2022 17th Annual System of Systems Engineering Conference (SOSE) | 978-1-6654-9623-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/SOSE55472.2022.9812685

10S Based Pose Estimation and Gesture
Recognition for Robot Manipulation

Nikhil Deshmukh, Celal Savur, Ferat Sahin,
Rochester Institute of Technology,
Department of Electrical and Microelectronic Engineering,
Rochester, NY, USA
{nxd4573, cs1323, feseee} @rit.edu

Abstract—Interfacing between robots and humans has come a
long way in the past few years, and new methods for smart, robust
interaction are needed. Typically, a technician has to program a
routine for a robot in order for the robot to be useful. This puts
up a significant barrier to entry into the field of automating tasks
using robots—not only is a technician and a computer required,
but the robot is not adaptive to the immediate needs of the user.
The robot is only capable of executing a pre-determined task and
for any change to be made the entire system needs to be paused.
This project seeks to bridge the gap between user and robot
interface, creating an easy-to-use system that allows for adaptive
robot control. Using a combination of computer vision and a
monocular camera system and integrated LiDAR sensor on an
iPhone, gesture recognition and pose estimation was conducted
within an independent system to control the Baxter humanoid
robot. The gathered data was sent wirelessly to the robot to be
interpreted and then replay actions performed by the user.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

As robots and technology become more and more prevalent
in society, the need for intuitive and easy to use robot-human
interfaces will rise immediately. The applications for an arm
robot aren’t just within industrial settings where technicians
are on hand; for any hobbyist at home or even normal people,
having an extra hand around would be invaluable. The issue
then comes with how adaptive is the extra hand or hands and
how responsive are they to the user’s needs. If it takes time
to program the task, then the usability of such a robot will be
limited. If the “programming” of a routine can be done on-the-
fly by anybody without the need for a technician or a computer,
then the usability goes up by several times. Ultimately, the
systems should portable and intuitive to use.

This robot-human interface can be separated into two prob-
lems: pose estimation of the user by the robot and computer
vision-based gesture recognition control and feedback from the
user to the robot. To accomplish pose estimation, an iPhone
app will be using its camera and LIDAR to track skeleton
data on a person. This data was then sent wirelessly over
to the robot and translated to robotic arm movements on the
Baxter robot. Baxter replicated movements captured using the
iPhone close to real-time. A record and playback structure
was also implemented to replicate the movements. The other
problem involved controlling Baxter’s gripper in this case;
however, the problem can be expanded to include any form

of feedback needed to control other robot functions. For this
form of control, computer vision techniques were utilized,
specifically the Vision API from Apple was used to detect
hand gestures. These gestures were used to control external
robot functions. No iOS based system has accomplished this
before. Other forms of control exist, such as EMG signals for
gesture recognition, and 3D depth sensing cameras for pose
estimation. However, these still require an external high power
computer to do all of the processing. These current systems
can be bulky, expensive, and complex to setup. This was an
independent app that contains the entire control system, which
can be deployed on phones that various people already carry
with them.

These two problems were handled independently and com-
bined within a singular application to be deployed on any
modern iOS device. Accuracy was determined based on how
close the robot’s movements are to the user’s movements
and also how precisely the robot can execute the program.
The responsiveness of the system was rated on how quickly
the robot can respond to the gesture recognition. Ideally, the
system would respond in close too real-time to the user and/or
playback recorded movements accurately.

The contribution of this paper is as follows:

o Develops a novel mobile software platform for robot

manipulation

« Explores a new modality for hand gesture recognition in

the form of i0S-based Vision tracking

« Explores a new implementation of pose estimation in the

form of i0S ARK:it

o Compares alternative forms of gesture recognition and

pose estimation to the iOS-based system.

The rest of the paper is structured as follows, section II
provides a brief look into related works, section III introduces
the proposed method, and section IV provides results. Section
V discusses results, and section VI talks about conclusion.
Each section is divided based on the overarching concept (Pose
estimation and gesture recognition).

II. RELATED WORKS

This section presents a literature review of the alternative
methods used for Pose Estimation, Wireless Communication,
and Gesture Recognition.

438
978ALM§6C&@3§SQME$M@Q SRR dEE Fnstitute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

A. Pose Estimation

Pose estimation is a tried and tested concept. There are
various forms of pose estimation using different hardware
devices. A very common approach to pose estimation is to
use a Kinect sensor for skeleton tracking. A paper published in
2014 elaborates on this exact scenario. [1] Human motions are
captured by the Kinect sensor and calculated with Processing
Software using SimpleOpenNI wrapper for OpenNIand NITE.
UDP protocol is adopted to send reference motion to Baxter
robot and joint angles of Baxter robot are calculated based
on a vector approach and inverse kinematics approach. The
vector-based approach was only able to move 4 out of the 7
joints on Baxter. Extra data is needed of the palm and fingers
is required which the Kinect cannot provide. The inverse
kinematics approach was able to move all joints; however, the
backwards movement is mirrored while sideways movement
follow the recorded direction. The Kinect sensor is widely
adopted because it is very cost-effective and includes a RGB
camera and dual infrared depth sensor. While Kinect can be
accurate, the entire system isn’t as portable and kinect itself
is deprecated.

Another paper also utilizes a kinect to aid with trajectory
planning using a Baxter research robot, developed by Rethink
Robotics. A function approximation technique (FAT) control
system is employed to make the robot follow the trajectory of
human motion using the kinect sensor. The UDP communica-
tion protocol is employed to send the reference human joint
angle data to the robot [2]. However, this project utilizes the
kinect V2 while the previous used the older generation kinect.
However, while both sensors can accomplish pose estimation,
they are now discontinued by Microsoft. As a result, as time
passes, they will become less accessible and receive no future
support.

B. Wireless Communication

The main goal is to accomplish pose estimation using an
iPhone as they are readily available nowadays. While at the
time, they aren’t as cost-effective as a kinect, in the future
lidar-based iPhones will drop in cost as they become more
adopted. iPhones are already widely available in the U.S.
so the use of their computation power to aid in robotics is
both feasible and practical. Baxter is a ROS-based robot, so
while the latest iPhone has the technology to conduct pose
estimation, it needs to also interface with ROS. A paper from
2014 explains the first interface between iOS and ROS. The
authors created a native port of ROS for iOS labeled ROS4iOS.
The user can, “start ROS sources hosted on GitHub and apply
minimal patches for iOS compilation, concentrate on the C++
portion of ROS’ core libraries, create complete ROS nodes
running on the mobile device by reusing the same C++ code
and design an architecture to interface ROS data structures
with iOS user interface elements” [3]. The library itself was
a starting point for ROS development on iOS.

A research from 2012 describes earlier implementations of
ROSbridge. This is a simplified tutorial introducing ROS and
ROSbridge to implement and use state of the art navigation

and manipulation algorithms [4]. Another paper from 2015
describes the use of ROSbridge to act as a middleware. The
ROSBridge library enables interaction with a ROS environ-
ment from external processes. This interaction is facilitated
through commands in the form of JSON (JavaScript Object
Notation) strings. These commands are mapped to internal
ROS functions and enable external processes to act as a
ROS node operating within the normal ROS environment
[5]. This project used the foundation from ROSbridge and
a new modified iOS to ROS wrapper to handle the wireless
communication.

C. Gesture Recognition

Gesture recognition has long been a problem domain in
computer science, with the goal being interpreting “human
gestures via mathematical algorithms” [6]. Gestures are a
simple and clear way for humans to communicate with com-
puters. Once these gestures are captured by the computer,
the system can then go on to execute the command tied to
that specific gesture. This problem has been approached in
many ways, such as computer vision, speech commands, and
electromyography signals. Each of these approaches have their
own advantages and disadvantages.

Computer vision-based gesture recognition necessitates a
robust classification algorithm. A 2010 paper explores using
two algorithm subsystems, one for static gesture recognition
and one for gesture classification. The first system locates
the hand region within the camera frame using a cascade
classifier. The second system uses vector quantization and a
Hidden Markov Model to estimate the motion trajectory of
each gesture and then classify. The idea behind this is to allow
for the system to recognize different dynamic gestures instead
of static ones. However, this method and algorithm are both
complex, which is a disadvantage of using computer vision
[7].

The difficulty of using camera vision for gesture recogni-
tion, as outlined in the papers that used it, is that there is
a lot of data coming in and the algorithm must be robust
enough to correctly classify certain gestures as opposed to
normal movement. This also illustrates a key drawback to
using computer vision for gesture recognition - the user must
be facing the camera. There is also a lot of noise/extraneous
information that must be sorted out, such as other people
within vision or objects moving around. To simplify the
processing, the iOS app was developed to instead classify a
person’s individual fingers and identify their relative location
to create gestures.

A conference paper discusses a similar AR-based gesture
recognition implemented using an iOS device. However, the
Hand Gesture Recognition (HGR) framework was developed
using depths provided by an iPhone’s 2 cameras to produce a
stereo configuration [8]. Some advantages to this implementa-
tion include the ability to ignore skin color as the framework
is primarily operating using depth information. The depth
information is used with a RGB color map to help reduce noise
produced by the depth maps. However, fast motion will lead to

439

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

desyncs between the depth and color maps which leads to er-
rors. Other limitations include extra noise due to shadows and
discoloration in skin color which also affect synchronization
between the depth and color maps. While a Core ML model
was originally going to be used to conduct the iOS gesture
recognition, limitations were discovered preventing successful
implementation.

III. METHODOLOGY

This section contains all the necessary supporting infor-
mation pertaining to the type of robot, as well as the pre-
processed data, types of features to be extracted from the
processed data and a brief explanation of methods and im-
plemented algorithms.

A. Robot Interface

The robot used was Baxter, which is a “a human-sized hu-
manoid robot with dual 7-degree-of-freedom (d-o-f) arms with
stationary pedestal, torso, and 2-DOF head, a vision system, a
robot control system, a safety system, and an optional gravity-
offload controller and collision detection routine” [9].

Baxter is ROS enabled, with a dedicated SDK supporting
ROS Indigo and ROS Kinetic, however it only supports up
to Python 2.7. Baxter also has two interchangeable grippers.
However, the robot that was available only had one working
gripper on the right arm.

B. Pose Estimation

An iPhone 12 Pro was used to conduct the actual pose
estimation. This specific iPhone is important because the rear
housing unit includes a LiDAR sensor. The LiDAR is capable
of tracking up to a distance of 15 meters. A custom app
was written utilizing ARKit and the RBSManager library
to interface with ROSBridge. RBSManager is a Swift-native
library for handling the WebSocket connection to a ROS
master running ROSBridge [10]. A custom message type was
implemented into the library to send the relevant joint angles
over the network. The joint angles was extracted from the pose
estimation on the iPhone. The iPhone was outputting relative
data in the form of a 4x4 transform matrix as shown below in
Figure 1.

11 Ti2 Ti13
21 T22 T23
31 T32 T33
P, Py P,

_— o o o

Fig. 1: Transform Matrix

A publisher on the iPhone was written to send this data
over a rostopic over the ROSBridge. The ROS master node
will subscribe and get then i0S joint angles. These angles was
modified using a transformation and offset matrix to transition
to the Baxter frame environment. These updated joint angles
will then be sent to Baxter to mimic the human movement
using forward kinematics. This data was sent as soon as the
angles are calculated allowing Baxter to move in real-time

with the human operator. Additionally, the x, y, z location of
the user’s hand was extracted using the iOS pose estimation.
This data was sent to Baxter to be used for Inverse Kinematics
using Baxter’s IK solver.

The iPhone communicated over the ROSBridge over a
local wireless network that will have to be created. Latency
due to the wireless transfer of data was a limiting in the
effectiveness of real-time pose estimation. The iOS app allows
for a configurable ROS bridge host connection, and has the
ability to display various joint angles of the right side of the
body. Additionally, it overlays a 3D skeleton model onto the
person to depict a rough visual representation of what the
iPhone is interpreting.

C. Gesture Recognition

For gesture recognition, the iOS Vision API was used
in conjunction with a Core ML model to detect open and
closed hand positions and use these as inputs. Initially, a
readily available Core ML model was utilized for initial testing
provided from an open-source GitHub repository [11]. Once a
working system was implemented, a new model was created
and trained using Microsoft Azure and CustomVision.ai. It
was ultimately a simple model aimed to detect a closed and
open fist on a person’s right hand.

A closed fist acted as the command to close Baxter’s gripper
while an open hand shall open Baxter’s gripper. To avoid
flooding Baxter with repetitive commands, an operation was
only published if there was a change from an open to closed
fist. All the proposed logic was implemented in the same app
that was conducting the pose estimation. All computation was
done on the iOS device, and final commands were sent to
Baxter over ROSBridge. This alleviated computation time on
Baxter’s end and kept latency minimal. The alternative form
of Gesture Recognition that was also be implemented was
using tracked finger points to determine a gesture. Using the
Vision API, the locations of the thumb, index, and middle
fingertip joints were determined. Using this data, the distance
was calculated with respect to the wrist joint. Based on a
specific threshold, it can be determined if the hand is closed or
open based on the combination of distances. It is important to
note that this method has no knowledge of depth information,
and only the X, and Y data are used for the calculations. These
calculations were conducted alongside the pose estimation
algorithm and sent to Baxter in real-time.

D. Expected Results

Baxter’s movements are slightly clunky and have a small
amount of wobble and drift to them. For this reason, the
final result may not have the desired accuracy and/or speed.
Additionally, as this is a monocular system, certain body
positions may be difficult to determine based on the camera
angle. It is expected that the pose estimation will translate
well into Baxter’s joint movement system, however mimicking
the movements in perfect real-time may not be achievable.
Also, ideally, the gesture recognition is real-time as well but
the delays in data transmission through wireless connections,

440

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

along with any delays in classification, could result in a larger
latency. Gesture Recognition may also become less accurate
the farther the user is from the cameras, depending on the
dataset used in the Core ML model. The finger joint-based
model may also suffer the same issues with regard to accuracy
and distance as the user becomes farther away from the
camera.

The primary objective is to use forward kinematics to mirror
movements to Baxter. This will allow for true mimicry. While
inverse kinematics(IK) would reach the same end effector
position, the approach may be different depending on the IK
solver being utilized. From the research, ARKit provides both
local and universal 4x4 transformation matrices. This should
be enough information to compute the forward kinematics and
joint angles on the device to be sent to Baxter. However,
additional processing will also be needed to convert the
real-world coordinate system’s to Baxter’s coordinate system.
Some data will also need to be truncated as Baxter does not
have the same reach as a person. In addition, Baxter has more
degrees of freedom than what the pose estimation can track.
As a result, some joint angles may need to be omitted based
on the extracted data from the pose estimation.

IV. RESULTS

A. Pose Estimation

The pose estimation was conducted using ARKit 5. Specifi-
cally, ARBodyTrackingConfiguration is used to create a Body-
TrackedEntity. A 3D skeleton model is then overlayed onto
the user in the AR View giving a visual representation on
the iPhone’s joint representations. From this entity, the joint
transforms can be extracted from a total of 92 unique joints.

The joint information is determined using Apple’s custom
machine learning algorithm running on the A12 Neural engine
in the iPhone 12 Pro. The relevant joints are listed below in
Table I

TABLE I: Relevant ARKit Joints

Right ARKit Joint
right_hand

Left ARKit Joint
left_hand

left_arm

right_arm

left_forearm

right_forearm

left_shoulder_1

right_shoulder_1

left_handIndexEnd

right_handIndexEnd

As Baxter is a 7 DOF robot, 3 joints were omitted when
calculating and sending joint angles. These are the wrist twist
and wrist pitch as the ARKit algorithm doesn’t have a large
enough degree of accuracy tracking the wrist joint movements.
To calculate the joint angles for Shoulder Pitch and Elbow
Pitch, the following Equation, Equation 1, was used.

radians = atan2(C.y — B.y,C.x — B.x)
—atan2(A.y — B.y, A.x — B.x) (1)

180
angle = |radians x —|
T

A, B, and C represent the joint XYZ locations from the
corresponding joint transforms. For example, A = shoulder, B
= Arm, C = forearm, would result in the Shoulder Pitch angle.
It is important to note that all transform matrices are universal
transforms with respect to the universal joint which is the hip
joint. Additionally, to convert to Baxter’s environment, some
angles needed offsets of £90° or £180°.

With all the joint data extracted, the relevant data was then
mapped to Baxter’s joints, shown in Figure 2 below, with the
wrist twist and pitch being locked in their ”0” position.

Fig. 2: Baxter Joints

The mapped joints and motions are illustrated in Table II
below. It is important to note that the gripper twist is not
functional on the available Baxter Robot.

TABLE II: Baxter Mapped Joints

Baxter Joint | ARKit Joint Angle | Actively Tracked
SO Shoulder Twist Yes
S1 Shoulder Pitch Yes
EO Elbow Twist Yes
El Elbow Pitch Yes
WO Wrist Twist No
Wil Wrist Pitch No
w2 Gripper Twist No

B. Gesture Recognition

Initially, a Core ML model was tested in conjunction with
the i0OS Vision API. However, this implementation couldn’t
be further developed as the accuracy was too unreliable at
the distance needed to also conduct the pose estimation. As
a result, only the computer vision-based finger tracking was
fully implemented in the final revision. Every AR skeleton
update would send a new camera frame to the Vision APIL
This captured image was then converted to a CvPixelBuffer to
be able to read the pixel information using the Vision API.
This was sent to a VNImageRequestHandler which conducts
multiple vision requests on the image using the custom Hand
Gesture Processor (HGP) handler. The handler processes ob-
servations on three fingers and determines their location within
the frame in the form of XY coordinates. This information was
then used in conjunction with the location of the wrist joint to

441

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

calculate the 2D distance between each finger and the wrist.
A threshold of 18 pixels was found to be the optimal distance
to achieve a strong confidence level. It is important to note
that since the threshold is specified in pixels, the accuracy is
location-dependent. As a result, this threshold was found when
the iPhone was a far enough distance away to still conduct the
pose estimation. Based on the distances calculated, the HGP
will cycle between fives states: Pinched, Possible Pinched,
Apart, Possible Apart, and Unknown.

The XY data was then transformed to the iOS AR view
coordinate system to be displayed on screen. While initially
this computation was conducted on every frame update from
the pose estimation algorithm, it was found to cause frame
drops which would then cause the application to lag. As
a result, the gesture recognition algorithm was cut to run
on every 6 updates. This yielded a fluid application while
not lagging too far on the real-time aspect of the gesture
recognition. With approximately 60 updates per second, the
gesture recognition algorithm is updating every tenth of a
second.

C. iOS App

Each algorithm was first tested in an individual app before
being combined into one complete package. The joint angles
were sent to Baxter using RBSManager and ROSBridge over a
local wireless network. A simple host input screen was added
to specify the ROSBridge IP.

RBSManager was modified and given a Float32MultiArray
message type. This is natively supported by ROS; however,
it was missing from the iOS library. This message type
allowed the iOS publisher to send two arrays to unique topics
(/robot/ios/commands/left and /robot/ios/commands/right) for
the left and right arms of Baxter. Each array contained the
necessary joint angles for that arm in the order specified:
[S0,S1, E0, E1,0]. The app supports a live view of the joint
angles updating in real-time for the left side of the body. It
also gives dynamic feedback by subscribing to a ROS topic
which specifies if the gripper is closed or open. This is then
displayed on the app to easily be seen. All of this information
can be seen in Figure 3 to the right along with the overlayed
3D skeleton visualization.

Figure 3 also depicts the overlayed HGP points. The green
color indicates a pinched state, while red indicates the apart
state. Any almost pinched or almost apart states are colored
orange. While the colors and relative location are accurate,
the absolute position is slightly off. This is because the Vision
API is generally utilized on a live camera feed working
independently. However, to get both the pose estimation and
Vision API working simultaneously, the captured frames need
to be pulled from the AR updates instead. Transformation
between the live feed coordinate system and overlay system
is natively supported. The switch views button within the app
gives the option to only use the gesture recognition algorithm
on a live feed. The resulting overlay has correct absolute
positioning of the hand.

Gripper Gripper

Pinched

Fig. 3: i0OS App Pose Estimation and Gesture Recognition

V. DISCUSSION

The iOS app was able to achieve near real-time communi-
cation and mimicry between the Baxter robot using forward
kinematics. However, using inverse kinematics yielded alter-
native results. The XYZ data from the left and right ARKit
hand joints were used as end effector locations for the Baxter
IK solver. This allowed Baxter to use inverse kinematics to
move the gripper to the same hand position in the real world.
However, there was no orientation quaternion given. As a
result, some locations had multiple solutions to reach the
goal, so Baxter does not always follow the same motion. The
orientation was locked to the overhead position as shown in
Figure 4 shown below.

Fig. 4: Baxter Overhead Orientation

As a result of this orientation, the location data needed to
be truncated in the X and Z direction as the fixed orientation
limits Baxter’s range of movements. Inverse kinematics was
also slower in comparison to forward kinematics as now
Baxter had to do the IK computations before being able to
move. Due to the slow nature, the configuration was set to

442

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

record and playback system where the XYZ locations were
stored in an array and then sent to Baxter to replicate once
a recording was complete. The gesture recognition algorithm
was able to successfully identify the open and closed fist with
only two limitations/constraints. Since the Vision API only
relies on the camera and has no depth information, it is locked
to a distance of approximately 6 feet from the camera. Any
larger distance will result in the halt of the HGP and the state
will be frozen in the last known state until the user is within 6
feet again. Additionally, because this is a monocular system,
if the user’s hand is horizontal with the camera, the accuracy
falls as it is very difficult to identify the fingertip locations.
The entire deployed system on Baxter can be seen in Figure
5 below.

Fig. 5: Complete iOS System

VI. CONCLUSION

Based on the findings of this research, it can be seen that the
monocular i0OS system is successful in controlling a humanoid
robot. Given the constraints of a one camera system, the
iPhone was able to accurately track arm movements in the
X, Y, and Z directions and relay them to Baxter in near real-
time. Although the gesture recognition was purposely throttled
due to computational power, the speed at which it detected
hand gestures was not significantly affected. The app was still
able to transmit gripper controls in near real-time as well. The
inclusion of the LiDAR sensor on the iPhone is what truly
allowed the pose estimation algorithm to have the accuracy
that it did. While it may not necessarily have the same degree
of precision as an Intel real-sense or kinect camera system,
technology will only improve over time. The accuracy for the
iOS system is still strong enough at this given time and the
software and hardware are still being actively maintained and
updated. The main goal of the system was to be portable and
intuitive, while still maintaining a strong degree of accuracy.
The gesture recognition algorithm, while simplistic was still
effective. It is not as accurate as EMG sensors as computer
vision is constrained by the number of cameras and resolution.
However, to reiterate, this system is still more portable and
requires no external hardware other than a small iPhone which
is now widely available.

VII. FUTURE WORKS

The main future work would be to possibly further optimize
the gesture recognition algorithm and add a few more gestures
to the HGP. Additionally, a large portion of development
would go towards calculating an orientation end effector po-
sition based on the retrieved joint transform data from ARKit.
This would allow the IK method to follow true mimicry
similar to the forward kinematics method. Inverse kinematics
is inherently more accurate when trying to move an end
effector to a known position, so achieving proper accuracy
with this method would be very beneficial.

ACKNOWLEDGMENT

The authors are grateful to the staff of Multi-Agent Bio-
Robotics Laboratory (MABL), the CM Collaborative Robotics
(CMCR) Lab, and the Electrical Engineering Department at
RIT for their valuable inputs. This material is based upon
work partially supported by the National Science Foundation
under Award No. DGE-2125362. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] H. Reddivari, C. Yang, Z. Ju, P. Liang, Z. Li, and B. Xu, “Teleoperation
control of baxter robot using body motion tracking,” in 2014 Interna-
tional Conference on Multisensor Fusion and Information Integration
for Intelligent Systems (MFI), pp. 1-6.

[2] G. Peng, C. Yang, Y. Jiang, L. Cheng, and P. Liang, “Teleoperation
control of baxter robot based on human motion capture,” in 2016 IEEE
International Conference on Information and Automation (ICIA), 2016,
pp. 1026-1031.

[3] R. Chauvin, F. Ferland, D. Letourneau, and F. Michaud, “Ros4ios: Native
ros development on ios devices,” in 2014 I[EEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 2085-2085.

[4] C. Crick, G. Jay, S. Osentoski, and O. C. Jenkins, “Ros and rosbridge:
Roboticists out of the loop,” in 2012 7th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 2012, pp. 493-494.

[5] R. Codd-Downey and M. Jenkin, “Rcon: Dynamic mobile interfaces
for command and control of ros-enabled robots,” in 2015 12th Interna-
tional Conference on Informatics in Control, Automation and Robotics
(ICINCO), vol. 02, 2015, pp. 66-73.

[6] J. Kobylarz, J. J. Bird, D. R. Faria, E. P. Ribeiro, and A. Ekdrt,
“Thumbs up, thumbs down:non-verbal human-robot interaction through
real-time emg classification via inductive and supervised transductive
transfer learning,” Journal of Ambient Intelligence and Humanized
Computing, vol. 11, no. 12, pp. 6021-6031, December 2020. [Online].
Available: https://publications.aston.ac.uk/id/eprint/41366/

[71 W. Ke, W. Li, L. Ruifeng, and Z. Lijun, “Real-time hand gesture
recognition for service robot,” in 2010 International Conference on
Intelligent Computation Technology and Automation, vol. 2, pp. 976—
979.

[8] E. C. E. Vidal and M. M. T. Rodrigo, “Hand gesture recognition
for smartphone-based augmented reality applications,” in Virtual, Aug-
mented and Mixed Reality. Design and Interaction, J. Y. C. Chen and
G. Fragomeni, Eds. Cham: Springer International Publishing, 2020,
pp. 346-366.

[9]1 R. L. Williams, “Baxter humanoid robot kinematics - ohio university,”
Apr 2017. [Online]. Available: https://www.ohio.edu/mechanical-
faculty/williams/html/PDF/BaxterKinematics.pdf

[10] Wesgood, “Wesgood/rbsmanager: A swift library for connecting to
ros using rosbridge and websockets,” Jan 2018. [Online]. Available:
https://github.com/wesgood/RBSManager

[11] Hanleyweng, “Hand gesture recognition.” Oct 2017. [Online]. Avail-
able: https://github.com/hanleyweng/Gesture-Recognition-101-CoreML-
ARKit

443

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 19,2022 at 13:36:57 UTC from IEEE Xplore. Restrictions apply.

