AN EQUIVARIANT HOCHSTER’S FORMULA
FOR G,-INVARIANT MONOMIAL IDEALS

SATOSHI MURAI AND CLAUDIU RAICU

ABSTRACT. Let R = k|z1,...,z,] be a polynomial ring over a field k and let ] C R be a monomial
ideal preserved by the natural action of the symmetric group &, on R. We give a combinatorial
method to determine the Gp-module structure of Tor;(I,k). Our formula shows that Tor;(I,k) is
built from induced representations of tensor products of Specht modules associated to hook partitions,
and their multiplicities are determined by topological Betti numbers of certain simplicial complexes.
This result can be viewed as an &,-equivariant analogue of Hochster’s formula for Betti numbers of
monomial ideals. We apply our results to determine extremal Betti numbers of &,-invariant monomial
ideals, and in particular recover formulas for their Castelnuovo—Mumford regularity and projective
dimension. We also give a concrete recipe for how the Betti numbers change as we increase the number
of variables, and in characteristic zero (or > n) we compute the &,-invariant part of Tor;(/,k) in
terms of Tor groups of the unsymmetrization of I.

1. INTRODUCTION

Let R =k[z,,...,z,] be a polynomial ring over a field k. The study of the graded Betti numbers

of a homogeneous ideal I is one of the central research topics in commutative algebra. When I is a
monomial ideal, this is closely related to combinatorial topology, and is the subject of a vast literature
[6, Section 5], [15, Part II], [20, Part I], [23, Part III]. One of the most famous results on this topic
is Hochster’s formula [6, §5.5], which enables one to study Betti numbers of monomial ideals using
combinatorics of simplicial complexes, and has seen numerous applications over the years. The goal
of this paper is to develop an analogue of Hochster’s formula for monomial ideals I that are invariant
under the action of the symmetric group &,, by coordinate permutations.

In general, if G C GL,(k) is a subgroup and I C R is a G-invariant ideal (g(I) = I for all g € G),
then each Tor;(I,k) acquires a G-module structure. The representation theory of G dictates the
possible building blocks that make up Tor;(/, k), reducing the problem of understanding Tor;(/, k) to
that of identifying the multiplicity of each building block. When G = k*" is the n-torus, the building
blocks are 1-dimensional, given by the torus characters, and the calculation of their multiplicity (the
dimension of the multigraded components of Tor;(I,k)) is the content of Hochster’s formula. When
G = k*™ x G, extends the torus action by that of the symmetric group, our work will show that a
natural set of building blocks arises via induction from Specht modules associated to hook partitions
for smaller symmetric groups. We then identify the multiplicities of each block with topological Betti
numbers of associated simplicial complexes, which yields an &,-equivariant Hochster’s formula.

To state our results, we first introduce some notation. We let

Po={(A\,...; ) €EZ" |\ >--- >\, >0}
1
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be the set of partitions consisting of n non-negative integers. For a vector a = (ay,...,a,) € Z2,,
we write £% = 29* - - - 2% and write part(a) € P, for the unique partition which is a rearrangement
of ai,...,a,. For example, we have part(2,1,3,2) = (3,2,2,1). Throughout the text, I will denote
an G, -invariant monomial ideal in R. For such I, we let

P(I)={\e P, |2* eI},
and think of P(I) informally as the set of partitions in I. For partitions A}, \%,... A" € P,, we define

(1.1) AL e, =S (0@ o €6,) CKa,. ..,z

and call it the &,-invariant monomial ideal generated by A!, ..., A\". For instance, we have
- I'=((4,1,1),(5,2,0))s,

(1.2) = (2]Tox3, T1T5T3, T\ Tox3, X205, A0S, w0y, i, vhas, 1375).

If M is a Z"-graded R-module and a € Z", then M, denotes the a-th graded component of M. Let

D Mo

aczZ”
part(a)=A

for A € P,. We note that Tor;(/, k)@\) is fixed by the &,-action, so we have a decomposition
Tor;(I,k) = € Tori(I,k)
AEP,
as 6,-modules. Therefore, we may focus on the &,-module structure of each Tor;(I, k) (x-
It will be convenient to use the abbreviation
(al*,ab?, ... a%) = (a1, ...,a1,a9,...,a2,... 45, . .., a(5)

where each a; appears p, times on the right side, and to identify each partition p with its Young
diagram. For example, (2%,1) will be identified with f. For a partition

(1.3) o= (... v 0P € P,

? s

where dy > --- > ds; >0, p1,...,ps > 0 and psyq > 0, we define

(1.4) p(p)=/m —1,...,ps—1) and s(u)=s.
For a vector ¢ = (cy, ..., ¢,) € Z3, with ¢ < (p1,...,ps), we define
(1.5) p\e=(d"" " (dy — 1), dy>  (dy — 1), ..., dBs=% (ds — 1)%,0P**) € P,.
Example 1.1. Suppose that p = (5%2,3%2%) and n = 6. We have s = 3, p; = py = p3 = 2, and
ps = 0, hence p(p) = (1,1,1). If we let ¢ = (1,2, 1) then
(5%,3%,2%)\ (1,2,1) = (5,4,2°,1).
As illustrated below, we can think of (5,4,23 1) as being obtained from (52, 3%, 2?) by removing one
box from the fifth column, two boxes from the third column, and one box from the second column:

X

X X

(52,32,22) (5,4,2%,1)
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We let ey, ..., e, be the standard vectors of Z* and write ep = ), ne; for F' C [s] = {1,...,s}.
For ¢ < p(u), we define the simplicial complex (see Section 2.2 for some background)

(1.6) AR(I) ={F C[s] | p\ (c+er) € P(I)},
and define the numbers (1) by

9°(1) = dimy (Hia(A%<(1)))

where I:T.(A) denote the reduced homology groups of a simplicial complex A, with coefficients in k.

Example 1.2. Let I be as in (1.2), let © = (5,2,1) and let ¢ = (0,0,0). The simplicial complex
Am<(I) can be identified with the intersection of the interval [u\ ¢, p\ (¢ +ep)] = [(5,2,1), (4,1,0)]
with P(I) in the poset P, (with the reversed order). The faces of the complex and the corresponding
partitions are colored in red and are pictured below.

H:ED
{1,2,3} /’\
/’\ g H=

{1,2} {1,3} {2,3}
R @ @wj
ﬁj]

¢

16}

It follows that
AR(I) = {{17 2}, {1}, {2}, {3}, @}7
whose only non-vanishing reduced homology group is Ho(A*<(I)), of dimension (1) = 1.

To introduce the final ingredient of our main result, we let S* denote the Specht module associated
with a partition A (see Section 2.4 for some background), which is a module over &,. We say that
A is a hook partition if \; < 1 for i > 1 (the terminology is suggestive of the shape of the Young
diagram of \). For a sequence

™= ((pla 1q1)’ LRI (pw 1%))
of hook partitions with Y, (px + qx) = n, we write

(1.7) S™ = Indg"

6P1+Q1 XU.XGPT"F‘]T‘

(SPA™ " ... R Sl

where X denotes the (external) tensor product of representations, and Ind denotes the induced
representation. We are now ready to state our main theorem.
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Theorem 1.3. Let = (di*,... dbs,0Pt1) € P, withdy > --- > ds > 0 and let I be an &,,-invariant

monomial ideal of R. We have an isomorphism of k-vector spaces

(18) ,]?OI’Z'(I7 k><ﬂ> = @ <S((p1_01,1cl),._.,(pS_CS’ICS)’(ps+l))),Yi_7|c|

0<C—(Cl, -C )<p(ﬂ)
Moreover, if char(k) = 0 or char(k) > n, then (1.8) is an isomorphism of &,-modules.

In fact, our proof will show that (in arbitrary characteristic) Tor;(/, k), has a filtration by &,-
submodules, whose associated graded is isomorphic to the right side of (1.8). Since representations
of &,, are semisimple if char(k) = 0 or char(k) > n, it follows that (1.8) is an isomorphism of &,-
modules in these cases (we note that a similar issue arises in the calculation of Ext modules in [24,
Main Theorem]). Theorem 1.3 clarifies our earlier assertion that the building blocks of Tor;(I,k)
are induced representations of tensor products of Specht modules, and that their multiplicities are
topological Betti numbers. We now illustrate Theorem 1.3 with an example.

Example 1.4. If ] is as in (1.2) then using Macaulay2 one can see that the Betti table of I is

0 1 2

total: 9 12 4
6: 3 .
7 6 6

8: 3 .

9: 3 3

10: 1

and that

TOY()([, k) = TOI"[)(I, k)<(471,1)> b TOI'()([, k)<(57270)>,
TOI“l(I, k) = TOl“l(I, k)((47471)> &P TOl"l(], k)<(57271)> P TOI‘1<], k)<(575’0)>,
1.k

TOI'Q(I, k) = TOI'Q([, k)((474,4)> ) TOI'Q( y )<(57571)>.

To identify the &3-module structure, one first computes the relevant complexes A*¢([):

A41,1),(0,0) I = (5,2,0)7(0,0)([) = {o},

(
AWADL0 (1) = AGSOM (1) = (g}, AG2D000 = f19 91 (1}, {2}, {3}, 2},
AUADQ)(1) = {@} and ACSDMLO = ({1} {2}, &),

We leave the details of this calculation to the reader, noting that the description of A®21:(0.0.0)(T)
was explained in Example 1.2. We then have

4,1,1),(0,0 5,2,0),(0,0
’7(() )i( )([) 'Y(S )( )([) 1
1D,(1.0) (1 5,2,1),(0,0,0) (1 5,5,0 I
21 LO) (g
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Theorem 1.3 implies based on these computations that we have
Torg (1, k)11 = Indg? g, (S7RST),
Toro(1,k)((s5.2,0 = Indg? (87X ST ST,

1X61%x61

As a first application of Theorem 1.3, we explain how to determine the &,-invariant part of
Tor;(I,k). We express [ as in (1.1), and define the unsymmetrization of [ to be the ideal

J = (.T)\l,"' 7.’17)\7‘) g R.
The relationship between the Tor groups of [ and J is given by the following.
Theorem 1.5. If char(k) = 0 or char(k) > n, then for partitions \',--- | \" € P, we have

TOIH(O\I, A6, k)en = Torz‘((f‘l, fe ,$)‘T),k) for all i.

The proof of Theorem 1.5 is explained in Section 4 as an application of Theorem 1.3 and the Nerve
Theorem. Here, we illustrate Theorem 1.5 with an example.

Example 1.6. If  is as in (1.2), then its unsymmetrization is the ideal J = (2}zyxs, 2522). Since

the generators of J have a unique syzygy (coming from their lem z%z2x3), we get

TOI"Q(J, k) = TOI'()(J, k)(4,171) D r]:‘OI'()(J7 k)(57270) =~k D k

and
TOI'l(J, k) = TOI'l(J, k)(5’2’1) = k.
Theorem 4.1 implies that

Torg(1,k)®* = Torg(L, k), 1) @ Toro(L, k), ) =k @k

and

Tor, (1, k)% = Tory (I, k)32, 1)) =k,

which can be checked (based on Pieri’s rule) using the computations in Example 1.4: the trivial
G3-module S™ appears as a summand in S™ if and only if each of the partitions in 7 has a single
row (in which case the multiplicity of S™ is one).

Remark 1.7. Theorem 4.1 implies that if (A,... A\")g, has a linear resolution, then so does
(z',...,2"). A combinatorial characterization of &,-invariant monomial ideals having a linear
resolution was given in [24]. These are exactly the symmetric shifted ideals (generated in a single
degree) defined in [4]. It follows that the unsymmetrizations of these ideals have a linear resolution.



6 SATOSHI MURAI AND CLAUDIU RAICU

Theorem 1.3 gives a concrete recipe for computing the multigraded Betti numbers
Bi,a(l) = dlm TOl"Z'<I, ]k)a,

but in practice, the difficulty of the calculation depends on the complexity of evaluating the homology
of A€ As shown by example in [21, Section 5], the numbers f; () may depend on the characteristic
of k. However, the shape of the Betti table, as measured by the Castelnuovo-Mumford regularity
reg([), and by the projective dimension pdim(7), does not depend on char(k)! This was first shown
in [24], and in Section 5 we give an equivalent (but somewhat simpler) recipe for computing reg(I)
and pdim(7). We also extend the notion of extremal Betti numbers from [2] to our context, and
compute the extremal Betti numbers of I in Theorem 5.1.

The results of our work relate to the broader context of the study of finiteness properties of ideals
in an infinite polynomial ring, which are invariant under a large group of symmetries. A significant
body of research has been performed in recent years on finite generation statements, most often
under the designation Noetherianity up to symmetry or representation stability, and has had impor-
tant applications including two (of several) recent proofs of Stillman’s conjecture on the projective
dimension (and regularity) of polynomial ideals [9, 11]. In the case of the infinite polynomial ring
R = k[xy, z9, - - -], with the action of the infinite symmetric group &, by coordinate permutations,
ideals I, C R, that are &.-invariant are generated by finitely many &..-orbits (this is a classical
result due to Cohen [8], rediscovered more recently in [1, 16]). It is then natural to explore finiteness
beyond the set of generators, and to understand how it is reflected in other homological invariants.
To that end, we let fi,..., f, € k[x1,...,2,] C R be polynomials whose &..-orbits generate I,
and consider the sequence of ideals

(1.9) ILn=(c(fi))|1<i<r o€6&,) Cklry,...,z,] for m >n.

One can guess that the finiteness properties of I, are reflected by uniform behaviors of homological
invariants of the ideals I,,,. For instance, it is shown in [18, Corollary 3.12] that the (co)dimension
of the ideals I,,, is computed by a linear function when m > 0, and it is conjectured in [18, Con-
jecture 1.3] that the same result is true for the projective dimension pdim(/,,). Similarly, it is
conjectured in [19, Conjecture 1.1] that reg(l,,) is a linear function when m > 0. In the case when
fi,+-+, fr are monomials, the linearity of pdim(/,,) and reg(/l,,) is established by the authors in [21,
Corollary 1.2] and [24, Theorem 6.1]. In Section 6, we extend these results to each of the Betti
numbers of the ideals I,,,, by providing a concrete recipe of how these numbers change as we vary m.
Exhibiting a uniform behavior for the Betti numbers of I,,,, when fi,--- , f. are no longer assumed
to be monomials, remains a significant open problem, and we hope that our work will inspire further
investigations in this direction.

Organization. In Section 2 we introduce the necessary notation and preliminary results regarding
partitions, simplicial complexes, Betti numbers, Specht modules, and multidimensional chain com-
plexes. In Section 3 we prove Theorem 1.3, and in Section 4 we explain the proof of Theorem 1.5. In
Section 5 we discuss the primary decomposition, extremal Betti numbers, regularity and projective
dimension of &,,-invariant monomial ideals. Finally, in Section 6 we explain how the Betti numbers
change as we increase the number of variables.

2. PRELIMINARIES

In this section, we introduce some basic notation which will be used in the paper.
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2.1. Some remarks on partitions and multidegrees. Let I be an &,-invariant monomial ideal
of R. Recall that P(I) = {\ € P, | 2* € I'}. Since 2 € I if and only if part(a) € P(I), the set P(I)
determines the ideal I. We regard P, as a poset with the relation defined by (ay,...,a,) > (b1,...,b,)
if a; > b; foralli = 1,2,...,n. Let A(I) be the set of minimal elements in P (7). Identifying partitions
with the corresponding monomials in R, we have that up to the action of &,,, the set A(I) forms a
minimal set of generators of I: we have I = (A | A € A(I))g, and no proper subset of A(I) generates
I. In particular, A\ € P, is contained in P(I) if and only if there is u € A(I) such that A > p.

We sometimes regard a partition A as an element of Z". To avoid confusion, for a partition
A= (A1,...,\,), when we denote the graded component of a module M of degree (\y,...,\,) € Z",
we write it as M), instead of M. Also, when we write partitions, we sometimes ignore “0” and identify
(A, ..oy ) and (Mg, ..., Ay, 0,...,0). Forany a = (a1, - ,a,) € Z" we write |a| = a; +as+---+a,
for the size of a.

We often consider both Z™ and Z°. We write eq, ..., e, for the standard vectors of Z° and write
¢1, ..., ¢, for the standard vectors of Z". Also, for subsets F' C [s] and G C [n], we writeep = Y. . €;

and eg = ) ;¢ ¢

2.2. Simplicial complexes and their homology groups. A simplicial complex on a finite set V'
is a collection A of subsets of V' satisfying the condition that FF € A and G C F imply G € A.
Elements of A are called faces and maximal elements of A are called facets. We distinguish the
empty simplicial complex & from the simplicial complex {&} consisting only of the empty face.

If A is a simplicial complex on V' = {vy,...,v,}, we write

Co:0+— C_1(A) & Co(A) & Ci(A) ¢

for the (reduced) simplicial chain complex of A over a field k. Here, each Cj(A) is the k-vector space
spanned by the symbols {ar | FF € A, |F| =k + 1}. If we consider the total order v; < .-+ < v, on
V then the boundary map is given by

8(ap) = Z EU(F) . CVF\{U}
veF
where ¢,(F) = (—1)/v€Fu=}l. The homology H;(A) = H;(Cs(A)) is called the i-th reduced homol-
ogy group of A. We note that H_,({@}) = k while H;(&) = 0 for all 1.

2.3. Betti numbers of monomial ideals. It is known that when [ is a monomial ideal, the Z"-
graded components of Tor;(/,k) can be identified with reduced homology groups of certain simplicial
complexes. We quickly recall this fact.

Let I C R be a monomial ideal. Let KF = K[ (xy,...,1,) be the Koszul complex w.r.t. the
variables z1, ..., 2, and K(I) = KE(xy,...,2,) ®g [. We have that K[? is the free R-module whose
basis is the set {eq, A~ ANeg | 1 <ap <--- < a; < n}, where e, A -+ A e, is an element of the
exterior algebra generated by ey, ..., e,. For a = (ai,...,a,) € Z,, we define the simplicial complex

Al ={F C[n]|z*r €I}
One has an identification N
Ko(I)q = Copr(A])

given by the correspondence z% “U-ikle; A---Ae;, —
H;(K.(I)), we obtain the following formula.

i), for iy < -+ <. Since Tor;(/, k) =

~~~~~
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Theorem 2.1 ([7, Proposition 1.1]). For any monomial ideal I C S and a € Z%,,
Tor;(1,k)q = H;_1(AL).

For square-free monomial ideals, the above formula coincides via Alexander duality with Hochster’s
formula (see [7, §1]).

2.4. Specht modules of hook partitions. Here we explain a few basic facts on Specht modules.
We only consider those modules for hook partitions since these are the only cases which we need.
We refer the readers to [17, 25| for a general theory.

A hook partition is a partition of the form (p,1%) with p > 1 and ¢ > 0. Let A = (1 +¢,1571)
be a hook partition with s > 1, > 0. A (Young) tableau of shape A is an assignment of distinct
positive integers to each box in A. We consider the following relation ~ (extended linearly) on the
vector space spanned by tableaux of shape A.

(I) For any permutation o on [s] with o(k) = py and for any permutation 7 on [t] with 7(k) = gy,

we have
a b1|--- ap, bq1|---
a9 a
— ~ Sgn(a) : ﬂ
Aps
(IT) For any sequence of integers ag, ay, ..., as, by, ..., by, we have

Z(-W. ~ 0.

Let Tab(\) be the set of tableaux of shape \ with entries 1,2,...,s +t. The quotient space S* =
(spany (Tab(\)))/ ~ is called the Specht module of shape A\. We say that a tableau

ay|by | . .
[42]
is standard if a; < --- < ag and a1 < by < --- < b;. It is well-known that standard tableaux in
Tab()\) form a basis of S*.

2.5. Multi-dimensional complexes. We define a Z*-complex of k-vector spaces to be a complex
(K., 0) where each term has a decomposition

(2.1) K= P Koo

Cl+"‘+cs:l
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and the differential 9 sends
8(K(cl,--- ,cs)) g @ K(cl,--- Ci—1,co)
i=1

All our complexes are finite, that is, K. # 0 for finitely many ¢ € Z*, and the spaces K. are finite
dimensional. We have a decomposition 9 = @ 9., with 1 < i < s and ¢ € Z*, where

Ol Ke — Ke o,
and the condition that 0 is a differential translates into

ai—ei 0d, =0, and o’ Oai—i-ai_ej 0 =0 fori# j.

—e;

We write 0% and 9% when we want to emphasize the complex that 0 is a differential of. We define
a morphism of Z*-complexes f : K — K’ to be a morphism of complexes which is compatible with
(2.1). Equivalently, for each ¢ € Z* we have a k-linear map f. : K, — K., satisfying

K0 fo=foo 00 foralll <i<s, ceZ’.

We write com, for the category of Z®-complexes, identify comy with the category vec of k-vector
spaces, and note that com; is the usual category of complexes associated to vec. If we write € =
A*(9Y, -+ ,0°) for the exterior algebra on d',--- 0% then € has a Z*-grading with deg(9’) = —e;,
and the notion of a Z*-complex is equivalent to that of a finitely generated Z*-graded E-module. We
will write grmod, for the category of such modules, and use freely the equivalence between com, and

grmodg.
We define the support of a Z*-complex to be the set
(2.2) supp(K) ={c € Z°: K. # 0}.

For d € Z*, we define the shifted complex K[d| by K. = K.,q, with differentials shifted accordingly.
We can think of a vector space W as a Z*-complex supported at (0°), and we write Wd] for the
corresponding shift (which is supported at —d).

Example 2.2. For a vector space W, we define the Z*-complex F = E(W) by

b {W if ¢ € {0, 1}%;

0 otherwise.

For ¢ € supp(E) with ¢; = 1, we define 9. : W — W to be multiplication by (—1)+ *¢ Tt is
easy to see that F is an exact complex (isomorphic up to shift to the tensor product of W with
the reduced chain complex of a simplex). As an object of gemodg, £ can be identified with the free
module W ®y €(—1°), with generators W in degree (1°). As such, E is a projective object of com
(it is also injective by [10, Proposition 7.19]).

We define a Boolean Z*-complex to be a Z*-complex K which is isomorphic to E[d], where
d € 77 and F is as in Example 2.2. This is equivalent to the fact that supp(K) = —d +{0,1}*" and
0. : K, — K. o, is an isomorphism whenever ¢, ¢ —e; € supp(K ). Whenever we want to emphasize
the relation between the Boolean complex K and the reduced chain complex of a simplex, we will
write for each subset F' C [s]

(2.3) Kr=K_gie,.
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It follows from Example 2.2 that Boolean complexes are projective (and injective) objects in comg,
which has the following useful consequence.

Corollary 2.3. Suppose that K is a Z*-complex with a filtration whose composition factors E*,--- | E"
are Boolean Z.°-complexes. We have that

K~E'®.-.-®FE".

If K € com; and L € comy, then the (external) tensor product K X L is defined to be the complex
in com,,, with

(KRL)e= P KaoxLe,
d+e=c

and differential
KL (4 @ v) = 0% (u) @ v + (—=1)¥u @ % (v) for u € Kq, v € Le.

We note that the complex in Example 2.2 is the tensor product of the Z-complex W ~ W with
(s — 1) copies of the Z-complex k ~ k. In general, the tensor product of a Boolean s-complex with
a Boolean t-complex is a Boolean (s + t)-complex.

If F*(K) is a decreasing filtration of K by Z°-subcomplexes, we write

gr*(K) = F*(K)/F*Y(K) and gr(K) = @grk(K

Given filtrations F*(K), F*(L), we get an induced filtration on K X L, with

"KRL)= > F(K)RF/(L)and g (KR L) = @ er'(K)Kgr!(L).
i+j=k i+j=k

If G is a group, we will be interested more generally in the category com¢ of finite complexes
of finite k[G]-modules, or equivalently, the category grmod§ of finitely generated G-equivariant Z°-
graded E-modules, where the action of G on € is trivial. For s = 0, com§ is the category modg
of finite G-modules. If K € com& and L € com? then K X L € comsttGl, and the discussion of
filtrations is analogous in the equivariant setting.

Using the natural isomorphisms

Homcomsc (E(W)7 K) = Homgtmoag (W Ok 6(_18)7 K) = Hommoac (W7 K(ls))

we can interpet the construction of the Boolean complex E(WW) in Example 2.2 as a functor E :
mode — com$ which is left-adjoint to the functor P : com¢ — modg given by P(K) = K.
Since P is exact, we have that E(WW) is projective whenever W is a projective G-module. When G
is a finite group and k has characteristic zero or coprime to |G|, we have that mod¢ is semi-simple,
and in particular E(W) is a projective object of com¢ for every G-module W. We get the following
equivariant version of Corollary 2.3:

Corollary 2.4. Suppose that G is a finite group, k is a field of characteristic zero or coprime to
|G|, and K € com¢ has a filtration with composition factors E* = E(W;), where W; € modg, for
1=1,...,r. We have that

K~E'® - -®FE".
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We end this section by explaining how Corollaries 2.3 and 2.4 will be applied in our work. Suppose
that F € com{ is an exact complex supported in non-negative degrees:

O<—F0<6—1F1<—---<8—TFT<—0.

We let U; = Im(0,41) and D; = F;/Uj, so that 0, establishes an isomorphism D; ~ U;_;. We have a
natural filtration on F' given by the canonical truncations

F(FY: 0¢—U++—Fy ¢ - F._ 1+ F 0,

with gr!(F) = (Djy1 ~ U;) a Boolean Z-complex. By Corollary 2.3, we have an isomorphism
F ~ gr(F) in com;, which by Corollary 2.4 can be taken to be G-equivariant (that is, in com¢) if
G is finite and k has characteristic zero or coprime to |G|. Choosing (not necessarily G-equivariant)
sections of the quotient maps F; — D, we can picture the complex F' as:

Uo Ui Uz Us
k ) K ® ‘X )
Dy D, D3

More generally, if F* € comlGi for i = 1,...,s, then the canonical filtrations on each F* induce a
filtration on the tensor product F' = F1 X ... X F* € com¢, where G = G} x -+ X G5. We have an
isomorphism F' ~ gr(F') in com,, and if G is finite and k has characteristic zero or coprime to |G|,
then F' ~ gr(F) in com?.

3. PROOF OF THE MAIN THEOREM

The goal of this section is to prove Theorem 1.3. We first study the complex

(3.1) K= P (KD

ac€Z”, part(a)=p

where o € P,. We note that K* is a complex of &,-modules, and using the notation in Section 2.5,
we will show that K# can be thought of as an object in com®" for an appropriate value of s, and
that K* has a natural filtration with composition factors that are &,,-equivariant Boolean complexes.
Based on the discussion in Section 2.5, this gives a decomposition of K¥ into a direct sum of Boolean
complexes, which is G,,-equivariant in characteristic zero or > n. This decomposition is then the key
ingredient in the proof of Theorem 1.3.

Step 1. Suppose that u = (a") with a > 0. We have
K!' = span, {o((z{" a2l - al) (et A Ae)) |0 €6}

Since K[ is exact except in degree (0"), it follows that K# is also exact. We can then define
U, =Im(941) and D, = K}'/U; as in Section 2.5, to get a filtration of K by Boolean &,,-equivariant
complexes. To determine the isomorphism type of each D; as an &,-module, we note that it does
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not depend on a, and hence we can take a = 1. The natural map that associates

ap | by |-+ |bay

a2

— xbl...l‘b .eal/\.../\eal

n—1

ap

induces an isomorphism between the Specht module S—+11"" and D, (the relations (I) correspond
to the skew-symmetric property of wedge products, while the relations (II) correspond to the gen-

erators Opp1(Tp, - - Tp,_,€a9 A -+ A €q,) of Up). Using that KJ' ~ Indg?xen,l <S(1l) X S("_l)> (see [12,

Section 4]) we recover a special case of the filtrations in [17, § 16] known as Pieri’s rule: there is an
exact sequence

0 — SO — Ind@r o | (S(ll) X S““”) — ST g

given by the inclusion of U; ~ D, into K}, followed by the projection onto D;.
Step 2. We now consider the general case, when p is of the form

o= (p1s o) = (di, ... &, 077 € B,
where d; > --- > d; > 0. We set d;11 = 0 and let
(3.2) Xe=A{zi | i =dp} and k[Xi| =k[z;:2; € Xy], for k=1,--+ ,s+1,
noting that |X;| = pr. By Step 1, we have that F* = (KEK[X’“])
1 < k < s, which admits a filtration with composition factors

grl(Fk) = (Dzk+1 =~ Ulk) = E(S(pkfl’ll))[_l] for 0 <1 < pp—1,

: o S
(dk) IS an object in com; " for

where
UF = §®=t1 | DF o gt L),

We think of (Kﬂg[X&Fl])(opsﬁ»l) = k as an object in com?““, and represent it by the Specht module
SPs+1) If we let Sy, =6, X x Gy, x G, ,, then we have

pat1
(3.3) (KB), = F'K ... R F* K S®+) € com.”.
For (0°) <e=(c1,--+,¢5) < (p1—1,--+ ,ps — 1) we define

B = gr (FY K- - W gre (F*) K §Pstt)
(3'4) - F (S(prcl,ﬁl) X ... X SPs—csl%) g 5(p5+1)) [—c] e comfg.

Using (3.3) and the discussion in Section 2.5, we have that (K[),, admits a filtration with composition
factors

gt (K, =@ E"e, for 0< 1< (pr— 1)+ + (ps — 1).

|e|=l
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Using (3.1), we have K! = Indg:((K ),.), and since induction is an exact functor, we have that K
admits a filtration with -

|e|=t |e|=t

where the last equality uses (1.7), (3.4), and the fact the construction of Boolean complexes in
Example 2.2 commutes with induction. If we define

(35) [ = 7 (SOt et 020 g
for (0°) <e<(p1—1,---,ps — 1), then based on Corollaries 2.3 and 2.4 we get a decomposition
(0%)<e<L(p1—1,+,ps—1)

which is G,,-equivariant when k has characteristic zero or > n.
Before explaining the proof of Theorem 1.3, it will be useful to analyze an example in order to
illustrate the structure of K¥.

Example 3.1. Suppose that n = 3 and pu = (5,5,1). We have s =2, p; =2, po = 1, and p3 = 0.
Then K/ is Z*-complex (see (2.1)) by (3.3), and using the Z*-grading on K, we can picture the
complex as

K;U'

2,0
K{ o) Ko
(3.7) — T~ —
K - 0<—K€6,0) K(ul,l)
\Ku /

(0,1)
From (3.6), we have a direct sum decomposition
Kt = 14100 g 109,

where the summands are Boolean complexes. Using (2.3), we refine (3.7) to

L?’(}LO)
1
Lo / \ (1,0)
® e
11:00) .2
1
(3.8) w \ /
Lty
K 0 ~— 10 ®
1,(0,0)
/ L’{LQ}
#5(0,0)
Lz

where the blue terms come from L& ®? | and the red ones from L™ Notice that L% is a summand
of K{' if and only if b = ¢ + er. Each of the complexes Ly 00 and 219 is isomorphic up to a
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shift to some number of copies of the reduced simplicial complex of a 1-dimensional simplex. As an
S5-representation, each of the blue modules is isomorphic to S(2:()) and each of the red modules
is isomorphic to S(11-(1),

We are now ready to prove our main result.

Proof of Theorem 1.3. Recall that Tor;(I,k) can be computed as the i-th homology group of the
subcomplex of K given by

KJI)=Kf®grI.
If we fix yo € P, then Tor,(1, k), is the homology of (K.(I)),,, which is a subcomplex of K{. We
will describe (Ko(1)),,, in relation to the decomposition (3.6).

Consider any b € supp(K%) (as defined in (2.2)), and note that 0 < by < p forall k =1,--- ,s.
Using the notation (1.5) and (3.2), we write

'\ b= p—equau-ua,, for subsets Gy, C X with |G| = by.

We then have

(3.9) K} =span, {o (2" -eq, A+ Neg,) | o € &,},

where eg = e, A -+ Ne,, for G={g1, - ,gm} C [n]. Since KE(I) is the subcomplex of K with
KP(I) = spang {z% - e, A---Ney, | 2® €1, {iy,...,i3} C [n]},

the equation (3.9) tells us that an element of K} appears in KF(I) if and only if u\ b € P(I), and
in that case the whole K} is contained in KF(I). This shows that

K= P K

|b|=l
P\bEP(I)

Using (3.6) and the notation (2.3) as in Example 3.1, it follows that Lz is a summand of K/*(I),
if and only if p\ (¢ + ep) € P(I), which by (1.6) is equivalent to F' being a face of A*¢(I). If we
consider the subcomplex L4-<(I) C L#¢ defined by

Ly = @ Lk
FeAr<(I),
|F|=1

then it follows that

(3.10) (K8 = P Lie(D),

0<c<p(w)
and moreover, we have from (3.5) that
(3.11) Lye(l) = 5.+1+|c|(A“’°([)) @y S(Pr=e1 1) (Ps—es 1), (pst1))
Combining (3.10) with (3.11) and taking homology yields the desired description of Tor;(/, k),
concluding the proof. d

We end this section by illustrating the proof of Theorem 1.3 with an example.
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Example 3.2. We continue with the notation in Example 3.1, and consider the ideal I = ((4, 1,1), (5,2,0)).
When considering the subcomplex (Ko(I))y € KV, the term Ké,m disappears since p \ (2,1) =

(4,4,0) & P(I). We get from (3.8)

L
Lg,(l,o)([) /
&®
L“’(O’O)(I)
{1} \
/ Ll{g(}l,o) (])
Ke(l):  0=—L500() oo
Lo ()
,(0,0
L™ (1)

The red complex Lf ’(1’0)(1 ) is then the &3-module S(1-(1) tensored with the reduced chain complex

of two points, while the blue complex Ly ’(0’0)(] ) = L*(0) remains acyclic. It follows as noted in the
introduction that
SADM)if § = 2

Tor; (1, k)<(57571)) = {0 otherwise.

4. THE G&,,-INVARIANT PART OF THE BETTI TABLE

The goal of this section is to give a quick application of Theorem 1.3 and the Nerve Theorem,
computing the &,-invariant part of Tor;(/,k) when I is an &,-invariant monomial ideal, and k is a
field of characteristic zero or > n. More precisely, we show the following.

Theorem 4.1. Let \',...,\" € B,. Then, for any u € P,, one has

4.1 AFO(AL, oo A g, ) = dimy Tor; M)k for all 1.
i n p

In particular, if char(k) = 0 or char(k) > n, then

(4.2) Tor; ((\', -+, \")e,., k)G” = Tori((x)‘l, 2 ) k) for all i

Proof. Let I = (A!,--- A", and J = (2',--- ,2*"). For a subset A C P, we define the partition
lem(A) € P, by

lem(A); = max{\; | A € A}.
Also, for a subset G C [r] we write

lem(G) = lem({\" | i € G}).
Consider the simplicial complex

Xew={G C ] [ em(G) < ).

It follows from [3, Theorem 1.11] (see also the proof of [13, Theorem 2.1]) that

Tor;(J,k), = Hi_y(X.,).
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Then it follows that in order to prove (4.1), it suffices to show that the complexes A*%(I) and X,
are homotopy equivalent, which we do next.
If p=(d",...,dbs,0Ps+1) € P, with d; > -+ > ds > 0, then we have
A<pu<= A<pu\e; forsomei=1,---s.
It follows that the facets of X, are
Gi={jcl[]|N<p\e}fori=1,---,s.

The Nerve Theorem (see for instance [5, Theorem 10.6]) implies that X, is homotopy equivalent to
the nerve of Gy, --- , Gy, which is the simplicial complex

N(Gl,...,GS):{FC[sHﬂGHAQ}.

ieF
We note that (. G; # @ is equivalent to the fact that for some X we have
N <\ e foralickF.

This is further equivalent to A < i\ ep, which shows that
ﬂGﬁ£®<:>u\ep e P(I).
i€k
It follows from (1.6) that N(Gi,...,Gs) = A*P(I), so X, is homotopy equivalent to A*9(I),
proving (4.1).
We now assume that char(k) = 0 or char(k) > n and prove (4.2). Using the Taylor resolution

of J [15, §7.1], we have that if Tor;(.J, k), # 0 for some a € Z%; then a = lem(A) for some subset
A C{\, ..., X"}, and in particular @ € P,. Thus, to prove (4.2), it is then enough to show that

Tori(f,k)i’; = Tor,;(J, k), for all € P,.

It follows from the Littlewood-Richardson rule (see e.g., [25, Theorem 4.9.14]) that

(S((pl’lql) ..... (ps71q‘s)))6n ~ {k ifqr=---=¢q,=0;
0  otherwise.

Thus Theorem 1.3 and (4.1) imply the desired isomorphism

Tor (1, k)% = H;_y (A™°(I)) = Tor(J, k). O

5. PRIMARY DECOMPOSITION AND EXTREMAL BETTI NUMBERS

The goal of this section is to describe a primary decomposition for any &,,-invariant monomial ideal
I, and to study the extremal Betti numbers of I. As an application, we recover using Theorem 1.3
the formulas from [24] for the Castelnuovo-Mumford regularity, and for the projective dimension
of I. To formulate our results, we consider the set of extended partitions

PP ={(A\1,..., ) € (ZsgU{oo})" | Ay > - >\, >0}

where co > a for any a € Zso U {oo}, for which a partial order is constructed in Section 5.3. In
Section 5.1 we determine a finite subset A*(I) C P describing a natural primary decomposition
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of I, and refer to A*(I) as the set of dual generators of I. If p = (cofo,d}*,--- ,dP*) € P>, with
o0 >dy > -+ >dg > 0, then we write

(5.1) £(p) = po
for the number of oo terms in p, and let
(5.2) p=((di + 1) (dp + 1), (dy + 1)P).

In analogy with the multigraded version of extremal Betti numbers from [2, p. 507], we say that a
pair (i, \) € [n] x P, is extremal in the Betti table of R/I if
(a) Tor;(R/I,k) # 0, and
(b) Tor;(R/I,k)yy =0 for all j > i and p > X with |u| — 7 > [A] —i.
If (i,\) is extremal, the extremal Betti number 3;,(I) is dimy Tor;(R/I,k)x (which is equal to
Bioa(I) for all ¢ € &,,). The main result of this section is the following.

Theorem 5.1. For any &, -invariant monomial ideal I, we have
{(i,\) € [n] x P, | (i, A) is an extremal pair in the Betti table of R/I}
={(n—"LUp),p) | pe A (I) is a mazimal dual generator of I}.

Moreover, if (i, \) is the extremal pair associated to p = (oo, d*, -+  dP#), then the corresponding
extremal Betti number is [3; = (POJ;il*l).

We prove Theorem 5.1 in Section 5.4 using a reformulation of Theorem 1.3 via Alexander duality,
which is explained in Section 5.2. In Section 5.5 we discuss the relationship between our results and
the combinatorics used in [24], and explain the relation of Theorem 5.1 to the study of Ext modules.

5.1. Primary decompositions of &,-invariant monomial ideals. We begin by recalling a
canonical primary decomposition for a monomial ideal [15, Lemma 3.1].

Lemma 5.2. Every monomial ideal I of R has a presentation

(5.3) I=QiNQsN---NQ,,

ag

. . a . : o
where each Q; is an ideal of the form (zj!,. .. , T ). Moreover, such a presentation is unique if it is

irredundant, i.e., if none of the ideals Q); can be omitted from (5.3).

To describe the irredundant presentation (5.3) for an &,-invariant monomial ideal, we define for
each = (00,...,00, lg, - - -, fn) € P with py, < 0o, the ideal

+1 0
Q.= ﬂ o(zi* L ket
O'EGn

If I C R is an &,-invariant monomial ideal, its irredundant presentation (5.3) is preserved by the
S, -action. Therefore, if 0 € &,, then o(Qy) = @Q; for some 1 < [ < r. This fact and Lemma 5.2
imply the following.

Lemma 5.3. Let I C R be an S,-invariant monomial ideal. Then there are unique elements
pty oot € P such that

(5.4) I'=QuN---NQu

and none of the ideals Q x can be omitted in the above presentation.
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We call (5.4) the irredundant decomposition of I, and call u!,..., ' the dual generators of I.
We write

(5.5) AT = {ut, ... 4},
and note that the condition that (5.4) is irredundant implies that
(5.6) pt & for 1 <i# 5 <t

Remark 5.4. If y = (oo, d}, ... dPm) with oo > dy > -++ > d,,, > 0, then

Qu= <(<dl + 1)p0+1)7 ((dz + 1)p°+p1+1), cee ((dm + 1)p0+p1+"'+pm_1+1)>6n‘

The ideals ), are therefore the &,-invariant ideals generated by a set of rectangular partitions.
Combining the formula for @), with

(o ) = (B e N ), 0 0 (7))

n

provides a way to compute the presentation (5.4). For example, we have

<(47 17 1)7 (57 27 O>>63 = <(4> 07 O)? (57 27 O))Gs N <<17 17 1)7 (57 27 0)>63
= <(47 O’ 0)>63 N <(17 17 1)’ (57 07 0)>63 n <(1’ 17 1)7 (27 2a O>>G3
= Q333 N Q1,40 N Q(oc,1,0),

where for the first two equalities we used
(4, 1,1))e, = ((4,0,0))s, N ((1,1,1))s, and ((5,2,0))e; = ((5,0,0))e; N ((2,2,0))e;-
We conclude that A*({(4,1,1),(5,2,0))s,) = {(3,3,3),(4,4,0), (c0,1,0)}.
To shed more light on the set A*(I), we define
O(I) =P\ P(I) ={\ € P, | a* ¢ I},

which is the set of all partitions that are not in I. The irredundant decomposition (5.4) is related to
O(I) as follows. For = (00, ..., 00, fig, ..., fn) € P, let

O,={ e P, | X<u}

One can check that

ON = O(Q#)a
hence Lemma 5.3 implies that for any &,-invariant monomial ideal I C R, one has
(5.7) on = |J 0.
peA*(I)

Moreover, the decomposition (5.7) is irredundant (that is, no O, can be omitted).
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5.2. A reformulation of Theorem 1.3 via Alexander duality. With the notation in Section 3,
we define for p = (di*,...,d?,0P=+1) and ¢ < p(u) the simplicial complex

(5.8) Ie(I) ={F C[s] | p\ (c+eppr) € O()}.

In other words, I'"¢(I) = {F C [s] | [s] \ F' & A*°(I)}, that is, I'""¢(]) is the Alexander dual of A"
We have by [6, Lemma 5.5.3] that

Hi o(A"S(1)) 2 Hy 1 (T™(T)).
Using this isomorphism, Theorem 1.3 can be rewritten as follows.

Theorem 5.5. Let p = (d}*,...,dPs,0P1) € P, and let I C R be an &,,-invariant monomial ideal.
We have an isomorphism of k-vector spaces

dimy ﬁs—i—l-Hc\ (THe(1))

TOI'i(R/[, k)<l¢> &= @ (S((plfclvlcl) ~~~~~ (Ps*CSJCS):(Perl))) ,

0<e<p(n)

which is in addition an isomorphism of &,,-modules when char(k) = 0 or char(k) > n.

5.3. Maximal dual generators. In what follows we introduce a partial order on the set of dual
generators A*(]) in (5.5), and explain how the maximal elements of A*(I) contribute to the Betti
numbers of R/I. For u = (00,...,00, g, .., fn) € P> with g # 0o, we define {(u) = k — 1 as in
(5.1), define 1z as in (5.2), and let
,LL+ - (Mk+ 177Mk+1)uk77un)
We note that p* is obtained from p by replacing oo with py, + 1, and that
fi=p" +ep+ ot e
We define the partial order < on A*(I) by u < p if

(5.9) p < pand €(p) — £(p) < [p] — |pl.
Using the fact that

(5.10) | = il = (n = (),

we can rewrite the conditions (5.9) as

(5.11) 7 <7 and [it] < g

We write < pif u < p and p # p. We let A% (1) C A*(I) denote the subset of maximal elements

max

with respect to <, and call them maximal dual generators of .

Lemma 5.6. Let I be an &,,-invariant monomial ideal.

(1) If p, p € A (1) satisfy i < p then £(u) > £(p).
(ii) If p € Ahax(I) then p* & O, for any p € A*(I) \ {p}.

Proof. (i) Write i = (00,...,00, flg, .-, fin) < p = (00,...,00,p, ..., pPn), and suppose by contra-

diction that ¢(u) < (p), or equivalently, that & < [. The condition p < p implies p,, < p,, for all

I <m < n. Since for 1 < m <[ we have p,,, < 00 = py,, this shows that u < p, contradicting (5.6).
(ii) Let g = (00, ..., 00, fhgy -y fin), p = (00, ..., 00,01, ..., pn), and suppose that p € A% _(I) and

pe A\ {p}. If pm < pp, for some I < m < n, then p* £ u, hence p* & O,, as desired. We may
therefore assume that p,, > pp, for all [ < m < n. By (5.6) we have p £ pu, hence p;_; # oo and
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thus & < . If i1 > p; + 1 then we have p* > p* and g > p, which implies by (5.11) that u > p,
contradicting the maximality of p. It follows that p;_; < p;+ 1, so p* £ u, concluding the proof. [J

Maximal dual generators have the following contributions to Betti numbers.

Lemma 5.7. Let p = (oo, di',...,dP) € A

5 rax ), with oo > dy > -+ > ds > 0, and let ¢ =
(pp—1,...,ps —1). We have I'"* = {@}, and

Br—ip) 5(R/T) = (po MR 1).
Do

Proof. We observe that p is as in (5.2), and
p\(ctey) = ((di+1)"d" dy ... d7) = p*.
Since p* < p, it follows from (5.7) that p*™ € O(I), so @ € I'7¢(I) by (5.8). To prove that I'*¢ = {@},
it then suffices to check that {i} ¢ I'"¢(I) for i € [s].
We fix i € [s] and note that
ﬁ\ (C + e[s]\{i}) = p+ + ¢, for some k > py,
hence p\ (¢ + eppg}) € O,. Since p is maximal, we have by Lemma 5.6(ii) that p* ¢ O, for all
p € A*(I) with p # p. We get from (5.7) that p\ (¢ + ejpqy) € O(I), hence {i} & I7¢(I) by (5.8),
as desired.
If welet i =n —€(p) =n — py and g = p in Theorem 5.5, then we have
s—i—l+4|el=s—(n—p))—1+(n—po—s)=-1,
and N ~
dimk Hs_i_1+|c|(F“’C(I)) = dlmk H,l({g}) =1.
It follows from Theorem 5.5 that
Tor o) (R/1, k) = S(®o+L117),072),0,(72)

Restricting to the multidegree p, and using the fact that each of the Specht modules S"*) has
dimension 1, it follows that

p1—1 — 1
Bn—[(,;)ﬁ(R/]) = dlmk S(p0+1,1 1 ) _ (p() + pl > 7
Po

where the last equality follows from the Hook Length Formula [17, § 20] (or a direct count of the
standard tableaux in Tab((po + 1,17171))). O

Example 5.8. If we let I = ((4,1,1),(5,2,0))s,, then as seen in Remark 5.4, we have A*(]) =
{(3,3,3),(4,4,0), (00,1,0)}. The maximal dual generators of I are then (3,3,3) and (4,4,0). Since
0((3,3,3)) = £((4,4,0)) = 0, Lemma 5.7 implies that they contribute to Tors(R/I,k)a44.4), and
Tors(R/I,k) 551y respectively. More precisely, we have

B3 aaa)(R/T) = B350 (R/T) =1,
and
TOI'3(R/I, k)<(47474)> = TOI'g(R/I, ﬂ{) (4’474)

is 1-dimensional, while

TOI'3(R/I, k)<(57571)> = TOIg(R/I, ﬂ{)(57571) EB TOI'g(R/I, ﬂ{)(5’175) @ TOTg(R/I, k>(17575)
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is 3-dimensional (see Example 1.4). We note that (3, (4,4,4)) and (3, (5,5,1)) are all the extremal
pairs in the Betti table of R/I.

5.4. Extremal Betti numbers, regularity and projective dimension. Our next goal is to give
a proof of Theorem 5.1, and to derive formulas for the regularity and projective dimension of an
G,,-invariant monomial ideal I. We begin by establishing some preliminary results.

We say that a simplicial complex A is a cone with apex v if for every face F' € A, one has
Fu{v} € A. If A is a cone then it is contractible, and H;(A) = 0 for all i. We will need the
following slight generalization of this fact.

Lemma 5.9. If A is a simplicial complex on the set [n], with f]i_l(A) =0, then there exists a facet
F of A with1 ¢ F and |F| > i.

Proof. Let A’ be the simplicial complex whose facets are the facets of A of dimensiog > (i—1). Since

A’ and A have the same faces of dimension > (i — 1), it follows that H;_;(A’) 2 H;_{(A) # 0, and
in particular A’ is not a cone with apex 1. We get that A’ contains a facet ' with 1 € F, which is
then a facet of A with |F| > i. O

We next record two more technical statements before proving Theorem 5.1.

Lemma 5.10. Let = (di',...,dPs,0P=+), and define p(p) as in (1.4), and T*<(I) as in (5.8), for
some ¢ < p(u). If F is a facet of T*<(I) with 1 € F', we let
:u, = M\ (C+e[5]\F) = (:ullw"vﬂiz)?
and define
h = min{i | yi; # .}
If p=(00,...,00,p1,- -, pn) € N*(I) with p # 0o and (' < p, then we have h > 1 and puy < p; + 1.
Proof. Since 1 ¢ F', the first entry of ¢ + e\ is positive. By (1.5), we have

i, + 1= pn = pu.
If h <[ then p, = oo, and using i’ < p we obtain

p\ (e+epyrupy) = p\ (c+egr—er) =p +e < p.
This shows that 1\ (¢ + e\ (runy)) € O, C O(I), so F'U {1} € I'"*(I) by (5.8), contradicting the
fact that ' was a facet. It follows that A > [, and since ' < p, we have p; < u; < p. We get
w1 = p, +1 < p;+ 1, concluding the proof. O

For the next result we recall the definition of s(u) from (1.4).

Lemma 5.11. If H;_(I*¢(I)) # 0 for some p € P, and ¢ < p(u), then there exists p € A%, (I)
such that

(i) le[ + s(p) —i <n—Ep),
(ii) [p] = (lef + s(p) — i) < |p7], and
(i) 4 < 7
Proof. We note that each of n — ¢(p), |p*]|, p, increases as p increases with respect to the order < by
Lemma 5.6(i). It follows that it is enough to find p € A*(I) satisfying (i)—(iii).
By Lemma 5.9, there is a facet F' of I"¢(I) such that 1 ¢ F and |F| > i. We let u =
(df, ..., dPs,0P=1) so that s = s(u), and define y/ and h as in Lemma 5.10. Since F' € T*<(1),
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we have p' € O(I), so there exists an element p € A*(I) such that u/ < p. We prove that p satisfies
conditions (i)—(iii).

We first note that h = p; — ¢q, and that n = p; + -+ 4+ ps + psi1. Combining these observations
with the assumption ¢ < p(u), we get

s

n—\c—i—e[sﬂEZ(pj—cj—l)Zpl—cl—lzh—l.
j=1

Since p/ < p, we know from Lemma 5.10 that h > £(p) + 1, so
el +s—i<l|etey|<n—(h—1) <n—L(p),
proving (i). The conclusion of Lemma 5.10 implies that p/ < p™, hence
ul = (el +s = [F|) = /| < |p7],

which proves (ii). Finally, if we write p = (co,...,00,p, ..., pn) With p; # oo, then Lemma 5.10
implies

o < <m<p+l=p=--=p_1
Moreover, since y' < p, we get

o < i, +1 < pp+1=py, for I <m < n.
This shows that p < p, proving (iii) and concluding our argument. O

We are now in the position to prove the main result of the section.

Proof of Theorem 5.1. We know from Lemma 5.7 that for each p € A% (I) we have

TOl"n_g(p)(R/I, k)@) 7§ 0.
To prove that every extremal pair for R/I is of the form (n — €(p),p), p € A%, (I), it then suffices

max

to check that for every pair (7, ) with Tor;(R/I, k), # 0, there exists p € A}, (/) such that
(5.12) j<n—tp), p<Fand |ul —j < |7l (n— (o).
By Theorem 5.5, Tor;(R/I, k) # 0 implies that there is a ¢ < p(u) such that

H(py—j-141¢) (1"(1)) # 0.
We apply Lemma 5.11 with ¢ = s(u) + |¢| — j to find p € A% (I) satisfying

j=lel+s(u)—i<n—"Lp), |ul—j=|pl—(lc|+s(u) —i) <|p*|, and p < p.

Using the identity (5.10), these conditions are precisely the ones from (5.12).

To conclude, we have to check that every pair (n—£(p), p), with p € A}, (1), is extremal. Equiva-
lently, we have to show that if (5.12) holds for (j, u) = (n — €(p'), p') with p’ € A% (I), then p = p'.
Indeed, in this case we can rewrite (5.12) as

Wp) <1(p'), P < p, and I(p') = U(p) < [p] — |7,

*
max

A~ —

which implies p' < p. Since p, p’ € A%, (I), we must have p' = p, as desired. O
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For a quick application of Theorem 5.1, recall that for a homogeneous ideal I C R, the (Castelnuovo—
Mumford) regularity of R/ is

reg(R/I) = max{j —i | Tor;(R/I,k); # 0}
and the projective dimension of R/I is
pd(R/I) = max{i | Tor;(R/I,k) # 0}.

It follows that the extremal pairs in the Betti table of R/I determine regularity and projective
dimension, and we get the following.

Corollary 5.12. If I C R s an &, -invariant monomial ideal then

(i) reg(R/I) = max{|u*] | p € A(D)}.
(i) pd(R/T) = max{n — £(u) | € A*(D)}.

Proof. For p,p € A*(I), the condition p < p implies that ¢(u) > ¢(p) by Lemma 5.6, and it implies
lut] < |pT| by (5.11). It follows that the right side of the equations (i) and (ii) only depends on the
maximal dual generators. The conclusion then follows by combining Theorem 5.1 with (5.10). O

5.5. Extremal Betti numbers via Ext modules. The goal of this section is to explain how the
extremal pairs and the extremal Betti numbers for R/I can be recovered from the structure of the
modules Ext*(R/I, R). Using results from [24], which determine the structure of Ext*(I, R) for any
S,,-invariant monomial ideal, we then give an alternative proof of Theorem 5.1, and we show how
Corollary 5.12 is equivalent to [24, (1.3)].
In analogy with the notion of extremal pair from the beginning of Section 5, we say that a pair

(i,A) € [n] x P, is Ext-extremal if

(a) Ext(R/I,R)(—x # 0, and

(b) Ext/(R/I,R)(—,y =0 for all j >4 and p > X\ with || — 7 > |A| — 4.
We first show that the Ext-extremal pairs coincide with the extremal pairs, and moreover that the
extremal Betti numbers can be computed via Ext modules as follows.

Proposition 5.13. We have that (i,\) € [n] x P, is extremal if and only if it is Ext-extremal.
Moreover, for an extremal pair (i, \) we have

(5.13) Bix = dimy Ext"(R/I, R)_y.

Proposition 5.13 is a natural extension of the corresponding result in the standard-graded setting
(see for instance [2, Proposition 1.1]). When [ is a square-free monomial ideal (not necessarily &,,-
invariant), it follows from [22, Theorem 3.3] or [27, Theorem 2.6] that the multigraded components of
Ext’(R/I, R) can be computed as Betti numbers of the Alexander dual IV, in which case the equality
(5.13) is equivalent to the one proved in [2, Theorem 2.8].

To prove Proposition 5.13, we first establish a preliminary result. We write F, for the minimal free

resolution of R/I, so that
F; = P R(—c)’=.

cezZ”

We let FY = Hom g(F,, R) be the dual of F,, so that Ext?(R/I, R) is the i-th cohomology module of
F). We write 9" : FY — F),, for the differentials in F’.
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Lemma 5.14. If Ext'(R/I, R)_x # 0 then there exist k > 0 and p > X, such that |u| — [\ > k
and F, has a minimal generator m of degree —p, with Ok (m) = 0. In particular, we have
Ext™™*(R/I,R)_, # 0, and if (i, \) is Ext-extremal, then every non-zero class in Ext'(R/I, R)_y is
represented by a minimal generator of F,’.

Proof. By hypothesis, there exists f; € ker(9") with deg(f;) = —), representing a non-zero element
of Ext’(R/I, R)_x. For j > 0 and for as long as 0 # fi;; € F};, we choose m;y; to be a minimal
generator of F}\; of degree —p/ < —deg(fiy;), and set fij11 = 0" (m4y;). Since F) is a finite
complex, this process ends after finitely many steps with a minimal generator m; of F%,, satisfying
O *(m;yy,) = 0. We take m = m;; and show that p = p” satisfies p > X and |u| — [A] > k.

We note that for each j = 0,--- ,k — 1, deg(firj+1) = deg(myy;) = —p?, since the differential
O is degree-preserving. Moreover, since 9"/ is minimal, it follows that f;,;11 is not a minimal
generator of F¥ |, hence —p/™" < —/ for j =0,--- |k — 1. Starting with X\ = deg(f;), we get

A§M0<M1<"'<Mk:u>

which implies > A and |u| — |A| > k, as desired.

Since m is a minimal generator of F}/,, m is not a boundary, so it represents a non-zero element
of Ext™"*(R/I, R)_,. If (i,)\) is Ext-extremal, this is only possible if u = X and k = 0. If f; was
not a minimal generator of F}’, then one can choose m; to be a minimal generator of F; of degree
—p® < =), and the construction above yields a pair (i + k,u) with Ext™™*(R/I,R)_,, # 0 and
|| — |A| > E, contradicting the fact that (i, A) was Ext-extremal, and concluding our proof. O

Proof of Proposition 5.13. Suppose first that (i, A) is an extremal pair, so F; has a minimal generator
of degree A, and there is no pair (j, ) with |p] — j > |A| — ¢ such that F; has a minimal generator
of degree p. We show that every non-zero element m € F.Y with deg(m) = —A\ represents a non-
zero class in Ext?(R/I, R)_x. Indeed, we know that m is not a boundary, since 9"~! is minimal.
Let f = 0'(m), and suppose by contradiction that f # 0. Since deg(f) = deg(m) = —\ and 0"
is minimal, there exists a minimal generator of F}}; of degree —p < —A. This corresponds to a
generator of F;,; of degree p > A. This contradicts the fact that (i, \) was extremal, since it implies
lu] — (i+1) > |\ —i. It follows that &°(m) = 0, so m represents a non-zero class in Ext*(R/I, R)_j,
as desired. By Lemma 5.14, every non-zero class in Ext*(R/I, R)_y arises in this way, so (5.13) holds.

To show that (i, \) is Ext-extremal, suppose by contradiction that there exists a pair (j, u) with
w> A |pl =37 >N =i, and Ext/(R/I, R)_,, # 0. Applying Lemma 5.14 to (j,A), we can find £ > 0
and § > p with [0] > || + k, and such that F},;, has a minimal generator of degree —d. This shows
that Fjy; has a minimal generator of degree ¢, where

0l = (G + k) = |ul =5 = A =1,
contradicting the fact that (i, A) was extremal.

Suppose now that (i, \) is Ext-extremal. By Lemma 5.14, F,” has a minimal generator of degree
=, s0 Tor;(R/1,k)x # 0. Suppose by contradiction that there exists a pair (7, ) that satisfies > A,
\p| —j > |A\| — i, and Tor;(R/I,k), # 0. We consider one such pair for which j is maximal, and let
m denote a minimal generator of Fjv of degree —pu. If &7(m) = 0 then m represents a non-zero class
in Ext/(R/I, R)_,, (since it is not a boundary), contradicting the fact that (i, \) was Ext-extremal.
If &(m) = f # 0 then there exists a minimal generator of F}/,; of degree — < —pu. It follows that
0> p = A

0l =G+ 1) = ul =5 = A =4
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and Tor ;1 (R/1,k)s # 0, so the pair (j + 1,9) contradicts the maximality of (j, 1), which concludes
our proof. 0

In order to apply Proposition 5.13, we recall some of the results and notation from [24]. Let
z=(%1,...,%,) € Pyand [ > 0, with z; = --- = z;;. We define the module J,; by (see [24, (2.5)])

(5.14) Jo=(2)e,/(AN| A >zand \; > z; for some i > l)g,.

(A) In [24, Corollary 2.13] it was shown that J,,; is a Cohen-Macaulay R-module of dimension !
with an explicit description of Ext™!(J,,;, R).
(B) In [24, Main theorem]| it was shown that for any &, -invariant monomial ideal I C R, there
is a finite set Z(I) C P, x Z (with the notation in [24, Definition 1.1], Z(I) = Z(P(I)))
such that there exists a filtration of R/ whose composition factors are the modules J,; with
(z,1) € Z(I) and
Ext/(R/I,R)= P Ext'(J.R).
(z)EZ(T)
We do not recall here the definition of Z(I), nor do we recall the description of Ext™'(J,,;, R),

since they are somewhat technical. We only record the following property which follows from [24,
Corollary 2.13]. If we define

(5.15) w(z, 1) = (00!, 2141, -+, 2,) € P

then we have

(C) If z=(#1,...,2,) With 2 =--- = 2, > 2,41 for some p > [, then

P

A=z+1") == +1,- 2z, + 1) = u(zl)
is the unique minimal element in the set {\ € P, | Ext"!(J,;, R)_x # 0}. Moreover

dimy Ethil<J§7l, R)_)\ = (p;l) .

We explain a relation between the set Z(7) and dual generators. Let

ALY =N eP | (L2 0y 2 (e By [ A>2 A=z fori>1+ 1)

Since J,; are composition factors of /I, we have a partition O(I) = W, ez Az, 1). This allows
us to write -

O(I) = U Oz
)

(z0)eZ(I

but this representation of O([) is highly redundant.
In analogy with A*(I), we define the set of dual pairs

(5.16) Z5(1) ={(z,1) € Z2(I) | p(z,1) £ uly, ) for (z,1) # (y,u) € Z(I)}.
We get an irredundant decomposition
O([) = U Ou(g,l)7
(z.h)ez*(I)

and the formula (5.15) defines a bijection Z*(I) — A*(1).
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Example 5.15. If I = ((4,1,1),(5,2,0))s, as in Remark 5.4 then we have
((O? 07 0)’ 1)7 ((17 ]‘7 0)7 1)’
Z(I) — ((27 27 O)’ 0)7 ((37 27 0)?0)’ ((47 27 0)7 0)7 ((37 37 0)70)’ ((4’ 3’ 0)7 0)7 ((47 47 0)’ 0)7
] ((1,1,1),0),((2,1,1),0),((3,1,1),0),((2,2,1),0),((3,2,1),0), ((3,3,1),0),
((2,2,2),0),((3,2,2),0),((3,3,2),0),((3,3,3),0)

The (significantly smaller) subset of dual pairs is
Z(1) = {((1,1,0),1),((4,4,0),0),((3,3,3),0)},
corresponding to the dual generators of I
p1((1,1,0),1) = (00, 1,0), 1((4,4,0),0) = (4,4,0), u((3,3,3),0) =(3,3,3).
To give another perspective on Z*(I), we introduce a partial order on Z(I) by

(z,0) < (yu) <= l=vand z < y.

We have that (z,[), (y,u) are incomparable if [ # u, and (z,1) < (y,[) if and only if p(z,1) <
p(y,1). For the proof of the next result, we assume that the reader has some familiarity with [24,

Definition 1.1] and its implications, such as [24, Remark 2.3] (in particular, we use some notation
from [24] which is not defined in this paper).

Lemma 5.16. We have that
Z*(I) = {mazimal elements of Z(I) with respect to <}.

Proof. For the inclusion “C”, let (z,1) € Z*(I), and suppose by contradiction that there exists
(y,1) € Z(I) with (y,l) > (2,1). This implies that u(y,l) > p(z,!), contradicting (5.16).

~ For the reverse inclusion “D”, let (z,1) € Z(I) be maximal with respect to <, and suppose by
contradiction that (z,l) € Z*(I). By (5.16), there exists (y,u) € Z(I) with u(z,l) < p(y,u), which
implies [ < u. Moreover, if [ = u then z <y, contradicting the maximality of (z,1). We thus have

(5.17) | <wuand z <y fori >u+ 1.

We write ¢ = 2, and d = y;, and note that there exists x € X'(I) such that z(c) < zand 2, < I+1.
In particular, we must have x; < ¢ for all ¢ > [+ 1 (hence for ¢ > u + 1). Suppose first that ¢ < d.
The condition z(c) < z implies that x; = min(x;, ¢) < z; for ¢ > u + 1, which combined with (5.17)
implies that z; < y; for ¢ > u+ 1. Since y; = d for i < u + 1, this shows that x(d) < y. Since
(y,u) € Z(I), this forces xj;,; > u + 1, which contradicts (5.17) since it implies -

u+1<ay,, <z, <Il+1

Suppose now that ¢ > d. We have that z; <y; < d < ¢ for i > u+ 1, which combined with z(c)
implies that x; < z; for i > u+ 1. Using (5.17), this shows that x; < y; for i > u+ 1, hence z(d)
Since (y,u) € Z(I), we must have xj;,; > u + 1, hence

Lyu+1 Z d+ 1> Yu+1 Z Zu+1-

Since z(c) < z, this forces z,.1 = ¢. The above inequality implies d + 1 > z,,1 = ¢, contradicting
the fact that d < ¢ and concluding the proof. O
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We can now explain how Corollary 5.12 is equivalent to the formulas [24, (1.3)], which assert that
reg(R/1) = max{|z| + 1| (z,]) € Z(I)}, pdim(R/I) = max{n —1| (z,1) € Z(I)}.

Indeed, it follows from Lemma 5.16 that for every (z,1) € Z(I) there exists (y,l) € Z(I) with y > z
(and hence [y| > |z[), which then implies that

reg(R/1) = max{|z| + | (z,1) € Z*(1)}, pdim(R/I) = max{n — 1| (z,1) € Z*(I)}.

Using the fact that if u = u(z,1) then |u™| = |z| + 1 and ¢(u) = [, this shows that Corollary 5.12 is
equivalent to the above formulas.

We conclude this section with an alternative proof of Theorem 5.1. To that end, we consider the
ordering on Z*(I) induced by the bijection with A*(I). We have

(5.18) (2.0) S (you) <= z<yand |z[+ 1 < |y + u.
Alternative proof of Theorem 5.1. It follows from (B), (C) and (5.18) that (i, A) is extremal if and

only if there exists a maximal (z,l) € Z*(I) with respect to < such that i =n — 1 and A = u(z,1).
Since this is equivalent to the fact that u(z,1) € A%, (1), and since ¢(u(z,1)) = [, this recovers the
desired description of the extremal pairs.

P

Suppose that (i, A) is an extremal pair with (i, \) = (n — [, u(z,1)). If p is the unique interger

satisfying 2y = --- = 2, > 2,41, then we have using Proposition 5.13 and (C) that

. -1
(5.19) Bix = dimy Ext’(J., R)_x = <p z )
If pu(z, 1) = (coPo,dy*, -+ dPs) with oo > dy > -+ > ds > 0 (as in Lemma 5.7), then we have [ = pj
and p = pg + p1. This means that (5.19) agrees with the formula for the extremal Betti numbers
from Lemma 5.7, concluding our proof. 0

6. VARYING THE NUMBER OF VARIABLES

In this section, we study how the multigraded Betti numbers of the ideals I, (defined in (1.9))
vary with m, when f;,--- , f, are assumed to be monomials. This extends a result of the first author
from [21], that gives a simple recipe to determine for all m > n all the multidegrees 1 € P, for which
Tor; (I, k). is non-zero. The recipe requires knowing the set

{(@,A) €{0,1,...,n =1} x P, | Tor;(1,, k) » # 0},

and is summarized in Theorem 6.1 below. The goal of this section is to explain how using Theorem 1.3
we can determine not only which of the multigraded Betti numbers are non-zero, but to also compute
them explicitly, and to describe the &,,-module structure of Tor;(/y,, k), for all m > n and all
i € P,,. This is explained in Theorem 6.2, but before going into details we make some preliminary
conventions.

Throughout this section, we identify (a4, ...,a,) € P, and (ay,...,a,,0™™) € P, for m > n.
By this identification, if A\!,...,\" € P,, we can regard them as elements of P,, with m > n, and
consider the ideals

L=\ s, Cklag,. ..,z
The (non-)vanishing of the multigraded Betti numbers of I,, is characterized by the following theorem
of the first author (see [21, Theorem 3.2]).
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Theorem 6.1. Let \',... .\ € P, and let I, = (\',...,\")g,, form € {n,n+1}. Forany0 <i<n
and = (,ula e Mny ,un-H) € Pn-i—l; one has

(i) if pns1 = 0 then Tor;(In41,k), # 0 if and only if Tor;(1n,k)u,,....un) 7 0,

(ii) if 0 < png1 < pin then Tor;(1,41,k), =0,

(iii) of pns1 = ftn, then Tor;(Ini1,k), 7# 0 if and only if Tor; (L, K) (... ) 7 0.

To analyze the dimensions of the non-vanishing Tor groups in Theorem 6.1, recall that for an
S, -invariant monomial ideal I C k[xy, ..., z,], the numbers /(1) determine all the (multigraded)
Betti numbers of I. In order to determine the Betti numbers for I,, when m > n, it is then enough to
understand how each ~/““(1,,,) changes when m increases. This is explained by the following simple
rule.

Theorem 6.2. Let \')... \" € P, and I, = (M N, for m € {n,n+ 1}. Let p =
(1 ey fony fing1) € Pogr, s = s(p) cmdc<p( ). For every0<z < n, we have
(I

(i) if pinyr = 0, then v"(I,11) = ,Yi(m ..... D,
(i) of pny1 > 0, then

0 if cs = 0;
(L) = s =5
Vi ( n+1) { (K1 yeeestin ) ,C—€5 Zf co > 0.

We note that Theorem 6.1 can be recovered from Theorem 6.2 using Theorem 1.3. If p, 11 > pn
then ¢s = 0, so Theorem 6.1(ii) follows from Theorem 6.2(ii).

Proof. We first observe that for any p = (p1, ..., pn, Pns1) € Pny1, one has

since both conditions in (6.1) are equivalent to the condition that p > Ay for some k. Throughout
the proof we will write 1 = (p1,. .., in)-

(i) If ppy1 = O then it follows from (1.6) that A*<(I,,1) = A™(I,), and therefore v*“(I,11) =
~€(I,) for all i, proving (i).

(ii) Suppose now that p,.; > 0. We first consider the case when ¢, = 0, and show that A*¢(1,,,1)
is a cone with apex s. Indeed, suppose that c; = 0, consider any face F' € A*¢([, 1) with s & F,
and let ©\ (c+ep) = (uf, ... ,,LL;LH). We have

p\(e+erupsy) = p\ (e t+er) —enpy = (41, s iy My — 1)
since ¢s = 0, so applying (6.1) twice we obtain
B\ (€ + erug) € Pllust) = (-1 1) € P(Ln) = i\ (e + er) € PlLna).
This proves that F'U {s} € A“C( I,+1) and therefore A*€(1,,,) is a cone with apex s. We get
H;(A*¢(I,11)) = 0, and hence +/"“(I,,41) = 0, for all .

To conclude, we consider the case when ¢, > 0. Since ¢; < p; — 1 by hypothesis, we have p;, > 2,
hence i, = pin11, and therefore p(i1) = p(p) — es. We claim that

(6.2) APC(T, 1) = AFees(T,).

To prove (6.2), consider any subset F' C [s] and write p \ (¢ +er) = (1}, ..., 1, ,1) as before. Since
p(ir) = p(p) — e, it follows that

(6.3) fi\ (c—es+ep) = (uy, .. 1)
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Using (6.1), we have

p\ (c+er) € P(lyw1) <= (11, .-, i) € P(In),
which combined with (6.3) implies that F' € A*¢(I,,y,) if and only if F' € A™¢~°(I,,). This proves
(6.2), showing that v/““(I,,41) = "7 for all i, as desired. O

Example 6.3. Let [, = ((5,1),(2,2))e,, for m > 2. If we apply Theorem 1.3 to I, we see that the
only numbers /¢ that are non-zero are

(6.4) 16O (L) = AV (1) = P00 (1) = 1.
In particular, we have
Toro (I, k) & Torg(Ia, k)(o,2) ® Toro(la, k)52 = ST @ SO
and
Tor (I, k) 22 Tor (I, k) (5.2 = S©°

Based on (6.4), Theorem 6.2 gives a recipe to compute all the numbers /¢ for all the ideals I,
with m > 2. For instance, when m = 4 we have

2,2,0,0),(0 2,2,2,0),(1
20O L) =g (1) =

2,2,2,2),(2
AR (1) = 1,

755,170,0),(0,0)(14) o 85,1,1,0),(0,1)(I4> 5,1,1,1),(072)(]4) _ 1’

5,2,0,0),(0,0 5,2,2,0),(0,1 5,2,2,2),(0,2
WO (1) = P HHOD (L) = P00 (1) =1,

and these are all the non-zero numbers /"¢ for I,. By Theorem 1.3, the &,-module structure of
Tor;(14,k) is then computed as follows.

TOI'()(I,H{) TOI'()(I ]]() 2,2,0,0)) D TOI'()(I k) (5,1,0,0)) = = S(ED,II!) EBS(D’D’ED)’

TOI'l([, k) = TOI'1<I, k)<(272,270)> ) TOI'1<I, k)<(5’1’170)> ) TOI'1<[, k)<(5’2’070)>
~ s&ED ¢ gPHY 4 Seem)

TOTQ(], ]k) = TOI‘Q(I, k)((2727272)> @ TOI‘Q(I, k)((S,l,l,l)) @ TOI‘Q(], k)<(5727270)>
~ Sﬁj D S(DE) ® S(D,ELE‘)’
and
TOI'3([4,]1§) = TOI'3(]4,]]§)((5222) ﬁ)

By computing the dimensions of the relevant 64-representat10ns, we obtain the Betti tables of I,

(left) and I, (right) below.

0o 1 2 3
0 1 total: 18 32 19 4
total: 3 2 4: 6 .
4: 1 5: .8 .
5: 6: 12 24 7
6: 2 2 7 12 .
8&: 4
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Theorem 6.2(ii) tells that the representation of Tor;(/,, k) and that of Tor; (I, 1,k) are related
when I, is generated by monomials. We expect that a similar phenomenon occurs even when I, is
not generated by monomials, and end this paper with the following question, which is inspired from
our result and a result given in [26].

Question 6.4. Let I, be as in (1.9) and let ¢ be a sufficiently large integer. Suppose char(k) = 0.
Is it true that, for all £ > i, if S*1A) is a summand of Tor;(1;, k), then SPA+1 is a summand
of TOI‘H_l(]g_H, k)?
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