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a b s t r a c t 

Dilated convolution kernels are constrained by their shared dilation, keeping them from being aware of 

diverse spatial contents at different locations. We address such limitations by formulating the dilation as 

trainable weights with respect to individual positions. We propose Adaptive Dilation Convolutional Neural 

Networks (ADCNN), a light-weighted extension that allows convolutional kernels to adjust their dilation 

value based on different contents at the pixel level. Unlike previous content-adaptive models, ADCNN 

dynamically infers pixel-wise dilation via modeling feed-forward inter-patterns, which provides a new 

perspective for developing adaptive network structures other than sampling kernel spaces. Our evalua- 

tion results indicate ADCNNs can be easily integrated into various backbone networks and consistently 

outperform their regular counterparts on various visual tasks. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

Convolutional kernels are critical components for Convolutional 

Neural Networks (CNNs), which have been dominant approaches 

for majority of computer vision tasks in recent years [1] . Their 

power relies on the ability of hierarchically representing spatial 

features over input regions called Receptive Fields (RFs), by stack- 

ing a number of convolutional layers into deep structures [2] . 

Nowadays, among common practices for designing CNN architec- 

tures, which usually prefer large RFs in order to achieve supe- 

rior performances, Dilated Convolutional Kernels (DCKs) serve as 

a popular choice not only because of their simplicity, but also ef- 

fectiveness [3,4] . Unlike their conventional equivalents, DCKs are 

able to exponentially enlarge RFs without increasing kernel sizes. 

CNN models with dilated kernels also report the impressive results 

on fundamental tasks such as semantic segmentation [4] . More- 

over, DCKs perform well in some more specific tasks such as ob- 

ject detection with mutil-model [5] , demonstrating significant per- 

formance gain by employing dilated convolutional kernels. 

To further improve the dilated kernels, two obvious problems 

that universally reside in most of existing dilated CNN structures 
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need to be properly tackled: fixed RF sizes and manually selected 

dilation range. First, the dilation value for a convolutional layer 

is shared across all pixels, which means that every output loca- 

tion has the same size of RF. However, this could be very counter- 

intuitive: sizes of Region of Interest (ROIs) usually vary dramati- 

cally over different positions, and thus, sizes of RFs are also ex- 

pected to be adjusted accordingly to encode diverse spatial infor- 

mation. Therefore it is reasonable to believe a monosized RF across 

every position is hard to capture such enormous intra and inter 

sample diversities especially for large-scale, high-resolution image 

datasets. 

Second, the mainstream approaches of selecting a dilation value 

is mainly feature-independent; for each dilated convolution layer, 

we need to specify dilation values arbitrarily before it can be in- 

tegrated into the base structure. This usually requires a strong 

domain knowledge about input and output contexts for hand- 

crafting; and for many specific tasks, there is no clear guidance 

available for selecting proper dilation values in practice. In re- 

cent years, deformable convolutional neural networks [6,7] have 

been proposed to enhance the transformation modeling capabil- 

ity of CNNs by augmenting the spatial sampling locations in the 

modules with additional offsets and learning the offsets from the 

target tasks. However, they set a small value such as 1 for offset 

as the upper bound, which means that it usually needs to stack 

deformable convolutional layers to enlarge the RFs and get better 

performance. On the other aspect, if we choose a larger value as 

the upper bound of the offset, it will degenerate the deformable 
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Fig. 1. Comparison of regular and pixel-wise adaptive dilation. Different colors stand for different dilation. 

convolutional layer into an attention mechanism due to some in- 

correct focus on minute details due to deformable convolution en- 

dows flexibility to the kernel, and the flexibility is enhanced with 

the increase of the offset, which makes learning a proper offset 

need either a well-prepared dataset or an adequate training pro- 

cess. 

In this paper, we answer the above challenges by combining the 

dilation selection with conventional CNN modules and incorporat- 

ing them into a unified data-driven framework. We propose Adap- 

tive Dilation Convolutional Neural Networks (ADCNN), a simple yet 

powerful extension for general DCKs, which treats dilation values 

as learnable weights and can be jointly optimized with other CNN 

weights in an end-to-end fashion. As shown in Fig. 1 , in the newly 

formulated ADCNN kernels, dilation is learned to change at differ- 

ent input positions to reflect input spatial diversity, resulting in dy- 

namic RFs with irregular shapes in a single layer. In practice, there 

are two major difficulties to overcome. 

How to decide the dilation value online . We handle this by re- 

garding the dilation as a function of input at individual pixels. 

More specifically, the function samples dilation values through cer- 

tain probability distributions that are conditioned by pixel-wise in- 

put features. To solve non-differentiable nature of general sampling 

process, we approximate it by employing Gumbel-Softmax [8] as a 

differentiable estimation to keep ADCNN end-to-end trainable. 

What are proper dilation values for inputs . Since there is no 

clear explanation on how network layers work, we believe that 

it still remains an open question and can only be answered 

with valid hypotheses. For ADCNN kernels, we make the assump- 

tion that dilation values are related to inter-layer patterns be- 

tween convolution layers due to their hierarchical nature. In such 

cases, RF size at each location is adjusted based on informa- 

tion flows between corresponding inter-layer pixels during forward 

propagation. 

Following the strategies described above, ADCNN-kernels evolve 

into light-weighted modules that can be easily plugged into vari- 

ous CNN architectures. Moreover, sampling dilation space through 

inter-layer pattern modeling also demonstrate that adaptive net- 

works can be achieved in a simpler manner without engaging high 

dimensional spaces. We evaluate the proposed ADCNNs via several 

fundamental tasks including large-scale, fine-grained visual classi- 

fication, semantic segmentation and optical flow estimation. More- 

over, several ablation studies are performed to examine various 

properties of ADCNNs. Our experimental results indicate in most 

cases ADCNNs are able to consistently yield better performances 

across various popular backbone architectures with trivial cost. 

The rest of this paper is organized as follows. We review 

relevant literature in Section 2 , then ADCNNs are elaborated 

in Section 3 . Sections 4 –6 demonstrate experimental results. 

Section 7 concludes the proposed method and discusses the lim- 

itations and future work. 

2. Related work 

2.1. Content-adaptive networks 

This research direction is focused on building dynamic internal 

structures via data-driven approaches to better leverage larger spa- 

tial variations from inputs. A set of related techniques tend to de- 

velop differentiable approximations for traditional image-adaptive 

filters and integrate them as end-to-end trainable layers for CNN 

models. For example, Liang et al. [9] proposed Spatio-Temporal 

adaptive and Channel selective Correlation Filters (STCCF) for ro- 

bust tracking. Zhang et al. [10] introduced their learning modu- 

lation filter networks (LMFNs) to improve detection performance. 

These approaches conduct content-adaptive enhancements in sep- 

arate layers without interacting with convolution kernels. Another 

set of techniques propose the idea of directly generating kernel 

weights based on layer inputs and extend it with attention mech- 

anism as well as other task-specific improvements. For example, 

Jia et al. [11] proposed the Dynamic Filter Network, where filters 

are generated dynamically conditioned on an input in a sample- 

specific way; Su et al. [12] proposed a pixel-adaptive convolu- 

tion (PAC) operation in which the filter weights are multiplied 

with a spatially varying kernel that depends on learnable, local 

pixel features; Wu et al. [13] proposed a dynamic filtering strategy 

with large sampling field for ConvNets (LS-DFN) to learn dynamic 

position-specific kernels and takes advantage of very large recep- 

tive fields and local gradients. Besides, there are some researches 

focus on how to effectively enlarge receptive fields (RFs) in order to 

achieve better performance. Zhen et al. [14] used two affine trans- 

formation layers to operate feature maps, so the RFs in the follow- 

ing layers will be changed accordingly. Shelhamer et al. [15] in- 

troduced their free-form filters and structured Gaussian filters to 

optimize the RFs. However, most of them rely on additional mod- 

ules with large kernel sizes, being incapable of scaling up to more 

general structures. 

2.2. Dilated convolutional networks 

Comparing to the above approaches to build content-adaptive 

networks, dilated convolution kernels [3] , which support exponen- 

tial expansion of the receptive field without loss of resolution or 

coverage, become a popular choice as it can exponentially increase 

RF sizes while maintaining small kernel sizes. Various works ben- 

efit from this characteristic. For example, Li et al. [16] proposed 

an end-to-end learning framework for monocular depth estimation 

using dilated convolution and hierarchical feature fusion to learn 

the scale-aware depth cues. Wang et al. [17] constructed a new 

learning architecture using the dilated convolutional residual net- 

work to generate high-frequency details and eliminate color dis- 

crepancies for ensuring visual consistency in the completed im- 
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Fig. 2. Overview of a ADCNN kernel. 

age. Chen et al. [18] designed location-aware multi-dilation mod- 

ule (LAMD) in the classifiers for robust detection. However, dilated 

convolutional kernels could also lead to negative impacts, such as 

sparsity and “gridding” effect [4] . Unlike static RFs produced by di- 

lation, in recent years, a new kind of dynamic convolutional net- 

work, which is Deformable Convolutional Networks [6] , has been 

proposed to enhance the transformation modeling capability of 

CNNs. Based on the idea of augmenting the spatial sampling lo- 

cations in the modules with additional offsets, Deformable Convo- 

lutional kernels learn such offsets from the target tasks, without 

additional supervision. Later, Zhu et al. [7] proposed a reformula- 

tion of Deformable ConvNets that improves its ability to focus on 

pertinent image regions. However, most of them rely on sufficient 

training data and the training pattern will be different from the 

original backbone network. 

3. Pixel-wise adaptive dilated convolution 

Now we elaborate the proposed approach for extending con- 

ventional dilated convolution kernels into ADCNN kernels. Without 

loss of generality, we assume all the convolutions in the rest of this 

paper are 2D operations. Suppose we are considering the (l − 1) -th 

layer, whose input is X l−1 with X l−1 ∈ R w 
l−1 ×h l−1 

. w l−1 , h l−1 are the 

width and height of the input x l−1 respectively. K W ;d is a dilated 

convolutional kernel with dilation value d and weights W . The out- 

put of convolution between K and X is 

Y 
l 
i, j = 

K ∑ 

m =0 

K ∑ 

n =0 

w m,n × X 
l−1 
i + d m, j + d n 

(1) 

where K is the kernel size and i, j are coordinates for dimensions 

w and h , respectively. Apparently, d is a constant variable indepen- 

dent to i and j. Our goal is to convert d into a function D i, j such 

that the output of D i, j could be aware of location-specific contents. 

More specifically, we treat D i, j as an inference process that gener- 

ates dilation values by sampling from position-dependent hidden 

distributions. Fig. 2 sketches the basic idea of a ADCNN kernel. 

3.1. Dilation inference 

Sampling dilation values directly from categorical distributions 

is straightforward. However, gradients are unable to backpropagate 

through sampled nodes in such cases, making the entire training 

process intractable. Inspired by [19] , we employ Gumbel-Softmax 

(GS) [8] as D i, j to approximate the inference of discrete dilation 

values. Suppose that there are D valid options for dilation value, 

and d i, j ∈ [0 , 1] D is the estimation of one-hot vector that corre- 

sponds to the dilation value at position (i, j) , then sampling d i, j ∼

GS (h i, j ) can be achieved by 

d i, j = D i, j (h ) = 
exp ((h i, j + g i, j ) /τ ) 

∑ 
exp ((h i, j + g i, j ) /τ ) 

(2) 

where 
∑ 

means summation of all tensor elements here; h , h i, j 

are content-related hidden priors and their subtensors at each po- 

sitions, respectively; g i, j ∈ R D are i.i.d. samples drawn from the 

Gumbel (0 , 1) distribution and τ controls how much the GS is close 

to a true categorical distribution. 

3.2. Hidden prior generation 

As mentioned in Section 1 , we believe dilation adaptation 

should be governed by feature hierarchy, hence build up our di- 

lation inference mechanism upon inter-layer pattern modeling to 

capture dependencies between abstraction levels. We consider ag- 

gregation as a feasible way and will generate hidden priors h 

through sequentially aggregating multiple Y from hierarchical lay- 

ers. Let l denote the newly added layer index, there are several 

aggregation options for inter-layer patterns modeling. 

Recurrent Aggregation. A straightforward way for sequential ag- 

gregation can be written as 

h 
l 
i, j = f (W 

l 
h h 

l−1 
i, j + U 

l 
h Y 

l−1 
i, j ) (3) 

where W l 
h 
and U l 

h 
are 1 × 1 kernels weights with output channel of 

D ; f (·) is a non-linear activation function. In this case, h l 
i, j 

contin- 

uously accumulates information from each layer as l goes deeper, 

implying layers are highly dependent on each other to mutually 

decide proper RF sizes. 

Gated Aggregation. To model inter-layer pattern smarter, we in- 

troduce a gate variable a l 
h 
to modulate information from each layer 

in a data-driven manner. We use a similar way to [20] for com- 

puting a l 
h 
, with which the entire aggregation can be formulated as 

following 

h 
l 
i, j = f (a l h ◦ (W 

l 
h h 

l−1 
i, j ) + (1 − a l h ) ◦ (U 

l 
h Y 

l−1 
i, j )) (4) 

a l h = σ (W 
l 
a h 

l−1 
i, j + U 

l 
a Y 

l−1 
i, j ) (5) 

where σ (·) is the sigmoid activation and ◦ means element-wise 

multiplication. In this way, layers are not strictly dependent on 

their hierarchical order and will impact dilation sampling in a 

more complicated way. 
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Markov Aggregation. An important extreme case of Recurrent 

Aggregation, Markov Aggregation sets the kernel weights W l 
h 
from 

Eq. (3) to 0 . 

h 
l 
i, j = f (U 

l 
h Y 

l−1 
i, j ) (6) 

Similar to the Markov model [21] , this means RF sizes are dom- 

inated by the last layer. No other inter-layer patterns need to be 

aggregated for multiple hierarchical layers. 

3.3. Dilation adaption vs. kernel adaption 

To better understand advantages of proposed adapted dilation, 

it is worth comparing ADCNN with other related approaches. Re- 

cently, there are several works [7,13] also targeting on learning dy- 

namic kernels based on different input contents. We give their ap- 

proaches a unified name called kernel adaption, since they achieve 

content-awareness via directly manipulating the kernel space. For 

example, the modulated deformable convolution [7] can be ex- 

pressed as 

y (p) = 

K ∑ 

k =1 

w k · x (p + p k + �p k ) · �m k (7) 

where x is the input feature map and y is the output feature map 

at location p. �p k and �m k are the learnable offset and modula- 

tion scalar for the k -th location, respectively. This method changes 

the shape of convolutional kernel by using the offsets and learn- 

ing these offsets from the target task. More specifically, kernel 

adaption tends to learn a mapping function F such that W m,n = 

F m,n (X ) , where m and n are the pixel index of the convolutional 

kernel, respectively. 

Compared with kernel adaption, ADCNN kernels do so through 

a more indirect way of engaging dilation rate. Instead of kernel 

space, dilation function D sets the target on a dilation space, which 

contains all D possible dilation values. Theoretically, mapping in- 

puts to dilation space rather than kernel space could have several 

benefits. 

Low dimensional vs. high dimensional complexity. It is easy to 

see from previous discussions that the dimension of dilation space 

equals to the number of all dilation options D , while kernel space 

needs to keep a dimension of C l−1 × C l such that it can be con- 

sistent with input and output channel size. Practically speaking, 

there is no need to keep a large group of dilation candidates due to 

their ability of exponentially enlarging RFs [3,4] . Meanwhile, chan- 

nel size usually increases dramatically as network goes deeper in 

order to capture more complicated high level abstractions. These 

facts make D significantly smaller than C l−1 ×C l and leads to an 

easier learning process with less need of worrying about feature 

sparsity. Besides, low dimensional complexity also allows ADCNN 

kernels to be deployed to a wider level range of layers. 

Dilation space sharing vs. kernel space orthogonality. Basically, 

kernel adaption generates kernel values using a single function for 

a convolution layer. So generated kernels could be highly corre- 

lated with each other. However, recent work [22] indicates spaces 

regularized by orthogonality constrains lead to better results and 

more stable training process. Therefore, it is hard to balance kernel 

generation and space orthogonality at the same time. Unlike ker- 

nel adaption approaches, ADCNNs mainly rely on dilation spaces, 

which are not only separated from individual kernel spaces but 

also can be shared by all convolution layers of a CNN. This means 

inter-layer patterns are easier to be carried over multiple layers 

and are able to be more coherently propagated into deeper layers 

through shared dilation space. Thus compared to kernel adaption, 

it is expected that ADCNN kernels could be aware of different in- 

put contents without interfering the orthogonality among kernel 

spaces. 

4. ADCNNs For semantic segmentation 

Since the proposed ADCNN module is highly related to RF adap- 

tation, dense prediction tasks could be ideal to test its effective- 

ness. Thus, we first evaluate ADCNNs through semantic segmenta- 

tion to explore their properties from various aspects. We will show 

that ADCNNs is designed for general purpose and can be applied to 

solve more problems in later sections. 

4.1. Default experimental configurations 

We implement ADCNNs with various backbone architectures via 

PyTorch library. In the following sections, unless otherwise speci- 

fied, we will employ VGG-16 [23] as backbone net and follow the 

same training protocol of FCN-8s [24] as task specific framework 

for evaluation. All ADCNN kernels will follow Markov Aggregation 

with three available dilation options { 1 , 2 , 4 } ( D = 3 ). And the τ
of GS is set to 10 0 0 by default to generate a smooth distribution. 

The default dataset is Pascal VOC 2012 [25] and we report mean 

Intersection over Union (mIoU) on its validation set as evaluation 

results. All the models will be optimized via Adam optimizer. 

4.2. Feature level study 

In this section, we conduct several experiments to answer the 

question: Which convolution level is suitable for ADCNN kernels? 

For example, considering the convolution blocks, conv3, conv4 and 

conv5, of a VGG-16 backbone network, if either one is evolved into 

ADCNN kernel, then which one can yield largest RF on the top 

layer (conv5-3 in this case) after training? Although for static dila- 

tion, RF size of conv5-3 should be the same no matter which block 

is dilated, this might not hold for ADCNN kernels with multiple di- 

lation candidates, since dilation values are subject to various level 

of sensitivities due to hierarchical representations. To confirm this, 

we investigate several cases including both individual and com- 

bined ADCNN kernels. 

Table 1 summarizes the mIoU for different cases. When only 

one block is modified, mIoU increases when the feature level for 

ADCNN changes from low to high. This matches our expectation 

that ADCNN kernels for higher level features perform better than 

ADCNN kernels in lower level, as low-level ADCNN kernels are 

more sensitive to local variances and tend to focus on capturing in- 

formation in a smaller region; while high-level kernels are usually 

related to complicated and abstract concepts, leading them to be 

more responsive for larger input regions. To further support such a 

claim, we visualize both RFs and Effective RFs (ERFs) [2] for a ran- 

domly picked image and put them along with their segmentation 

results in Fig. 3 . As we can see, both RFs and ERFs continuously 

expand their sizes as feature level for ADCNN goes higher; mean- 

while, visually better segmentation results can be achieved with 

larger RFs and ERFs. This provides us a supportive example that 

encourages ADCNN extension for higher feature level in practice. 

Besides, we also test several cases of combining multiple ex- 

tended blocks into more complicated ADCNN architectures (the 

Table 1 

mIoU for feature level study. σ 2 (d i, j ) is variance of pixel dilation sam- 

pling. 

Method conv3 conv4 conv5 σ 2 (d i, j ) mIoU 

Vanilla - - - - 64.7 

ADCNN � 1 . 96 × 10 −4 63.9 

� 1 . 84 × 10 −4 64.7 

� 4 . 01 × 10 −6 66.5 

� � 2 . 45 × 10 −4 65.4 

� � 1 . 24 × 10 −4 66.1 

� � � 1 . 93 × 10 −4 65.9 
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Fig. 3. The top row indicates the input image and its visualized RFs and ERFs on conv5-3 layer of LSD-VGG16 with different conv blocks modified. Patches means RFs and red 

dots inside are ERFs. The bottom row shows the ground truth and corresponding segemtation results. GT stands for groundtruth. conv3 &4& 5 means “conv3+conv4+conv5”. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Mathematical expectation of dilation sampling at each pixel for individual sub-layers (from left to right: conv5-1 to conv5-3). Brighter color means higher dilation 

and vise versa. The input is the same as the one in Fig. 1 . 

Table 2 

Aggregation study on different backbones. 

Task Semantic Segmentation 

Backbone VGG-16 ResNet-101 

Vanilla Non-Aggregation 64.7 75.1 

ADCNN Markov Aggregation 66.5 77.2 

ADCNN Gated Aggregation 65.5 76.7 

ADCNN Recurrent Aggregation 65.3 75.6 

last three lines of Table 1 ). To our surprise, stacking additional 

ADCNN-blocks may result in inferior performances to single block 

even with better ERF. This indicates it will increase the burden of 

the model to identify positive and negative features due to the 

too large RF. We further investigate possible explanations by cal- 

culating the variances of dilation sampling for each case. We find 

performances always decrease when conv5 is combined with more 

ADCNN-blocks, along with notable variance increments. Such in- 

crements brought by additional sampling might be the reason for 

performance downgrading as they produce some extra burden to 

the convergence of the dilation sampling process. 

4.3. Pattern aggregation study 

Now we focus on studying the impacts brought by each pattern 

aggregation strategy described in Section 3.2 . As suggested from 

Section 4.2 , we only extend the conv5 block of a VGG-16 backbone 

into ADCNN kernels to avoid too much dilation sampling. All three 

(conv5-1, conv5-2 and conv5-3) sub-layers are upgraded with AD- 

CNN kernels and connected as each aggregation asks. We also in- 

clude ResNet-101 [26] combined with DeeplabV3+ [27] as an addi- 

tional backbone to see if skip connections may result in different 

impacts. 

The results are concluded in Table 2 . Basically, all three strate- 

gies have better results than backbone networks. However, for both 

cases Markov Aggregation always yields a better result than other 

two options. To further dig up the roots behind such phenomenon, 

in Fig. 4 , we calculate and visualize the mathematical expectations 

at each pixel for all three sub-convolution layers of ADCNN-VGG16. 

According to the visualization results, we can find that the borders 

of feature maps are given a large dilation ratio for all patterns. The 

image in the border area contains little information as the main 

object of the image usually appears in the central area of the im- 

age. This suggests that the kernels in the boundary area are more 

inclined to use a large dilation value to obtain more effective infor- 

mation. Moreover, for those convolution kernels which are closer 

to the center area, they gradually start to touch the target object. 

In addition to learning the features of the object, some of they also 

need to learn the boundary information of the object. Therefore, 

they are more likely to choose a smaller dilation value to achieve 

a better focusing effect. Meanwhile, we can see that during the 

streaming from conv5-1 to conv5-3, ADCNN with Markov Aggre- 

gation is more likely to choose larger dilation everywhere without 

carrying spatial patterns of input; while both Gated and Recurrent 

Aggregation are more willing to adjust RF sizes according to spatial 

structures from input and reserve some spatial clues for dilation 

sampling. In such cases, information aggregated by lower level fea- 

tures could be too local-sensitive, forcing next layer to put its RF in 

a smaller region in order to capture such local variations. Thus, our 

results for semantic segmentation indicate Markov Aggregation is 

the best option among the three without overly aggregating inter- 

layer patterns. 

4.4. Dilation boundary determination 

In this section, we aim to figure out if ADCNN kernels are able 

to learn a proper range of actually sampled dilation, or they tend 

to always pick the maximal available dilation value as more op- 

tions are available. We setup experiments for comparing mIoUs of 

a VGG-16 backbone with one, two and three available dilation op- 

tions for their conv5 blocks, respectively. Based on the discussion 

in Section 4.3 , we only consider the cases with Markov Aggrega- 

tion to get rid of impacts from multiple inter-layer patterns. Other 

settings remain default. 

5 
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Fig. 5. Activation maps for ADCNNs with different number of dilation options. 

Table 3 

Ablation study of dilation boundary determination 

on conv5 of FCN-8s. 

dilation = 1 dilation = 2 dilation = 4 mIoU 

� 64.7 

� � 66.2 

� � � 66.5 

Our results are shown in Table 3 , where we gradually increase 

the available dilation options based on their values from top to 

bottom and compare the changes of mIoU. Note that the case with 

the single dilation value 1 is identical to a vanilla backbone net- 

work. Apparently, there is a significant performance boost as the 

number of dilation options is increased from one to two. However, 

the third dilation option only brings a minor improvement. This 

suggests that major performance gain is brought by the second one 

with value 2. We also visualize the output of ADCNN blocks with 

a randomly picked input for each case in Fig. 5 . We can see when 

options are increased from one to two, a large amount of extra 

neurons are activated. However, such a number of additional ac- 

tivated neurons is significantly dropped when options increase to 

three. This means more dilation options may not further improve 

the performance, as ADCNN can automatically decide the best di- 

lation boundary without worrying about overlarge candidates. And 

the selection set of dilation values in subsequent experiments is 

set to three options based on this finding. 

4.5. Performance boosting for backbone architectures 

Finally, we verify ADCNNs can be easily combined with various 

popular base architectures to further improve their performance. In 

addition to VGG-16, we also employ another four representative ar- 

chitectures, ResNet-101 [26] , Dilated Residual Networks (DRN) [4] , 

Xception [32] and MobileNet-v2 [33] , as additional backbone nets. 

We combined these base structures with FCN [24] and Deeplabv3+ 

[27] framework and evaluate them on Cityscapes [34] , a more chal- 

lenging dataset. 

We report mIoUs for each backbone network and correspond- 

ing ADCNN in Table 4 , respectively, along with other state-of-the- 

art results for comparison. From these results we can see ADCNNs 

could always yield better results for every backbone structure on 

both datasets, exhibiting strong robustness and versatility. We also 

visualize part of segmentation results in Fig. 6 , which coincides 

with mIoU that ADCNNs have more correctly labeled pixels and 

more details preserved. And the results on class Iou of Cityscapes 

is shown in Table 5 . 

5. ADCNNs for image classification 

In this section, we demonstrate that the proposed ADCNNs are 

not only suitable for dense prediction tasks such as semantic seg- 

mentation, but also available for more general applications. More 

specifically, two fundamental tasks, large-scale and fine-grained 

image classification will be performed to evaluate the performance 

of ADCNNs with several backbone architectures. We show that AD- 

CNNs can constantly yield better results than their regular counter- 

parts with little extra costs. 

5.1. Large-scale image classification 

As an important yet challenging work, large-scale image clas- 

sification usually requires a CNN model with more layers in or- 

der to achieve better performances. Unfortunately, it also makes 

the model significantly increase its model size. We believe ADC- 

NNs could properly address such limitations as light-weighted ex- 

tensions for their base nets, with better performance and similar 

training efficiency. To prove this, we select six popular CNN archi- 

tectures, VGG-16, ResNet-50, ResNet-101, Wide-ResNet101-2 [35] , 

DRN-C-26 and MobileNet-v2, as backbone nets and run experi- 

ments on ILSVRC-2012 dataset [36] . Similar to segmentation ex- 

periments, we only consider Markov Aggregation in the following 

experiments since our pilot studies indicate it always yields better 

results. 

We report both top-1 and top-5 classification accuracies for ev- 

ery pair of vanilla and ADCNN in Table 6 , along with the compari- 

son of their model complexity changes. Considering the millions of 

Table 4 

Semantic Segmentation Experiments on validation sets of VOC 2012 and Cityscapes. 

Pascal VOC 2012 Cityscapes 

Method 

mIoU 

Method 

mIoU 

regular ADCNN regular ADCNN 

SSDD [28] 64.9 - Multiscale DEQ [29] 80.3 - 

VGG-16 + FCN-32s 62.8 65.1 RepVGG-B2 [30] 80.6 - 

VGG-16 + FCN-8s 64.7 66.5 OCR(ResNet-101-FCN) [31] 80.6 - 

ResNet-101 + Deeplabv3+ 75.1 77.2 MobileNetv2 + Deeplabv3+ 70.3 71.5 

Xception + Deeplabv3+ 73.5 74.4 Xception + Deeplabv3+ 77.5 79.0 

DRN-D-54 + Deeplabv3+ 75.4 77.2 ResNet-101 + Deeplabv3+ 80.1 80.7 
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Fig. 6. Semantic segmentation results on Cityscapes dataset. 

Table 5 

Performance of ADCNN-ResNet-101 on the Cityscapes validation set. 

Backbone road sidewalk building wall fence pole light sign vegetation terrain 

ADCNN-ResNet-101 0.984 0.867 0.934 0.610 0.654 0.668 0.737 0.817 0.930 0.653 

ResNet-101 0.983 0.860 0.931 0.625 0.638 0.648 0.726 0.801 0.929 0.659 

Backbone sky person rider car truck bus train motorcycle bicycle mIoU 

ADCNN-ResNet-101 0.954 0.840 0.674 0.956 0.810 0.919 0.808 0.722 0.796 0.807 

ResNet-101 0.953 0.833 0.658 0.953 0.797 0.912 0.815 0.720 0.787 0.801 

Table 6 

Accuracies for large-scale image classification on ILSVRC 2012 and corresponding model complexities. p# means 

model size and �p# is the number of weights introduced by ADCNNs; ( �p#)/(p#) is the percentage of model 

size that ADCNNs have increased. 

Metric Accuracy ( % ) Model Complexity 

Backbone 

Top@1 Top@5 

p# �p# ( �p#)/(p#) (%) 
Regular ADCNN Regular ADCNN 

VGG-16 73.0 74.5 91.2 92.0 138M 21K 0.016 

DRN-C-26 75.1 75.9 92.4 92.6 21.1M 4K 0.019 

MobileNetV2 71.8 72.6 91.0 90.8 3.5M 2.7K 0.078 

ResNet-50 76.0 76.9 93.0 93.4 25.5M 1K 0.004 

ResNet-101 78.3 78.8 94.0 94.2 178.2M 116.7K 0.066 

Wide-ResNet101-2 78.8 79.1 94.3 94.4 507.5M 233.5K 0.046 

parameters that backbone models contain, several thousand extra 

weights introduced by ADCNN kernels are trivial burdens regard- 

ing total model complexity. Meanwhile, we can observe around 1% 

improvement of top-1 accuracies for each ADCNN and slight top- 

5 accuracy improvements for most cases, suggesting new modules 

with less than 0 . 1% size overhead bring 10 times of performance 

boosting. This provides us a strong evidence to demonstrate the ef- 

ficiency of ADCNNs for large-scale classification problem. Besides, 

the training curves shown in Fig. 7 also confirm that ADCNNs have 

very similar or even quicker learning progresses to their conven- 

tional counterparts, indicating additional introduced weights don’t 

cost extra training iterations to converge. 

5.2. Fine-grained image classification 

Unlike general classification problem, fine-grained task puts a 

special emphasis on mining subtle discriminative information in 

order to recognize objects from different sub-categories. In this 

section we empirically demonstrate the proposed ADCNNs could 

properly handle such challenges via their dynamically dilated ker- 

nels. Meanwhile, we carry out some comparative experiments with 

a well-known kernel adaption method, Deformable Convolutional 

Neural Network [7] . We use all backbones from Section 5.1 ex- 

cept for VGG-16 due to its extremely huge size and initialize corre- 

sponding networks with their pretrained weights. Experiments are 

conducted on Stanford Cars [37] and FGVC-Aircraft [38] datasets 

following their default protocol with an input size of 448. 

All of our experimental results are summarized in Table 7 , 

where we compare the top-1 accuracy for each pair of ADCNN 

and its vanilla equivalent. We can observe that both of the adap- 

tion methods can make some contributes to the performance while 

ours can have higher increases for all backbone networks on both 

datasets, demonstrating ADCNNs are not only versatile to be in- 

tegrated into various backbone nets, but also competent to dis- 
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Table 7 

Top-1 Accuracy (%) for Fine-Grained Visual Classification on different databases with input size of 448. 

Task Stanford Cars FGVC-Aircrafts 

Backbone Regular Deformable ADCNN Regular Deformable ADCNN 

ResNet-50 89.9 92.8 93.3 87.9 89.4 90.1 

ResNet-101 90.9 91.6 91.7 88.5 89.3 89.6 

Wide-ResNet101-2 91.9 92.1 92.5 89.4 91.1 91.3 

DRN-C-26 90.1 91.1 92.4 86.8 87.2 89.7 

Fig. 7. The training curve of large-scale image classification using ADCNNs based 

on the VGG-16 and ResNet-50. 

tinguish subtle differences. Moreover, we also extract class activa- 

tion maps from trained DRN-C-26 networks using FGVC-Aircrafts 

dataset as shown in Fig. 8 . From the activation maps we can ob- 

serve that the activated area of our method is larger than the other 

two approaches. Meanwhile, the deformable convolution tends to 

put attention on central details. This might be caused by the flexi- 

bility of deformable convolutional kernels. During the training pro- 

cess, deformable convolutional kernels are updated based on the 

information from the loss function. As the dataset is fragmentary, 

the information will be limited and kernels are likely to put at- 

tention to some partial details. So adding some restrictions while 

enlarging the RFs, which is the proposed approach, can boost the 

training process. 

6. ADCNNs for optical flow estimation 

Besides semantic segmentation and image classification, we 

also demonstrate the proposed ADCNNs can perform well on other 

dense prediction tasks. We conduct experiments on optical flow 

estimation using the FlyingChairs dataset [39] , which consists of 

22,872 image pairs and corresponding flow fields. In our ex- 

periments, we use two variants of FlowNet introduced by [40] , 

Fig. 8. Class activation maps extracted from DRN-C-26 while we use test set of FGVC-Aircrafts dataset to generate these activation maps. ( 8 a) are the testing images from 

dataset. ( 8 b) are the activation maps based on the vanilla DRN-C-26 network. ( 8 c) are the activation maps based on the deformable convolutional network. ( 8 d) are the 

activation maps based on the our method. 
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Fig. 9. Optical Flow Estimation results on FlyingChairs. ( 9 a) are the ground truth images from the testing dataset. ( 9 b) are the estimation results based on the FlownetC 

and ( 9 c) are the estimation results based on the proposed method. 

Table 8 

Average End-Point-Error (aEPE) on FlyingChair dataset. 

Method aEPE Method aEPE 

FlowNetS [40] 2.78 FlowNetC [40] 2.19 

FlowNetS + SegAware [41] 2.36 FlowNetC + LS-DFN,s = 7 [13] 2.11 

FlowNetS + LS-DFN,s = 7 [13] 2.34 FlowNetC + LS-DFN,s = 9 [13] 2.06 

FlowNetS + Inception-v4 [42] 2.21 FlowNetC + Inception-v4 [42] 1.93 

FlowNetS + ADCNN 1.84 FlowNetC + ADCNN 1.71 

FlowNetS and FlowNetC, as baseline models. Both of them follow 

a similar process which firstly learns the semantic features of in- 

put images and then upsamples the features to estimate the optical 

flow. 

In experiments, we introduce ADCNN kernels at the convolu- 

tional layers before and after the image pairs are merged for both 

baselines. We use average End-Point-Error (aEPE) to quantitatively 

measure the performance of the optical flow estimation. As shown 

in Table 8 , ADCNN-enabled models further reduce aEPEs by a large 

margin compared to their regular counterparts, and significantly 

outperform state-of-the-art methods. In addition, qualitative re- 

sults such as generated samples of FlownetC are shown in Fig. 9 , 

where ADCNN gives better estimations than regular models. 

7. Conclusions and discussions 

In this paper we formulate the dilation as a learnable weight for 

convolution kernels such that its value can be dynamically decided 

during the running time. This leads to ADCNNs, a light-weighted, 

end-to-end trainable framework that allows their kernels to ad- 

just pixel-wise RFs in a data-driven manner. To infer proper dila- 

tion values based on feature hierarchy, we model inter-layer pat- 

terns via several sequential aggregation strategies. Our studies on 

semantic segmentation explore various properties of ADCNNs. Re- 

sults indicate better performance can be achieved with all three 

aggregation strategies when ADCNN kernels are with higher fea- 

ture levels, and dilation boundary can be learned to avoid overlarge 

RFs. We also demonstrate ADCNNs can consistently boost perfor- 

mances over several popular backbone architectures, and be a valu- 

able option for more general visual tasks such as large-scale and 

fine-grained image classifications. 

Although most of our experimetal results indicate ADCNNs 

could continuously improve the performance across multiple vi- 

sion tasks, we also observe two significant limitations that might 

Fig. 10. The sensitivity analysis on τ by performing semantic segmentation task on 

VOC 2012 validation set with three backbone nets. The mean and variance at each 

τ value are computed by repeating 5 times with same settings. 

be associated with the employment of GS in our current design. 

One of them is found during our sensitivity analysis ( Fig. 10 ) of 

τ , which is a hyper-parameter of GS. From the figure we can 

see both mean and variance of mIoU change significantly as the 

value of τ varies: larger τ values usually yield higher mean and 

lower variance. This suggests τ needs to be large enough in or- 

der to acquire good performance and stability. However, this also 

implies the dilation inference is more biased away from approxi- 

mating desired distribution. Thus, it becomes necessary to find a 

proper trade-off between theoretical properties and practical per- 

formance, which could be tricky under certain circumstances. Be- 

sides, the instability caused by GS also prevents ADCNN kernels 

from being deployed to more convolution layers. As reported in 

Section 4.2 , stacking more ADCNN blocks leads to increased dila- 

tion variance and downgraded performance. To reduce the insta- 

bility, we plan to explore the possibility of replacing GS with more 

deterministic, quantization-based techniques in the future. Also, as 

we discussed in Section 3.3 , exploring the inner-relationship be- 

tween kernel generation and space orthogonality and then propos- 
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ing a regularization method [43] to balance them is another in- 

teresting research direction. In addition to further research on the 

method itself, our method can also be applied to many real-world 

applications. As our method can boost the feature response capa- 

bility shown in Section 5.2 , the proposed method has the poten- 

tial to be applied in some scenarios, such as pedestrian detection 

which requires the model to have a strong feature discrimination 

ability [44] . 
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