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A B S T R A C T   

Conventional machine learning based predictive modeling methods require large volumes of training data; 
however, collecting large training data is very labor-intensive and expensive in real-world applications such as 
manufacturing. Therefore, small data is a common challenge for machine learning approaches. To address this 
issue, we introduce a meta domain generalization method and demonstrate its effectiveness for tool wear pre-
diction when a small set of training data are collected under different operating conditions. Domain general-
ization aims to generalize a machine learning model in a source domain to a target domain where there are small 
or no data. Meta-learning aims to optimize the initial hyper-parameters of a model for improving prediction 
accuracy. In this paper, we employ meta-learning to improve model pre-training for domain generalization for 
tool wear prediction. The proposed meta domain generalization involves three phases: source data split, meta- 
learning pre-training, and model fine-tuning. First, a training dataset from source domain is divided into pre- 
training and fine-tuning subsets based on the prior knowledge about target domain, i.e. the cutting condi-
tions, to address the domain shift problem. Then, meta-learning is used to optimize model pre-training to better 
adapt to fine-tuning subset and improve model fine-tuning. Finally, model fine-tuning is carried out to enhance 
model generalization to the target domain. We conduct extensive experiments and justify the approach. The 
results show that meta domain generalization can predict tool wear under different operating conditions accu-
rately with small data. We also find that data split optimization significantly affects the performance of meta 
domain generalization.   

1. Introduction 

Tool wear, mainly caused by plastic deformation and chemical re-
action between the tool and workpiece materials, occurs in machining 
processes such as turning, drilling, and milling [1,2]. A short tool life 
resulted from tool wear will lead to low productivity and unexpected 
machine downtime. For example, more than 40 cutting tools are 
required to manufacture a one-meter nickel-based superalloy blade [3], 
which is one of the difficult-to-machine materials. In addition, tool wear 
will lead to high surface roughness and even tool breakage during 
high-speed machining [4]. 

Tool wear falls into the following categories: flank wear, crater wear, 
notching, chipping, cracking, plastic deformation, and breakage. Flank 
wear and crater wear are the most common tool wear [1]. In this study, 
only flank wear in milling operations is investigated. Flank wear refers 
to the distance from the end of the abrasive wear on the flank face to the 

cutting edge of the tool, which is resulted from the interaction between a 
cutting tool and a workpiece [2]. Flank wear is usually used to evaluate 
tool life since it affects surface finishing and residual stresses [4]. To 
monitor tool wear, both direct and indirect methods have been devel-
oped [5]. Direct methods measure actual tool wear using a camera, 
micrometer, or displacement transducer. Indirect methods estimate tool 
wear by identifying the correlation between tool wear and indirect 
measurements such as cutting force, the vibration of the spindle and 
table, and the current of the AC/DC spindle motor. While it is straight-
forward to implement direct methods, tool wear can only be measured 
after the cutting tool is removed from machine tools. Therefore, direct 
methods cannot be used to predict tool wear in real time [6]. 

Indirect methods such as data-driven and model-based tool wear 
prediction methods have been developed over the past few decades [7]. 
Model-based methods build an analytical model of tool wear based on 
the underlying physics of wear mechanisms. Model-based methods have 
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two limitations. First, certain probability distributions (e.g. normal or 
gamma distribution) must be assumed. Secondly, the fundamental 
physics-based models causing tool wear are required [3]. Data-driven 
methods use machine learning algorithms such as random forest and 
artificial neural networks to train predictive models of tool wear based 
on various sensor data acquired by acoustic emission (AE), vibration, 
current, and audio sensors [8,2,6]. Although existing model-based and 
data-driven methods are effective in predicting tool wear under fixed 
operating conditions, few methods can predict tool wear with a small set 
of training data under different operating conditions (e.g. feed rate, 
depth of cut, and workpiece materials). This is because a predictive 
model trained with conventional machine learning algorithms under 
one operating condition is usually not generalizable to another oper-
ating condition, especially when the training dataset is small. 

To address these issues, we introduce a novel meta domain gener-
alization (MDG) approach to predict tool wear with a small amount of 
training data collected under complex cutting conditions such as feed 
rate, depth of cut, and workpiece materials. The proposed approach is 
developed based on two techniques, i.e. domain generalization and meta 
learning. Domain generalization aims to generalize a machine learning 
model in a source domain to a target domain where there is small or no 
training data. It should be noted that domain generalization is different 
from transfer learning. Transfer learning generalizes models from the 
source to the target domain by leveraging a small amount of training 
data in the target domain, whereas domain generalization generalizes 
models from the source to the target domain without any training data in 
the target domain. In other words, domain generalization is a more 
difficult problem than transfer learning. In this study, domain general-
ization alone is ineffective for tool wear prediction because only a small 
amount of training data is available. Hence, to improve prediction 
performance, we propose to employ meta learning to optimize the initial 
parameters or hyper-parameters of a domain generalization model. We 
call this combined approach meta domain generalization (MDG). 

The MDG approach consists of three steps: source data split, meta 
learning, and model fine-tuning. Initially, a training dataset is divided 
into two subsets of source data, i.e. pre-training and fine-tuning subsets, 
based on cutting conditions to address the domain shift problem. Then, 
meta learning is used to optimize pre-training. Finally, model fine- 
tuning is performed with the fine-tuning subset to improve model 
generalization in the target domain. 

The remaining of this paper is organized as follows. Section 2 sum-
marizes the related work on tool wear prediction and domain general-
ization. Section 3 presents the MDG approach. Section 4 introduces the 
experimental setup, data preprocessing, and error metrics. Experimental 
results are presented in Section 5. Section 6 draws the conclusions and 
presents future work. 

2. Related work 

2.1. Tool wear prediction 

With advances in sensing and machine learning technologies, data- 
driven predictive modeling techniques have been increasingly used to 
predict tool wear in various machining processes [6]. Zheng et al. [9] 
proposed an approach to estimate the remaining useful life (RUL) of 
milling tools using long short-term memory. The proposed approach was 
able to achieve a root mean square error of 2.8. Wu et al. [10] imple-
mented a parallel random forests algorithm on the cloud to predict flank 
wear in high speed milling. The parallel random forests trained a pre-
dictive model on the condition monitoring data (i.e. AE, cutting force, 
and vibration). Experimental results have demonstrated that parallel 
computing was able to improve training efficiency. Aghazadeh et al. 
[11] developed a tool wear predictive model using convolution neural 
networks. Wavelet transform and spectral subtraction were used to 
extract features from spindle current signals. The predictive model 
achieved an average accuracy of 87.2% and a root mean square error of 

0.088. Yu et al. [12] proposed a predictive modeling scheme to estimate 
the tool wear in milling operations utilizing bidirectional recurrent 
neural network based encode-decorder (BiRNN-ED). A health index (HI) 
library was first constructed by learning the run-to-fail knowledge using 
a linear regression model. Then tool wear was estimated by comparing 
the HI library and the HI values of test data learned by the BiRNN-ED. 
The BiRNN-ED was able to predict the tool wear more accurately 
compared with Generative Path Model and long-short term memory 
encoder–decoder. Li et al. [13] developed a data-driven approach to 
classifying tool wear conditions in the milling process. Multi-channel 
audio signals were used to train a predictive model by an extended 
convolutive bounded component analysis and a multivariate syn-
chrosqueezing transform. Experimental results have shown that the 
predictive model trained based on filtered audio signals was able to 
classify tool wear conditions with high accuracy. While these machine 
learning-based techniques are effective in predicting tool wear with 
in-domain data where training and test data are collected under the 
same cutting condition, few methods are effective in predicting tool 
wear with out-of-domain data where training and test data are collected 
under different cutting conditions. This issue is primarily due to the 
domain shift between two operating conditions. Conventional machine 
learning algorithms are very effective if all raw data follow one distri-
bution, which refers to in-domain problems. However, when data are 
collected from two different operating conditions, their distributions are 
usually different, which is a challenging out-of-domain problem. 
Therefore, conventional machine learning algorithms for tool wear 
prediction are usually not generalizable to varying operating conditions. 
In addition, most machine learning techniques require large volumes of 
training data in order to achieve high prediction accuracy. 

2.2. Domain generalization 

A desirable tool wear prediction technique should be able to predict 
tool wear under complex cutting conditions with small data. Domain 
generalization is a machine learning technique that makes predictions in 
unseen target domains by leveraging knowledge gained from multiple 
source domains [14]. Domain generalization has been used to solve 
problems in action recognition, semantic segmentation, object recog-
nition, and diagnostics [15]. Zheng et al. [16] proposed a multisource 
domain generalization method for fault identification of bearings. The 
discriminant structure of each source domain was utilized to construct 
the fault diagnosis model. It has been demonstrated that the proposed 
method can diagnose bearing faults effectively under new cutting con-
ditions. Li et al. [17] developed a fault diagnostics approach for rotating 
machinery systems using a deep learning-based domain generalization 
method. Domain augmentation was utilized to expand the source 
domain dataset, where domain adversarial networks were used to 
extract features. Experimental results have shown that the predictive 
model trained only on the source domain data was able to diagnose 
faults of the machinery systems under new operating conditions. Liao 
et al. [18] proposed a deep semisupervised domain generalization 
network to diagnose rotary machinery fault under varying speed. 
Pseudolabel-based semisupervised learning and Wasserstein generative 
adversarial network with gradient penalty-based adversarial learning 
were used to extract features on the source domain including unlabeled 
and labeled datasets. The model trained on the source domain can 
classify bearing and transmission faults on the unseen target domain. 
Recently, Liu et al. [19] developed a meta-invariant feature space 
method to address cross domain prediction. This work incorporated 
meta-learning into a feature recognition process to improve the 
modeling efficiency of training with all training data. The approach 
pre-processes raw data with meta-learning to enhance invariant feature 
recognition, thus improving tool wear prediction. To the best of our 
knowledge, no studies have been reported on predicting tool wear using 
domain generalization based on data-split training with raw data and 
meta-learning optimized fine-tuning. 
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3. Tool wear prediction with MDG 

Fig. 1 illustrates the MDG framework in comparison with the base-
line training pipeline. Baseline training illustrated in Fig. 2 is a con-
ventional training strategy, where all source domain training data D is 
used to build a model. As opposed to the baseline training strategy, MDG 
in Fig. 1 combines meta-learning and domain generalization to improve 
prediction accuracy. With the MDG framework, all source domain 
training data D is split into a pre-training subset DP and a fine-tuning 
subset DF. The MDG framework consists of three steps: (1) splitting 
data in the source domain into pre-training and fine-tuning subsets, i.e. 
DP and DF; (2) training a model θ0 through meta-learning with DP and DF; 
(3) fine-tuning the model θ0 with DF to build a tool wear prediction 
model θ∗ for the target domain. More details about the MDG framework 
are presented in the following sections. To facilitate clear elaboration, 
Table 1 summarizes a list of notations used in this section. 

3.1. Source data split 

We introduce a source data split method to improve model gener-
alization from the source domain to the target domain. The reason why 
we split data into two training subsets is due to a domain shift problem 
where training and test data distributions have discrepancies. To address 
this problem, all source domain training data are divided into a pre- 
training subset and a fine-tuning subset given some prior knowledge 
about the target domain, such as the cutting condition of the test data. 
Note that there is still no knowledge about test data and only cutting 
condition is used for data split. The pre-training subset and test data are 

sampled under different cutting conditions, which implies that the pre- 
training subset has more risk for a domain shift. The fine-tuning subset 
and test data have more common features due to similar data sampling 
conditions, which implies that the fine-tuning subset has the potential to 
improve model generalization to the target domain. The raw data is 
divided based upon three criteria, including material, feed rate, and 
depth of cut. If the cutting conditions are considered as features, the data 
split process can be summarized and formulated as a minimax problem 
based upon source data in an objective function (1) as follows: 

max
DP

(

min
DF

(FDDF
,FDDP

)

)

(1)  

where DF is the fine-tuning subset, DP is the pre-training subset, FDDF is 
the feature distance between the fine-tuning subset and target domain, 
FDDP is the feature distance between the pre-training subset and target 
domain, and the entire source domain training dataset is D = DP + DF. 
We use the prior knowledge about the target domain to approximate the 
feature distance between the pre-training or fine-tuning subset and 
target domain. In the context of our tool wear prediction, the prior 
knowledge is the cutting conditions, including material, feed rate, and 
depth of cut. The feature distance is the similarity between the pre- 
training or fine-tuning subset and target domain in the cutting condi-
tion. After the split, the fine-tuning subset DF will get closer to the target 
domain, i.e. minDF FDDF according to the cutting condition while the pre- 
training subset DP will get farther away from the target domain, i.e. 
maxDP FDDP . This is formulated by the minimax function by Eq. (1). For 
example, when it is known that the evaluated cutting material is iron (i. 
e. one of the target domain features is iron), all source data sampled 
under iron material will be assigned to fine-tuning subset DF. The other 
source data sampled under steel material will be assigned to the pre- 
training subset DP. 

However, after the data split, DF will suffer a significant reduction in 
data quantity and cause overfitting over model training, which affects 
model generalization to the target domain. To further improve model 
generalization, model pre-training with the pre-training subset DP is 
carried out for model regularization to avoid overfitting. Meta-learning 
is employed to enhance the pre-training performance by using the pre- 
training subset DP and the fine-tuning subset DF alternatively over the 
pre-training process. 

3.2. Meta-learning pre-training 

We incorporate meta-learning to build an optimal pre-training model 
for model fine-tuning. To fully utilize the small set of training data, 
model pre-training is conducted using the pre-training subset, which 
incorporates useful features from the pre-training subset. However, 
simple pre-training is not able to extract useful features from the pre- 
training subset due to the small data and a domain shift. Hence, we 

Fig. 1. The framework of MDG for tool wear 
prediction. MDG consists of three stages, 
including source data split, meta-learning pre- 
training, and fine-tuning. At stage 1, source 
training data D is split based on the prior 
knowledge about the target domain, which is 
the cutting condition in our study, and a pre- 
training subset DP and a fine-tuning subset DF 
are obtained, which are complementary to each 
other. At stage 2, meta-learning is employed to 
improve model pre-training with DP and DF. An 
initial model is trained with DP at the first 
iteration, which yields θ′

i . Based on θ′

i, the first 
order derivative of θ′

i is calculated through DF, 
which yields ∇θ

′

i . Given the ∇θ
′

i, model θi is updated to θi+1. After t iterations, the interaction training yields a pre-training model θt which is used as an initial model 
θ0 for fine-tuning. The process is highlighted with the dashed line box. At stage 3, the pre-trained model θ0 is fine-tuned with DF, yielding θ∗ for model evaluation at 
the final evaluation stage.   

Fig. 2. Illustration of baseline training pipeline. All source data are used for 
model training without any prior knowledge about the target domain. 

Table 1 
Notations for problem formulation and algorithm description.  

Variable Description 
DP Pre-training subset 
DF Fine-tuning subset 
θi,θi  Models in training 
θ∗ Best prediction model 
L Loss function 
FD Feature distance to target domain  
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combine domain generalization and meta-learning [20], namely MDG, 
to address this issue. Meta-learning is an efficient training strategy (e.g. 
hyperparameter tuning and initial model selection) that improves 
learning system adaptability by the exploitation of useful features within 
small data [21]. Meta-learning, as a paradigm, can develop an effective 
approach that determines an optimized initial model for effective 
knowledge transfer. Inspired by meta-learning techniques such as 
MAML [20] and Reptile [22], the proposed MDG combines pre-training 
and fine-tuning subsets to obtain a pre-trained model, which has a better 
generalization to fine-tuning tasks. The technical details are discussed as 
follows. 

Let θ denote the model to train. Our meta-learning includes multiple 
iterations to train θ using the gradient descent algorithm. Within each 
iteration, we first train θ using pre-training subset DP to obtain an 
updated model θ′, and then train θ′ using fine-tuning subset DF. The 
optimization process can be formulated as follows. 
θ
′

i⟵θi − α∇θi
L(DP, θi), (2)  

θi+1⟵θi − β∇
θ
′

i

L(DF , θ
′

i), (3)  

where L is the loss function, θi is the model parameter, θ′

i is the updated 
model parameter after the training with DP. DP and DF are pre-training 
and fine-tuning subsets, α and β are learning rates. Note that in Eq. 
(3), the gradient is calculated based on θ′

i but the update is applied to θi. 
This is a first-order approximation [20], the performance of this method 
is nearly the same as the full second derivatives, i.e. θi+1⟵θi − β∇θi L(DF,
θ
′

i), but is much easier to compute. Recall the purpose of meta-learning is 
to provide an optimized initialized model for the fine-tuning task. Here, 
the fine-tuning subset is used to correct pre-training and enhance the 
performance of the pre-trained model on the fine-tuning task. Hence, the 
advantage of this meta-learning algorithm can help find an optimized 
initial model, which improves the effectiveness of the pre-trained model 
to the fine-tuning task. Since meta-learning pre-training follows the 
method of first-order model-agnostic meta-learning (i.e. FO-MAML) 
[20], its convergence is ensured and proved in [23]. 

3.3. Model fine-tuning 

Given optimized data split and meta learning pre-training, model 
fine-tuning is conducted to improve model generalization by fine-tuning 
with fine-tuning subset. Because fine-tuning subset and target domain 
have the same cutting condition, model fine-tuning with fine-tuning 
subsets can enhance model generalization to the target domain. The 
initial model θ0 = θt obtained from meta-learning can also be adapted 
and help boost model generalization. With fine-tuning subset DF, the 

model is further trained in a supervised learning manner to yield the 
optimized model θ∗, which will be directly applied to the target domain 
for testing. It should be noted that we are solving a domain general-
ization problem where it is difficult to obtain target data. In this paper, 
we use these small sets of target data for testing only. 

3.4. Meta domain generalization 

The MDG framework for tool wear prediction is summarized in Al-
gorithm 1. Beginning with the prior domain knowledge about cutting 
conditions, data split is conducted on all source domain data to obtain 
pre-training and fine-tuning subsets, i.e. DP and DF, with the objective 
function (1). For example, if the material in the test data is iron, all 
source domain data D will be split into steel material sampled data DP 
and iron material sampled data DF. Next, meta-learning is performed to 
obtain an optimized initial model for model fine-tuning. This process 
involves t iterations of alternative model updates with DP and DF to 
optimize the adaptability of the pre-trained model for fine-tuning. It 
should be noted that training with DP yields an intermediate model θ′

i. 
The final model θi+1 is obtained with the cumulative gradient of θ′

i with 
DF. After t iterations of meta learning, a pre-trained model θt is obtained. 
θt serves as an initial model θ0 and fine-tuned with DF in m epochs. The 
final optimal model θ∗ is obtained for tool wear prediction. Note that the 
difference between our proposed method and traditional meta-learning 
is that our method includes specific optimizations to solve tool wear 
prediction problems, i.e. distinguishing “fine-tuning” DF and “pre- 
training” DP subsets, whereas traditional meta-learning is a paradigm 
without distinguishing these datasets. 
Algorithm 1. MDG for tool wear prediction  

Require: Source Domain Training Data D 
Require: Evaluated Tool Properties (material, feed rate, etc.) 
Require: Hyper-parameters (learning rate α, β, η, batch size, etc.) 
OUTPUT: Deep Learning Model θ for Tool Wear Prediction 
1: //Step-1: Source Domain Data Split 
2: With prior domain knowledge, divide all training data into pre-training and 

fine-tuning subsets DP and DF. 
3: //Step-2: Meta-learning Fine-tuning 
4: Randomly initialize θ0 
5: // Train source domain model θ with DP and DF for t epochs, where t is heuristically 

chosen. 
6: for iteration i = 0, 1, …, t − 1 do 
7: θ

′

i⟵θi − α∇θi L(DP,θi)
8: θi+1⟵θi − β∇

θ
′

i
L(DF,θ

′

i)

9: end for 
10: //Step-3: Fine-tuning on DF 
11: // Fine-tune the model θt with fine-tuning subset DF and obtain prediction model θ∗

after m training epochs.  
12: Initialize the model with θ0 = θt  
13: for epoch i = 0, 1, …, m − 1 do 
14: θi+1⟵θi − η∇

θi L(DF,θi)
15: end for 
16: θ∗ = the best model within θ0,…,θm   

4. Numerical experiments 

We demonstrated the effectiveness of the MDG approach in pre-
dicting tool wear under complex cutting conditions using a publicly 
available dataset. It should be noted that the MDG approach can be 
integrated with any deep learning algorithms. In the first extensive 
numerical experiments, LSTM is chosen since it is widely used to solve 
time series problems. We also investigate other deep learning algorithms 
such as BiLSTM, GRU, and RNN to demonstrate the generalizability of 
the MDG approach in Section 5. 

To make a fair comparison between MDG and baseline training, 
similar hyperparameters are used in both MDG and baseline training. 
Specifically, the numbers of epochs for baseline training and MDG are 
set to 200 and 300, respectively. For baseline training, the learning rate 

Fig. 3. An experimental setup.  
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is set to 1e−5. The learning rate for MDG is set to 4e−6 for pretraining 
and 4e−5 for fine-tuning. The batch size is set to 64 across different 
cases for the LSTM architecture. The Adam optimizer [24] is selected 
while the L2 regularization term with a weight decay of 1e−6 is used. 
Since the Adam optimization convergence is proved in [24], the 
convergence of the training with Adam is ensured. More details about 
the dataset, training strategies, and performance evaluation are pre-
sented in the following sections. 

4.1. Data description 

The publicly available tool wear monitoring dataset was acquired 
from the NASA Prognostic Data Repository [2]. Fig. 3 shows a schematic 
diagram of the experimental setup. Three types of sensors, including 
current, AE, and vibration sensors, were installed on the milling 

machine. The AE and vibration sensors were mounted to the spindle and 
the table of the test center. Both AE and vibration signals were pre-
processed (i.e. amplified and filtered). The current sensors were 
installed on the spindle motors to acquire the AC and DC current signals 
of the spindle motors. 

Under varying cutting conditions, there is a total of 136 valid runs. 
During each run, current, AE, and vibration signals were collected from 
a Matsuura machine center MC-510V. The cutting tool material was the 
inserts KV710 (Kennametal, 1985). The cutting speed was set at 200 m/ 
min. Stainless steel J45 and cast iron were selected as the workpiece 
materials. The dimension of the workpiece was 
483 mm × 178 mm × 51 mm. The depths of cut were set to 1.5 mm and 
0.75 mm, respectively. The feed rates were set at 0.5 mm/rev and 
0.25 mm/rev, respectively. Flank wear was measured using a micro-
scope after each milling test. Given the combinations of cutting condi-
tions, there are 16 cases with different numbers of runs as shown in 
Table 2. It should be noted that because case 6 with only one run yields 
zero flank wear, this case is considered as an invalid case. Therefore, the 
raw data collected in case 6 were excluded from our dataset. A total of 

Table 2 
Data description [2].  

Training dataset 
Case Material Feed rate Depth-of-cut Runs 
1 Iron 0.50 mm/rev 1.50 mm 12 
2 Iron 0.50 mm/rev 0.75 mm 12 
3 Iron 0.25 mm/rev 0.75 mm 13 
4 Iron 0.25 mm/rev 1.50 mm 7 
5 Steel 0.50 mm/rev 1.50 mm 5 
7 Steel 0.25 mm/rev 0.75 mm 6 
8 Steel 0.50 mm/rev 0.75 mm 4 
9 Iron 0.50 mm/rev 1.50 mm 8 
10 Iron 0.25 mm/rev 1.50 mm 9 
11 Iron 0.25 mm/rev 0.75 mm 19 
12 Iron 0.50 mm/rev 0.75 mm 12 
13 Steel 0.25 mm/rev 0.75 mm 13 
14 Steel 0.50 mm/rev 0.75 mm 7 
15 Steel 0.25 mm/rev 1.50 mm 6 
16 Steel 0.50 mm/rev 1.50 mm 3  

Table 3 
Comparison between MDG and baseline training. The baseline training was carried out with all valid training data across cases. Training model was set to LSTM across 
cases. DP and DF are pre-training and fine-tuning subsets with corresponding case numbers.  

MDG Baseline (LSTM) Improvement (%) 
Training data (case) Test data (case) RE ↓ RMSE ↓ R2 

↑ RE ↓ RMSE ↓ R2 
↑ RE RMSE R2 

DP 5,7,8,13,14,15,16 1 0.4479 0.1185 −0.1114 0.6207 0.1650 −1.1537 27.839 28.181 90.344 DF 2,3,4,10,11,12 
DP 5,7,8,13,14,15,16 2 0.1867 0.0526 0.8593 0.5988 0.1274 0.1743 68.820 58.713 393.001 DF 1,3,4,9,10,11 
DP 1,2,5,8,9,12,14,16 3 0.1389 0.0468 0.8441 0.3222 0.0807 0.5373 56.890 42.007 57.100 DF 4,7,10,13,15 
DP 5,7,8,13,14,15,16 4 0.6723 0.1197 0.2472 0.8777 0.1460 −0.1207 23.402 18.014 304.805 DF 1,2,3,9,11,12 
DP 2,3,7,8,11,12,13,14 5 0.4783 0.1793 0.1911 0.5766 0.1827 0.1600 17.048 1.861 19.438 DF 1,4,9,10,15 
DP 1,4,5,9,10,15,16 7 0.1426 0.0823 0.5635 0.4502 0.1052 0.2876 68.325 21.768 95.932 DF 2,3,8,11,12,14 
DP 1,4,5,9,10,15,16 8 0.2906 0.1343 0.3288 0.3201 0.1389 0.2820 9.216 3.312 16.596 DF 2,3,7,11,12,13 
DP 5,7,8,13,14,15,16 9 0.2125 0.1375 0.6600 0.8960 0.2182 0.1434 76.283 36.984 360.251 DF 2,3,4,10,11,12 
DP 5,7,8,13,14,15,16 10 0.8238 0.1112 0.7140 1.3694 0.1741 0.2989 39.842 36.129 138.876 DF 1,2,3,9,11,12 
DP 1,4,5,9,10,15,16 11 0.3470 0.1149 0.7357 0.9806 0.1704 0.4179 64.614 32.570 76.047 DF 2,7,8,12,13,14 
DP 1,4,5,9,10,15,16 12 0.3348 0.0801 0.8256 0.8019 0.1261 0.5678 58.249 36.479 45.403 DF 3,7,8,11,13,14 
DP 1,4,5,9,10,15,16 13 0.3097 0.3680 0.2951 0.5137 0.4886 −0.2421 39.712 24.683 221.892 DF 2,3,8,11,12,14 
DP 1,2,3,4,9,10,11,12 14 0.7458 0.3371 0.0975 0.8114 0.3402 0.0808 8.085 0.911 20.668 DF 5,7,13,15,16 
DP 2,3,7,8,11,12,13,14 15 0.2846 0.1317 0.4702 0.4312 0.1416 0.3876 33.998 6.992 21.311 DF 1,4,5,9,10,16 
DP 2,3,7,8,11,12,13,14 16 0.2982 0.1519 0.0491 0.3863 0.1598 −0.0517 22.806 4.944 194.971 DF 1,4,9,10,15  

Table 4 
Comparison on RMSE between MDG and optimal transport (OT)-based transfer 
learning [25] integrated with kernel ridge regression (KRR) and convolutional 
neural network (CNN). The best performance for each case (by rows) is marked 
in bold.  

Test case KRR integrated with OT CNN integrated with OT MDG 
5 0.239 0.299 0.179 
7 0.148 0.139 0.082 
8 0.180 0.136 0.134 
13 0.560 0.497 0.368 
14 0.308 0.344 0.337 
15 0.207 0.245 0.132 
16 0.039 0.210 0.152  
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15 valid cases were used in this study, each of which was used as a test 
dataset for model validation. In addition, the tool wear values for several 
runs were labeled as either zero or NaN. These runs were also considered 
invalid runs. Therefore, these runs were also excluded from our dataset. 
15 valid cases with 136 valid runs were divided into training and test 
datasets. Each of the 15 datasets was used as the test data to evaluate the 
predictive model trained on the training datasets. It should be noted that 
when a case or test dataset was selected, another case or dataset with the 
same cutting condition was excluded from the training dataset so that 
the proposed algorithm never processed any training data with the same 
cutting condition as the test data during training. For example, if case 1 

is selected as the test data, the training dataset excludes case 9 because 
the data in cases 1 and 9 were collected under the same cutting condi-
tion. This way of selecting training and test data follows the domain 
generalization problem setting. 

4.2. Training strategies 

Fifteen numerical experiments were conducted to compare MDG 
with baseline training methods. For baseline training, all valid training 
cases were employed and the raw data were fed into neural networks as 
the training dataset. For MDG, all the raw training data were divided 
into pre-training and fine-tuning subsets. A comparative study on pre-
diction accuracy between MDG and baseline training was conducted. It 
should be noted that the reason why the MDG approach was not 
compared with other methods reported in the literature is that few 
studies where this dataset was used were reported in the literature. For 
the studies where the same data were used, almost no details on how the 
raw data were divided into training and test datasets are provided. 
Therefore, we compared MDG with the method reported in [25] only. 

4.3. Error metrics 

Three error metrics, including relative error (RE), root mean square 
error (RMSE), and coefficient of determination (R2), were used to 
quantify performance improvement. Given the actual and predicted tool 
wear, these errors can be computed as follows: RE = 1

n
∑n

i=1|
yia−yip

yia
|, 

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1(yia − yip)
2

√

, and R2 = 1−

∑n
i=1(yia−yip)

2
∑n

i=1(yia−ya )2
, where ya and yp 

denote the actual and predicted tool wear values, respectively. Perfor-
mance improvement is calculated with REb−REMDG

|REb | × 100%, 
RMSEb−RMSEMDG

|RMSEb |
× 100%, and R2

MDG
−R2

b
|R2

b |
× 100%, where REb, RMSEb, and R2

b 
are RE, RMSE, and R2 for baseline training, respectively, while REMDG, 
RMSEMDG, and R2

MDG are RE, RMSE, and R2 for MDG, respectively. 

Table 5 
Performance comparison of network architectures. Training data split for MDG 
is consistent with the corresponding case in Table 3. Baseline training results are 
obtained with all training data. The best performance for each case (by rows) is 
marked in bold. Down arrows indicate lower is better while up arrows imply 
higher is better.  

Model MDG Baseline  
RE ↓ RMSE ↓ R2 

↑ RE ↓ RMSE ↓ R2 
↑ 

Test data: case 2 (material-based split training) 
LSTM 0.1867 0.0526 0.8593 0.5988 0.1274 0.1743 
BiLSTM 0.1951 0.0682 0.7634 0.6787 0.1442 −0.0581 
GRU 0.1619 0.0546 0.8483 0.4962 0.1058 0.4311 
RNN 0.2088 0.0628 0.7994 0.4677 0.1071 0.4164  

Test data: case 3 (feed-rate-based split training) 
LSTM 0.1389 0.0468 0.8441 0.3222 0.0807 0.5373 
BiLSTM 0.1931 0.0551 0.7844 0.3454 0.0897 0.4280 
GRU 0.1740 0.0602 0.7424 0.1983 0.0627 0.7207 
RNN 0.1655 0.0449 0.8566 0.1803 0.0613 0.7331  

Test data: case 7 (depth-of-cut-based split training) 
LSTM 0.1426 0.0823 0.5635 0.4502 0.1052 0.2876 
BiLSTM 0.2365 0.0654 0.7242 0.4326 0.0931 0.4419 
GRU 0.2181 0.0921 0.4530 0.4136 0.1146 0.1536 
RNN 0.1710 0.0842 0.5432 0.4094 0.1190 0.0881  

Fig. 4. Comparison of neural networks in prediction performance. Tool wear observation and prediction over experiment time are plotted. Predictions by baseline 
and MDG training are compared. Four neural networks, including LSTM, BiLSTM, GRU, and RNN (by columns), are chosen for cases 2, 3, and 7 (by rows). 
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5. Results and discussion 

5.1. Comparison between MDG and baseline training 

As shown in Table 3, we observed that MDG consistently out-
performs baseline training, although performance improvement varies. 
In terms of RE, the most significant improvement is 76.283% for test 
case 9, while the least significant improvement is 8.085% for test case 
14. In terms of RMSE, the most significant improvement is 58.713% for 
test case 2, while the least significant improvement is 0.911% for test 
case 14. In terms of R2, the most significant improvement is 393.001% 
for case 2, while the least significant improvement is 16.596% for case 8. 
The experimental results show that MDG achieved significant perfor-
mance improvement for most of the test cases with small training data 
with respect to RE, RMSE, and R2. 

Meanwhile, in terms of RMSE, cases 5, 8, 14, 15, and 16 have shown 
relatively smaller improvement, which yielded the improvement of 
1.861%, 3.312%, 0.911%, 6.992%, and 4.944%, correspondingly. 
Concerning R2, cases 5, 8, 14, and 16 have shown lower positive values. 
It is suspected that the number of data points, which is relatively small 
across these cases, caused these observations. For case 13, the last three 
runs have shown much higher tool wear, for example 1.30 mm at the 
time of 42 s and 1.53 mm at the time of 45 s, than any other case, which 
increased the difficulty in generalization with source domain data. 
However, MDG still yielded much better RMSE compared to the state-of- 
the-art method. 

We also compared MDG with one state-of-the-art technique, i.e. 
optimal transport (OT)-based transfer learning [25] integrated with 
kernel ridge regression (KRR) and convolutional neural network (CNN) 

in Table 4. Except cases 14 and 16, MDG outperformed OT-based 
transfer learning in terms of RMSE across other cases. 

5.2. Effect of network architectures on performance 

We also evaluated the effect of neural network architectures on 
prediction accuracy. Four neural networks, including LSTM, BiLSTM, 
GRU, and RNN, were selected to conduct a comparative study. The 
experimental settings were set with general hyperparameters, except 
that the batch size for BiLSTM was set to 32. Three representative cases, 
including cases 2, 3, and 7, were selected to carry out the experiments 
because the training data in the three cases were divided into pre- 
training and fine-tuning subsets based on material, feed rate, and 
depth-of-cut, respectively. 

As shown in Table 5, MDG consistently outperformed the baseline 
training approach for all three cases while different neural network ar-
chitectures achieved different improvements. In particular, compared to 
baseline training, MDG has shown more stable performance across 
different neural networks, which was reflected by smaller variation in 
RE, RMSE, and R2. This implies that MDG is less sensitive to neural 
network architectures. Among these network architectures, LSTM yiel-
ded more accurate prediction. For some cases such as cases 3 and 7, 
BiLSTM has shown worse performance, although its architecture was 
more complex. This observation is related to the interaction between 
data quantity and model complexity. The training data is so small that 
the advantage of BiLSTM is overshadowed, which may cause overfitting 
on the training set. That is also the reason why RNN can outperform the 
other neural network architectures in some cases since its lower model 
complexity may reduce the risk for overfitting. 

As shown in Fig. 4, the neural network architectures may affect 
prediction performance. For case 2, BiLSTM has shown the largest de-
viations for some observations. For case 3, GRU has shown larger de-
viations for some observations. For case 7, the trends captured by the 
four network architectures have been very similar. 

5.3. Effect of source data split on performance 

We also investigated the effect of data splitting strategies on pre-
diction accuracy. Three data splitting strategies were used to divide the 
training data into pre-training and fine-tuning subsets, including 
material-based, feed-rate-based, and depth-of-cut-based splits. Similar 
to the previous comparative study, cases 2, 3, and 7 were selected as 
representative cases for performance comparison. 

As shown in Table 6, data splitting strategies are crucial to prediction 
accuracy and performance improvement for MDG. For case 2, both 
material-based and feed-rate-based split significantly improved predic-
tion accuracy. The results have shown approximately 123% and 161% 
increase in RE and RMSE compared to the material-based split when the 
depth-of-cut-based split was selected. For case 3, both feed-rate-based- 
split and depth-of-cut-based split significantly improved prediction ac-
curacy. The experiments have also shown 125% and 79% increase in RE 
and RMSE as well as 41% decrease in R2 compared to the feed-rate-based 
split when the material-based split was selected. The prediction accu-
racy was even worse than baseline training in RMSE and R2. For case 7, 
the depth-of-cut-based split achieved the greatest performance 
improvement. Performance improvement significantly decreased when 
either feed-rate-based or material-based split was selected, which 
resulted in approximately 129% and 196% increase in RE, 30% and 38% 
increase in RMSE, and 70% and 53% decrease in R2. These observations 
imply that data split optimization significantly affects the performance 
of MDG. When fine-tuning subset is better optimized, performance gains 
will be more significant. 

As shown in Fig. 5, when appropriate split optimization is carried 
out, tool wear variability is better described, which is consistent with the 
statistics in Table 6. For case 2, the trend in tool wear is more accurately 
captured, especially for large tool wear when either material-based or 

Table 6 
Performance comparison of split strategies. Deep neural network is set to LSTM 
across all cases. The best performance for each case is marked in bold. “DP” 

denotes pre-training subset and “DF” denotes fine-tuning subset. Down arrows 
indicate lower is better while up arrows imply higher is better.  

Split strategy RE ↓ RMSE ↓ R2 
↑ 

Test data: case 2 
Material-based split 

DP 5,7,8,13,14,15,16 0.1867 0.0526 0.8593 
DF 1,3,4,9,10,11    

Feed-rate-based split 
DP 3,4,7,10,11,13,15 0.1777 0.0606 0.8130 
DF 1,5,8,9,14,16    

Depth-of-cut-based split 
DP 1,4,5,9,10,15,16 0.4166 0.1373 0.0407 
DF 3,7,8,11,13,14    

Baseline (no split) 0.5988 0.1274 0.1743  

Test data: case 3 
Material-based split 

DP 5,7,8,13,14,15,16 0.3129 0.0837 0.5012 
DF 1,2,4,9,10,12    

Feed-rate-based split 
DP 1,2,5,8,9,12,14,16 0.1389 0.0468 0.8441 
DF 4,7,10,13,15    

Depth-of-cut-based split 
DP 1,4,5,9,10,15,16 0.1399 0.0545 0.7885 
DF 2,7,8,12,13,14    

Baseline (no split) 0.3222 0.0807 0.5373  

Test data: case 7 
Material-based split 

DP 1,2,3,4,9,10,11,12 0.4218 0.1134 0.1713 
DF 5,8,14,15,16    

Feed-rate-based Split 
DP 1,2,5,8,9,12,14,16 0.3259 0.1070 0.2628 
DF 3,4,10,11,15    

Depth-of-cut-based Split 
DP 1,4,5,9,10,15,16 0.1426 0.0823 0.5635 
DF 2,3,8,11,12,14    

Baseline (no split) 0.4502 0.1052 0.2876  
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feed-rate-based split is used. For case 3, the entire prediction trend is 
corrected by shifting when feed-rate-based or depth-of-cut-based split is 
employed. For case 7, although performance improvement for large tool 
wear is small, the prediction of smaller tool wear is significantly 
improved when the depth-of-cut-based split is used. Although the 
pattern of improvement is different, appropriate data split enables 
model prediction to more accurately depict tool wear variability. 

6. Conclusions and future work 

In this paper, we introduced a meta domain generalization approach 
to predicting tool wear under complex cutting conditions with a small 
set of training data. The meta domain generalization approach was able 
to address the domain shift problem due to different cutting conditions. 
Specifically, the meta domain generalization approach can predict tool 
wear under one cutting condition with the training data collected under 
other cutting conditions by dividing the source training data into pre- 
training and fine-tuning subsets based on cutting conditions such as 
workpiece material, feed rate, and depth of cut. Compared to baseline 
training where all the raw training data were fed into neural networks, 
MDG optimized data split as well as divided the training process into two 
stages, including pre-training and fine-tuning. Pre-training was opti-
mized through meta learning to improve prediction accuracy. Model 
fine-tuning was conducted to improve model generalization from the 
source domain (i.e. one cutting condition) to the target domain (i.e. 
another cutting condition). The numerical experiments have shown that 
tool wear prediction accuracy was significantly improved by MDG in 

comparison with baseline training with respect to RE, RMSE, and R2. In 
addition, we observed that data splitting strategies significantly affected 
prediction performance and model generalization. We also evaluated 
the performance of four neural network models integrated with the MDG 
approach. The experimental results revealed that these neural network 
architectures achieved similar prediction accuracy. 

In the future, turning and drilling tests under more complex cutting 
conditions will be conducted to demonstrate the meta domain general-
ization approach. 
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