
System Integration of a Tour Guide Robot
Suhasa Prabhu Kandikere, Celal Savur, Ferat Sahin,

Rochester Institute of Technology,
Rochester, NY, USA

{sk4592, cs1323, feseee}@rit.edu

Abstract—In today’s world, people visit many attractive places.
On such an occasion, It is of utmost importance to be ac-
companied by a tour guide, who is known to explain about
the cultural and historical importance of places. Therefore, a
human guide is necessary to provide tours for a group of visitors.
However, Human tour guides might face tiredness, distraction,
and the effects of repetitive tasks while providing tour service
to visitors. Robots eliminate these problems and can provide
tour consistently until it drains its battery. This experiment
introduces a tour-guide robot that can navigate autonomously in
a known map of a given place and at the same time interact with
people. The environment is equipped with artificial landmarks.
Each landmark provides information about that specific region.
An Animated avatar is simulated on the screen. IBM Watson
provides voice recognition and text-to-speech services for human-
robot interaction. The experimental results show that the robot
takes average time of 10000 seconds to provide a tour. TEB
and DWA local planner are compared by allowing the robot to
autonomously maneuver the environment for 9 trials which is
tabulated in section V.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Tourists visit many different places all over the world.
They may visit one of the wonders of the world or they
might visit a monument that holds historical significance. On
such an occasion they are accompanied by a tour guide. The
tour guide leads tourists to many places and explains the
importance of a place. Due to the advancements in technology
recently, a smartphone can be used as a guide for a person.
The phone uses GPS for navigation and can lead a person
to a destination. Assistants such as Apple’s Siri, Google’s
Assistant, and Amazon’s Alexa that are available on the
smartphone can explain the importance of a place to a person.
However, a person while looking into the phone can crash into
other moving people or might trip and fall if he/she is not
careful. As a result, a human tour guide can provide tours for
a group of visitors leading them carefully to places of interest
and explain about the importance of the place. However, a tour
guide may feel tired, distracted, and get bored due to repetitive
tasks. During these times, a robot can provide a tour to a group
of visitors. Such a robot is called a tour-guide robot. A robot
is a programmable machine, which can help in reducing the
workload of humans in different tasks. there are various kinds
of robots such as Mobile robots, Arm robots, legged robots,
and so on. This experiment focuses solely on a mobile robot. A
mobile robot uses its sensors to perceive the environment and
move around the environment using its legs, wheels, tracks.
This experiment focuses on a mobile robot with wheels. This

robot is used to implement the functionality of a tour-guide
robot. Contributions of this research are listed below:

• A tour guide robot with built-in self-driving capability: In
a known map, the robot can maneuver without colliding
with obstacles, acheived using navigation stack in ROS.

• An example of system of systems application: Modules
such as ROS navigation stack, Animated avatar in Unity
and lower level hardware required for controlling the
robot, work together to function as a tour guide robot.

• Comparison of multiple planners’ performance in real-
world: DWA and TEB local planner comparison on the
3rd floor of KGCOE, RIT.

This paper is organized as follows: section II provides
the background literature. Section III covers the research
methodology: the hardware used, algorithm description, and
navigation system. Section IV covers the experiment. Section
V is the results, figures, and analysis of the system.

II. RELATED WORKS

Places like Museums are often filled with exhibits that are
expensive and are crowded with people. The two fundamental
blocks of a tour guide robot are, the robot must be able to
autonomously navigate the environment safely and reliably, it
must be able to interact with people around it. One such robot
was presented by Sebastian Thrun et al. [10] called RHINO.
This robot had a web interface that allowed people around
the world to virtually move around the museum by giving
goal points to the robot. When the tour is finished, the robot
moves to the entrance of the museum awaiting its next set
of visitors. Minerva is a second-generation tour-guide robot
that was a revision of Rhino, which was a tour guide robot
introduced in mid-1997. A year later Minerva was introduced
to people with a lot of features that Rhino lacked. Skycall
is another tour guide quad rotor designed and developed by
MIT [6]. It helps college freshman find their way to their
classes. A tour guide Humanoid robot by the name ASIMO
was introduced by Honda in the year 2000 [7]. This robot
has the capability to interact with people but is limited to 100
questions. The experiment introduced by Chung et al. [13] is
about navigation, localization, path planning, and autonomous
control of a tour guide robot in detail. The kinematics model of
the tour guide robot introduced calculates the average angular
velocity of the wheels of the robot, which can then be used
to find the linear velocity. This robot has a facial expression
system. The robot uses RFID tags to localize itself, the four
tags are placed in the environment, RSSIs data are received

978-1-6654-9623-0/22/$31.00 ©2022 IEEE
431

20
22

 1
7t

h
A

nn
ua

l S
ys

te
m

 o
f S

ys
te

m
s E

ng
in

ee
rin

g
C

on
fe

re
nc

e
(S

O
SE

) |
 9

78
-1

-6
65

4-
96

23
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
SE

55
47

2.
20

22
.9

81
26

80

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

from these tags, which is used to calculate distances from these
tags to the robot, and by using least square methods the initial
robot location is calculated.

A. SLAM and Path Planners

One fundamental rule for a tour guide robot is it has to
navigate the environment autonomously. to achieve this, the
robot needs a map of the environment. The robot has to map
the environment and also has to be aware of its position. This
problem in robotics is known as Simultaneous Localization
and Mapping. A new algorithm that fuses the laser slam and
visual slam, to obtain a highly accurate robot position in an
environment is introduced by Chan et al. [10]. Saman et al.
[14]. go on about implementing an extended Kalman filter to
solve the slam problem. Kalman filters are used to predict the
position of the landmarks with odometry sensors and update
using the values from the sensors using mathematical equa-
tions. A system for occupancy grid mapping using a mobile
robot equipped with an ultrasonic range finder is discussed by
Hadji et al [3]. In this experiment, an ultrasonic ping sensor
is mounted on the robot and has the ability to sweep 90
degrees on either side. The inverse sensor model is used to
create a grid map. The map cells occupied by obstacles have
a probability of 1 and cells with no obstacles have a probability
of 0. Global planners and local planners are the two types of
planners required for navigation. Global planners plan a route
from source to destination and local planners provide control
commands to robot such as velocity, acceleration to follow
the path constructed by global planner and avoid obstacles at
the same time. Naotunna et al. [4] compares different local
planners available in ROS for differential drive heavy robots
based on their goal reaching accuracy, the path chosen to
reach the destination, and time consumption. Fox et al. [5]
describes a planner for avoiding obstacles and maneuvering
to reach the goal. Dynamic Window Approach planner is
introduced for this purpose. This planner samples from the
velocity space of the robot (v, w). For each sampled value
from this space, a simulation is performed to understand the
effect of applying these values to the robot. Quinlan et al.
introduce an Eband planner that relaxes the global planner
[8]. As the name suggests, EBand stands for Elastic Bands,
which considers the path planning and control capability of
the robot. The Eband planner deforms this path in real-time
when it comes near an obstacle. The main concept here is the
bubble around some point on the robot.

B. Fiducial Markers and Speech system

Fiducial markers help the robot in identifying those places
in the environment. A new visual fiducial system is described
that improves upon the previous systems by incorporating the
fast line detection system and avoids occlusion, lens distortion
to its maximum extent. A graph-based image segmentation
algorithm is proposed which allows precise estimation of lines
in the image. A digital coding system is introduced that is not
susceptible to false positives. The detection method introduced
by this system has a better localization accuracy as proposed

by Olson et al. [2]. An experiment on ArUco markers, to
localize the robot globally and locally is introduced by Babinec
et al. [11]. The experiment is conducted with a webcam and
HDR camera. The webcam provides a high resolution and
HDR provides a high dynamic range. ArUco markers are 7x7
square markers, in which the outer rows and columns are
black, each marker is represented by 5 words, each represented
by 5 bits. It uses 3 bits for encryption and the rest 2 bits carry
information about the markers. Since there are 4 combinations
for 2-bits, and there are 25 bits in total for each marker, there is
a total of 1024 markers available. Since it has a limited number
of markers, it can be used for localizing a robot in a small area.
The overview of a speech recognition system is introduced by
Rawat et al. [15]. There are two types of speech recognition
systems, speaker-dependent, and speaker-independent speech
recognition systems. The Speaker-dependent version must be
trained with a large library of voice datasets. However, the
speaker-independent version does not dependent on the voice
of a person, hence these have limited vocabulary. After the
conversion to digital signals, features must be extracted from
these speech signals, which removes redundant information
and other noise-related components which makes the signals
contain only essential information that is required to recognize
speech. The most popular features for speech signals are the
Mel frequency cepstral coefficient (MFCC), which is com-
monly used to recognize numbers spoken through a telephone.
There is also Perceptual linear prediction defining the human
auditory system in an effective manner and Linear predictive
code which assumes that the sound is produced at the end
of the tube. Decoding of these speech signals requires the
phonemes and the words in the dictionary to be compared to
the processed analog signals using the Hidden Markov model.

III. METHODOLOGY

ROS framework provides numerous tools to work on a
simulated robot if a user doesn’t have access to a real robot.
This experiment focuses on the Gazebo simulator which is
default to ROS. This engine is built on OpenGL which is a
specification and allows the program developed to be cross-
platform. The simulation engine has all the physics imple-
mented and can be altered as well. To be able to simulate the
Permobil c300, It was first designed in CAD software and later
converted into a Unified Robot Description Format (URDF
in short). Gazebo is used as a simulation environment. ROS
provides a framework to write controls to any robot. There are
many prebuilt controls that can be used as a plugin. One such
plugin called the Differential Drive plugin is used.
The base of the Tour guide robot is salvaged from Permobil

C300 WheelChair. It consists of two 12v DC batteries, suf-
ficient to power the entire hardware on the robot. The robot
consists of a lidar, Intel Realsense camera D435I with an IMU
and wheel odometry. The LIDAR is mounted in front of the
robot so that it can detect obstacles with lower heights. This
limits the lidar to sweep the area in front of the robot instead
of the 360 degrees around it. The initial hardware setup of
the robot consisted of a Raspberry Pi 3, Teensy 4, Sabertooth

432

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

motor driver, YDLidar, Intel Real sense D435i depth camera,
Router, and a CUI encoder. Since the robot does not move
straight when both motors are commanded the same value,
a PID controller is used to make the robot move straight.
The process here is the rotation of wheels and encoders are
responsible for reporting the speed of the rotating motors. This
controller has three constants known as gains. These gains
have to be tuned such that the robot moves straight. The PID
controller is implemented in the ROS framework. The control
board running ROS sends a command to teensy through the
UART port and in turn teensy is responsible for commanding
the motors at a given speed.

u(t) = Kp e(t) +Ki

∫
e(t) dt+Kd

de(t)

dt
(1)

In the above equations, u(t) is the output of the PID
equation. ”Kp” refers to the proportional gain, ”Ki” refers
to the Integral gain, ”Kd” refers to the differential gain. The
proportional gain describes ”How fast the system should reach
the setpoint” If the value is too less the system may never
reach the setpoint. If it is too large it may overshoot beyond
the setpoint and starts oscillating. The differential gain tries
to smoothen out the oscillations caused by proportional gain.
The integral gain is responsible for minimizing the steady-state
error that exists after tuning proportional and integral gain.
Usually, the integral gain is assigned a small value, since it is
scaling the accumulated error.

A. Processing and Fusion
The position and orientation are calculated solely based

on the ticks provided by the encoder motors. The encoder
is accurate when the robot moves forward in a straight line.
However, when the robot rotates, there is a lot of drift and the
position estimate provided by the odometry is not reliable.
To address this issue another reliable sensor that provides
the required orientation estimate of the robot is needed,
which in this case is an IMU. The Real sense depth camera
comes equipped with an IMU that provides linear acceleration
and angular velocity. However, raw values provided by IMU
cannot be used directly. In general, IMU has a gyroscope
and an accelerometer. The gyroscope provides the angular
velocity and the accelerometer provides linear acceleration.
The gyroscope gives an orientation estimate when the robot is
moving and the accelerometer is good at estimating orientation
when the robot is stationary. Therefore, Sebastian Madgwick
et al. [17], a filter is used known as a Madgwick filter to obtain
a good estimation of the orientation of the sensor mounted on
the robot. In order to obtain close to accurate position and
orientation of the robot, the values from these two sensors are
fused using the Extended Kalman filter. The resultant position
and orientation of the robot are obtained, which can then be
further used by navigation algorithms to move the robot safely
to its destination position on the map.

B. Navigation
Once the robot has been set up with the above requirements.

It has to be interfaced with the Navigation Stack of ROS. This

stack is responsible for making any mobile robot autonomous.
However, before implementing the navigation stack. There is
a need to build a map of an environment. The navigation
stack works effectively when it has a prebuilt map. When
it comes to building a map of an environment. There are
many algorithms that are developed over the past years such
as RTAB map, occupancy grid map, octomap to name a few.
In this experiment, the map to be built is called the occupancy
grid map. Occupancy grid map uses inverse sensor model [18]
to build a map, where the robot uses its current position and a
laser scanner to estimate the placement of obstacles. This map
is a grid map, as the name suggests, the entire environment is
perceived as a 2D grid world to the robot, with each cell in the
grid containing information whether it is being occupied by
an obstacle or not. The probability of a cell being occupied
is considered to be one [p(the cell has obstacle) = 1], the
probability of a cell not containing an obstacle is zero [p(the
cell has no obstacle) = 0], and the unexplored grid cells have
values -1. This way a map is being constructed. ROS makes
this easy to implement by providing the necessary tools to
generate such a map and visualize the process of map building.
After building a map, the Navigation stack can use this map
to maneuver the robot in an environment.
There are many localization techniques available in ROS

such as AMCL, EKF localization, and so on. AMCL stands
for Adaptive Monte Carlo localization. It is a probabilistic
localization system for robot maneuvering in a 2D envi-
ronment [34]. Here The robot is interpreted as a particle.
These particles are randomly spread in the given map. each
particle has a specific weight. Depending on those weights the
particles are sampled from the distribution. AMCL matches the
LaserScan of the particles to the borders of the given map. If
the scan matches the map, then those particles are sampled
from distribution as they have a higher weight than all other
particles. AMCL depends on the robot’s odometry sources
and LaserScan measurements.In this experiment, Extended
Kalman filter is used for correction of drift in encoder source.
This fused odometry is an input for AMCL localization.
Move Base as the name suggests is responsible for moving

robots from one point to another in a known map. Move base
has two important helper algorithms, which are Global planner
and Local planner. In this experiment, A* algorithm is used as
a Global planner. The local planner used here is the Dynamic-
Window Approach planner, which is an effective algorithm
for making the robot autonomous. Global planner uses the
global cost map to trace out the path between the start and
endpoint. The local planner is responsible for maneuvering the
robot in the path provided by the global planner by avoiding
obstacles that are in the way of the robot. It does so by using
the information provided by Local CostMap. The global cost
map consists of the map borders, local cost map consists of
the obstacles that are not present on the map while mapping.
move base takes its input from odometry source, map server
and frame transforms to drive the robot autonomously in a
known map.
This experiment also consists of visual fiducial markers as

433

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

artificial landmarks in the environment. April Tags are a kind
of visual fiducial marker that consists of a black background
with white foreground with a specific pattern [2]. Due to the
black border of the April Tags, it is easy to detect using
computer vision techniques under various conditions like poor
lighting, different orientations, etc. April tags look like a QR
code. However, a QR code holds around 3Kb of information
whereas April Tag can hold only 7 to 12 bits of data. This is
the important feature of the April tag since it has less payload
and is detected at far distances without any difficulties. In this
experiment, Tag 36h11 April tags are used. This is a standard
April tags family. ROS provides support for detecting April
Tags and visualizing them in a tool called RQT image view.
This ROS package requires the size of the April tag and the tag
family used for this experiment to detect the tags and finally
camera stream is provided as an input.

C. System Integration

Fig. 1: Complete System Block Diagram

In fig 1, each block represents a different part of the system.
The experiment here is a tour-guide robot. The robot should be
able to move from its starting point to its destination avoiding
obstacles in its way and It should also be able to interact
with humans. To achieve this, each room is stuck with April
Tags. Each tag has a unique code that can be deciphered from
the vision system of the robot. These tags are 7x7 large and
around 1024 unique markers can be generated. These tags are
stuck to the laboratories in the environment. The robot can be
made to maneuver near the tags. The robot is equipped with
a vision system capable of detecting the markers. Once the
tags are detected, the information about the marker id is sent
to IBM Watson which is a dialogue system. if the specific tag
id exists in the dialogue system, the corresponding dialogue is
submitted to the text to speech conversion system. This system
can access the speaker where the speech is being played. Once
the speech is finished, the unity pings the ROS framework

(a) map generated with encoder (b) Map generated with UKF
fusion

about its current status, the robot starts moving to the next
goal point. This keeps repeating until all the tags have been
visited in the environment. The odometry source of the robot
comes from two sources as shown in fig 1. IMU data from
Intel Realsense and odometry data is fused using extended
Kalman filters. This fused odometry is then fed to the SLAM
block for mapping and navigation. The navigation stack is
responsible for the autonomous navigation of the robot. The
data from the perception sensors are fed to the navigation stack
or move base. The localization node AMCL, Global planner
A* algorithm, local planner TEB planner work together to
maneuver the robot in the given environment.

IV. EXPERIMENT

The experiment was first conducted in a space where the
robot had more freedom to choose its path. The mapping
of such an environment does not require significant effort.
So, a simple odometry source like Encoder was enough to
fulfill mapping capabilities. The gmapping relies heavily on
accurate odometry sources and laser scans. Therefore, it is
not recommended to use gmapping if the odometry source is
not accurate. The robot in this experiment has a good CUI
Encoder which provides around 118,784 ticks per revolution
of the wheel. However, The encoder is useful when driving
in a straight line and has issues during the turning of the
robot, where there is a lot of drift. To reduce drift in the
odometry source and create a good map, an IMU sensor is
used as another odometry source. The Intel real sense D435i
comes with an IMU built-in. IMU’s linear acceleration in the
x-direction, its angular velocity in z-axis, and its orientation
values are fused with encoder’s forward velocity, angular
velocity, and orientation using Extended Kalman filter package
available in ROS to create an Odometry source. In the map
shown in the fig ??-b, even though the map looks similar to a
rectangle and portrays the 3rd floor of KGCOE, RIT, this map
has a key error that makes it unfit for navigation. Since the
floor consists of corridors, the corridor reading is the same for
at least 2-3m, which makes the algorithm believe that it has not
moved and is in the same place as it first registered the scan of
the corridor. This makes some pathways in this map smaller,
which confuses the localization node and the robot gets stuck

434

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

at some point. To overcome this problem. A map was created
from the floor plan of the environment as described in this
algorithm as shown in [9]. This algorithm uses the floor plan
and it also uses two points on the x-axis and 2 points on the
y-axis. It requires the distance between those points in the real
world. Using the information provided in the floor plan and
the distance data from the real world, the algorithm scales the
floor plan and an occupancy grid map is created that can be
visualized in ROS. The initial setup consisted of Dijkstra as
the global planner. However, the heuristics of Dijkstra is the
distance from the robot’s current position to the start point.
This would make the robot move very close to the walls and
took a longer route instead of the shorter one. To overcome this
problem, the A* algorithm was used. The heuristics of the A*
algorithm is the sum of the distance from the current position
of the robot to the starting point and the distance from the
robot. Many local planners are available in ROS. The default
local planner in ROS is the DWA planner. This planner works
well in a given map with static obstacles. If the local cost map
has local obstacles, this planner stops as soon as it encounters
an obstacle and this planner takes time to calculate trajectory
score from its sampled velocities (v, w) and then moves past
avoiding the obstacle in its vicinity. However, it sometimes
fails to produce a path. TEB local planner is suitable for car-
like robots. It does not take advantage of the differential drive
turning mechanism. This planner requires more space in the
environment to avoid obstacles. EBand local planner is also
suitable for dynamic obstacles. However, in this experiment,
this planner made the robot waver a lot and the motion of the
robot wasn’t smooth. So it was discarded.

V. RESULTS

The first step towards making the robot autonomous with
a prebuilt map is to observe the planners capability in ma-
neuvering the robot autonomously in the presence of local
obstacles in the costmap. The table I represents the accuracy
of a planner in avoiding obstacles in 9 trials. In all the trials
that were conducted, the robot was autonomously navigating
in the given map, while doing so, an obstacle is introduced
in its path which would appear as a local obstacle on a local
costmap, which means that the local planner is responsible
for avoiding the obstacle. The TEB planner was successful in
avoiding obstacles in more trials than the DWA planner. Hence
TEB is chosen as the local planner in this experiment.

TABLE I: Dynamic obstacle test

Local Planners Number of Trials Successful trials
Time Elastic Band (TEB) 9 8
Dynamic Window
Approach (DWA) 9 6

Once the planner has been selected, it is important to
test out the planner in the environment. In this experiment,
the autonomous capability of the robot is tested on the 3rd
floor Kate Gleason College of Engineering (KGCOE), RIT. In
figures 2 and 3, the robot starts at the same start point and

is able to traverse three different goal points. This shows that
the robot can maneuver all part of the map autonomously.

Fig. 2: The trajectory followed by the robot to reach Goal 1

In the fig. 2, In this figure, the robot travels the longest
distance on the map from one corner to the diagonally opposite
corner. There are no sub-goals while traversing the map. As
seen from the figure, the red line depicts the trajectory of
the robot while traveling along the three corridors of the
environment and reaching its goal location.

Fig. 3: The trajectory followed by the robot to reach Goal 2

TABLE II: Distance travelled and Time taken to reach goals

Goal Distance Travelled along
X-axis in meters (m)

Distance Travelled along
Y-axis in meters (m) Time taken (sec)

Goal 1 42.778 31.055 419.448
Goal 2 10.831 30.813 274.789

Table II represents the distance travelled and time taken by
the robot to reach goals as shown in fig 2 and 3. As per the
table, the robot takes 419 seconds to reach goal 1 since it has
to travel a long distance. Goal 2 is near to the start point of
the robot compared to goal 1. The final system consisted of
a robot navigating autonomously in the indoor environment
and an avatar for human-robot interaction. The robot needs
a prebuilt map to navigate autonomously. The April tags are
stuck to the doors of the laboratories and their locations are
known with respect to the map frame. The navigation stack is
provided with the points which are closer to April tags. The
Intel real sense camera can detect the April tag effectively
and relay information to Unity which would trigger a dialog

435

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

in IBM Watson explaining the people about the experiments
that are going inside these labs. The entire system is not as it
is expected to be. There are issues that need to be addressed.
The local planner’s parameters had to be tuned to match the
environment. Local planners like DWA, TEB, Eband were
tested and finally TEB planner was chosen since this planner
is smooth and executes trajectory avoiding obstacles. Care
should be taken to keep a minimum distance of 3-4 ft when
giving tours so that the robot wouldn’t crash when it is driving
backwards.

TABLE III: Tour guide trials

Tour guide robot trials Time Taken (secs.)
Trial 1 10686
Trial 2 10069
Trial 3 9847

From the table III, it is observed that all the three trials took
approximately the same time for the robot to provide the tour.

VI. CONCLUSION AND FUTURE WORKS

This experiment deals with the system integration of an
Autonomous Tour Guide robot. The self-driving nature of
the robot is implemented using the ROS navigation stack.
The Avatar system is handled by Unity and IBM Watson is
used for limited interaction with humans. The robot in this
experiment is able to detect obstacles and drive past them by
avoiding a collision. The environment contains April tags at
known locations which are stuck to the laboratories and the
robot drives from one April tag location to another describing
the experiments that are going behind those doors to the
people. IBM Watson, Unity, and ROS interact using existing
libraries that use web sockets. The robot’s effectiveness in
operating as a tour guide robot is tested on the 3rd floor
of KGCOE, RIT in the department of Electrical and Micro
electrical engineering which consists of many laboratories with
corridors. The robot is integrated with multiple systems. They
are ROS navigation stack, Unity’s Avatar system, and IBM
Watson for speech recognition system. For the robot to provide
a tour of the environment, It has to be supported with visual
fiducial markers such as April tags. However, In RIT, each
laboratory has its own labels that are stuck beside the door.
The robot can use OpenCV techniques to detect those labels
and provide information about the experiments going in those
labs. The camera mounted on the robot could be adjusted so as
to not turn the robot as much to detect tags. All subsystems
on the robot are running on a laptop. ROS and Unity 3D
game engine are battery-hungry applications. In the future,
ROS could be run on a single-board computer like Nvidia
Jetson Nano, which will handle all the applications needed to
drive the robot autonomously. The laptop can run the Unity
game engine and visualization tools of ROS.

ACKNOWLEDGMENT

The authors are grateful to the staff of Multi-Agent Bio-
Robotics Laboratory (MABL), the CM Collaborative Robotics
(CMCR) Lab, and the Electrical Engineering Department at

RIT for their valuable inputs. This material is based upon
work partially supported by the National Science Foundation
under Award No. DGE-2125362. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] Z. Xuexi, L. Guokun, F. Genping, X. Dongliang and L. Shiliu,
”SLAM Algorithm Analysis of Mobile Robot Based on Lidar,”
2019 Chinese Control Conference (CCC), 2019, pp. 4739-4745, doi:
10.23919/ChiCC.2019.8866200.

[2] E. Olson, ”AprilTag: A robust and flexible visual fiducial system,” 2011
IEEE International Conference on Robotics and Automation, 2011, pp.
3400-3407, doi: 10.1109/ICRA.2011.5979561.

[3] S. E. Hadji, T. H. Hing, M. S. M. Ali, M. A. Khattak and S.
Kazi, ”2D occupancy grid mapping with inverse range sensor model,”
2015 10th Asian Control Conference (ASCC), 2015, pp. 1-6, doi:
10.1109/ASCC.2015.7244705

[4] I. Naotunna and T. Wongratanaphisan, ”Comparison of ROS Local Plan-
ners with Differential Drive Heavy Robotic System,” 2020 International
Conference on Advanced Mechatronic Systems (ICAMechS), 2020, pp.
1-6, doi: 10.1109/ICAMechS49982.2020.9310123.

[5] D. Fox, W. Burgard and S. Thrun, ”The dynamic window approach to
collision avoidance”, IEEE Robotics & Automation Magazine, vol. 4, no.
1, pp. 23-33, March 1997.

[6] Harihar Subramanyam et al. ”SKYCALL”, [online].
https://senseable.mit.edu/skycall/

[7] Yuri Kageyama, ”Honda robot Asimo makes balky tour guide”,
[online]. https://www.usatoday.com/story/driveon/2013/07/06/honda-
robot-asimo/2494143/

[8] S. Quinlan and O. Khatib, ”Elastic bands: connecting path plan-
ning and control,” [1993] Proceedings IEEE International Confer-
ence on Robotics and Automation, 1993, pp. 802-807 vol.2, doi:
10.1109/ROBOT.1993.291936.

[9] Automaticaddison, ”How to Create a Map for ROS From a Floor Plan or
Blueprint”, [online]. https://automaticaddison.com/how-to-create-a-map-
for-ros-from-a-floor-plan-or-blueprin

[10] S. Chan, P. Wu and L. Fu, ”Robust 2D Indoor Localization Through
Laser SLAM and Visual SLAM Fusion,” 2018 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018,
pp. 1263-1268.

[11] Babinec, Andrej & Jurišica, Ladislav & Hubinský, Peter & Duchoň,
František. (2014). Visual Localization of Mobile Robot Using Artificial
Markers. Procedia Engineering. 96. 10.1016/j.proeng.2014.12.091.

[12] A. Al-Wazzan, R. Al-Farhan, F. Al-Ali and M. El-Abd, ”Tour-guide
robot,” 2016 International Conference on Industrial Informatics and
Computer Systems (CIICS), Sharjah, 2016, pp. 1-5.

[13] Woojin Chung, Gunbee Kim, Munsang Kim and Chongwon Lee, ”In-
tegrated navigation system for indoor service robots in large-scale envi-
ronments,” IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004, New Orleans, LA, USA, 2004, pp.
5099-5104.

[14] A. B. S. H. M. Saman and A. H. Lotfy, ”An implementation of SLAM
with extended Kalman filter,” 2016 6th International Conference on
Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, 2016, pp.
1-4.

[15] S. Rawat, P. Gupta and P. Kumar, ”Digital life assistant using automated
speech recognition,” 2014 Innovative Applications of Computational In-
telligence on Power, Energy and Controls with their impact on Humanity
(CIPECH), Ghaziabad, 2014, pp. 43-47.

[16] ROS, Robot Operating System” [online]. https://www.ros.org/about-ros/
[17] Madgwick, Sebastian & Harrison, Andrew & Vaidyanathan, Ravi.

(2011). Estimation of IMU and MARG orientation using a gradient
descent algorithm. IEEE ... International Conference on Rehabilitation
Robotics : [proceedings]. 2011. 5975346. 10.1109/ICORR.2011.5975346.

[18] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press.

[19] Tony, Pigram, ”Create a 3D Digital Human with
IBM Watson Assistant and Unity3D” [Online].
https://developer.ibm.com/recipes/tutorials/create-a-3d-digital-human-
with-ibm-watson-assistant-and-unity3d/

436

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

