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Conventional machine learning based predictive modeling methods require large volumes of training data;
however, collecting large training data is very labor-intensive and expensive in real-world applications such as
manufacturing. Therefore, small data is a common challenge for machine learning approaches. To address this
issue, we introduce a meta domain generalization method and demonstrate its effectiveness for tool wear pre-
diction when a small set of training data are collected under different operating conditions. Domain general-
ization aims to generalize a machine learning model in a source domain to a target domain where there are small
or no data. Meta-learning aims to optimize the initial hyper-parameters of a model for improving prediction
accuracy. In this paper, we employ meta-learning to improve model pre-training for domain generalization for
tool wear prediction. The proposed meta domain generalization involves three phases: source data split, meta-
learning pre-training, and model fine-tuning. First, a training dataset from source domain is divided into pre-
training and fine-tuning subsets based on the prior knowledge about target domain, i.e. the cutting condi-
tions, to address the domain shift problem. Then, meta-learning is used to optimize model pre-training to better
adapt to fine-tuning subset and improve model fine-tuning. Finally, model fine-tuning is carried out to enhance
model generalization to the target domain. We conduct extensive experiments and justify the approach. The
results show that meta domain generalization can predict tool wear under different operating conditions accu-
rately with small data. We also find that data split optimization significantly affects the performance of meta
domain generalization.

1. Introduction

Tool wear, mainly caused by plastic deformation and chemical re-
action between the tool and workpiece materials, occurs in machining
processes such as turning, drilling, and milling [1,2]. A short tool life
resulted from tool wear will lead to low productivity and unexpected
machine downtime. For example, more than 40 cutting tools are
required to manufacture a one-meter nickel-based superalloy blade [3],
which is one of the difficult-to-machine materials. In addition, tool wear
will lead to high surface roughness and even tool breakage during
high-speed machining [4].

Tool wear falls into the following categories: flank wear, crater wear,
notching, chipping, cracking, plastic deformation, and breakage. Flank
wear and crater wear are the most common tool wear [1]. In this study,
only flank wear in milling operations is investigated. Flank wear refers
to the distance from the end of the abrasive wear on the flank face to the
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cutting edge of the tool, which is resulted from the interaction between a
cutting tool and a workpiece [2]. Flank wear is usually used to evaluate
tool life since it affects surface finishing and residual stresses [4]. To
monitor tool wear, both direct and indirect methods have been devel-
oped [5]. Direct methods measure actual tool wear using a camera,
micrometer, or displacement transducer. Indirect methods estimate tool
wear by identifying the correlation between tool wear and indirect
measurements such as cutting force, the vibration of the spindle and
table, and the current of the AC/DC spindle motor. While it is straight-
forward to implement direct methods, tool wear can only be measured
after the cutting tool is removed from machine tools. Therefore, direct
methods cannot be used to predict tool wear in real time [6].

Indirect methods such as data-driven and model-based tool wear
prediction methods have been developed over the past few decades [7].
Model-based methods build an analytical model of tool wear based on
the underlying physics of wear mechanisms. Model-based methods have

E-mail addresses: daniel. wang@knights.ucf.edu (D. Wang), qingyangliu@knights.ucf.edu (Q. Liu), Dazhong. Wu@ucf.edu (D. Wu), lwang@cs.ucf.edu (L. Wang).

https://doi.org/10.1016/j.jmsy.2021.12.009

Received 9 August 2021; Received in revised form 19 December 2021; Accepted 20 December 2021

Available online 10 January 2022

0278-6125/© 2021 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.


mailto:daniel.wang@knights.ucf.edu
mailto:qingyangliu@knights.ucf.edu
mailto:Dazhong.Wu@ucf.edu
mailto:lwang@cs.ucf.edu
www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2021.12.009
https://doi.org/10.1016/j.jmsy.2021.12.009

D. Wang et al.

two limitations. First, certain probability distributions (e.g. normal or
gamma distribution) must be assumed. Secondly, the fundamental
physics-based models causing tool wear are required [3]. Data-driven
methods use machine learning algorithms such as random forest and
artificial neural networks to train predictive models of tool wear based
on various sensor data acquired by acoustic emission (AE), vibration,
current, and audio sensors [8,2,6]. Although existing model-based and
data-driven methods are effective in predicting tool wear under fixed
operating conditions, few methods can predict tool wear with a small set
of training data under different operating conditions (e.g. feed rate,
depth of cut, and workpiece materials). This is because a predictive
model trained with conventional machine learning algorithms under
one operating condition is usually not generalizable to another oper-
ating condition, especially when the training dataset is small.

To address these issues, we introduce a novel meta domain gener-
alization (MDG) approach to predict tool wear with a small amount of
training data collected under complex cutting conditions such as feed
rate, depth of cut, and workpiece materials. The proposed approach is
developed based on two techniques, i.e. domain generalization and meta
learning. Domain generalization aims to generalize a machine learning
model in a source domain to a target domain where there is small or no
training data. It should be noted that domain generalization is different
from transfer learning. Transfer learning generalizes models from the
source to the target domain by leveraging a small amount of training
data in the target domain, whereas domain generalization generalizes
models from the source to the target domain without any training data in
the target domain. In other words, domain generalization is a more
difficult problem than transfer learning. In this study, domain general-
ization alone is ineffective for tool wear prediction because only a small
amount of training data is available. Hence, to improve prediction
performance, we propose to employ meta learning to optimize the initial
parameters or hyper-parameters of a domain generalization model. We
call this combined approach meta domain generalization (MDG).

The MDG approach consists of three steps: source data split, meta
learning, and model fine-tuning. Initially, a training dataset is divided
into two subsets of source data, i.e. pre-training and fine-tuning subsets,
based on cutting conditions to address the domain shift problem. Then,
meta learning is used to optimize pre-training. Finally, model fine-
tuning is performed with the fine-tuning subset to improve model
generalization in the target domain.

The remaining of this paper is organized as follows. Section 2 sum-
marizes the related work on tool wear prediction and domain general-
ization. Section 3 presents the MDG approach. Section 4 introduces the
experimental setup, data preprocessing, and error metrics. Experimental
results are presented in Section 5. Section 6 draws the conclusions and
presents future work.

2. Related work
2.1. Tool wear prediction

With advances in sensing and machine learning technologies, data-
driven predictive modeling techniques have been increasingly used to
predict tool wear in various machining processes [6]. Zheng et al. [9]
proposed an approach to estimate the remaining useful life (RUL) of
milling tools using long short-term memory. The proposed approach was
able to achieve a root mean square error of 2.8. Wu et al. [10] imple-
mented a parallel random forests algorithm on the cloud to predict flank
wear in high speed milling. The parallel random forests trained a pre-
dictive model on the condition monitoring data (i.e. AE, cutting force,
and vibration). Experimental results have demonstrated that parallel
computing was able to improve training efficiency. Aghazadeh et al.
[11] developed a tool wear predictive model using convolution neural
networks. Wavelet transform and spectral subtraction were used to
extract features from spindle current signals. The predictive model
achieved an average accuracy of 87.2% and a root mean square error of
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0.088. Yu et al. [12] proposed a predictive modeling scheme to estimate
the tool wear in milling operations utilizing bidirectional recurrent
neural network based encode-decorder (BiRNN-ED). A health index (HI)
library was first constructed by learning the run-to-fail knowledge using
a linear regression model. Then tool wear was estimated by comparing
the HI library and the HI values of test data learned by the BiRNN-ED.
The BiRNN-ED was able to predict the tool wear more accurately
compared with Generative Path Model and long-short term memory
encoder—decoder. Li et al. [13] developed a data-driven approach to
classifying tool wear conditions in the milling process. Multi-channel
audio signals were used to train a predictive model by an extended
convolutive bounded component analysis and a multivariate syn-
chrosqueezing transform. Experimental results have shown that the
predictive model trained based on filtered audio signals was able to
classify tool wear conditions with high accuracy. While these machine
learning-based techniques are effective in predicting tool wear with
in-domain data where training and test data are collected under the
same cutting condition, few methods are effective in predicting tool
wear with out-of-domain data where training and test data are collected
under different cutting conditions. This issue is primarily due to the
domain shift between two operating conditions. Conventional machine
learning algorithms are very effective if all raw data follow one distri-
bution, which refers to in-domain problems. However, when data are
collected from two different operating conditions, their distributions are
usually different, which is a challenging out-of-domain problem.
Therefore, conventional machine learning algorithms for tool wear
prediction are usually not generalizable to varying operating conditions.
In addition, most machine learning techniques require large volumes of
training data in order to achieve high prediction accuracy.

2.2. Domain generalization

A desirable tool wear prediction technique should be able to predict
tool wear under complex cutting conditions with small data. Domain
generalization is a machine learning technique that makes predictions in
unseen target domains by leveraging knowledge gained from multiple
source domains [14]. Domain generalization has been used to solve
problems in action recognition, semantic segmentation, object recog-
nition, and diagnostics [15]. Zheng et al. [16] proposed a multisource
domain generalization method for fault identification of bearings. The
discriminant structure of each source domain was utilized to construct
the fault diagnosis model. It has been demonstrated that the proposed
method can diagnose bearing faults effectively under new cutting con-
ditions. Li et al. [17] developed a fault diagnostics approach for rotating
machinery systems using a deep learning-based domain generalization
method. Domain augmentation was utilized to expand the source
domain dataset, where domain adversarial networks were used to
extract features. Experimental results have shown that the predictive
model trained only on the source domain data was able to diagnose
faults of the machinery systems under new operating conditions. Liao
et al. [18] proposed a deep semisupervised domain generalization
network to diagnose rotary machinery fault under varying speed.
Pseudolabel-based semisupervised learning and Wasserstein generative
adversarial network with gradient penalty-based adversarial learning
were used to extract features on the source domain including unlabeled
and labeled datasets. The model trained on the source domain can
classify bearing and transmission faults on the unseen target domain.
Recently, Liu et al. [19] developed a meta-invariant feature space
method to address cross domain prediction. This work incorporated
meta-learning into a feature recognition process to improve the
modeling efficiency of training with all training data. The approach
pre-processes raw data with meta-learning to enhance invariant feature
recognition, thus improving tool wear prediction. To the best of our
knowledge, no studies have been reported on predicting tool wear using
domain generalization based on data-split training with raw data and
meta-learning optimized fine-tuning.
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Fig. 1. The framework of MDG for tool wear
prediction. MDG consists of three stages,
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Fig. 2. Illustration of baseline training pipeline. All source data are used for
model training without any prior knowledge about the target domain.

Table 1
Notations for problem formulation and algorithm description.
Variable Description
Dp Pre-training subset
D Fine-tuning subset
0;,0; Models in training
0, Best prediction model
L Loss function
FD Feature distance to target domain

3. Tool wear prediction with MDG

Fig. 1 illustrates the MDG framework in comparison with the base-
line training pipeline. Baseline training illustrated in Fig. 2 is a con-
ventional training strategy, where all source domain training data D is
used to build a model. As opposed to the baseline training strategy, MDG
in Fig. 1 combines meta-learning and domain generalization to improve
prediction accuracy. With the MDG framework, all source domain
training data D is split into a pre-training subset Dp and a fine-tuning
subset Dr. The MDG framework consists of three steps: (1) splitting
data in the source domain into pre-training and fine-tuning subsets, i.e.
Dp and Dy; (2) training a model 6, through meta-learning with Dp and Dg;
(3) fine-tuning the model 6, with Dg to build a tool wear prediction
model 8, for the target domain. More details about the MDG framework
are presented in the following sections. To facilitate clear elaboration,
Table 1 summarizes a list of notations used in this section.

3.1. Source data split

We introduce a source data split method to improve model gener-
alization from the source domain to the target domain. The reason why
we split data into two training subsets is due to a domain shift problem
where training and test data distributions have discrepancies. To address
this problem, all source domain training data are divided into a pre-
training subset and a fine-tuning subset given some prior knowledge
about the target domain, such as the cutting condition of the test data.
Note that there is still no knowledge about test data and only cutting
condition is used for data split. The pre-training subset and test data are
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sampled under different cutting conditions, which implies that the pre-
training subset has more risk for a domain shift. The fine-tuning subset
and test data have more common features due to similar data sampling
conditions, which implies that the fine-tuning subset has the potential to
improve model generalization to the target domain. The raw data is
divided based upon three criteria, including material, feed rate, and
depth of cut. If the cutting conditions are considered as features, the data
split process can be summarized and formulated as a minimax problem
based upon source data in an objective function (1) as follows:
(n})t;n(FDDF,FDDF)> 1)

max

Dp
where D is the fine-tuning subset, Dp is the pre-training subset, FDp, is
the feature distance between the fine-tuning subset and target domain,
FDp, is the feature distance between the pre-training subset and target
domain, and the entire source domain training dataset is D = Dp + Dp.
We use the prior knowledge about the target domain to approximate the
feature distance between the pre-training or fine-tuning subset and
target domain. In the context of our tool wear prediction, the prior
knowledge is the cutting conditions, including material, feed rate, and
depth of cut. The feature distance is the similarity between the pre-
training or fine-tuning subset and target domain in the cutting condi-
tion. After the split, the fine-tuning subset Dy will get closer to the target
domain, i.e. minp,FDp, according to the cutting condition while the pre-
training subset Dp will get farther away from the target domain, i.e.
maxp,FDp,. This is formulated by the minimax function by Eq. (1). For
example, when it is known that the evaluated cutting material is iron (i.
e. one of the target domain features is iron), all source data sampled
under iron material will be assigned to fine-tuning subset Dr. The other
source data sampled under steel material will be assigned to the pre-
training subset Dp.

However, after the data split, D will suffer a significant reduction in
data quantity and cause overfitting over model training, which affects
model generalization to the target domain. To further improve model
generalization, model pre-training with the pre-training subset Dp is
carried out for model regularization to avoid overfitting. Meta-learning
is employed to enhance the pre-training performance by using the pre-
training subset Dp and the fine-tuning subset Dr alternatively over the
pre-training process.

3.2. Meta-learning pre-training

We incorporate meta-learning to build an optimal pre-training model
for model fine-tuning. To fully utilize the small set of training data,
model pre-training is conducted using the pre-training subset, which
incorporates useful features from the pre-training subset. However,
simple pre-training is not able to extract useful features from the pre-
training subset due to the small data and a domain shift. Hence, we
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Fig. 3. An experimental setup.

combine domain generalization and meta-learning [20], namely MDG,
to address this issue. Meta-learning is an efficient training strategy (e.g.
hyperparameter tuning and initial model selection) that improves
learning system adaptability by the exploitation of useful features within
small data [21]. Meta-learning, as a paradigm, can develop an effective
approach that determines an optimized initial model for effective
knowledge transfer. Inspired by meta-learning techniques such as
MAML [20] and Reptile [22], the proposed MDG combines pre-training
and fine-tuning subsets to obtain a pre-trained model, which has a better
generalization to fine-tuning tasks. The technical details are discussed as
follows.

Let 6 denote the model to train. Our meta-learning includes multiple
iterations to train 0 using the gradient descent algorithm. Within each
iteration, we first train 6 using pre-training subset Dp to obtain an
updated model ¢, and then train ¢ using fine-tuning subset Dr. The
optimization process can be formulated as follows.

0. —0; — aVy,L(Dp, 6;), @)

010, — PV, L(Dr, ), ®)
where L is the loss function, ¢; is the model parameter, 9; is the updated
model parameter after the training with Dp. Dp and Dy are pre-training
and fine-tuning subsets, a and p# are learning rates. Note that in Eq.
(3), the gradient is calculated based on 9; but the update is applied to 6;.
This is a first-order approximation [20], the performance of this method
is nearly the same as the full second derivatives, i.e. 0;.1—06; — SV, L(Dr,
6,), but is much easier to compute. Recall the purpose of meta-learning is
to provide an optimized initialized model for the fine-tuning task. Here,
the fine-tuning subset is used to correct pre-training and enhance the
performance of the pre-trained model on the fine-tuning task. Hence, the
advantage of this meta-learning algorithm can help find an optimized
initial model, which improves the effectiveness of the pre-trained model
to the fine-tuning task. Since meta-learning pre-training follows the
method of first-order model-agnostic meta-learning (i.e. FO-MAML)
[20], its convergence is ensured and proved in [23].

3.3. Model fine-tuning

Given optimized data split and meta learning pre-training, model
fine-tuning is conducted to improve model generalization by fine-tuning
with fine-tuning subset. Because fine-tuning subset and target domain
have the same cutting condition, model fine-tuning with fine-tuning
subsets can enhance model generalization to the target domain. The
initial model 6y = 6, obtained from meta-learning can also be adapted
and help boost model generalization. With fine-tuning subset D, the
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model is further trained in a supervised learning manner to yield the
optimized model 8., which will be directly applied to the target domain
for testing. It should be noted that we are solving a domain general-
ization problem where it is difficult to obtain target data. In this paper,
we use these small sets of target data for testing only.

3.4. Meta domain generalization

The MDG framework for tool wear prediction is summarized in Al-
gorithm 1. Beginning with the prior domain knowledge about cutting
conditions, data split is conducted on all source domain data to obtain
pre-training and fine-tuning subsets, i.e. Dp and D, with the objective
function (1). For example, if the material in the test data is iron, all
source domain data D will be split into steel material sampled data Dp
and iron material sampled data Dr. Next, meta-learning is performed to
obtain an optimized initial model for model fine-tuning. This process
involves t iterations of alternative model updates with Dp and Dg to
optimize the adaptability of the pre-trained model for fine-tuning. It

should be noted that training with Dp yields an intermediate model 0;.

The final model 6;, 1 is obtained with the cumulative gradient of ¢; with
Dr. After titerations of meta learning, a pre-trained model 6, is obtained.
0; serves as an initial model 6, and fine-tuned with Dy in m epochs. The
final optimal model 0, is obtained for tool wear prediction. Note that the
difference between our proposed method and traditional meta-learning
is that our method includes specific optimizations to solve tool wear
prediction problems, i.e. distinguishing “fine-tuning” D and “pre-
training” Dp subsets, whereas traditional meta-learning is a paradigm
without distinguishing these datasets.

Algorithm 1. MDG for tool wear prediction

Require: Source Domain Training Data D

Require: Evaluated Tool Properties (material, feed rate, etc.)

Require: Hyper-parameters (learning rate a, f, 5, batch size, etc.)

OUTPUT: Deep Learning Model 6 for Tool Wear Prediction

1: //Step-1: Source Domain Data Split

2: With prior domain knowledge, divide all training data into pre-training and
fine-tuning subsets Dp and Df.

3: //Step-2: Meta-learning Fine-tuning

4: Randomly initialize 6y

5: // Train source domain model 6 with Dp and Dy for t epochs, where t is heuristically
chosen.

6: for iterationi=0, 1, ...,t — 1 do

7 0,—6; — aVy,L(Dp,6;)

8: Oi1—0; — Vs L(Dy,6)

9: end for

10:  //Step-3: Fine-tuning on Dy

11:  // Fine-tune the model 6, with fine-tuning subset D and obtain prediction model 0.
after m training epochs.

12:  Initialize the model with 8, = 6,

13: forepochi=0,1,...,m—1do

14: 0i11—0; — V5 L(Dg, 6))

15:  end for

16: 9, = the best model within 6y, ...,0,

4. Numerical experiments

We demonstrated the effectiveness of the MDG approach in pre-
dicting tool wear under complex cutting conditions using a publicly
available dataset. It should be noted that the MDG approach can be
integrated with any deep learning algorithms. In the first extensive
numerical experiments, LSTM is chosen since it is widely used to solve
time series problems. We also investigate other deep learning algorithms
such as BiLSTM, GRU, and RNN to demonstrate the generalizability of
the MDG approach in Section 5.

To make a fair comparison between MDG and baseline training,
similar hyperparameters are used in both MDG and baseline training.
Specifically, the numbers of epochs for baseline training and MDG are
set to 200 and 300, respectively. For baseline training, the learning rate
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Table 2
Data description [2].

Training dataset

Case Material Feed rate Depth-of-cut Runs
1 Iron 0.50 mm/rev 1.50 mm 12
2 Iron 0.50 mm/rev 0.75 mm 12
3 Iron 0.25 mm/rev 0.75 mm 13
4 Iron 0.25 mm/rev 1.50 mm 7
5 Steel 0.50 mm/rev 1.50 mm 5
7 Steel 0.25 mm/rev 0.75 mm 6
8 Steel 0.50 mm/rev 0.75 mm 4
9 Iron 0.50 mm/rev 1.50 mm 8
10 Iron 0.25 mm/rev 1.50 mm 9
11 Iron 0.25 mm/rev 0.75 mm 19
12 Iron 0.50 mm/rev 0.75 mm 12
13 Steel 0.25 mm/rev 0.75 mm 13
14 Steel 0.50 mm/rev 0.75 mm 7
15 Steel 0.25 mm/rev 1.50 mm 6
16 Steel 0.50 mm/rev 1.50 mm 3

is set to 1e—5. The learning rate for MDG is set to 4e—6 for pretraining
and 4e—5 for fine-tuning. The batch size is set to 64 across different
cases for the LSTM architecture. The Adam optimizer [24] is selected
while the L2 regularization term with a weight decay of 1e—6 is used.
Since the Adam optimization convergence is proved in [24], the
convergence of the training with Adam is ensured. More details about
the dataset, training strategies, and performance evaluation are pre-
sented in the following sections.

4.1. Data description

The publicly available tool wear monitoring dataset was acquired
from the NASA Prognostic Data Repository [2]. Fig. 3 shows a schematic
diagram of the experimental setup. Three types of sensors, including
current, AE, and vibration sensors, were installed on the milling

Table 3
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machine. The AE and vibration sensors were mounted to the spindle and
the table of the test center. Both AE and vibration signals were pre-
processed (i.e. amplified and filtered). The current sensors were
installed on the spindle motors to acquire the AC and DC current signals
of the spindle motors.

Under varying cutting conditions, there is a total of 136 valid runs.
During each run, current, AE, and vibration signals were collected from
a Matsuura machine center MC-510V. The cutting tool material was the
inserts KV710 (Kennametal, 1985). The cutting speed was set at 200 m/
min. Stainless steel J45 and cast iron were selected as the workpiece
materials. The dimension of the workpiece was
483 mm x 178 mm x 51 mm. The depths of cut were set to 1.5 mm and
0.75 mm, respectively. The feed rates were set at 0.5 mm/rev and
0.25 mm/rev, respectively. Flank wear was measured using a micro-
scope after each milling test. Given the combinations of cutting condi-
tions, there are 16 cases with different numbers of runs as shown in
Table 2. It should be noted that because case 6 with only one run yields
zero flank wear, this case is considered as an invalid case. Therefore, the
raw data collected in case 6 were excluded from our dataset. A total of

Table 4
Comparison on RMSE between MDG and optimal transport (OT)-based transfer
learning [25] integrated with kernel ridge regression (KRR) and convolutional
neural network (CNN). The best performance for each case (by rows) is marked
in bold.

Test case KRR integrated with OT CNN integrated with OT MDG

5 0.239 0.299 0.179
7 0.148 0.139 0.082
8 0.180 0.136 0.134
13 0.560 0.497 0.368
14 0.308 0.344 0.337
15 0.207 0.245 0.132
16 0.039 0.210 0.152

Comparison between MDG and baseline training. The baseline training was carried out with all valid training data across cases. Training model was set to LSTM across
cases. Dp and Dy are pre-training and fine-tuning subsets with corresponding case numbers.

MDG Baseline (LSTM) Improvement (%)

Training data (case) Test data (case) RE | RMSE | R%1 RE | RMSE | R%1 RE RMSE R?

gi 222131‘1‘1216 1 0.4479 0.1185 -0.1114 0.6207 0.1650 -1.1537 27.839 28.181 90.344
gﬁ i’:;ﬁ:;iéﬁs’w 2 0.1867 0.0526 0.8593 0.5988 0.1274 0.1743 68.820 58.713 393.001
gﬁ ‘1113:?68’,193:’1125,14,16 3 0.1389 0.0468 0.8441 0.3222 0.0807 0.5373 56.890 42.007 57.100
gi 52333’1141;516 4 0.6723 0.1197 0.2472 0.8777 0.1460 -0.1207 23.402 18.014 304.805
gﬁ izg:?’olj’slz’w’“ 5 0.4783 0.1793 0.1911 0.5766 0.1827 0.1600 17.048 1.861 19.438
g‘; ;;;?11221?416 7 0.1426 0.0823 0.5635 0.4502 0.1052 0.2876 68.325 21.768 95.932
gi ;‘3‘3?11(1)21?316 8 0.2906 0.1343 0.3288 0.3201 0.1389 0.2820 9.216 3.312 16.596
gi 223131‘1‘1216 9 0.2125 0.1375 0.6600 0.8960 0.2182 0.1434 76.283 36.984 360.251
gﬁ ?2533;31141;516 10 0.8238 0.1112 0.7140 1.3694 0.1741 0.2989 39.842 36.129 138.876
gﬁ 232?21331 ‘;”416 11 0.3470 0.1149 0.7357 0.9806 0.1704 0.4179 64.614 32.570 76.047
gﬁ 232?112;?416 12 0.3348 0.0801 0.8256 0.8019 0.1261 0.5678 58.249 36.479 45.403
g‘; ;;‘2311(1)21115416 13 0.3097 0.3680 0.2951 0.5137 0.4886 -0.2421 39.712 24.683 221.892
gi é:gfgt’lgé’lloe’u’lz 14 0.7458 0.3371 0.0975 0.8114 0.3402 0.0808 8.085 0.911 20.668
gi f:i:;zg:iéﬁg’m’” 15 0.2846 0.1317 0.4702 0.4312 0.1416 0.3876 33.998 6.992 21.311
g‘: fji;ﬁﬁ’su’ls’“ 16 0.2982 0.1519 0.0491 0.3863 0.1598 —0.0517 22.806 4.944 194.971
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Table 5

Performance comparison of network architectures. Training data split for MDG
is consistent with the corresponding case in Table 3. Baseline training results are
obtained with all training data. The best performance for each case (by rows) is
marked in bold. Down arrows indicate lower is better while up arrows imply
higher is better.

Model MDG Baseline

RE | RMSE|  R*7 RE | RMSE|  R*t
Test data: case 2 (material-based split training)
LSTM 0.1867 0.0526 0.8593 0.5988 0.1274 0.1743
BiLSTM 0.1951 0.0682 0.7634 0.6787 0.1442 —0.0581
GRU 0.1619 0.0546 0.8483 0.4962 0.1058 0.4311
RNN 0.2088 0.0628 0.7994 0.4677 0.1071 0.4164
Test data: case 3 (feed-rate-based split training)
LSTM 0.1389 0.0468 0.8441 0.3222 0.0807 0.5373
BiLSTM 0.1931 0.0551 0.7844 0.3454 0.0897 0.4280
GRU 0.1740 0.0602 0.7424 0.1983 0.0627 0.7207
RNN 0.1655 0.0449 0.8566 0.1803 0.0613 0.7331
Test data: case 7 (depth-of-cut-based split training)
LSTM 0.1426 0.0823 0.5635 0.4502 0.1052 0.2876
BiLSTM 0.2365 0.0654 0.7242 0.4326 0.0931 0.4419
GRU 0.2181 0.0921 0.4530 0.4136 0.1146 0.1536
RNN 0.1710 0.0842 0.5432 0.4094 0.1190 0.0881

15 valid cases were used in this study, each of which was used as a test
dataset for model validation. In addition, the tool wear values for several
runs were labeled as either zero or NaN. These runs were also considered
invalid runs. Therefore, these runs were also excluded from our dataset.
15 valid cases with 136 valid runs were divided into training and test
datasets. Each of the 15 datasets was used as the test data to evaluate the
predictive model trained on the training datasets. It should be noted that
when a case or test dataset was selected, another case or dataset with the
same cutting condition was excluded from the training dataset so that
the proposed algorithm never processed any training data with the same
cutting condition as the test data during training. For example, if case 1
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is selected as the test data, the training dataset excludes case 9 because
the data in cases 1 and 9 were collected under the same cutting condi-
tion. This way of selecting training and test data follows the domain
generalization problem setting.

4.2. Training strategies

Fifteen numerical experiments were conducted to compare MDG
with baseline training methods. For baseline training, all valid training
cases were employed and the raw data were fed into neural networks as
the training dataset. For MDG, all the raw training data were divided
into pre-training and fine-tuning subsets. A comparative study on pre-
diction accuracy between MDG and baseline training was conducted. It
should be noted that the reason why the MDG approach was not
compared with other methods reported in the literature is that few
studies where this dataset was used were reported in the literature. For
the studies where the same data were used, almost no details on how the
raw data were divided into training and test datasets are provided.
Therefore, we compared MDG with the method reported in [25] only.

4.3. Error metrics

Three error metrics, including relative error (RE), root mean square
error (RMSE), and coefficient of determination (R?), were used to
quantify performance improvement. Given the actual and predicted tool

yfzifb|
b

wear, these errors can be computed as follows: RE = 137 |

.
RMSE = /17, (¥}, — )%, and R? =1 - D 0

denote the actual and predicted tool wear values, respectively. Perfor-

Do ey
calculated with %x 100%,

where y, and y,

mance improvement is

2 2
RMSE; —~RMSEwing 0 Riin R,
O 100%, and R]

are RE, RMSE, and R? for baseline training, respectively, while REypg,
RMSEypg, and RZMDG are RE, RMSE, and R? for MDG, respectively.
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06 GRU with Test Case 02 06 RNN with Test Case 02
" | [=#=True Data " [==True Data
— Baseline — Baseline , )9’ S
’é‘ -© MDG ’g -© MDG
£04 €04
3 ]
@ o
E 0.2 E 0.2
<] S
(<] o
[ [
0- 0-
0 20 40 60 0 20 40 60
Time(s) Time(s)
06 GRU with Test Case 03 06 RNN with Test Case 03
" |[#=True Data " | [#=True Data
— Baseline — Baseline
= = -© MDG
o4 - | Eos Pe
] ]
o) )
E 0.2 E 0.2
] <]
<] <]
[ [
0- 0-
0 20 40 60 80 0 20 40 60 80
Time(s) Time(s)
06 GRU with Test Case 07 06 RNN with Test Case 07
" [4=True Data " |l 4=True Data
— Baseline — Baseline
’é -© MDG ’g -© MDG
£04 £0.4
5 o 8
Q==
E 0.2 E 0.2
s} s}
o o
[ [

10 20 20
Time(s)

15 10

Time(s)

15

Fig. 4. Comparison of neural networks in prediction performance. Tool wear observation and prediction over experiment time are plotted. Predictions by baseline
and MDG training are compared. Four neural networks, including LSTM, BiLSTM, GRU, and RNN (by columns), are chosen for cases 2, 3, and 7 (by rows).
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Table 6

Performance comparison of split strategies. Deep neural network is set to LSTM
across all cases. The best performance for each case is marked in bold. “Dp”
denotes pre-training subset and “Dy” denotes fine-tuning subset. Down arrows
indicate lower is better while up arrows imply higher is better.

Split strategy RE | RMSE | R%1

Test data: case 2
Material-based split
Dp 5,7,8,13,14,15,16
Dp 1,3,4,9,10,11
Feed-rate-based split
Dp 3,4,7,10,11,13,15
Dp 1,5,8,9,14,16
Depth-of-cut-based split
Dp 1,4,5,9,10,15,16
Dy 3,7,8,11,13,14
Baseline (no split)

0.1867 0.0526 0.8593

0.1777 0.0606 0.8130

0.4166 0.1373 0.0407

0.5988 0.1274 0.1743
Test data: case 3
Material-based split
Dp 5,7,8,13,14,15,16
Drp 1,2,4,9,10,12
Feed-rate-based split
Dp 1,2,5,8,9,12,14,16
Dr 4,7,10,13,15
Depth-of-cut-based split
Dp 1,4,5,9,10,15,16
D 2,7,8,12,13,14
Baseline (no split)

0.3129 0.0837 0.5012

0.1389 0.0468 0.8441

0.1399 0.0545 0.7885

0.3222 0.0807 0.5373

Test data: case 7
Material-based split
Dp 1,2,3,4,9,10,11,12
Dp 5,8,14,15,16
Feed-rate-based Split
Dp 1,2,5,8,9,12,14,16
Dy 3,4,10,11,15
Depth-of-cut-based Split
Dp 1,4,5,9,10,15,16
Dy 2,3,8,11,12,14
Baseline (no split)

0.4218 0.1134 0.1713

0.3259 0.1070 0.2628

0.1426 0.0823 0.5635

0.4502 0.1052 0.2876

5. Results and discussion
5.1. Comparison between MDG and baseline training

As shown in Table 3, we observed that MDG consistently out-
performs baseline training, although performance improvement varies.
In terms of RE, the most significant improvement is 76.283% for test
case 9, while the least significant improvement is 8.085% for test case
14. In terms of RMSE, the most significant improvement is 58.713% for
test case 2, while the least significant improvement is 0.911% for test
case 14. In terms of R2, the most significant improvement is 393.001%
for case 2, while the least significant improvement is 16.596% for case 8.
The experimental results show that MDG achieved significant perfor-
mance improvement for most of the test cases with small training data
with respect to RE, RMSE, and R2

Meanwhile, in terms of RMSE, cases 5, 8, 14, 15, and 16 have shown
relatively smaller improvement, which yielded the improvement of
1.861%, 3.312%, 0.911%, 6.992%, and 4.944%, correspondingly.
Concerning R? cases 5, 8, 14, and 16 have shown lower positive values.
It is suspected that the number of data points, which is relatively small
across these cases, caused these observations. For case 13, the last three
runs have shown much higher tool wear, for example 1.30 mm at the
time of 42 s and 1.53 mm at the time of 45 s, than any other case, which
increased the difficulty in generalization with source domain data.
However, MDG still yielded much better RMSE compared to the state-of-
the-art method.

We also compared MDG with one state-of-the-art technique, i.e.
optimal transport (OT)-based transfer learning [25] integrated with
kernel ridge regression (KRR) and convolutional neural network (CNN)
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in Table 4. Except cases 14 and 16, MDG outperformed OT-based
transfer learning in terms of RMSE across other cases.

5.2. Effect of network architectures on performance

We also evaluated the effect of neural network architectures on
prediction accuracy. Four neural networks, including LSTM, BiLSTM,
GRU, and RNN, were selected to conduct a comparative study. The
experimental settings were set with general hyperparameters, except
that the batch size for BILSTM was set to 32. Three representative cases,
including cases 2, 3, and 7, were selected to carry out the experiments
because the training data in the three cases were divided into pre-
training and fine-tuning subsets based on material, feed rate, and
depth-of-cut, respectively.

As shown in Table 5, MDG consistently outperformed the baseline
training approach for all three cases while different neural network ar-
chitectures achieved different improvements. In particular, compared to
baseline training, MDG has shown more stable performance across
different neural networks, which was reflected by smaller variation in
RE, RMSE, and R2. This implies that MDG is less sensitive to neural
network architectures. Among these network architectures, LSTM yiel-
ded more accurate prediction. For some cases such as cases 3 and 7,
BiLSTM has shown worse performance, although its architecture was
more complex. This observation is related to the interaction between
data quantity and model complexity. The training data is so small that
the advantage of BiLSTM is overshadowed, which may cause overfitting
on the training set. That is also the reason why RNN can outperform the
other neural network architectures in some cases since its lower model
complexity may reduce the risk for overfitting.

As shown in Fig. 4, the neural network architectures may affect
prediction performance. For case 2, BILSTM has shown the largest de-
viations for some observations. For case 3, GRU has shown larger de-
viations for some observations. For case 7, the trends captured by the
four network architectures have been very similar.

5.3. Effect of source data split on performance

We also investigated the effect of data splitting strategies on pre-
diction accuracy. Three data splitting strategies were used to divide the
training data into pre-training and fine-tuning subsets, including
material-based, feed-rate-based, and depth-of-cut-based splits. Similar
to the previous comparative study, cases 2, 3, and 7 were selected as
representative cases for performance comparison.

As shown in Table 6, data splitting strategies are crucial to prediction
accuracy and performance improvement for MDG. For case 2, both
material-based and feed-rate-based split significantly improved predic-
tion accuracy. The results have shown approximately 123% and 161%
increase in RE and RMSE compared to the material-based split when the
depth-of-cut-based split was selected. For case 3, both feed-rate-based-
split and depth-of-cut-based split significantly improved prediction ac-
curacy. The experiments have also shown 125% and 79% increase in RE
and RMSE as well as 41% decrease in R compared to the feed-rate-based
split when the material-based split was selected. The prediction accu-
racy was even worse than baseline training in RMSE and R For case 7,
the depth-of-cut-based split achieved the greatest performance
improvement. Performance improvement significantly decreased when
either feed-rate-based or material-based split was selected, which
resulted in approximately 129% and 196% increase in RE, 30% and 38%
increase in RMSE, and 70% and 53% decrease in R?. These observations
imply that data split optimization significantly affects the performance
of MDG. When fine-tuning subset is better optimized, performance gains
will be more significant.

As shown in Fig. 5, when appropriate split optimization is carried
out, tool wear variability is better described, which is consistent with the
statistics in Table 6. For case 2, the trend in tool wear is more accurately
captured, especially for large tool wear when either material-based or
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Fig. 5. Comparison of training data split strategies in prediction performance. Tool wear observation and prediction over experiment time are plotted. Predictions by
baseline and MDG training are compared. Three split strategies, including material-based, feed-rate-based, and depth-of-cut-based ones (by columns), are chosen for
cases 2, 3, and 7 (by rows).

feed-rate-based split is used. For case 3, the entire prediction trend is comparison with baseline training with respect to RE, RMSE, and R%. In
corrected by shifting when feed-rate-based or depth-of-cut-based split is addition, we observed that data splitting strategies significantly affected
employed. For case 7, although performance improvement for large tool prediction performance and model generalization. We also evaluated
wear is small, the prediction of smaller tool wear is significantly the performance of four neural network models integrated with the MDG
improved when the depth-of-cut-based split is used. Although the approach. The experimental results revealed that these neural network
pattern of improvement is different, appropriate data split enables architectures achieved similar prediction accuracy.
model prediction to more accurately depict tool wear variability. In the future, turning and drilling tests under more complex cutting
conditions will be conducted to demonstrate the meta domain general-
6. Conclusions and future work ization approach.

In this paper, we introduced a meta domain generalization approach

to predicting tool wear under complex cutting conditions with a small Declaration of Competing Interest
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