
FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS

CLAUDIU RAICU

Abstract. For fixed weights w1, · · · , wn, and for d > 0, we let B denote a collection of d ·n balls, with d balls
of weight wi for each i = 1, · · · , n. We consider the problem of assigning the balls to n bins with capacities
C1, · · · , Cn, in such a way that each bin is assigned d balls, without exceeding its capacity. When d � 0,
we give sufficient criteria for the feasibility of this problem, which coincide up to explicit constants with the
natural set of necessary conditions. Furthermore, we show that our constants are optimal when the weights wi

are distinct. The feasibility criteria that we present here are used elsewhere (in commutative algebra) to study
the asymptotic behavior of the Castelnuovo–Mumford regularity of symmetric monomial ideals.

1. Introduction

Partitioning problems, sometimes referred to as the simplest NP-hard problems [Hay02], are fundamental
questions in combinatorial optimization with applications to a wide range of resource-allocation problems
such as multi-processor scheduling, equitable distribution of assets, voting theory etc. They are concerned
with the problem of partitioning a multi-set B of resources into parts in order to optimize a certain objective
function. The general philosophy (made precise in [Mer06]) is that the difficulty of a partitioning problem
is controlled by the ratio M/N , where M is the maximal size of a resource in B, and N is the size of
B, with smaller ratios corresponding to simpler problems. We illustrate this philosophy here by studying
feasibility conditions for a certain partitioning problem, where M is fixed and N →∞. The specific problem
that we consider is, perhaps surprisingly, motivated by a question in commutative algebra, namely that of
describing the asymptotic behavior of the Castelnuovo–Mumford regularity of powers of monomial ideals
that are invariant under the symmetric group of permutations of the coordinates (see [Rai21, Section 5] for
an explanation of this connection). As we will see, the problem is quite natural from the point of view of
combinatorial optimization. It fits in the realm of high-multiplicity optimization problems, that have been
studied extensively in operations research and computer science [FdlVL81,HS91,MSS97,FA05,GR14].

We fix a positive integer n, and a tuple of non-negative integers w = (w1, · · · , wn), which we call weights.
For a positive integer d and a tuple of integer capacities C = (C1, · · · , Cn), we consider the partitioning problem
BP(d, C;w) defined as follows: given a collection of d · n balls, with d of weight wi for each i = 1, · · · , n,
and given bins B1, · · · ,Bn with capacities C1, · · · , Cn, determine if there exists an assignment of the balls to
bins such that for each i we have that Bi contains exactly d balls, and the total weight of the balls in Bi does
not exceed Ci. We say that BP(d, C;w) is feasible if such an assignment exists. An equivalent formulation
of the problem is obtained by considering the multiset of ball-weights

B = {w1, · · · , w1, · · · , wi, · · · , wi, · · · , wn, · · · , wn},

where each wi is repeated d times, and asking whether there exists a multi-set partition

B = B1 t · · · t Bi t · · · t Bn, (1.1)

Date: October 14, 2021.
2010 Mathematics Subject Classification. Primary 90C27, 05D99.
Key words and phrases. Partitioning problem, bin packing, feasibility criteria.

1

2 CLAUDIU RAICU

such that each Bi has exactly d elements, and

w(Bi) :=
∑
w∈Bi

w ≤ Ci, for i = 1, · · · , n. (1.2)

Any partition B• satisfying the constraints (1.2) is said to be feasible. Throughout this article we will use
interchangeably the bin and multi-set partitioning terminology. Our goal is to find sufficient conditions for
the feasibility of BP(d, C;w) when d� 0, and to explain the extent to which these conditions are optimal.

We begin with an example of a feasible partitioning problem that we will return to throughout this article:

Example 1.1. Let n = 6, w = (5, 5, 3, 1, 1, 0), d = 6, and C = (17, 17, 17, 17, 17, 8) = (175, 8). The following
partition B• gives a solution to BP(d, C;w): the notation wa1

1 w
a2
2 · · · means that we use a1 balls of weight

w1, a2 balls of weight w2, etc. Note that since w1 = w2 = 5, the total number of balls of weight 5 is
2 · d = 12 = 1 + 2 + 3 + 3 + 3 + 0; a similar comment applies to w4 = w5 = 1.

a 1 2 3 4 5 6

Ba 513312 52321101 531201 531102 531201 311401

w(Ba) 16 17 17 16 17 7

The simplest case when the feasibility of BP(d, C;w) can be characterized is when all the weights are equal:

Example 1.2. When n = 1, we have w = (w) and C = (C) are singletons, and a necessary and sufficient
condition for the feasibility of BP(d, C;w) is given by the inequality C ≥ d · w. Suppose more generally
that n ≥ 1 and w1 = · · · = wn = w. Any solution to BP(d, C;w) will assign to each Bi exactly d balls of
weight w. This is feasible if and only if Ci ≥ d · w for all i = 1, · · · , n.

It will be useful from now on to order the weights and capacities, so we will assume that

w1 ≥ · · · ≥ wn and C1 ≥ · · · ≥ Cn.

One has that if BP(d, C;w) is feasible then

Ci + Ci+1 + · · ·+ Cn ≥ d · (wi + · · ·+ wn) for each i = 1, · · · , n. (1.3)

This follows since for a feasible partition B•, the bins Bi, · · · ,Bn must contain collectively a total of d·(n−i+1)
balls, whose total weight can be no smaller than the sum of the smallest d · (n− i+ 1) elements of the multi-
set B, namely d · (wi + · · · + wn). It is an interesting consequence of our main result below (Theorem 1.7)
that the conditions (1.3) are also sufficient to guarantee the feasibility of BP(d, C;w) when d� 0 and the
weights w are balanced, that is, when 0 ≤ wi − wi+1 ≤ 1 for all i = 1, · · · , n − 1. In commutative algebra,
balanced weights give rise to ideals that have the remarkable property that their powers have eventually a
linear minimal free resolution [Rai21, Section 5.3].

In general, Theorem 1.7 provides constant correction factors that transform (1.3) into sufficient conditions
for feasibility. To see that conditions (1.3) cannot be sufficient in general, consider the following.

Example 1.3. Let n = 2, w = (3, 1), and for d = 2 consider C = (5, 3), so that (1.3) holds. However, since
w1+w2 > C2, it follows that any solution of BP(d, C;w) can only place balls of weight w2 = 1 into B2, so that
B2 = {1, 1}, which then forces B1 = {3, 3}, exceeding the capacity C1 = 5. We conclude that BP(d, C;w)
is not feasible in this case. In fact, for any positive integer d we can let C = (3d − 1, d + 1) to obtain
an infeasible problem BP(d, C;w). One can also check that for C = (2d, 2d), the problem BP(d, C;w) is
feasible when d is even, and infeasible when d is odd (see also Example 1.8).

One can check that replacing wi by wi − wn and Ci by Ci − d · wn leads to an equivalent partitioning
problem. Since it doesn’t play a major role in our arguments we won’t make this reduction here, but we
note that whenever we bound d in terms of the highest weight w1, one can in fact improve the bound by
considering instead the difference w1 − wn between the highest and lowest weight.

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 3

To state our results we need to introduce some notation. A tuple λ = (λ1, · · · , λr) of non-negative integers
with non-increasing entries λ1 ≥ λ2 ≥ · · · ≥ λr is called a partition and it is pictured in the form of a Young
diagram of left-justified boxes, with λi boxes in row i. For instance, λ = (4, 2, 1) will be pictured as

(1.4)

The only ambiguity in recovering λ from its diagram is the number of trailing zeros, as (1.4) is for instance
also the Young diagram of µ = (4, 2, 1, 0, 0). The conjugate partition of λ is denoted λ′, and is obtained
by transposing the corresponding Young diagram. For instance, if λ = (4, 2, 1) then λ′ = (3, 2, 1, 1). For
partitions with repeating parts, we use the abbreviation (ba) to denote the sequence (b, b, · · · , b) of length
a; for instance (3, 3, 3, 3, 1, 1) will be abbreviated as (34, 12).

Definition 1.4. Consider a partition λ = (λ1, · · · , λr) and write λ′ = (ra0 , ha11 , h
a2
2 , · · · , h

ak
k), with a0 ≥ 0

and a1, · · · , ak > 0, r > h1 > · · · > hk > 0. Note that a0 = 0 if and only if λr = 0, and that k = 0 if and
only if λ1 = · · · = λr. We define b(λ) = 0 if k = 0, and otherwise let

b(λ) = (r − h1) · (a1 − 1) + (h1 − h2) · (a2 − 1) + · · ·+ (hk−1 − hk) · (ak − 1) + (hk − 1) · (ak − 1)

=

(
k∑

t=1

(ht−1 − ht) · (at − 1)

)
+ (hk − 1) · (ak − 1).

where in the second equality we set h0 = r.

Remark 1.5. Note that b(λ) will typically change when we add trailing zeroes to λ. Note also that when
λ1, · · · , λr are distinct, we have k = r − 1, hi = r − i for i = 1, · · · , r − 1, and b(λ) = λ1 − λr − r + 1. For
an alternative calculation of b(λ), see Lemma 5.2.

Example 1.6. (a) Suppose that λ = (3, 3, 0), so that r = 3. We have that λ′ = (23) and b(λ) = 4. If we
consider instead µ = (3, 3) then r = 2, µ′ = (23) = (r3) and b(µ) = 0.
(b) Suppose that λ = (5, 5, 3, 1, 1, 0), so that r = 6. We have that λ′ = (51, 32, 22) and b(λ) = 4. The formula
for b(λ) is not affected in this case by trailing zeroes, and in particular b(µ) = 4 when µ = (5, 5, 3, 1, 1).

We will apply Definition 1.4 to λ = w≥i a truncation of the vector of weights w = (w1, · · · , wn), where

w≥i = (wi, wi+1, · · · , wn) for i = 1, · · · , n.
We are now in the position to state the main result.

Theorem 1.7. Fix n and a tuple w = (w1 ≥ · · · ≥ wn) of non-negative weights. There exists a positive
integer dw such that for every d ≥ dw and every tuple of capacities C = (C1 ≥ · · · ≥ Cn) satisfying

Ci + Ci+1 + · · ·+ Cn ≥ d · (wi + · · ·+ wn) + b(w≥i) for each i = 1, · · · , n, (1.5)

the partitioning problem BP(d, C;w) is feasible. Moreover, one can take dw = n3 · w1 · (2 · n+ w1).
If the weights wi are distinct and if we relax any of the inequalities (1.5) then there exists C satisfying

the relaxed conditions for which BP(d, C;w) is infeasible.

Notice that the integers b(w≥i) in (1.5) depend only on w and not on d. They provide appropriate
correction factors to the necessary (but non-sufficient) conditions (1.3) to guarantee feasability. We were
not able to verify that the integers b(w≥i) are optimal for arbitrary weights wi, but we do not know any
example when they are not (see also Theorem 1.11, Remark 7.3 and Section 8). When w is balanced, the
truncations are also balanced, and one can check that as a consequence b(w≥i) = 0 for all i, so the conditions
(1.3) and (1.5) become identical. It follows that the conditions (1.5) are both necessary and sufficient, and
in particular the constants b(w≥i) are optimal in this case.

4 CLAUDIU RAICU

Example 1.8. As in Example 1.3, let n = 2 and w = (3, 1). We have w≥1 = w, w≥2 = (1), and b(w≥1) = 1,
b(w≥2) = 0, so the conditions in (1.5) become

C1 + C2 ≥ 4d+ 1, C2 ≥ d,

which are satisfied for instance by C = (2d + 1, 2d). When d is even, we can then solve BP(d, C;w) by
distributing the balls evenly to B1 and B2. When d is odd, we place (d+1)/2 balls of weight w1, and (d−1)/2
balls of weight w2 in B1, and place the remaining d balls in B2.

Example 1.9. Note that the conditions (1.5) are not necessary for BP(d, C;w) to be feasible. For instance,
if d = 6, w = (5, 5, 3, 1, 1, 0), and C = (175, 8) as in Example 1.1, the resulting problem is feasible, despite
the fact that (1.5) is violated for i = 1: we have C1 + · · ·+Cn = 93, d · (w1 + · · ·+wn) = 90, and b(w) = 4.
See Example 6.1 for a closely related, but infeasible problem.

To prove Theorem 1.7 we set up an inductive procedure, based on the number of bins. We consider partial
relaxations of the feasibility condition: we say that the problem BP(d, C;w) is k-feasible if there exists an
assignment of balls to bins (with d balls in each bin) such that

w(Bi) ≤ Ci, for i = k + 1, · · · , n,

in which case B• is called k-feasible. Equivalently, when looking for a solution for BP(d, C;w) we allow the
capacities to be exceeded in bins B1, · · · ,Bk. Furthermore, if we let D = (∞, · · · ,∞, Ck+1, · · · , Cn), then
BP(d, C;w) is k-feasible if and only if BP(d,D;w) is feasible. It is clear that (k− 1)-feasible problems are
also k-feasible. The interesting direction is then to understand the additional conditions which imply that
a k-feasible problem is also (k − 1)-feasible. To that end, we prove the following (note that 0-feasible is the
same as feasible).

Theorem 1.10. Fix n and a tuple w = (w1 ≥ · · · ≥ wn) of non-negative weights. There exists a positive
integer d1w such that for every d ≥ d1w and every tuple of capacities C = (C1 ≥ · · · ≥ Cn) for which

BP(d, C;w) is 1-feasible, we have that if in addition

C1 + · · ·+ Cn ≥ d · (w1 + · · ·+ wn) + b(w) (1.6)

then BP(d, C;w) is feasible. Moreover, one can take d1w = n3 · w1 · (2 · n+ w1).

The proof strategy behind Theorem 1.10, outlined in Section 2, is to start with a 1-feasible partition B•
and then perform a suitable sequence of ball exchanges leading to a feasible partition. This idea is not new,
as exchange algorithms are known to give useful heuristics for solving partitioning problems (see for instance
[BKK98, Section 3.3]), but the details in our specific case are somewhat involved. It is perhaps refreshing
to know that Hall’s Marriage Theorem provides one of the key steps in our argument (Section 4).

When w1 = · · · = wn = w and n ≥ 2, knowing that BP(d, C;w) is 1-feasible forces Cn ≥ d·w, so Ci ≥ d·w
for all i, which means that BP(d, C;w) is in fact feasible. Theorem 1.10 is therefore not interesting unless
w has at least two distinct parts. The next theorem shows that (1.6) is not superfluous in this general case,
and more importantly, it shows that the constant b(w) is optimal!

Theorem 1.11. Suppose that w = (w1, · · · , wn) has at least two distinct parts and that d ≥ n. There exists
a sequence C with

C1 + · · ·+ Cn = d · (w1 + · · ·+ wn) + b(w)− 1 (1.7)

such that BP(d, C;w) is 1-feasible but not feasible.

Notice the discrepancy between the lower bound d ≥ n in Theorem 1.11, and the formula that we give
for d1w in Theorem 1.10. It would be interesting to understand what the optimal value of d1w is that makes
Theorem 1.10 true, and in particular whether it can be taken to only depend on n and not on w.

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 5

Organization. The proof of Theorem 1.10 will occupy most of this article. We outline the general strategy
in Section 2, and verify some of the simple steps, while in Sections 3, 4, 5 we explain the more substantial
steps of our argument. In Section 6 we prove Theorem 1.11 explaining the optimality of the constant b(w).
We prove Theorem 1.7 in Section 7, and conclude with some open questions in Section 8. Throughout, we
illustrate our results with concrete examples in order to make the arguments more transparent.

2. Proof strategy for Theorem 1.10

In this section we fix some terminology to be used throughout the article, we outline the proof of Theo-
rem 1.10, and we verify the easier steps in the argument. Given a partition B• as in (1.1), we consider for
1 ≤ i, j ≤ n the number ni(Bj) of balls of weight wi in Bj .

Example 2.1. For the partition B• from Example 1.1, we have the following table recording in row i and
column j the number ni(Bj):

1 2 3 4 5 6

1 1 2 3 3 3 0

2 1 2 3 3 3 0

3 3 2 0 0 0 1

4 2 1 2 1 2 4

5 2 1 2 1 2 4

6 0 1 1 2 1 1

We define the gap sequence g•(B•) of the partition B• via

gi(B•) = Ci − w(Bi) for i = 1, · · · , n. (2.1)

One can then reinterpret the condition that B• is k-feasible by the inequalities gi(B•) ≥ 0 for i > k, and in
particular a feasible B• is one for which all gaps are non-negative.

Example 2.2. If we take C = (175, 8) and B• as in Example 1.1 then we get the gap sequence

a 1 2 3 4 5 6

ga(B•) 1 0 0 1 0 1

Notice that condition (1.6) gives a lower bound for the sum of the gaps of a partition B•, which leads to
the following quick feasibility criterion.

Lemma 2.3. Suppose that (1.6) holds and that B• is 1-feasible. If

n∑
i=2

gi(B•) ≤ b(w) (2.2)

then B• is feasible.

Proof. We have that

g1(B•) =
n∑

i=1

(
Ci − w(Bi)

)
−

n∑
i=2

gi(B•) ≥ b(w)−
n∑

i=2

gi(B•) ≥ 0,

where the first inequality follows from (1.6) and the fact that
∑n

i=1w(Bi) = d · (w1 + · · · + wn), while the
second inequality is by hypothesis. Since B• is 1-feasible and g1(B•) ≥ 0, we get that B• is feasible. �

6 CLAUDIU RAICU

Based on Lemma 2.3, the key idea behind the proof of Theorem 1.10 is to look for 1-feasible partitions
with small gaps gi(B•) for i ≥ 2. The precise proof strategy is based on the following outline, to be detailed
in the subsequent sections.

Step 1. We consider all the 1-feasible partitions B• for which the weight w(B1) takes the minimal value, and
denote this value by Wmin. If Wmin ≤ C1 then any such partition is in fact feasible, so BP(d, C;w)
is feasible. We suppose that Wmin > C1 and seek a contradiction in the following steps.

Step 2. If a partition B• has n1(B1) 6= 0 and gi(B•) ≥ w1 for some i ≥ 2, we show that a single ball swap
creates a 1-feasible partition B′• with w(B′1) < w(B1), contradicting the minimality of w(B1).

Step 3. Among all the partitions B• considered in Step 1, we consider one for which n1(B1) is maximal. We
show that if d is large, then n1(B1) is large as well. In particular n1(B1) is non-zero, so by Step 2
we may assume that all gaps satisfy gi(B•) < w1.

Step 4. With B• as in Step 3, we show that if d is large then we can find a permutation R• of {1, 2, · · · , n}
with R1 = 1, and with the property that ni(BRi) is large for each i = 1, 2, · · · , n.

Step 5. Using Algorithm 1 (the “Shrinking gaps algorithm”), we show that through a series of ball swaps we
can reach a 1-feasible partition B′• whose gaps gi(B′•) are small for i ≥ 2. Based on Lemma 2.3 we
deduce that B′• is feasible, and therefore w(B′1) ≤ C1 < Wmin = w(B1), a contradiction.

The set of 1-feasible partitions is non-empty by the hypothesis of Theorem 1.10, so Step 1 of the outline
requires no further explanations. We record an important consequence of the inequality Wmin > C1.

Lemma 2.4. Suppose that B• is 1-feasible and w(B1) > C1 (which is automatic if we assume Wmin > C1).
For each i ≥ 2 we have that Bi contains some ball of weight different from w1.

Proof. If for some i ≥ 2 we have that Bi consists of d balls of weight w1 then

w(B1) > C1 ≥ Ci ≥ w(Bi) = d · w1,

Since B1 contains d balls, each of weight ≤ w1, we have w(B1) ≤ d·w1, contradicting the inequality above. �

We next explain Step 2 of the outline, which is a direct consequence of the following.

Lemma 2.5. Suppose that Wmin > C1, B• is 1-feasible, n1(B1) 6= 0 and gi(B•) ≥ w1 for some i ≥ 2. There
exists a 1-feasible partition B′• with w(B′1) < w(B1).

Proof. By Lemma 2.4, there exists a ball of weight wj 6= w1 in Bi, so wj < w1. Consider the partition B′•
obtained from B• by swapping a ball of weight w1 in B1 (which exists since n1(B1) 6= 0) with a ball of weight
wj from Bi. Note that ga(B′•) = ga(B•) ≥ 0 for all a 6= 1, i. Moreover, we have

gi(B′•) = gi(B•)− w1 + wj ≥ wj ≥ 0,

so B′• is 1-feasible. Finally,

w(B′1) = w(B1)− w1 + wj < w(B1),

as desired. �

The rest of the argument requires more work: we check Step 3 in Section 3, we use Hall’s Marriage
Theorem to deduce Step 4 in Section 4, and explain the “Shrinking gaps algorithm” giving Step 5 in
Section 5. As explained in the Introduction, Theorem 1.10 is easy when w1 = · · · = wn, so we will assume
when needed (in Section 5) that w has at least two distinct parts (in particular n ≥ 2). We caution the
reader that we will be quite relaxed with our estimates below, for the sake of clarity and at the cost of
finding a (potentially) far from optimal constant d1w.

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 7

3. Many balls of weight w1 in B1
The goal of this section is to prove the following result making effective the notion of “large” in Step 3

of our outline from Section 2. The proof is based on an exchange procedure that involves several balls, and
is illustrated in Example 3.2 at the end of this section. We write |w| = w1 + · · ·+ wn.

Theorem 3.1. Suppose that BP(d, C;w) is 1-feasible and Wmin > C1, and fix a positive integer N > 0. If

d ≥ n ·N + n · (n− 1) · w1 · |w| (3.1)

then there exists a 1-feasible partition B• with w(B1) = Wmin and n1(B1) ≥ N .

Proof. Among all the 1-feasible partitions B• with w(B1) = Wmin, we choose one for which n1(B1) is
maximal. If n1(B1) ≥ N then we are done. Suppose by contradiction that n1(B1) < N . Note that

n∑
j=1

n1(Bj) ≥ d,

since there are (at least) d balls of weight w1. Combined with n1(B1) < N , this implies

n1(Br) >
d−N
n− 1

for some r ≥ 2. (3.2)

We reach a contradiction with the maximality of n1(B1) in three steps, as follows.
Step 3.1. We claim that there exists k > 1 with wk < w1 and nk(B1) ≥ w1. If this wasn’t the case, then
each weight wj 6= w1 would appear at most (n− 1) times in B1, and since n1(B1) < N , we would get

d = |B1| < N + (n− 1)w1,

contradicting (3.1). We may assume that k is minimal, so for j < k either nj(B1) ≤ w1 − 1, or wj = w1.
Since wj ≤ wk for j ≥ k, we obtain

w(B1) ≤ N · w1 + (w1 − 1) · (w2 + · · ·+ wk−1) + (d−N) · wk ≤ N · (w1 − wk) + d · wk + w1 · |w|. (3.3)

Step 3.2. We next claim that there exists t > k with wt < wk and nt(Br) ≥ w1, where k is as in Step 3.1
and r is as in (3.2). Suppose by contradiction that this isn’t the case, and note that wt ≥ wk for t < k, so

w(Br) ≥ n1(Br) · w1 + (d− n1(Br)− (n− k) · (w1 − 1)) · wk + (w1 − 1) · (wk+1 + · · ·+ wn)

≥ n1(Br) · (w1 − wk) + d · wk − (n− 1) · w1 · |w|.
(3.4)

Since w(B1) > C1 ≥ Cr ≥ w(Br), it follows from (3.3) and (3.4) that

n1(Br) · (w1 − wk) + d · wk − (n− 1) · w1 · |w| < N · (w1 − wk) + d · wk + w1 · |w|.
Rewriting this inequality, and combining it with (3.2), it follows that

d−N
n− 1

< n1(Br) < N +
n · w1 · |w|
w1 − wk

≤ N + n · w1 · |w|,

which implies that d < n ·N + n · (n− 1) · w1 · |w|, contradicting (3.1).
Step 3.3. By the previous steps, we know that B1 contains at least w1 balls of weight wk < w1, that Br
contains at least w1 balls of weight wt < wk, and that Br also contains

n1(Br) >
d−N
n− 1

≥ N + n · w1 · |w| ≥ w1

balls of weight w1. We can then move

• (w1 − wt) balls of weight wk from B1 to Br.
• (w1 − wk) balls of weight wt from Br to B1.
• (wk − wt) balls of weight w1 from Br to B1.

8 CLAUDIU RAICU

Since (w1 − wt) = (w1 − wk) + (wk − wt) and

(w1 − wt) · wk = (w1 − wk) · wt + (wk − wt) · w1,

it follows that the number of balls in B1,Br is unchanged (namely d), and that w(B1) and w(Br) are also
unchanged, so the resulting partition is still 1-feasible with minimal w(B1). However, the number of balls of
weight w1 in B1 has increased by wk − wt > 0, which contradicts the maximality of n1(B1). �

Example 3.2. The condition (3.1) is sufficient (but not necessary) to guarantee the existence of a partition
B• with many balls of weight w1 in B1. Likewise the estimates that we use for the number of balls in
various bins can often be improved. In the example below we only illustrate the exchange in Step 3.3 above
(without worrying about our estimates or the bound on d being satisfied). We take w = (5, 5, 3, 1, 1, 0),
d = 6, C = (175, 8), N = 2, and the partition B• given by

a 1 2 3 4 5 6

Ba 36 531201 531201 531102 531102 16

We take k = 3, and note that B1 contains six balls of weight wk = 3. We take r = 2 and note that Br
contains three balls of weight w1 = 5. We take t = 4 and note that Br contains two balls of weight wt = 1.
If we move

• (w1 − wt) = 4 balls of weight wk = 3 from B1 to B2,
• (w1 − wk) = 2 balls of weight wt = 1 from B2 to B1,
• (wk − wt) = 2 balls of weight w1 = 5 from B2 to B1,

then we obtain the partition

a 1 2 3 4 5 6

Ba 523212 513401 531201 531102 531102 16

that has N = 2 balls of weight w1 in B1, and has the same weight sequence w(B•) as the original partition.

4. Hall Marriage and the permutation R•

The goal of this section is to explain and make effective Step 4 of our outline from Section 2. To that
end, we prove the following.

Theorem 4.1. Fix a positive integer r, let N = (n−1) ·n ·r and suppose that d satisfies (3.1). Suppose that
BP(d, C;w) is 1-feasible and Wmin > C1, and consider a 1-feasible partition B• with w(B1) = Wmin and
n1(B1) ≥ N (whose existence is guaranteed by Theorem 3.1). There exists a permutation R• of {1, 2, · · · , n}
with R1 = 1, and with the property that ni(BRi) ≥ r for i = 2, · · · , n.

Proof. We define a bipartite graph G with vertex set L t R, where L = R = {2, · · · , n}, where i ∈ L and
j ∈ R are connected by an edge if and only if ni(Bj) ≥ r. Our goal is to prove that G admits a perfect
matching: letting R1 = 1 and Ri = j when i is matched to j gives then the desired permutation R•.

Given any subset S ⊂ L, we consider the set of neighbors of elements in S:

N (S) = {j ∈ R : (i, j) is an edge in G for some i ∈ S}.
By Hall’s Marriage Theorem (see [Hal35] or [KV18, Theorem 10.4]) we need to check that for every subset
S ⊂ L, we have |N (S)| ≥ |S|. Suppose this isn’t the case, and let S be such that

m = |N (S)| < k = |S|.
We consider the set of weights indexed by S,

W(S) = {ws : s ∈ S},

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 9

and let M denote the number of balls in B whose weight belongs to W(S). We have two cases:
Case 1: w1 ∈ W(S). Since each wi, i = 1, · · · , n appears d times in B, and since 1 6∈ S but w1 ∈ W(S), it
follows that

M ≥ k · d+ d.

If j 6= 1 and j 6∈ N (S), we have that each ws ∈ W(S) appears at most (r − 1) times in Bj . It follows that

M ≤ (1 +m) · d+ (n−m− 1) · k · (r − 1).

Combining the two inequalities above involving M , and using the fact that k ≥ 1 +m, we obtain

d ≤ (n−m+ 1) · k · (r − 1) < n · (n− 1) · r = N,

contradicting (3.1).
Case 2: w1 6∈ W(S). We know that n1(B1) ≥ N , so at most d −N balls in B1 can have weight in W(S).
It follows that

M ≤ m · d+ (d−N) + (n−m− 1) · k · (r − 1).

Since |S| = k it follows that M ≥ k · d, and using again that k ≥ 1 +m we conclude that

N ≤ (n−m+ 1) · k · (r − 1) < n · (n− 1) · r = N,

which is again a contradiction. �

Example 4.2. Below is an example of a permutation R• such that BRi contains many balls of weight wi

for all i, where “many” means in this case two balls. We take w = (5, 5, 3, 1, 1, 0), d = 6, r = 2, as before,
and the partition B• and permutation R• given by:

a 1 2 3 4 5 6

Ba 523212 513401 531201 531102 531102 16

Ra 1 4 2 3 6 5

5. Shrinking gaps

The goal of this section is to formalize Step 5 of our outline from Section 2. In Section 5.1 we give an
alternative interpretation of the constant b(w), which leads to a set of inequalities that imply (2.2). We
then introduce an algorithm in Section 5.2 that produces after a series of ball swaps a partition B′• either
satisfying the said inequalities (in which case it is feasible by Lemma 2.3), or satisfying w(B′1) < w(B1).

5.1. The gap sequence of a tuple w. Consider w = (w1, · · · , wn) as before, and define for i = 1, · · · , n:

• The predecessor p(wi) of wi to be wj , where j < i is the unique index such that wj > wj+1 = wj+2 =
· · · = wi. If wi = w1 then we make the convention that p(wi) =∞.
• The successor s(wi) of wi to be wj , where j > i is the unique index such that wi = wi+1 = · · · =
wj−1 > wj . If wi = wn, then we make the convention that s(wi) = −∞.

We define the gap sequence of w to be the list g•(w) = (g2(w), · · · , gn(w)) defined by letting

gi(w) =

{
p(wi)− wi if wi 6= w1,

w1 − s(w1) if wi = w1.

Note that the formula above also makes sense for i = 1, but this case is not relevant for our argument.

Example 5.1. Let w = (5, 5, 3, 1, 1, 0). We have that s(5) = 3, p(3) = 5, p(1) = 3, and p(0) = 1. We get
that the gap sequence of w is

g•(w) =
(
g2(w), g3(w), g4(w), g5(w), g6(w)

)
= (2, 2, 2, 2, 1).

10 CLAUDIU RAICU

Lemma 5.2. Suppose that w has at least two distinct entries. We have that

b(w) =
n∑

i=2

(
gi(w)− 1

)
.

Proof. Write the conjugate partition to λ = w as in Definition 1.4, λ′ = (na0 , ha11 , h
a2
2 , · · · , h

ak
k), with a0 ≥ 0

and a1, · · · , ak > 0, n > h1 > · · · > hk > 0. The assumption that w has at least two distinct entries is
equivalent to the condition k 6= 0. We compute gi(w) for each i = 2, · · · , n.

If i > h1 then wi = a0, p(wi) = a1 + a0, so that gi(w) = a1. It follows that

n∑
i=h1+1

(
gi(w)− 1

)
= (n− h) · (a1 − 1). (5.1)

For j = 1, · · · , k − 1, if hj ≥ i > hj+1 then wi = a0 + a1 + · · ·+ aj , p(wi) = a0 + a1 + · · ·+ aj+1, so that
gi(w) = aj+1 and

hj∑
i=hj+1+1

(
gi(w)− 1

)
= (hj − hj+1) · (aj+1 − 1). (5.2)

If hk ≥ i ≥ 2 then wi = w1 = a0 + · · ·+ ak, s(w1) = a0 + · · ·+ ak−1, so gi(w) = ak and

hk∑
i=2

(
gi(w)− 1

)
= (hk − 1) · (ak − 1). (5.3)

Summing together (5.1–5.3) and comparing with Definition 1.4 we obtain the desired conclusion. �

Corollary 5.3. Suppose that (1.6) holds and that B• is 1-feasible. If

gi(B•) ≤ gi(w)− 1 for all i = 2, · · · , n (5.4)

then B• is feasible.

Proof. Summing together the inequalities (5.4) for i = 2, · · · , n we obtain using Lemma 5.2 the inequality
(2.2), and conclude using Lemma 2.3 that B• is feasible. �

5.2. Shrinking the gaps through ball swaps. We let r = 2 · n ·w1, N = (n− 1) · n · r and suppose that
d satisfies (3.1), that is

d ≥ 2 · n3 · (n− 1) · w1 + n · (n− 1) · w1 · |w|. (5.5)

We assume that B• is 1-feasible, and w(B1) = Wmin > C1 (so that g1(B•) < 0 and B• is not feasible). Using
Theorem 4.1 (and the fact that N ≥ r), we can find a permutation R of the set {1, · · · , n}, with

R1 = 1, and ni(BRi) ≥ r for i = 1, · · · , n.

We will also assume that w has at least two distinct entries, and let w2nd = s(w1) denote the second largest
weight in the sequence w. We construct a series of exchanges that will produce out of the 1-feasible partition
B• a new one B′• with w(B′1) < w(B1), contradicting the minimality of w(B1). Using Lemma 2.5, we may
further assume that gi(B•) < w1 for all i = 2, · · · , n. We show the following.

Theorem 5.4. If w, B•, R• are as above, then the output of Algorithm 1 below is a 1-feasible partition B′•
with w(B′1) < w(B1).

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 11

Note that this theorem leads to the contradiction in Step 5 of the outline from Section 2. Note also that

2 · n3 · (n− 1) · w1 + n · (n− 1) · w1 · |w| ≤ 2 · n4 · w1 + n2 · w1 · n · w1 = n3 · w1 · (2 · n+ w1),

which gives the effective bound for d1w in Theorem 1.10. The proof of Theorem 5.4 will occupy the rest of

the section: we break it up into simple steps as follows (the reader may wish to go through Examples 5.16
and 5.17 before getting into more details).

Algorithm 1: Shrinking gaps algorithm

Input: w = (w1, · · · , wn), a non-increasing tuple of weights, at least two distinct
B•, a 1-feasible partition which is not feasible, with gi(B•) < w1 for i = 2, · · · , n
R•, a permutation of {1, · · · , n} such that R1 = 1 and ni(BRi) ≥ r for all i = 1, · · · , n

Output: B′•, a 1-feasible partition with w(B′1) < w(B1)
1 i← n

2 while wi < w2nd do
3 while gRi(B•) ≥ gi(w) do
4 choose j < i such that wj = p(wi)

5 swap a ball of weight wi in BRi with a ball of weight wj in BRj

6 if gRj (B•) ≥ w1 then
7 swap a ball of weight w1 in B1 with a ball of weight wi in BRj

8 go to line 22

9 i← i− 1

10 i← 2

11 while wi ≥ w2nd do
12 while gRi(B•) ≥ gi(w) do
13 if BRi contains no ball of weight w2nd then
14 choose j > i such that wj = w2nd

15 choose l > j such that wl < w2nd and BRi contains a ball of weight wl

16 t←
⌊
wj − wl

gi(w)

⌋
17 swap (t+ 1) balls of weight wj from BRj with t balls of weight w1 and one ball of weight wl

from BRi

18 else
19 swap a ball of weight w1 from B1 with one of weight w2nd from BRi

20 go to line 22

21 i← i+ 1

22 return B•

Lemma 5.5. For a fixed index i, the swap in line 5 of the algorithm is repeated fewer than w1 times.
Moreover, the partition B• remains 1-feasible after each swap.

Proof. Every swap in line 5 of the algorithm increases w(BRi) and decreases w(BRj) by

1 ≤ wj − wi = gi(w).

12 CLAUDIU RAICU

Since gRi(B•) < w1, this occurs at most (w1−1) times. Since gRi(B•) ≥ gi(w) is satisfied at every swap in line
5, and since gRi(B•) is decreased by gi(w), it follows that gRi(B•) stays non-negative and therefore B• remains
1-feasible (the only other gap that changes is gRj (B•), but it gets larger and thus stays non-negative). �

Lemma 5.6. The swap in line 5 of the algorithm occurs fewer than n · w1 times.

Proof. Using Lemma 5.5, the conclusion follows from the fact that there are fewer than n indices i with
wi < w2nd, which is clear (in fact, there are at most n− 2 such indices). �

Since every swap in line 5 of the algorithm decreases by at most one the number of balls of a given weight
in any given bin, it follows from Lemmas 5.5, 5.6 that we have the following.

Corollary 5.7. Since r ≥ n · w1, at every run through line 5 of the algorithm we are guaranteed to have at
least one ball of weight wi in BRi, and one of weight wj in BRj , so the swap can be performed.

Lemma 5.8. Every run through lines 6–8 of the algorithm either decreases w(B1) or guarantees that the
inequalities ga(B•) < w1 for a = 2, · · · , n remain valid.

Proof. If the inequality in line 6 is satisfied, then line 7 produces a partition where w(B1) is decreased by
w1 − wi ≥ w1 − w2nd > 0. If the inequality in line 6 fails, then gRj (B•) < w1, so the condition ga(B•) < w1

remains valid for a ≥ 2, since for a 6= Rj no ga(B•) is increased by the swap in line 5 of the algorithm. �

Remark 5.9. After running the first 9 lines of the algorithm, the partition B• has the following properties:

(1) For every i with wi < w2nd we have that gRi(B•) < gi(w).
(2) For every i we have that BRi contains more than r − n · w1 = n · w1 balls of weight wi.

Indeed, conclusion (1) is just a reformulation of the failure of the inequality in line 3, while conclusion (2)
follows from Lemma 5.6.

Our next goal is to show that the second part of the algorithm yields conclusion (1) in Remark 5.9 also
for each i ≥ 2 for which wi ≥ w2nd (or it results in a partition with a lower w(B1)).
Lemma 5.10. For a fixed i, the condition in line 13 is satisfied at most once.

Proof. The swap in line 17 places t + 1 ≥ 1 balls of weight wj = w2nd into BRi , so the condition in line 13
can’t be satisfied a second time for the same value of i. �

Lemma 5.11. The swap in line 17 occurs fewer than n times.

Proof. Since there are fewer than n values of i ≥ 2 for which wi ≥ w2nd, and since for each such value the
condition in line 13 is satisfied at most once, the conclusion follows. �

Lemma 5.12. The value of t in line 16 is smaller than w1.

Proof. We have that t ≤ wj − wl < w1, since wj = w2nd < w1. �

Lemma 5.13. The condition in line 13 can only be satisfied when wi = w1. Moreover, when it is satisfied
we have that indices j, l as in lines 14 and 15 exist.

Proof. When the loop in line 11 is initiated, we know by Remark 5.9 that each BRa contains more than
r − n · w1 = n · w1 balls of weight wa. The swap in line 17 occurs fewer than n times by Lemma 5.11, and
each time it removes at most w1 ≥ t + 1 balls of weight wa from BRa by Lemma 5.12, so at any point we
have that each BRa contains at least w1 balls of weight wa.

To prove the first assertion, note that if wi ≥ w2nd then either wi = w1 or wi = w2nd. Since BRi contains
balls of weight wi, it follows that for wi = w2nd the condition in line 13 must fail.

We now assume that the condition in line 13 is satisfied, and in particular wi = w1. We can choose j > i
with wj = w2nd since w is non-decreasing. If the index l in line 15 did not exist, then BRi would have to
consist of d balls of weight w1, contradicting the conclusion of Lemma 2.4. �

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 13

Lemma 5.14. The swap in line 17 can always be performed, and the resulting B• stays 1-feasible.

Proof. As explained in the proof of Lemma 5.13, we have at every point that each BRa contains at least w1

balls of weight wa. Since t + 1 ≤ w1, we get that BRj contains (t + 1) balls of weight wj . By Lemma 5.13
we know that wi = w1, so BRi contains t balls of weight w1. Since BRi also contains a ball of weight wl by
Lemma 5.13, the swap can be performed.

To check 1-feasibility, note that the swap in line 17 adds to gRj (B•) (and subtracts from gRi(B•))

(t+ 1) · wj − t · wi − wl = (wj − wl)− t · (wi − wj).

Noting that wi − wj = gi(w), we see by the choice of t that the quantity above is a non-negative integer
≤ gi(w). Since gRi(B•) ≥ gi(w) before the swap, the value of gRi(B•) remains non-negative after the swap.
Since this is the only gap that is decreased, 1-feasibility is preserved. �

Lemma 5.15. The swap in line 19 is possible and the resulting B• stays 1-feasible.

Proof. Since r > 0, B1 contains at least one ball of weight w1. If the condition in line 13 fails, then BRi

contains a ball of weight w2nd, so the swap can be performed. Since the only gap that is decreased is gRi(B•),
and the decrease is by w1 − w2nd = gi(w), the conclusion follows using the inequality in line 12. �

Proof of Theorem 5.4. The partition B′• returned by the algorithm occurs in one of the following ways:

• After the swap in line 7: since w1 > wi, we have that w(B′1) < w(B1).
• After the swap in line 19: since w1 > w2nd, we have that w(B′1) < w(B1).
• After the completion of the loop in lines 11–21: this implies that gRi(B′•) < gi(w) for all i ≥ 2 for

which wi ≥ w2nd. Combining this with Remark 5.9(1), we conclude that the inequalities (5.4) hold
for B′•, so by Corollary 5.3, B′• is feasible. This means that w(B′1) ≤ C1 < w(B1). �

Example 5.16. To indicate how Algorithm 1 works, we consider the following example. We take n = 6,
w = (5, 5, 3, 1, 1, 0), d = 6, r = 2, C = (175, 8), and the partition B• and permutation R• given below:

a 1 2 3 4 5 6

Ba 523212 513401 531201 531102 531102 16

Ra 1 4 2 3 6 5

w(Ba) 18 17 17 16 16 6

gRa(B•) −1 1 0 0 2 1

ga(w) 2 2 2 2 1

The table below indicates how the partition B• changes as we run through the algorithm; a blank space
means the corresponding part remains unchanged. The double line separates the first half of the algorithm
(lines 1–9, where i ∈ {6, 5, 4}) from the second half (lines 10–20, where i ∈ {2, 3}). In the leftmost column
we indicate the line of the algorithm and the value of the relevant parameters where the exchange modifying
B• occurs.

a 1 2 3 4 5 6

initial B• Ba 523212 513401 531201 531102 531102 16

i = 6, j = 5, line 5 Ba 531201 1501

i = 5, j = 3, line 5 Ba 51331101 311401

i = 3, line 19 Ba 513312 52321101

Note that the resulting partition is the one considered in Example 1.1 and is feasible.

14 CLAUDIU RAICU

In the previous example the condition in line 13 was never satisfied, so lines 14–17 were never executed.
To illustrate their contribution to the algorithm we consider the following.

Example 5.17. We take n = 5, w = (5, 5, 5, 1, 0), d = 5, r = 3, C = (243, 15, 2), and the partition B• and
permutation R• given below:

a 1 2 3 4 5

Ba 55 5401 5401 5213 1203

Ra 1 2 3 4 5

w(Ba) 25 20 20 13 2

gRa(B•) −1 4 4 2 0

ga(w) 4 4 4 1

The first half of the algorithm (lines 1–9) do not affect B•. Using the same conventions as in Example 5.16,
we record the evolution of B• in the following table.

a 1 2 3 4 5

initial B• Ba 55 5401 5401 5213 1203

i = 2, j = 4, l = 5, t = 0, line 17 Ba 5411 521201

i = 3, j = 4, l = 5, t = 0, line 17 Ba 5411 521102

i = 4, line 19 Ba 5411 5302

The resulting partition is therefore

a 1 2 3 4 5

B′a 5411 5411 5411 5302 1203

It satisfies w(B′1) = 21 < 25 = w(B1), and in fact it is feasible.

6. Optimality of the constant b(w)

The goal of this section is to prove Theorem 1.11. Example 6.1 at the end of the section may be helpful in
following the notation and details of the proof. We let λ = w and write λ′ = (na0 , ha11 , h

a2
2 , · · · , h

ak
k), noting

that k > 0 as in the proof of Lemma 5.2. We set h0 = n and recall that w2nd = s(w1) denotes the second
largest weight in w. We define a sequence of capacities C◦ as follows:

• C◦1 = C◦2 = · · · = C◦hk
= d · w1 − 1.

• C◦hk+1 = (hk − 1) · w1 + (d− hk + 1) · w2nd + (ak − 1).

• C◦j = d · w2nd + (ak − 1) = dwj + (ak − 1) for hk + 1 < j ≤ hk−1.
• C◦j = d · wj + (ak−t − 1) for t = 1, · · · , k − 1, and hk−t < j ≤ hk−1−t.

We first check that condition (1.7) is satisfied. By Definition 1.4 and the proof of Lemma 5.2, we have

gj(w) =

{
ak 2 ≤ j ≤ hk−1;
ak−t hk−t < j ≤ hk−1−t, 1 ≤ t ≤ k − 1.

It follows from the definition of C◦ that if we let ∆◦j = C◦j − d · wj then

∆◦j =


−1 1 ≤ j ≤ hk;

(hk − 1) · ak + (ak − 1) = (hk − 1) · ak + (gj(w)− 1) j = hk + 1;

ak − 1 = gj(w)− 1 hk + 1 < j ≤ hk−1;
ak−t − 1 = gj(w)− 1 hk−t < j ≤ hk−1−t, 1 ≤ t ≤ k − 1.

(6.1)

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 15

Summing over j = 2, · · · , n and using Lemma 5.2 we conclude that

n∑
j=1

(C◦j − d · wj) = −hk + (hk − 1) · ak +
n∑

j=hk+1

(gj(w)− 1)

= −1 + (hk − 1) · (ak − 1) +
n∑

j=hk+1

(gj(w)− 1)

= −1 +

n∑
j=2

(gj(w)− 1) = b(w)− 1.

We next check that C◦ is non-decreasing. Since d ≥ n ≥ hk, we have that

C◦hk
− C◦hk+1 = (d− hk + 1) · (w1 − w2nd)− ak = (d− hk) · ak ≥ 0.

Similarly, we get that C◦hk+1 ≥ d · w2nd + (ak − 1). When j = hk−t + 1 for 1 ≤ t ≤ k − 1, we have that the

predecessor of wj is p(wj) = wj−1, so bj(w) = wj−1 − wj = ak−t, and thus

C◦j = d · wj + (ak−t − 1) = d · wj + (wj−1 − wj − 1) < d · wj−1 ≤ C◦j−1.

We next show that BP(d, C◦;w) is 1-feasible. We consider the partition B◦• defined by

• B◦1 = {wd
1}.

• B◦2 = · · · = B◦hk
= {wd−1

1 , w2nd}.
• B◦hk+1 = {whk−1

1 , (w2nd)d−hk+1}.
• B◦j = {wd

j } for j ≥ hk + 2.

Note that we are using the fact that d ≥ hk − 1 in order for the definition of B◦hk+1 to make sense. The

earlier calculations show that g1(B◦•) = −1, and gj(B◦•) = gj(w) ≥ 0 for j ≥ 2, so B◦• is 1-feasible.
To finish the proof, we need to verify that there exists no feasible partition B•. Suppose by contradiction

that there is one such B•: for j ≥ hk + 2, we prove by descending induction on j that

Bj t Bj+1 t · · · t Bn = {wd
j , w

d
j+1, · · · , wd

n}. (6.2)

When j > n there is nothing to prove. Suppose that (6.2) holds for some j > hk + 2, so that B1 t · · · t Bj−1
contains no ball of weight smaller than wj−1. If Bj−1 contains a ball of weight larger than wj−1 then that
weight is at least p(wj−1) = wj−1 + gj−1(w). It follows that

w(Bj−1) ≥ (d− 1) · wj−1 + (wj−1 + gj−1(w)) = C◦j−1 + 1,

which contradicts the fact that B• is feasible. We conclude that Bj−1 = {wd
j−1}, proving the induction step.

Since w1 = · · · = whk
and whk+1 = w2nd, it follows that

B1 t · · · t Bhk+1 = {wd·hk
1 , (w2nd)d}.

Since C◦1 = · · · = C◦hk
< d ·w1, it follows that each of B1, · · · ,Bhk

contains at most (d−1) balls of weight w1.
This implies that Bhk+1 must contain at least hk balls of weight w1, so

(hk − 1) · w1 + (d− hk + 1) · w2nd + (ak − 1) = C◦hk+1 ≥ w(Bhk+1) ≥ hk · w1 + (d− hk) · w2nd,

which implies that ak − 1 ≥ w1 − w2nd = ak, a contradiction. This proves that BP(d, C;w) is not feasible,
as desired.

16 CLAUDIU RAICU

Example 6.1. If λ = w = (5, 5, 3, 1, 1, 0) then λ′ = (51, 32, 22), so k = 3, h1 = 5, h2 = 3, h3 = 2, a1 = 1,
a2 = a3 = 2. If we take d = 6 then the partition B◦• and the bin capacity sequence are as follows.

a 1 2 3 4 5 6

B◦a 56 5531 5135 16 16 06

C◦a 29 29 21 7 7 0

w(B◦a) 30 28 20 6 6 0

Note that B◦• is 1-feasible but not feasible, and that gi(B◦•) = gi(w) − 1 for all i ≥ 2. Recall that b(w) = 4,
and note that C◦1 + · · ·+ C◦n = 93, and d · (w1 + · · ·+ wn) = 90, just as in Example 1.9. The key difference
is that in this case no feasible solution exists!

7. The proof of the feasibility criterion

The goal of this section is to prove Theorem 1.7. The fact that conditions (1.5) are sufficient for feasibility
follows inductively from Theorem 1.10 and is explained in Section 7.1. The optimality of the conditions
however is not a formal consequence of Theorem 1.11, and we discuss this issue in Section 7.2. We start
with the following useful observation.

Lemma 7.1. Suppose that i ≥ 1, j ≥ 0. We have that BP(d, C;w) is (i + j − 1)-feasible if and only if
BP(d, C≥i;w≥i) is j-feasible.

Proof. “⇐”: consider a j-feasible solution of BP(d, C≥i;w≥i), so that

Bi t Bi+1 t · · · t Bn = {wd
i , · · · , wd

n}. (7.1)

and w(Bt) ≤ Ct for t ≥ i + j. If we define Bt = {wd
t } for t < i then B1 t · · · t Bn is an (i + j − 1)-feasible

solution of BP(d, C;w), proving the implication.
“⇒”: Let B1 t · · · tBn be an (i+ j− 1)-feasible solution of BP(d, C;w), so that w(Bt) ≤ Ct for t ≥ i+ j. If
(7.1) holds then it follows that it provides a j-feasible solution of BP(d, C≥i;w≥i), as desired. If (7.1) does
not hold then we perform a sequence of ball swaps that preserve the inequalities w(Bt) ≤ Ct for t ≥ i + j
and leads to a partition B• satisfying (7.1), as follows.

We choose d · (i− 1) balls with d of weight wj for each j = 1, · · · , i− 1, and designate them as large, and
we designate the remaining d · (n− i+ 1) balls as small. We write

B≤i−1 = B1 t · · · t Bi−1 and B≥i = Bi t · · · t Bn, (7.2)

and note that if B≥i consists entirely of small balls then (7.1) holds. Note that if we swap a small ball from
B≤i−1 with a large ball from B≥i, then the value of w(Bt) can only go down for t ≥ i+j. It follows that after
swapping each small ball from B≤i−1 with a corresponding large ball from B≥i, we get (7.1), as desired. �

7.1. Sufficiency. In this section we assume that (1.5) holds and show that BP(d, C;w) is feasible for
d ≥ dw (note that our choice implies dw = d1w ≥ d1w≥i for all i). For i ≥ 0, we prove by descending induction,

starting with i = n, that BP(d, C;w) is i-feasible. When i = n we have that w≥n = (wn) is a singleton,
therefore b(w≥n) = 0, and (1.5) implies Cn ≥ d · wn. If we let Bn = {wd

n} and distribute d balls to each of
the bins B1, · · · ,Bn−1 in an arbitrary fashion, then we obtain an n-feasible solution of BP(d, C;w).

Suppose now that 1 ≤ i ≤ n and that BP(d, C;w) is i-feasible. We have that BP(d, C≥i;w≥i) is 1-feasible
by taking j = 1 in Lemma 7.1, and by Theorem 1.10 and the hypothesis

Ci + · · ·+ Cn ≥ d · (wi + · · ·+ wn) + b(w≥i)

we conclude that BP(d, C≥i;w≥i) is also feasible (that is, 0-feasible). Applying Lemma 7.1 with j = 0 we
conclude that BP(d, C;w) is (i− 1)-feasible, proving the inductive step and concluding the proof.

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 17

7.2. Conditions (1.5) are optimal when the weights are distinct. To indicate the subtlety involved in
verifying the optimality of (1.5), we start with an example showing that the construction of C◦ in Section 6
is not sufficient in genereal. Recall that our goal is to show that if we relax any of the conditions (1.5) then
there exists a sequence C which satisfies the relaxed conditions and defines an infeasible problem.

Example 7.2. If λ = w = (6, 6, 4, 4, 4, 0) then λ′ = (54, 22), so k = 2, h1 = 5, h2 = 2, a1 = 4, a2 = 2. We
assume that d� 0 and consider the following table recording C◦ − d · w and the numbers b(w≥j).

j 1 2 3 4 5 6

C◦j − d · wj −1 −1 3 1 1 3

b(w≥j) 7 6 9 6 3 0

Recall that C◦ was constructed to fail condition (1.5) for i = 1, but in fact it also fails it for i = 2, 3, 4.
A better choice of a capacity sequence is in this case to take

j 1 2 3 4 5 6

Cj − d · wj −1 −5 5 3 1 3
(7.3)

which only fails condition (1.5) when i = 1. To see that BP(d, C;w) is infeasible, suppose by contradiction
that B• is a solution. Since C6 = 3 < w5 it follows that B6 = {0d}. Since C5 = 4d + 1 and 6 − 4 > 1, it
follows that B5 = {4d}. Similarly,

• since C4 = 4 · d+ 3, it follows that B4 = {6u4d−u} with u ≤ 1;
• since C3 = 4 · d+ 5, it follows that B3 = {6v4d−v} with v ≤ 2;
• since C2 = 6 · d− 5 it follows that B2 = {6t4d−t} with t ≤ d− 3;
• since C1 = 6 · d− 1 it follows that B1 = {6x4d−x} with x ≤ d− 1.

The total number of balls of weight 6 is then u + v + t + x ≤ 2d − 1, a contradiction with the fact that
w1 = w2 = 6 each have to appear d times.

Suppose that the weights are distinct, consider any index 1 ≤ i0 ≤ n, and replace condition (1.5) for
i = i0 with

Ci0 + · · ·+ Cn ≥ d · (wi0 + · · ·+ wn) + b(w≥i0)− 1.

We claim that there exists a sequence C satisfying the new set of relaxed conditions for which BP(d, C;w)
is not (i0 − 1)-feasible, and in particular it is not feasible. By Lemma 7.1, this is equivalent to finding
(Ci0 , · · · , Cn) so that BP(d, C≥i0 ;w≥i0) is not feasible and (1.5) holds for i ≥ i0, since we can then choose
C1, · · · , Ci0−1 sufficiently large so that conditions (1.5) are satisfied when i < i0. This reduces the problem to
the case i0 = 1, in which case the tuple C◦ constructed in Section 6 can be used: we know that BP(d, C;w)
is infeasible, so we only need to check that conditions (1.5) are satisfied for i > 1, or equivalently, that

∆◦i + · · ·+ ∆◦n ≥ b(w≥i) for i > 1. (7.4)

Since hk = 1 (and k = n− 1), we have by (6.1) that ∆◦j = gj(w)− 1 for j ≥ 2. Moreover, since w is strictly
decreasing, we have that

b(w≥i) =

n∑
j=i+1

(gj(w)− 1) =

n∑
j=i+1

∆◦j ,

from which (7.4) follows.

Remark 7.3. Another important case when the construction C◦ proves the optimality of the conditions (1.5)
is when (using the notation in Section 6)

a1 ≤ a2 ≤ · · · ≤ ak.

18 CLAUDIU RAICU

The interested reader can check that (7.4) holds in this case, so the proof of the optimality of (1.5) follows
as in the case of distinct weights.

8. Open questions

The main question left open by this work is that of the optimality of the conditions (1.5) in Theorem 1.7.
To formulate it precisely, we need some care in avoiding trivial counterexamples. For instance, when n = 2
and w1 = w2 = w the conditions (1.5) become

C2 ≥ d · w, C1 + C2 ≥ 2 · d · w.

Since C1 ≥ C2, the first condition implies the second, so relaxing the second condition to C1+C2 ≥ 2·d·w−1
leads to an equivalent set of conditions. Therefore, we call a strict relaxation of (1.5) one for which the resulting
set of solutions is strictly larger. With this convention, the optimality question becomes.

Question 8.1. Is it true that for an arbitrary w, if we strictly relax the inequalities (1.5) then for d � 0
there exists a tuple of capacities C for which BP(d, C;w) is infeasible?

By generalizing the construction in Example 7.2 it can be shown that Question 8.1 has a positive answer
when there are at most three distinct weights wi. In view of Remark 7.3, a first interesting case to consider
is when k = 3 and a1 > a2 > a3. For instance, one could start by analyzing the following.

Question 8.2. Are the inequalities (1.5) optimal for w = (10, 9, 9, 6, 6, 0)?

One can consider more generally the collection of all tuples (b1, · · · , bn) for which the conditions

Ci + · · ·+ Cn ≥ d · (wi + · · ·+ wn) + bi (8.1)

guarantee that BP(d, C;w) is feasible when d � 0. These tuples form a poset ideal with respect to the
natural partial order where (b1, · · · , bn) ≤ (c1, · · · , cn) if bi ≤ ci for all i.

Question 8.3. What is the structure of the minimal elements in this poset ideal?

A different optimality question is concerned with finding the best bounds for d with respect to the input
data so that our conditions guarantee feasibility.

Problem 8.4. Determine the order of magnitude of optimal bounds dw and d1w for Theorems 1.7 and 1.10.

For the classical partitioning problem it is not usual to ask that each of the bins Bi contains the same
number of balls, or that the number of balls coincides with the number of bins. A modification of BP(d, C;w)
arises then by decoupling the number of weights from the number of bins, and considering instead the problem
of assigning a collection containing di balls of weight wi for i = 1, · · · ,m, to n bins B1, · · · ,Bn, where m,n
and wi are fixed, and d1, · · · , dm →∞, without restricting the number of balls that go into each bin.

Problem 8.5. Find asymptotically optimal feasibility conditions for the partitioning problem with m
weights, n bins, when d1, · · · , dm � 0.

Acknowledgments

The author would like to thank Bernd Sturmfels and Jens Vygen for helpful suggestions regarding the
literature on partitioning and bin packing problems. Experiments with the computer algebra software
Macaulay2 [GS] have provided numerous valuable insights. The author acknowledges the support of the
Alfred P. Sloan Foundation, and of the National Science Foundation Grant No. 1901886.

FEASIBILITY CRITERIA FOR HIGH-MULTIPLICITY PARTITIONING PROBLEMS 19

References

[BKK98] Luitpold Babel, Hans Kellerer, and Vladimir Kotov, The k-partitioning problem, Math. Methods Oper. Res. 47
(1998), no. 1, 59–82.

[FdlVL81] W. Fernandez de la Vega and G. S. Lueker, Bin packing can be solved within 1 + ε in linear time, Combinatorica 1
(1981), no. 4, 349–355.

[FA05] Carlo Filippi and Alessandro Agnetis, An asymptotically exact algorithm for the high-multiplicity bin packing problem,
Math. Program. 104 (2005), no. 1, Ser. A, 21–37.

[GR14] Michel X. Goemans and Thomas Rothvoß, Polynomiality for bin packing with a constant number of item types,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2014,
pp. 830–839.

[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry,
Available at http://www.math.uiuc.edu/Macaulay2/.

[Hal35] P. Hall, On Representatives of Subsets, J. London Math. Soc. 10 (1935), no. 1, 26–30.
[Hay02] Brian Hayes, Computing Science: The Easiest Hard Problem, American Scientist 90 (2002), no. 2, 113–117.
[HS91] Dorit S. Hochbaum and Ron Shamir, Strongly Polynomial Algorithms for the High Multiplicity Scheduling Problem,

Operations Research 39 (1991), no. 4, 648–653.
[KV18] Bernhard Korte and Jens Vygen, Combinatorial optimization, Algorithms and Combinatorics, vol. 21, Springer,

Berlin, 2018. Theory and algorithms; Sixth edition.
[MSS97] S. Thomas McCormick, Scott R. Smallwood, and Frits C. R. Spieksma, Polynomial algorithms for multiprocessor

scheduling with a small number of job lengths, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (New Orleans, LA, 1997), ACM, New York, 1997, pp. 509–517.

[Mer06] Stephan Mertens, The easiest hard problem: number partitioning, Computational complexity and statistical physics,
St. Fe Inst. Stud. Sci. Complex., Oxford Univ. Press, New York, 2006, pp. 125–139.

[Rai21] Claudiu Raicu, Regularity of Sn-invariant monomial ideals, J. Combin. Theory Ser. A 177 (2021), 105307, 34pp.

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556
Institute of Mathematics “Simion Stoilow” of the Romanian Academy
E-mail address : craicu@nd.edu

http://www.math.uiuc.edu/Macaulay2/

	1. Introduction
	2. Proof strategy for Theorem 1.10
	3. Many balls of weight w1 in B1
	4. Hall Marriage and the permutation R
	5. Shrinking gaps
	5.1. The gap sequence of a tuple w
	5.2. Shrinking the gaps through ball swaps

	6. Optimality of the constant b(w)
	7. The proof of the feasibility criterion
	7.1. Sufficiency
	7.2. Conditions (1.5) are optimal when the weights are distinct

	8. Open questions
	Acknowledgments
	References

