for which A > (s°).

If F is a vector space with dim(F) =n and A € Z]} . then we write SyF" for the corresponding irreducible
representation of GL(F") (or Schur functor). Our conventions are such that if A = (k,0,---,0) then we have
SaF = Sym* F, while for A = (17,0"") we have S\F = A" F. For a weight A € Z", we define its dual to be

)\V = (_)‘nv_)‘n—lv e 7_)‘1)7

and we have an isomorphism
SA(FY) =~ Syv(F) for all A € Z . (3.1)

Moreover, we have by Schur’s lemma that if we let G = GL(F') then

C if A= p;

0 otherwise.

(SAFY ©S,F) = Homg (S\F,S,.F) = { (3.2)

When m > n, we will think of N} as a subset of N} by adding trailing zeroes, and think of the union of
all N7 as the set of partitions. For a partition A we can then think of Sy as a functor of finite dimensional

vector spaces (of any dimension), with
SaF = 0if A\; # 0 for some ¢ > dim(F). (3.3)

Note that when A = (1"), the formula above states the familiar fact that A" F = 0 when r > dim(F).

3.1. Plethysm formulas. We next record some fundamental plethysm formulas that will be used in analyzing
the invariant de Rham complex for matrix spaces. Suppose first that we have two finite dimensional vector
spaces F1, Fy. The structure of the exterior powers on Fj ® Fy as representations of G = GL(F}) x GL(F3) is
governed by Cauchy’s formula [Wey03, Corollary 2.3.3]:

N\(FL® Fo) = @D SAFL @Sy Fp,  forall i > 0. (3.4)
A2

If we let m = dim(F}) and n = dim(F3), then using (3.3) we can restrict (3.4) to those partitions A\ with
A < (n™): if Ajg1 # 0 then SyFy = 0, while if A\; > n then Sy F» = 0.
The next plethysm formulas concern a single vector space F. We have by [Wey03, Proposition 2.3.9(a)]

N\ (Sym*F) = €D SyF, foralli >0, (3.5)
AeY(2i)
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where Y(2i) denotes the set of partitions A F 2i of some Durfee size 7 > 0 for which there is a partition
a < (n—r)" such that

or pictorially A : (3.6)

/
Jj—r

o forj=r4+1,---,n,

{r+1+aj forj=1,---,r,
Aj =

Similarly, the exterior powers of A F are given by [Wey03, Proposition 2.3.9(b)]:

7 2
/\ </\F> = EB S\F, foralli >0, (3.7)

AEZ(2i)

where Z(2i) denotes the set of partitions A - 2i of some Durfee size r > 0 for which there is a partition
a < (n—r—1)" such that:

rXxr @
r+a; forj=1,---,r,
Nj=4 T for j =r+1, or pictorially A: L1 (3.8)
O‘;erfl forj=r+2,---,n, ,

3.2. g-binomial coefficients. For a > b > 0 we define the Gaussian (or ¢-)binomial coefficient (Z)q to be the
polynomial in Z[q] defined as

<a> _ (1—¢%-(1—q* 1) (1 —qgv 0
b4 1-¢) - (1=g")-1-q)

These polynomials are generalizations of the usual binomial coefficients, satisfying the relations

(0G0 (0=, (), ) oo
(), =G0, (), o10

One significance of the g-binomial coefficients is that (Z)qZ describes the Poincaré polynomial of the Grass-

and the recursion

mannian G(b, a) of b-dimensional subspaces of C*. As such, the coefficient of ¢/ in (Z)q computes the number

of Schubert classes of (co)dimension j, or equivalently the number of partitions A of size j contained inside
the rectangular partition (a — b) x b. We get

(Z)q: S, (3.11)

)\S (bafb)
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4. GENERAL MATRICES

In this section we consider X = X"™", the affine space of complex m X n matrices, and we assume that
m >n > 1. For a coordinate independent notation, we consider complex vector spaces Fy, Fo, dim(F}) = m,
dim(F3) = n, we let S = Sym(F; ® F») and identify X with Spec(S). We write G = GL(F7) x GL(F>) and
consider its natural action on X. The rank stratification of X agrees with the orbit stratification relative to
the G-action. The dimensions of the strata are given by

d, =dim(X,) =p-(m+n—p) forp=0,---,n.

The module of differential forms on X is naturally isomorphic to

=Fohos,
and using (3.4) with g = X', we have for 0 < i < mn that

L= N\2% =PSyF oS Fos. (4.1)
pi

Each stratum gives rise to a simple object in modg(Dx ), the Brylinski-Kashiwara module D), := L(V},, X).
As a G-representation, D, has a decomposition into a direct sum of irreducible representations given by (see
[Rail6, Section 5], and also [RW14, Theorem 6.1], [RW16, Main Theorem(1)], [Rail7, Theorem 5.1])

Dy= P San-nF @SAFY, (4.2)
AEA(p)
where
Alp) ={N€Zi,, : Mi—p > m —pand A\y_pi1 < n—p},
and where for 0 < s < n we denote
As) =M —(m—=—n),--  As—(m—n), 8" ", Ast1,,* , \n) EZ™.

Notice that for A € A(p) we have that A\(n — p) is dominant, so the corresponding Schur functor in (4.2) is
defined. We are now ready to analyze the invariant de Rham complex (2.3) and compute de Rham cohomology
for the simples D,,.

Theorem 4.1. For 0 < p <n <m, we have
S aim(@ 0 0,)% ' = (1) gm0 (43)
i>0 P/ g

In particular, the differentials in the invariant de Rham complex DR(Dp)G are identically zero, and

. . n _ (n—
S hin(Dy) - = < > e, (4.4)
q

i>0 p
Proof. Tt follows from (3.2), (4.1), and (4.2) that dim(Q% ® D,)¢ is equal to the number of partitions y I i
satisfying

p€Alp), and p' = p(n—p).

Note that the conditions pi,—p > m —p > n —p and pp—pr1 < n — p imply that p has Durfee size (n — p),
while the condition p/ = pu(n — p) is equivalent to

Mj_(m_n) fOI’jzl,"',n—p,

py=1{ n—p forj=n—p+1,---,m—p, (4.5)
Hj—(m—n) forj=m-p+1,---m.
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Pictorially, the Young diagram of the partition p must have the following shape:

(n—p)r|
,-
oo (n_p)mfn
JB—F
where o € Nzo_mp is given by

and 8 € NI satisfies (since the columns of i/ are the rows of p)

Bj=p;—(m—p)forj=1,-,n—p. (4.7)

Comparing (4.5), (4.6), (4.7), we see that 8’ = «, and therefore p uniquely corresponds to o < (p"~P). Since
wuF i, we must have i = 2|a| + (m — p) - (n — p). We obtain

Z dlm(QfX X Dp)G . ql = Z q2|a|+(m—p)~(n—p) — <TL> . q(m—p)-(n—p)7
>0 a<(pn—P) p q?

where the last equality follows from (3.11) and proves (4.3).

Since the coefficient of ¢’ is non-zero only for i = (m — p) - (n —p) mod 2, it follows that every other term
in the invariant de Rham complex DR(Dp)G is zero. This implies that the differentials are identically zero,
and therefore

i p(Dy) = dim(Qy ® D) for all 4,
from which (4.4) follows. 0O

As a corollary, we derive the following well-known formula for the intersection cohomology of determinantal
varieties.

Corollary 4.2. We have

S (1) - (1)

1E€EL
Proof. Since dim(X) = mn, we have by the discussion in Section 2 that
pi=mn (IC&p) = hip(D,) for all 4,
hence the conclusion follows from the fact that (m —p) - (n — p) — mn = —d,. O

We now explain the calculation of the invariants x; ; and e; ; discussed in the Introduction.

Corollary 4.3. For 0 <: < j <n we have that

a4 [n—1 n—1
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Proof. Recall that the microlocal indices m; ; are non-zero only when ¢ = j, in which case m;; = 1. It follows
from (1.5) that
Xi,j = (—1)dj c €45 for all i,j,
so the desired formula for x; ; is equivalent to that for e; ;.
Consider first the case i = 0, and note that h'(I y) = h* (I cy, o)¢ since Vj is invariant under the scaling

action of C*, the global intersection cohomology agrees with the stalk intersection cohomology at 0 (see for
instance [HTTO8, (13.2.40)]). The conclusion xo; = (—1)% (?) then follows from Corollary 4.2 by taking
Euler characteristic by setting ¢ = —1 (cf. Corollary 2.5). If ¢ > 0 then we can compute the invariants after
restricting to the open set X \ V;_;. This space is locally isomorphic to X "~ x B for a smooth base
B, via an isomorphism compatible with the stratification: X; = X" corresponds to XJ”:”FZ x B (see for
instance [LR20, Section 2H]). Using the fact that ICX./’”*i’"*"xB = IC;/WH-,,H X IC%, and ICY = C[dim B,

j—i j—i

it follows that if (0,b) € XJ":”FZ X B is the point corresponding to z; € X" then

k . _ pk ° o _ pk—dim(B) . o
B (10, ) = h (Icvm__z,n_w,m,b)) —h (IC’Vm__M_I7O> .

Jj—i Jj—i
By taking Euler characteristic, we then obtain
X::’;,n _ Xg’zj—_z;n—z . (_1)dimB

and the desired formula for XZ;’” follows by induction on the size of the matrix space. Alternatively, using

properties 1. and 3. for local Euler obstructions from [Mac74, Section 3], we get that eZ";.’” = egfj__i;"_i O

Remark 4.4. We conclude this section with several remarks:

(a) Via the identification of X™" with the big opposite cell in the Grassmannian G(n,m + n), it follows
from [LS81, Section 11] that the intersection cohomology groups in Corollary 4.2 (as well as their local
versions) are computed by Kazhdan-Lusztig polynomials. The resulting Gaussian polynomials in our
formulas are then precisely the ones appearing in [LS81, Lemme 10.1].

(b) As mentioned in Section 3.2, the Gaussian polynomials are Poincaré polynomials of Grassmann vari-
eties. The determinantal variety V), has a small resolution given by a vector bundle over the Grassman-
nian G(p,n) (see also [Zel83], [Wey03, Proposition 6.1.1], [PR21, Section 5.2]), which gives another
explanation for the formula in Corollary 4.2.

(c) If we write F for the Fourier transform (see [HTTO8, Section 3.2.2], [Rail6, Section 2.5], [LW19,
Section 4.3]), then we have F (D)) = D,,_,, for all p. The formula in (4.4) can then be recovered from
the case t = 0 of [LR20, Theorem 1.1] via an iteration of [HTT08, Proposition 3.2.6], which implies
that

HY (my (M) = H*(Li* F(M)),
where 7 : X — {0} is the projection and i : {0} — X the inclusion.

(d) The parity-vanishing of de Rham cohomology in (4.4) follows from the vanishing of odd-dimensional
intersection cohomology groups for spherical varieties [BJO1].

5. SYMMETRIC MATRICES

In this section we consider the space X = X™™ of n x n symmetric matrices. We let F' be a vector
space with dim(F) = n, let S = Sym(Sym? F), and make the identification X = Spec(S). Let G = GL(F)
and consider its natural action on X, so that the rank stratification agrees with the orbit stratification for
the G-action. The dimensions of the strata are given by

_p-(2n—p+1)

d, = 5 forp=0,---,n. (5.1)
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By (3.5) the modules of differential forms are described by

i
k=A% = P s.Fes (5.2)
neY(2i)
We consider as in Section 4 the simple modules D), := £(V},, X). Their decomposition as a direct sum of

irreducible G-representations is computed in [Rail6, Theorem 4.1], and is given as follows.
(1) If n — pis odd then

D,= P syFY (5.3)

XeCl(p)
where
1 n (mod 2) ,
C(p)={Aelyjyy: N\ = Ofori=1,---,n, Myop>n—p+1>X\,_pi2}
(2) If n — p is even then

D,= P siFY (5.4)

AEC2(p)

where

(mcgz){l fori<n-—p

C%(p) = {/\ezgom:)\i = 0 fori>n_p+1,)\npZn—p+1,)\np+1§n—p}.

Theorem 5.1. We let m = |n/2], and for 0 < p <n, we set s = |p/2], and

)1 ifp=2sis even and n = 2m + 1 is odd,
10 otherwise.

We have
> dim(Qk © Dy)% ¢’ = <m * 6) U, (5.5)
i>0 5 q*

In particular, the differentials in the invariant de Rham complex DR(Dp)G are identically zero, and

, 4 m+e n—p+1
ZhéR(Dp>'ql: ( :_ ) 4-q( 2, (5.6)
>0 q
Proof. We separate our analysis into two cases, according to the parity of n — p, and proceed as in the proof
of Theorem 4.1. We have using (3.2) and (3.5) that dim(Q% ® D,)% is equal to the number of partitions
A € Y(2i) with the property that SyF" appears as a summand of D,. We consider any such A and write r
for its Durfee size.

If n — p is even then we have by (5.4) that A\ € C%(p), hence \y—p > n —p+1, A\y_ps1 < n — p, forcing
r = n — p. With the notation (3.6), we have a < (p"P), and the condition A € C?(p) is then equivalent

to the fact that both o and o’ have even parts. The choice of « is then equivalent to that of a partition
B < (s("P)/2) with 4|8| = |af (recall that s = |p/2]), via the rule

Qo1 = Q9 = 262' for all ¢ 2 1.
Using (3.11), we conclude that

’ « P ts (n—p)-(n—p+1)
> dim( &@D@G-q“( 2+ ) g
: S 4
>0 q
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To see that this agrees with (5.5), we first note that n — p even implies that e = 0. If n = 2m is even then
p = 2s, hence "5 + s = m, while if n = 2m + 1 is odd then p = 25 + 1, and we have again *52 4 s = m.

If n —p is odd then we have by (5.3) that A € C!(p). The condition A\,,—p > n—p+1> \,_pi2 implies that
r € {n—p,n—p+ 1}, so we have two type of contributions to (Q% ® D,)%. Suppose first that 7 = n — p, and
let o as in (3.6). We have a < (p"P), and the condition A € C!(p) is again equivalent to the fact that both
a and o have even parts. The choice of « is equivalent as before to that of a partition 8 < (S(”_p_l)/z) with
4|8| = ||, and varying o and using (3.11) we get a contribution to Y-, dim(Q% ® D,)¢ - ¢' of

n—p—1 220 n—p—1 n—n)-(n—
( : +s> ‘q;:< L +s> ‘q< DA(pen) (57)
S q4 S q4

Suppose next that r = n — p+ 1, so that a < ((p — 1)"*1’*1), a has odd parts, and o has even parts. If
we define @ by @; = o; — 1 for i = 1,--- ,r then [a| = |a| — 7, @ < ((p — 2)""P*!), and both @ and @ have
even parts. The choice of @ is then equivalent to that of 8 < ((s — 1)(”_p+1)/2) with 48| = |@|. We get from
(3.11) the second contribution to 3,5, dim(Qy ® D,)¢ - ¢ of

n—p+1 n—p+1
—— +s—-1 r24r —— +s-1 n—ptl  (n—p)-(n—ptl)
( 2 ) .q2+r:< 2 ) .(q4) T g 3 . (5.8)
q* q*

s—1 s—1

Using (3.9), and the recursion (3.10) witha=(n—p+1)/2+sand b= (n—p+1)/2, we get

<7’Z—g—1 —l— 8) + <T7‘_5H_1 + S — 1) ) (q4)n—g+l _ (W _|,_ S>
s 4 s—1 7 s q4’

which combined with (5.7) and (5.8) implies that

n—p+1
. . _— (n—p)-(n—p+1)
E:dlm( S{®Dp)G'qZ:< 2 +S> .q p)(n—p .
i>0 5 a*

To see that this agrees with (5.5), we consider two cases. If n = 2m + 1 then p = 2s and hence e = 1,
showing that "_TP'H +s=m+1=m+e If n =2m then p = 2s+ 1 and hence ¢ = 0, which shows that
n_TpH%-S:m:m—Fe, as desired.

It follows from (5.5) that there are no non-zero consecutive terms in the invariant de Rham complex, which
forces the differentials to be zero, which in turn implies (5.6) and concludes our proof. O

We can now derive the formula for the intersection cohomology of symmetric determinantal varieties.

Corollary 5.2. With the notation in Theorem 5.1, we have

Sow (IC"/p> =g (m: 6>q4.

1€Z
Proof. Since dim(X) = (";rl), and pi—dim(X) (IC\./p) = h%,p(D,), it suffices by Theorem 5.1 to show that
n—p+1 _(n+ 1\ 4
2 2 ) "
which follows from (5.1). O

We end this section with the calculation of the invariants x;; and e; ;.
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Corollary 5.3. For 0 <i < j <n we have that

Yig = (—1) - (LT}*‘ 6>’ where ¢ — 1 if(j— z) is even and (n — 1) is odd;
’ | 557] 0 otherwise.

Moreover, the local Euler obstructions are given by

0 ifn—1is even and n — j is odd;

“ig = (LJ%A) otherwise.
5]

Proof. As in the proof of Corollary 4.3, the formula for xg ; follows from Corollary (5.2) by taking p = j and

q = —1, and observing that via the C*-action, the global intersection cohomology agrees with the local one at
the origin. For ¢ > 0 we do induction on n, using the fact that X?’jsymm = g;ﬁ?ymm and e?’jsymm = g;ﬁ?ymm,

which follows as in the proof of Corollary 4.3 using that XY™™\ V;_; is locally isomorphic to X"~ 4Y™m x B
for a smooth base B.

It remains to check the formulas for eg ;, for which we apply (1.5) with ¢ = 0. Using the Theorem on
characteristic cycles from the Introduction, we note that when n — j is even, m; ; = 0 for all ¢ # 7, hence

d; 15]
eoj = (=1)% - x05=1| 5 |:
5]
where the last equality uses the fact that e = 0 (if 7 was even and n odd then n — j would be odd).
Suppose now that n — j is odd, so that m;_1 ; = m;; =1 and m; ; = 0 for i < j — 1. We have by (1.5) that
Xog = (=1)P" et + (1)U - eo,j.

Since we already know xo ; and egj—1, and since (5.1) implies dj — dj_1 =n + 1 — j is even, we get

o= (Y ()
RN 7
If n is even then j is odd, hence € = 0 and L%J = L%J, and therefore eg j = 0, as desired. If n is odd then j

. i1
is even, hence e = 1 and |15=] = [§] — 1, so

() (- ()
which concludes our proof. 0

6. SKEW-SYMMETRIC MATRICES

In this section we consider the space X = X"V of n x n skew-symmetric matrices. We let F be a vector
space with dim(F) = n, let m = [n/2], S = Sym(\® F), and identify X = Spec(S). We write G = GL(F)
and consider its natural action on X, so that the rank stratification on X agrees with the orbit stratification
for the G-action. The dimensions of the strata are given by

dy=p-2n—-2p—1)forp=0,---,m. (6.1)
By (3.7) the modules of differential forms are described by

y=\%= P s.Fes. (6.2)

HEZ(2i)
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The decomposition into irreducible G-representations of the modules D, = L(V,, X) is (see [Rail6, Section 6])
D,= P SAFY, (6.3)
AeB(p)

where if n = 2m is even then
B(p) ={N€Z3 :Mop>n—2p— 1, A\p9pi1 <1 —2p, Aoj_1 = Ay; for all i},
and if n = 2m + 1 is odd then
B(p) ={\ € Z2m+L An—2p =1 —2p — 1, Agi—1 = Ag; for i <m — p, Agj = Agiqq for i > m — p}.

dom

We note that for p = m we have D,, = S and the formula in (6.3) is classical [Wey03, Proposition 2.3.8].

Theorem 6.1. For 0 < p < m, we have

3 dim(Qy ® D)% ¢’ = <m>  q(5)—p@n=2p-1), (6.4)
i>0 P/ g

G

In particular, the differentials in the invariant de Rham complex DR(D,)" are identically zero, and

> har(Dy) -q' = (m) q(3)—pn=2r=1), (6.5)

>0 p

Proof. If we combine (3.2), (3.7), and (6.3) then it follows that dim(Q% ® D,)¢ is equal to the number of
partitions A € Y(2i) N B(p). We consider any such A and write r for its Durfee size, and divide our analysis
according to the parity of n.

If n = 2m + 1 then the condition \,_o, =n —2p —1 forces r =n —2p — 1 = 2(m — p). If we let a as in
(3.8), then we have o < ((2p)2(m_p)) and the condition A\ € B(p) is equivalent to the fact that both « and
o have even parts. Therefore, o corresponds to a partition 5 < (p™~P) with 4|5| = ||, as in the proof of
Theorem 5.1, and we get

. . T2 T
> dim(Qy @ D)7 - ¢’ = <m> g
i>0 P/

This agrees with (5.5) because

r(r+1)

(n) —p2n—2p—1)=m2m+1)—pdm—2p+1)=(m—p)2m—2p+1) = 5

2

Suppose now that n = 2m, where the inequalities A\,—2, > n — 2p — 1, \_9p11 < n — 2p imply that
r € {n—2p—1,n—2p}. Consider first the case r = n—2p—1 and let « as in (3.8). We have o < ((2p)"~271),
and since 7 is odd we get

r+ay=A=NNy1 =T,

forcing a,. = 0. It follows that a < ((2p)2m_2p_2), and both «, o’ have even parts, and using the standard
correspondence with partitions 8 < (pm*pfl) we get a contribution to ), dim(Q% ® DP)G - ¢" of

-1 . -1
p Jp P /g

Consider next the case r =n — 2p and let « as in (3.8), so that a < ((2p)"*2p). Since 7 is even, we have

/
r= >\r+1 = )\r+2 = Oy,
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soa; > 1for 1 <i<r. Wedefinea@by @; =a; —1,s0 [a] =|a| —rand @ < ((2p — 1)""%). Now @ and o

have even parts, so @ corresponds to a partition 8 < ((p —1)"77) with 4|3| = [a]. We get a contribution to
Zz’zo dim(Qy ® Dp)G -q" of
-1 2 tr -1
(m 1) R <m 1) (gh)mP) . m)n=2p-1). 6.7)
p—= gt p— ¢

Summing (6.6) and (6.7) and using (3.10) with @ = m and b = m — p we get
> dim(Qk ® D)9 - ¢’ = <m> gy (n=2p=1).
i>0 P/ gt

This agrees with (5.5) because

(Z) —p2n—2p—1)=m@2m—1)—p(dm —2p—1) = (m —p)(2m — 2p — 1).

Finally, (6.5) follows from (5.5) because DR(D,)¢ contains no two consecutive non-zero terms. O
As for the other matrix spaces, we get a formula for intersection cohomology as follows.
Corollary 6.2. With the notation in Theorem 6.1, we have
DN (IC&p) ql=q % (7;) R
i€Z q
Proof. Since dim(X) = (), and pi—dim(X) (IC&p) = h%(D,), the conclusion follows from (6.1) and (6.5). O
Finally, we can derive the formulas for x; ; and e; ; from the Introduction.

Corollary 6.3. Let m = |n/2]. For 0 <i < j < m we have that

d: m—1 m—1
w= e (52) = (52)

Proof. Since the characteristic cycles of the modules D), are irreducible, we get from (1.5) that x; ; = (—1)ie;, s
so it suffices to prove the formula for x; ;. When i = 0 we set ¢ = —1 and p = j in Corollary (6.2), and use
the identification between global intersection cohomology and the stalk at 0. When ¢ > 0 we use the inductive

n,skew _  n—2iskew ]

structure as in the case of general and symmetric matrices, which gives Xi; = X0,
I 9.
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