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A B S T R A C T   

Current designs of advanced driving assistance systems (ADAS) mainly developed uniform collision warning 
algorithms, which ignore the heterogeneity of driving behaviors, thus lead to low drivers’ trust in. To address this 
issue, developing personalized driving assistance algorithms is a promising approach. However, current 
personalization systems were mainly implemented through manually adjusting warning trigger thresholds, 
which would be less feasible for overall drivers as certain domain expertise is required to set personal thresholds 
accurately. Other personalization techniques exploited individual drivers’ data to build personalized models. 
Such approach could learn personal behavior but requires impractical large-scale individual data collections. To 
fill up the gaps, self-adaptive algorithms for personalized forward collision warning (FCW) based on federated 
learning were proposed in this study. A baseline model was developed by long short-term memory (LSTM) for 
FCW. Federated learning framework was then introduced to collect knowledge from multiple drivers with pri-
vacy preserving. Specifically, a general cloud server model was trained by collecting updated parameters from 
individual vehicle server models rather than collecting raw data. Besides, a driver-specific batch normalization 
(BN) layer was added into each vehicle server model to address the heterogeneity of driving behaviors. Exper-
iments show empirically that the proposed federated-based personalized models with the BN layer showed to 
have the best performance. The average modeling accuracy has reached 84.88% and the performance is com-
parable to conventional total data collection training approach, where the additional BN layer could increase the 
accuracy by 3.48%. Finally, applications of the proposed framework and its further investigations have been 
discussed.   

1. Introduction 

Advanced driving assistance systems (ADAS), such as driving assis-
tance systems and collision warning systems, are playing key roles in 
improving traffic safety, drawing more and more attention from both the 
governments and industrial communities (Ledezma et al., 2021). In the 
United States, ADAS helped prevent approximately 9900 fatalities and 
30% crashes annually (Mosquet et al., 2016). And in Europe, fatalities 
and injuries were decreased by 15.2% and 8.9% respectively (Kyriakidis 
et al., 2015). Encouraged by beneficial government policies, vehicle 
companies actively promoted the commercialization of ADAS. Mercedes 
Benz, Tesla, Volvo etc. considered ADAS as an essential safety utility and 
planned to increase the ADAS equipment rate to 93% or higher by 2022 

(NHTSA, 2017). 
Despite of high equipment rate, the applications of ADAS are facing 

the problem of low drivers’ trust in (Fleming et al., 2019; Govindarajan 
et al., 2018). Specifically, there were significant gaps between the 
collision warnings provided by ADAS and the drivers’ subjective risk 
perception, and thus, drivers might not follow the ADAS suggestions. 
One possible explanation for this issue is that current designs of ADAS 
mainly focused on building uniform collision warning algorithms (Yuan 
et al., 2020), while the driving risk perception and driving capability 
among drivers are heterogeneous (Yu et al., 2020a; Zhao et al., 2021). 
The ignored heterogeneity has led to failures in drivers’ compliance with 
ADAS (Iranmanesh et al., 2018). To solve the abovementioned issue, 
developing personalized driving assistance algorithms is a potential 
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solution (Panou, 2018; Martínez et al., 2015). 
The driving assistance algorithms for collision warnings were mainly 

developed from two approaches: (1) threshold-based algorithms and (2) 
collision risk quantification models. The first approach implemented 
through calculating safety surrogate indicators, such as time to collision 
(TTC), time headway etc., based upon vehicle kinematic data (Vogel 
2003; McLaughlin et al., 2008; Zhu et al., 2020). Warnings were trig-
gered when the metrics below preset threshold values. Then, thresholds 
for different drivers can be adjusted manually based on their personal 
parameters (e.g., reaction time) to achieve personalization (Panou, 
2018; Govindarajan et al., 2018; Reinmueller et al., 2020). However, 
such adjustment requires complex expertise in transportation engi-
neering, human factors engineering and etc. Thus, setting personal 
thresholds accurately is hard for non-domain experts. 

The second approach quantified collision risks mainly utilized 
sequential driving environment data. These risk analysis models were 
commonly being developed based upon deep learning methods such as 
deep neural network (DNN) (Formosa et al., 2020), long short-term 
memory (LSTM) (Mishra et al., 2020) and etc. Then, collision risk pos-
terior probabilities were estimated and warnings were triggered when 
there indicated high-risk. To develop personalized deep learning 
models, generally acknowledged approach is to exploit individual 
drivers’ data and establish personal models respectively. 

However, deep learning modeling requires large sample sizes to 
provide accurate and stable prediction (Anaby-Tavor et al., 2020; 
Shams, 2014). Thus, to train personalized collision risk quantification 
models for drivers, large number of crashes and near-crash events are 
required (Wulfe et al., 2018). For instance, given the ratio of crash and 
near-crash is approximately 1:10 (Klauer et al., 2006) and the crash rate 
is about 0.54 per million miles (NHTSA, 2020). More than one million 
miles historical driving data are needed to develop the individual 
models assuming that 10 near-crashes are needed for model training. 
Therefore, model development based upon individual driver’s data is 
not feasible. To achieve accurate personalized modeling, knowledge 
from multiple drivers’ data should be combined during model training, 
and then adapted to each driver according to their personal behaviors. 

With the research gaps mentioned above, in this study, a federated 
learning approach was proposed to develop personalized driving assis-
tance algorithms. The empirical analyses were conducted using FCW 
algorithm development as a case study. Main contributions of this study 
are summarized as follows: 

(1) Proposed a self-adaptive federated learning framework that could 
be used to develop personalized driving assistance models with the 
benefits of individual drivers’ data privacy protecting and accurate 
collision risk prediction. 
(2) Trained LSTM based FCW models under the federated learning 
framework through collecting model parameters rather than data per 
se from individual vehicle servers to a cloud server. Empirical ana-
lyses showed the model has reached 81.40% accuracy and the ac-
curacy was only reduced by 1.16% compared to conventional total 
data collection training approach which violated drivers’ privacy. 
(3) Introduced a driver-specific batch normalization (BN) layer to 
allow models learning heterogeneous driving behaviors, which 
improved the average modeling accuracy by 3.48%. 

The remainder of this paper is organized as follows: in the Related 
Work section, pervious researches focused on personalization methods 
for deep learning models and privacy-preserving techniques have been 
presented and discussed. In the Data Preparation section, the form of the 
empirical analysis data is illustrated. In the Methodology section, the 
LSTM based FCW model, federated learning setting for privacy- 
preserving and batch normalization for personalization are intro-
duced. In the Modeling Results section, experimental results are pre-
sented and the performance comparison among models is conducted. 
Finally, conclusions and future work outlooks are provided. 

2. Related work 

In order to develop personalized driving assistance algorithms, both 
the suitable personalization method and personal data privacy issue 
(Martin and Palmatier, 2020) should be considered. In this section, 
existing methods to allow deep learning models adapting to data het-
erogeneity and the common privacy-preserving techniques have been 
discussed. 

2.1. Personalization methods for deep learning models 

Personalization methods for deep learning models were mainly 
conducted to address the issue that the uniform model trained on a 
dataset could not adapt well to novel personal datasets due to the het-
erogeneity of data (Tzeng et al., 2017). Domain adaptation and data 
regularization are two frequently used approach for deep learning model 
personalization. The first approach classified differently distributed data 
into the target domain and the source domain, then mapped the former 
into the feature space of the latter to allow models adapting to hetero-
geneous data. Common methods included maximum mean discrepancy 
(Tzeng et al., 2014), correlation distances (Sun and Saenko, 2016), 
generative adversarial networks (GAN) (Bousmalis et al., 2017) etc. 
However, this complex approach is hard to apply in real time, since 
additional discriminator pre-training is needed to fit the mapping rela-
tionship between domains which significantly increases computing time 
cost. 

As for the second approach, feature regularization transformations 
were learned to project differently distributed data onto a common 
space. The regularization was mainly conducted adding a batch 
normalization (BN) layer to the model. Lange et al. (2020) provided 
local data adaptation by adding a BN layer for user models under a novel 
dual user-adaptation framework. Chen et al. (2021a) proposed a 
weighted federated transfer learning and used BN to modify the basic 
model trained on federated learning setting for personalized healthcare. 
This approach based on only the model structure modification for 
personalization is more efficient. 

2.2. Privacy-preserving techniques 

The current privacy-preserving techniques for model training were 
mainly conducted from two approaches: (1) data encryption methods 
and (2) distributed training approach. As for the first approach, data 
were anonymized to prevent raw information leakage by adding noise or 
obscuring certain sensitive attributes. And the common anonymization 
algorithms included k-Anonymity (Ghasemzadeh et al., 2014), l-Di-
versity (Machanavajjhala et al., 2007), t-Closeness (Li et al., 2007), 
differential privacy (Wasserman and Zhou, 2010) and etc. However, this 
approach essentially is hard to guarantee privacy under attacks since 
there is still data sharing (Yang et al., 2019). 

To avoid data sharing, the second approach analyzed private data 
through distributed learning frameworks. Among which, federated 
learning is the most popular setting in recent years. Bonawitz et al. 
(2016) applied federated learning to decentralized learning of mobile 
phone devices without privacy leakage. Hard et al. (2018) utilized 
federated learning framework to train language models on client devices 
without exporting sensitive user data to servers for mobile keyboard 
prediction. Liu et al. (2020) used federated learning based gated 
recurrent unit neural network algorithm for traffic flow prediction while 
protecting privacy. Chen et al. (2021b) proposed a communication- 
efficient federated learning framework than enables edge devices to 
efficiently train and transmit model parameters. This approach could 
train a high-quality centralized model based on training data sets that 
remain distributed over local clients (Konečný et al., 2016). In this 
study, federated learning was employed for privacy-preserving. 
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3. Data Preparation 

In this study, the commercial vehicle naturalistic driving data 
collected in Shanghai were utilized for the empirical analyses. Data were 
recorded through mounted cameras with resolution of 655 × 268 pixels, 
and the image updating frequency is 4 frames per second. Fig. 1 shows a 
sample image. 

Events were captured when the vehicle performed brake operations 
at a deceleration more than 0.4 g (g: gravitational acceleration) (Gao 
et al., 2018). Limited by the crash cases during the data collection 
period, high-risk events have been utilized as crash surrogate. And the 
event data have been divided into high-risk and non-conflict by traffic 
safety analysis experts, according to the definitions and descriptions 
shown in Table 1 (Yu et al., 2020b). 

A total of 643 high-risk events were collected from 41 drivers. 
Among which, the majority of drivers had less than 10 events. To 
consider data size requirement of model training, only the top 3 drivers 
with frequent high-risk event occurrence were utilized, which contains 
168 high-risk events in total. Furthermore, to keep the balance of sample 
size, 168 non-conflict events were randomly selected. Table 2 shows the 
number of events used for each driver (named as 1, 2, 3 respectively). 

For each event data, a 6-second window data was used, and a 2-sec-
ond time gap (acceptable response time (Riener, 2010)) before hard 
braking is reserved as a warning time to provide FCW. Fig. 2 shows an 
example of the video information utilization. 

Due to the complex driving conditions (Yu et al., 2021), YOLOv3 
target detection algorithm (Redmon and Farhadi, 2018) was utilized to 
pre-process the video and extract features of the interactive object. 
Specifically, with the YOLOv3 algorithm, the contour of the front vehicle 
contained in the original image were extracted. Then the horizontal 
pixel distance and the vertical pixel distance between front vehicle and 
ego vehicle can be calculated, which means the position of front vehicle 
was extracted. The example of the front vehicle position extracted 
procedure is shown in Fig. 3. The position of ego vehicle was assumed to 
be at the midpoint of the bottom edge, marked as “O”. The position of 
front vehicle was assumed to be at the two-thirds point of the bottom 
edge of the YOLO box. Then the horizontal/vertical distance depended 
on the horizontal/vertical pixel distance between front vehicle position 
point and the point O. When the front vehicle position point was to the 
left of point O, the horizontal distance was negative. 

Besides, motion states of the ego vehicle (speed, acceleration, and 
jerk) were also being collected by the three-axis vehicle sensor. Finally, 
the positions of front vehicle and characteristics of the ego vehicle 
corresponding to the 6-second window data are utilized for modeling. 
Summary statistics of the 5 modeling variables are shown in Table 3, and 
the structure of modeling data is shown in Fig. 4. 

4. Methodology 

In this section, long short-term memory (LSTM) was first introduced. 
Then settings for federated learning and batch normalization have been 
presented. 

4.1. LSTM based FCW model 

LSTM is one kind of recurrent neural network (RNN), which has 
powerful ability to process time series data since its unique design 
(Hochreiter and Schmidhuber, 1997). In this study, LSTM was employed 
to establish FCW models. Specifically, LSTM extracted temporal features 
from the input sequential modeling data, then one dense layer was used 
as a classifier to process the extracted features and finally output each 
event as a binary class (high-risk and non-conflict). The structure of the 
LSTM model is shown in Fig. 5. Details of the model architecture are 
shown in Table 4. 

Fig. 6 shows the structure of a LSTM cell at each time step. LSTM 
captures the long-term dependency features from the input sequence 
vectors by calculating the LSTM cell activations at each time step using 
the following equations (Varsamopoulos et al., 2018): 
it = σ(xtU

i + ht−1Wi) (1)  

ft = σ(xtU
f + ht−1Wf) (2)  

ot = σ(xtU
o + ht−1Wo) (3)  

Ct = tanh(xtU
g + ht−1Wg) (4)  

Ct = σ(ft*Ct−1 + it*Ct) (5)  

ht = tanh(Ct)*ot (6)  

where σ and tanh are activation functions. xt is the input sequence vector, 
it is the input gate, ft is the forget gate, ot is the output gate, ht is the 
hidden state. W is the recurrent connection between the previous hidden 
layer and current hidden layer. U is the weight matrix that connects the 
inputs to the hidden layer. Ct is a candidate hidden state and Ct is the 
internal memory of the cell. 

4.2. FCW model under federated learning setting (Fed-LSTM) 

The main idea of federated learning setting was derived from the 
distributed learning system consisting of parameter servers and 
computational workers (Yao et al., 2019). Considering a learning system 
containing one parameter server and K computational workers. At each 
epoch t, the parameter server distributes the global model parameters wt 
to each worker, then worker k updates the parameters wkt locally by 
computing: 
wk

t+1 = wk
t −α

∑

k

∇wt
L

(

wk
t , x

k
, yk

) (7)  

Fig. 1. Sample picture captured by the camera.  

Table 1 
Definition of severity level in driving.  

Level Description 
High-risk Any circumstance that requires a read-end collision avoidance 

response on the front vehicle. 
Non- 

conflict 
Any circumstance that affects normal driving and requires driver’s 
reaction. But no vertical conflict objects and potential read-end 
collision exist.  

Table 2 
Number of events for the top 3 drivers.  

Driver High-risk events Non-conflict events Total events 
1 78 78 156 
2 77 77 154 
3 13 13 26 
Total 168 168 336  
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where α is the learning rate, L is the loss function, xk and yk are the local 
worker training data and the ground truth labels. Next, K workers up-
load the local updated parameters wk

t+1 to the parameter server, and the 
global model on the parameter server updates by aggregating all pa-
rameters as formula (8) and formula (9), where nk is the local worker 
training data size. 
n =

∑

k

nk (8)  

wt+1 =
∑

k

nk

n
*wk

t+1 (9) 

In this study, the LSTM model, drivers and the cloud server can be 
regarded as the global model, computational workers and the parameter 
server respectively. The Fed-LSTM is summarized in Algorithm 1. First, 
all vehicle servers downloaded the parameter of the latest global model 
from the cloud server. Then, the vehicle servers updated the parameter 
based on their local data by formula (7). The learning rate α was set as 
1× 10−4. The loss function L was binary cross entropy and the formula 
is as follows: 

loss =
∑

N

i=1

yilog(pi)+ (1− yi)log(1− pi) (10)  

where pi is the predicted possibility and yi is the ground truth label with 
1 as high-risk and 0 as non-conflict. Finally, all vehicle servers uploaded 

their locally updated parameter back to the cloud server. Uploaded 
parameters were gathered an aggregation on the cloud server by formula 
(8) and formula (9).  

Algorithm 1. Fed-LSTM based FCW algorithm 
Input: K is the number of drivers, α is the learning rate, xk and yk are the local training 

data and target labels for driver k 
Output: Parameters w 
CloudServerUpdate: 
1: Initialize w0 (the parameters of LSTM model) 
2: for each epoch t = 0, 1, … do 
3: for each driver k ∈ {1,2,⋯,K} do in parallel 
4: wk

t+1←LocalUpdate(k,wkt )
5: end for 
6: wt+1←

∑

k
nk

n *wk
t+1 // aggregation 

7: end for 
LocalUpdate(k,wkt ): // run on driver k 
1: for each batch b = 0, 1, … do 
2: wkt ←wkt −α

∑

k∇wt L
(wkt , xk

, yk) // update LSTM 
3: end for 
4: Return wkt to cloud server  

4.3. Personalized FCW via batch normalization 

In this study, batch normalization (BN) was utilized to provide 
personalized FCW models by adapting each distinguished local distri-
bution to a normal distribution, as shown in Fig. 7. Details of the model 
architecture are shown in Table 5. A BN layer was added between the 
LSTM network and the dense layer to collect batch normalization 

Fig. 2. Timeline of driving event recorded in a video clip.  

Fig. 3. Example of front vehicle position extraction.  

Table 3 
Summry statistics for the modeling variables.  

Variables Description Mean Std Min Median Max 
Horizontal distance Horizontal distance between front vehicle and ego vehicle (pixel)  −6.85  51.89  −207.01  0.00  217.15 
Vertical distance Vertical distance between front vehicle and ego vehicle (pixel)  164.70  82.07  1.00  162.00  268.00 
Speed Speed of ego vehicle (km/h)  44.81  23.57  0.01  45.62  124.78 
Acceleration Acceleration of ego vehicle (g)  −0.02  0.11  −0.62  −0.01  0.50 
Jerk Jerk of ego vehicle (g/s)  −0.01  0.30  −4.08  0.00  3.72  

Fig. 4. The structure of modeling data.  
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statistic data. The BN layer can adapt the input features into zero mean 
and unit variance with the following formula: 

x’ =
x − mean[x]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var[x] + ∊
√ *γ+ β (10)  

where x is the input of the BN layer and x’ is the output, ∊ is a very small 

constant to avoid a zero denominator, γ and β are learnable parameter 
vectors of size C (C is the size of x). During training, the layer calculates 
the mean and variance of each input in a mini-batch and performs a 
moving average, the momentum value of the moving average is 0.1. 
Each vehicle server had a BN layer. The parameters of BN layer of 
different vehicle servers were not shared, which allowed each vehicle 
server to train its own BN layer parameters. 

The algorithm of the modified model under federated learning 
setting (named as Fed-BN-LSTM) was achieved by following a three-step 
protocol at each epoch illustrated in Fig. 8, including (1) downloaded 
parameters from cloud server, (2) updated parameters in vehicle servers 
locally, and (3) uploaded parameters and aggregated in cloud server. 
The parameters sharing between the cloud server and the vehicle server 
were only parameters of LSTM and dense layer. And the parameters of 
BN layer were always preserved locally. Due to the differential BN layer 
parameters (Wkt ,k ∈ {1,2,⋯,K}) of different drivers, each driver had a 
personalized FCW model that could adapt to the local data distribution. 

5. Modeling results 

5.1. Basic LSTM models 

Collision warning models that developed based upon individual data 
could well fit the drivers’ behavior heterogeneity. In this study, models 
were first developed for the 3 drivers individually. To be specific, each 
FCW model was trained by LSTM for 100 epochs and evaluated using 

Fig. 5. The structure of LSTM model.  

Table 4 
The architecture of LSTM model.  

Layer Name Details 
1 LSTM Input size = 5, hidden size = 64, number of layers = 3 
2 Dense Dimension of input features = 64, dimension of output features =

2  

Fig. 6. The structure of LSTM cell (Varsamopoulos et al., 2018).  

Fig. 7. The structure of modified LSTM model.  

Table 5 
The architecture of modified LSTM model.  

Layer Name Details 
1 LSTM Input size = 5, hidden size = 64, number of layers = 3 
2 BN Dimension = 64 
3 Dense Dimension of input features = 64, dimension of output features =

2  
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testing data. Table 6 shows the data statistic and test accuracy of each 
driver’s model. None of the model accuracies has exceeded 80.00% and 
the model accuracy increase in accordance with the training data size. 

To further explore the impacts of data sample size on model per-
formance, a model using three drivers’ data totally was then developed. 
The loss and accuracy of training and testing are shown in Fig. 9. The 
model converges around the 60th epochs, and the testing accuracy 
reaches 82.56%, which is 4.48% improvement compared to the average 
accuracy (78.06%) of the LSTM models trained on individual drivers’ 

data. To conclude, modeling with total data of all drivers can improve 

Fig. 8. The three-step protocol of Fed-BN-LSTM at each epoch.  

Table 6 
The data statistic and modeling accuracy of each driver.  

Driver Training data size Testing data size Testing accuracy 
1 118 40  80.00% 
2 114 38  76.67% 
3 18 8  75.00% 
Average – –  78.06%  
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individual models especially when the driver’s data sample size is 
limited. 

5.2. Fed-LSTM model compared with LSTM model using total data 

However, collecting raw data from individual drivers violated the 
data privacy issue. In this section, Fed-LSTM was utilized to train LSTM 
model under federated learning setting by distributing the model to each 
driver and collecting model parameters updated locally instead of col-
lecting total raw data. The model loss and model accuracy of Fed-LSTM 
model compared with the basic LSTM model are shown in Fig. 10. The 
best testing accuracies are 81.40% and 82.56% respectively. Compared 
with LSTM model trained on total raw data conventionally, Fed-LSTM 
protects drivers’ data privacy at the expense of 1.16% accuracy. 

5.3. Fed-BN-LSTM models compared with Fed-LSTM model 

As mentioned above, Fed-LSTM could address the privacy issue with 
good model performance but the model was still the same for all drivers. 
In this section, personalized models were developed base on Fed-BN- 
LSTM and the model performance was evaluated compared with Fed- 
LSTM model. The model structures were modified by adding a learn-
able BN layer for each driver. Weighted average of results of Fed-BN- 
LSTM models was calculated at each epoch. And the comparison re-
sults are shown in Fig. 11. The best testing accuracies of Fed-BN-LSTM 
and Fed-LSTM are 84.88% and 81.40% respectively. This phenomenon 
implies that on total drivers’ data, personalized models with the adap-
tive BN layer for individual drivers would improve the average accuracy 
by 3.48%. 

5.4. Model performance comparisons 

Table 7 summarized the performance of (1) LSTM trained on data of 
individual drivers (named as LSTM (individual)); (2) LSTM trained on 
total data (named as LSTM (total)); (3) Fed-LSTM; and (4) Fed-BN-LSTM 
for individual drivers and the weighted average accuracy. Comparing 
the model performance, the following conclusions can be drawn. First, 
the results of LSTM (individual) are relatively worst and Fed-BN-LSTM 
are the best. Besides, the performance of Fed-LSTM is close to LSTM 
(total). Fed-BN-LSTM models have the highest accuracy (85.00%, 
81.58%, 100%) on three drivers, and the increasements are 2.50%, 
2.63%, 12.50% respectively compared with Fed-LSTM. Even compared 
to LSTM (total), Fed-BN-LSTM improves the model performance on 
driver-1 and driver-3. Therefore, Fed-BN-LSTM could provide person-
alized forward collision warning models for heterogeneous drivers and 
ensure better accuracies. 

5.5. Analysis of features extracted by LSTM 

To better understand the effects of driving data heterogeneity, the 
64-dimensional features extracted by LSTM were outputted and reduced 
to 2 dimensions by t-distributed stochastic neighborhood embedding (t- 
SNE) (Linderman and Steinerberger, 2019) for visualization, as shown in 
Fig. 12. Box plots for 2-dimensional features of individual drivers’ fea-
tures in both high-risk events and non-conflict events are shown in 
Table 8. The features of different drivers’ data varied significantly, 
especially in high-risk events, which would mislead the classifier aimed 
at output each event (high-risk and non-conflict) as a binary class. As 
mentioned above, the BN layer adapted features of different drivers to 
the same normal distribution which means the influence of varying 
driving behaviors among drivers was removed. Therefore, the classifier 
could only concentrate on distinguishing features of high-risk and non- 
high-risk events rather than features with different distributions from 
different drivers, and the model performance was improved. 

6. Conclusions and discussions 

Personalized driving assistance algorithms which provide self- 
adaptive functions for the heterogeneous driving behaviors hold the 
benefits of improving drivers’ trust in ADAS. Current personalized sys-
tems were mainly implemented through adjusting thresholds manually 
based on drivers’ personal parameters, which have low efficiency. In this 
study, collision risk warning models that could self-adapt to the heter-
ogenous behaviors have been developed. Besides, traditional individual 
modeling based on single driver’s data could provide personalized 
models while the performance is limited to the data sample size. 
Therefore, in this study, a federated learning modeling approach has 
been proposed, for the first time, to develop personalized warning models 
which combined knowledge from multiple drivers’ data with privacy- 
preserving. 

FCW algorithm development was utilized as an example to conduct 
empirical analysis. Specifically, the empirical data included positions of 
front vehicles extracted by YOLO algorithm based on video data and 
motion states of the ego vehicle collected by the three-axis vehicle 
sensors. Then models were trained to learn how human experts classify 
events in driving videos as either risky or not when hard braking is 
involved, and thus could help realize FCW function. Time series feature 
mining for FCW was conducted by LSTM model. And the training 
method of the model was based on federated learning setting which 
trained model through collecting model parameters rather than raw 
data. Thus, the limitations of the data size and preserved privacy were 
overcome. Furthermore, a driver-specific BN layer was employed to 
modify the LSTM model structure for minimizing gaps among extracted 
features of different drivers and reach personalization with better model 
performance. Finally, LSTM (individual), LSTM (total), Fed-LSTM and 

Fig. 9. Loss and accuracy for LSTM model using total data.  
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Fed-BN-LSTM were compared on individual drivers’ testing data. 
The modeling results show that: (1) the larger training data sample 

size could improve the performance of LSTM model. (2) The model 
trained by collecting model parameters updated locally in vehicle 
servers can reach 81.40% accuracy while privacy-preserving, and the 
accuracy was only reduced by 1.16% compared to the model trained 
base on collecting total raw data. (3) The added BN layer for each driver 
allowed models adapting to the personalized driving behaviors could 
further improve the average modeling accuracy by 3.48%. (4) For in-
dividual drivers, Fed-BN-LSTM which provided personalized models 
reached the best performance on driver-1 and driver-3. As for driver-2, 
Fed-BN-LSTM also achieved the highest accuracy in common with LSTM 

Fig. 10. Loss and accuracy of Fed-LSTM model compared with LSTM model.  

Fig. 11. Loss and accuracy of Fed-BN-LSTM models compared with Fed-LSTM model.  

Table 7 
Summary of testing accuracy for individual drivers with different models.  

Driver Testing 
data size 

LSTM 
(individual) 

LSTM 
(total) 

Fed- 
LSTM 

Fed-BN- 
LSTM 

1 40  80.00%  82.50%  82.50% 85.00% 
2 38  76.67%  81.58%  78.95% 81.58% 
3 8  75.00%  87.50%  87.50% 100% 
Average 

accuracy 
–  78.06%  82.56%  81.40% 84.88%  

Fig. 12. The extraction and dimensionality reduction of features output by LSTM.  
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(total), and thus could help to improve the effectiveness of ADAS. 
However, the number of drivers for empiric analyses used in this 

study was limited. The majority of drivers held few high-risk events 
within the observational period, and only data from 3 drivers who had 
large sample size of high-risk events were utilized. Such issue might 
make the proposed personalized algorithms more suitable to develop 
personalized driving assistance algorithms for the risky drivers rather 
than the overall driver group. 

Besides, there is still plenty of room for future studies as this is the 
very first attempt to develop personalized driving assistance algorithms 
based on federated learning. First, in order to explore the effectiveness of 
the proposed algorithms for general drivers, sufficient samples are 
required to be collected to meet the modeling needs, especially for the 
drivers with low frequency of high-risk events. Second, to optimize the 
personalized modeling algorithms, combinations of federated learning 
and other personalization methods (e.g., domain adaptation) should 
also be considered. Meanwhile, to apply the developed algorithms for 
ADAS, employed self-supervision learning (Zhang et al., 2021) to clas-
sify data automatically rather than experts labeling for improving the 
update efficiency of the algorithms is required. 
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