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Abstract—While human safety is always a concern in an
environment with human-robot collaboration, this concern mag-
nifies when it is the human-robot work-space that overlaps. This
overlap creates potential for collision which would reduce the
safety of the system. Fear of such a collision could reduce the
productivity of the system. This apprehensiveness is referred to
as the perceived safety of the robot by the human. Therefore, we
designed a within-subject human-robot collaboration experiment
where a human and a robot work together in an assembling
task. In order to evaluate the perceived safety during this HRC
task, we collected subjective data by means of a questionnaire
through two methods: during and after trial. The collected data
was analyzed using non-parametric methods and these statistical
tests were conducted: Friedman and Wilcoxon. The most clear
relationship was found when changing only sensitivity of the robot
or all three behaviors of velocity, trajectory, and sensitivity. There
is a positive moderate linear relationship between the average
safety of the during trial data and the after trial data.

Index Terms—HRC, Data Collection Methods, Perceived
Safety, Sensitivity

I. INTRODUCTION

Recent years have seen a dramatic increase in situations
where robots and humans must collaborate and co-exist [1].
In each of these situations, the biggest concern is safety. The
priority of the robot is to ensure that the human does not
get hurt. A situation in which direct contact occurs between
a person and a robot is referred to as physical robot-human
interaction (pHRI) [2], and is a great example of a system of
systems. Not only should the robot not hurt the human, but the
human should be confident that they are safe. Perceived safety
describes the user’s perception of the level of danger when
interacting with a robot [3]. Achieving a positive perception
of safety is a key requirement if robots are to be accepted as
partners and co-workers [3]. If humans feel unsafe, whether
they are actually in danger or not, they will likely be less
productive. Therefore, it is imperative that we ensure robots
are perceived as safe before we introduce and integrate them
into our workplaces.
Perceived safety has generally been measured indirectly -

most commonly by measuring physiological signals or through
questionnaires. Unfortunately, there is not a unified method of
measuring perceived safety across the field. Bartneck et al. [3]
identifies numerous papers within the field which examined
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perceived safety that all used differing metrics. Most of the
papers utilizing questionnaires collected the data post-trial.
This is a weakness and limitation of the questionnaire method,
as it allows for the distortion of the true feelings of participants
due to errors in recollection which could bias their response
[3].
In this research, in order to measure the perceived safety

during HRC and to compare two data collection methods, we
conducted an experiment with Sawyer, a collaborative robot.
During the experiment, robot behavior was changed by ma-
nipulating the velocity, trajectory, and sensitivity parameters
of the robot. Data was collected both throughout the trials
as well as a single recorded response after the completion of
the trial. The efficacy of the two data collection methods was
analyzed.
The contribution of this paper is as follows:
• Evaluation of the perceived safety during HRC task
• Efficacy of two data collection methods
• Determine safer robot behaviors
The rest of the paper is structured as follows, section

II provides a brief introduction to related works, section
III introduces the methodology, and section IV defines the
experiment. Section V provides and discusses results, and
section VI discusses our conclusions.

II. LITERATURE REVIEW

Once it became feasible for robots to be integrated into
society, the number one concern became safety. The primary
focus of the field was developing safety measures, protocols,
and features. The American National Standard for Industrial
Robots and Robot Systems broadly categorizes the approaches
to ensuring safety as reducing hazards through mechanical
redesign, controlling the hazard through electronic safeguards,
and warning the operator/user [4]. Safety in human-robot
collaboration has been wildly studied, and much of what the
field has to offer is collected in these survey papers [5], [6].
Collaborative interaction between humans and robots has two
sides. Not only does the robot have to actually be safe, but in
order for the person to work effectively, they must perceive
the robot as safe.
Perceived safety is an aspect brought into academic focus

relatively recently [7]. As such, there is not a unilaterally
accepted methodology for evaluating human-robot interaction
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(HRI) studies. Commonly used measures are self-report, be-
havioral, psycho-physiological, and task performance-based.
Self-report measures are the most frequently utilized method
of evaluation in HRI studies, followed by physiological signals
[8]. While questionnaires are the typical collection method
for self-reported data, a key limitation identified in Bartneck
et al. [3] is that the questionnaire is usually administered
only after the actual experience. This means that subjects
have to reflect on their experience afterward, which might
bias their response. Recognizing this limitation, Zoghbi et
al. [9] investigated the use of a hand-held device, coined
the Affective-State Reporting Device (ASRD), that allows
people to report their affective state, i.e., valence and arousal,
continuously during a human-robot interaction trial. Their
paper found that speed was the only significant factor on the
subject’s reported average arousal. Similarly, Koay et al. [10]
attempted to directly measure a subject’s comfort level via a
simple device where subjects use a continuous scale to judge
their current comfort level throughout an HRI interaction trial.
As a consequence of the lack of unified methodology,

Bartneck et al. [3] found that researchers would use ques-
tionnaires with completely different scales, particularly Likert
scales and semantic differential scales. Because of this, two
studies that collected data using different scales cannot be
accurately compared. In an attempt to remedy this, Navarro
et al. [2] created OpenPHRI which is a C++/Python general-
purpose software scheme with several built-in safety measures
designed to ease robot programming for physical human-robot
interaction and collaboration. Another unconventional method
for comparing differing questionnaire scales was used by Kulic
and Croft [11], [12]. Initially, they combined a questionnaire
with physiological sensors to estimate the user’s level of anx-
iety and surprise during sample interactions with an industrial
robot. Data collected using a 5-point Likert scale displayed
a strong positive correlation between anxiety and speed, and
surprise and speed, and a negative correlation between calm
and speed [11]. Later, they transformed their Likert template
to the following semantic differential scales: Anxious/Relaxed,
Agitated/Calm, Quiescent/Surprised and utilized with a new
set of subjects to demonstrate that affective state arousal can
be detected using physiological signals. In this way, Kulic
and Croft were able to compare the results from two different
questionnaires.
Nonaka et al. [13] describes a set of experiments where hu-

man response to pick-and-place motions of a virtual humanoid
robot is evaluated. In their experiment, a virtual reality display
is used to depict the robot. Human response is measured
through heart rate measurements and subjective responses.
No relationship was found between the heart rate and robot
motion, but a correlation was reported between the robot
velocity and the subject’s rating of “fear” and “surprise” [13].
Overall, the most prevalent methodology is the combina-

tion of self-report measures and physiological signals. It is
also important to remember that individual differences can
create huge differences in perceived safety, as it is largely
psychological. Since HRC includes two parties (i.e., humans

and robots), safety perception is never based on the robot
properties alone. Akalin et al. [14] showed that individual
human characteristics, such as gender and personality traits,
influence the perceived safety of humans in HRI. According
to the data compiled in the survey paper by Rubagotti et al. [7],
in general, for industrial manipulators, the feeling of perceived
safety was enhanced when the relative human–robot distance
was large, when the robot speed was low, and when controlling
forces/avoiding abrupt robot motions during planned contact
with the human.
In all the aforementioned methods and corresponding stud-

ies, the researchers used either after-trial or during-trial re-
sponses. In this study, not only did we measure perceived
safety in a HRC task through a post-trial evaluation, but also
during the trials. Doing this allows us to define safer robot
behavior and determine efficient data collection methods.

III. METHODOLOGY

In this research, we investigate the effect of the robot’s
behavior on human perceived safety. In order to measure
this effect, we programmed the robot to perform various
behaviors, and asked the participants to fill out a subjective
questionnaire on safety. The velocity, trajectory and sensitivity
of the robot were manipulated while the participant interacted
with the robot as shown in Fig. 1. Based on the results of
the participant’s self-reported questionnaire, the effect of the
robot’s behavior can be evaluated.

R
Velocity

Trajectory

Sensitivity

H Safety

Fig. 1: Proposed work that investigate how changes in robot
behavior affects human perceived safety.

One way to assess perceived safety is based on data reported
by the human. Knowing how safe the person feels is critical
for a HRC system and it can be used to program the robot’s
future behavior [15].

A. Robot Behaviors (Independent Variables)

During the experiment, robot behavior was altered by
changing the velocity, trajectory, and sensitivity parameters
of Sawyer. Velocity refers to the speed of the end-of-arm and
has two levels: Normal (N) and Fast (F). Trajectory refers
to the path of the arm and has two levels: Normal (N) and
Extreme (E). Sensitivity refers to the hand-off and has two
levels: Normal (N) and Sensitive (S). In addition, there is a
random setting where a robot switches the velocity, trajectory,
and sensitivity constantly and at-random during the duration
of the movement. The different settings for each trial were
denoted by a three letter arrangement. For each participant,
we ran eight trials from Tab. I in addition to three RRR trials
as shown in Tab. I.
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TABLE I: The list of the trials that participants involved during
the experiment.

Trial Type # repeat Description

1 NNN 1 Velocity ’normal’, Trajectory ’normal’,
and Sensitivity ’normal’

2 NNS 1 Velocity ’normal’, Trajectory ’normal’,
and Sensitivity ’sensitive’

3 NEN 1 Velocity ’normal’, Trajectory ’extreme’,
and Sensitivity ’normal’

4 NES 1 Velocity ’normal’, Trajectory ’extreme’,
and Sensitivity ’sensitive’

5 FNN 1 Velocity ’fast’, Trajectory ’normal’,
and Sensitivity ’normal’

6 FNS 1 Velocity ’fast’, Trajectory ’normal’,
and Sensitivity ’sensitive’

7 FEN 1 Velocity ’fast’, Trajectory ’extreme’,
and Sensitivity ’normal’

8 FES 1 Velocity ’fast’, Trajectory ’extreme’,
and Sensitivity ’sensitive’

9 RRR 3 Randomly selected from [1, 8] trial types.

B. Subjective Data Collection Methods

1. Trial

Trial Start Trial End

After Trial

Questionnaire

1 2 3 4 5 ... N

During Trial

Questionnaire

Time

2. Trial

Trial Start

1 2

Fig. 2: Two data collection methods: During and After trial.

Fig. 2 shows the two data collection methods that were
evaluated in this study. The first method is after trial wherein
participants reported their perceived safety of the robot only
after the conclusion of the trial. This method is very common
in the field. The second method is during trial where the par-
ticipants reported their perceived safety of the robot multiple
times throughout the whole experiment.
In order to minimize the time that the participants spent

reporting the subjective safety metric, a custom Android app
was developed as shown in Fig. 3. The app allows the
participant to enter their subjective responses immediately
after the assembly of each part (iteration) with a single tab on
the tablet screen. This minimizes the duration of the collection,
maintaining the integrity of the experiment. The during trial
approach produces more data and will provide a better idea of
how the perceived safety is changing during the trials.

Fig. 3: The custom android app that participant enters the
subjective metric by touching the bars on the screen.

C. Evaluation Criteria

IV. EXPERIMENT

In order to quantify perceived safety in human-robot collab-
oration, we conducted a sequential collaboration experiment
[16] where the participant waits for the robot to bring a part for
the assembly. The Sawyer [17] collaborative robot was used in
the experiment and the data was collected from healthy college
students (N=20). The participants consisted of 17 male and 3
female subjects (Mean Age= 24.70, SD= 2.99).
The experiment setup consisted of a joint task between the

robot and the human, where the robot provides a part from
Table-1 and the human picks a part from Table-2 as shown in
Fig. 4. The participant is responsible for picking and screwing
the two parts together, while the robot is holding one of the
parts.

Fig. 4: Experiment 3: Stationary experiment, wait for the robot
to bring the part.

In this experiment, we control the robot’s behavior by
changing its velocity, trajectory, and sensitivity (independent
variables). The velocity was set to be in two levels of normal
and fast. These two modes were achieved by setting the global
speed ratio to 0.7 for normal mode and to 1.0 for fast mode.
The trajectory was defined as two modes: normal and extreme.
The normal trajectory was defined as the robot moving from
Table-1 to Table-2 with minimum joint movements. Hence,
the normal trajectory was smooth and predictable. On the
other hand, the extreme trajectory passes multiple way-points
between the pick and place locations which makes the robot
jerkier and less predictable. The sensitivity was defined in two
modes: normal and sensitive. The sensitivity was measured as
the threshold of pressure on the robot when force was applied
to the end-effector. Sensitive means there was a low threshold
(±8N/s2) of pressure needed for the robot to move on to
the drop location. Normal sensitivity means there was a high
threshold (±11N/s2) of pressure needed for the robot to move
on to the drop location.
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A. Experiment Procedure

This experiment consisted of 11 trials and one baseline. In
a typical trial, the robot can provide up to 24 parts (iterations)
to the participant. The robot job is to pick a part from Table
1 and move it in front of the participant for assembling.
The participant needs to pick an item from Table 2 and
assemble the part in five seconds. Then, the robot moves to
the assembled part location, as shown in 4, drops the part, and
moves to Table 1 for the next part. If the participant is not able
to assemble the part within five seconds, the robot will proceed
to the dropping location. While the robot is dropping the part,
the participant enters their responses to the tablet asking the
subject to report safety levels in a continuous value range [0,
1] on the tablet screen. The trial is complete when five minutes
have elapsed or there is no item left on Table 1 for the robot
to pick up.
The participant was informed that they could tap the robot’s

end-effector to notify the robot not to wait anymore during
assembling time. In this way, the participant could minimize
the trial duration. Before the experiment started, all the par-
ticipants were trained for one trial so that they got used to the
task and the tablet. This minimized the impact that habituation
and human acclimation may have had on the results of the
experiment.
In addition to the subjective response during the trials, the

participant filled a questionnaire after the completion of each
trial where they reported their safety level, along with some
other metrics.

V. RESULT AND DISCUSSION

In this section, we analyze multiple statistical tests to
determine the effect of robot behavior on the perceived safety,
and to compare two data collection methods.

A. During Trial vs. After Trial responses

Before starting any statistical analysis, we looked at infor-
mation from a single trial. As we discussed in section III-B, the
subjective metrics were collected during and after trials. The
Fig. 5 shows the response of one of the participants from the
study. The x-axis shows the number of the times the participant
report the safety level and the y-axis shows the perceived
safety level. The dashed line is the after trial response, and
is the only value represented as a line.
In the Fig. 5 the during trial subjective response provides

additional information about the safety of the participant. On
the other hand, the after trial method summarizes the entire
trial with only one reported value. Knowing this is critical to
select which methods to use for a particular application. For
example, for a physiological computing system that estimates
safety based on physiological signals, the during trial data
collection method would be a better approach [18]. On the
other hand, for an application that evaluates overall robot
behavior, it may be sufficient to use the after trial collection
method.
The Pearson correlation between the average safety of

during trial and after trial responses is 0.69. Hence, there is a

0 5 10 15 20
# Times Perceived Safety Reported

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

ei
ve

d 
Sa

fe
ty

 L
ev

el

During Trial Response
After Trial Response

Fig. 5: A trial response of during and after trial from a random
participant

moderate positive linear correlation existing between the two
methods.
Next, we will conduct multiple statistical analysis to inves-

tigate trial types.

B. Analysis of variance (ANOVA)

The ANOVA test is a commonly used method for statistical
analysis when there are more than two groups. However, the
underlying assumption for ANOVA test is that the values are
normally distributed. We applied Shapiro-Wilk normality test
to the perceived safety and all the trial types failed [19]. Hence,
instead of ANOVA test we applied a non-parametric Friedman
test which does not make any assumption about the underlying
distribution for the reported values.
In this research, we used the test to determine whether there

was a difference between trial types for both during and after
trial response. The Friedman test results show that the p val =
0.000169, p val = 0.000321 for during trial and after trial
respectively. This means that at least one trial type is different
from the others. In order to know which trial type is different,
a post-hoc test is needed.

C. Post-hoc Test

The post-hoc test provides one-to-one comparison between
groups. We conducted a non-parametric paired t-test that uses
Wilcoxon signed-rank test [20].
H0: There is no difference in perceived safety between two

trial types. For the sake of brevity, we will not repeat the null
hypothesis for future comparison.
H1: Participants would feel less safe when any of the

velocity, trajectory, or sensitivity is different from normal
(H1 : MNNN > MFNN ,MNNN > MNEN , andMNNN >
MNNS).
As shown in Table II, we reject the null hypothesis (H0)

for the NNS since the p val is less than α = 0.05 for both
methods. However, for the FNN, and NEN, while we fail to
reject the null hypothesis for during trial, we reject the null
hypothesis for after trial.
All other things kept normal (NNN), sensitivity was the only

variable which had a significant effect on perceived safety
based on during trial data. The other behaviors of velocity
and trajectory only had a significant effect based on after trial
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TABLE II: Right-Tailed non-parametric paired Wilcoxon test
between NNN and NNS, FNN, and NEN, respectively for both
methods.

# A B Cond. During Trial
(p val)

After Trial
(p val)

1 NNN NNS greater 0.033 0.009
2 NNN FNN greater 0.415 0.001
3 NNN NEN greater 0.616 0.011

data. However, since there are limited data points, the after
trial data collection method may be skewed. When adjusting
robot behavior, sensitivity is most vital.
H2: Participants would feel less safe when changing tra-

jectory or sensitivity while velocity is fixed to fast (H2 :
MFNN > MFNS ,MFNN > MFEN ).

TABLE III: Right-Tailed Non-parametric paired Wilcoxon
test between FNN and FNS and FEN, respectively for both
methods.

# A B Cond. During Trial
(p val)

After Trial
(p val)

1 FNN FNS greater 0.000 0.029
2 FNN FEN greater 0.151 0.136

In this analysis, we kept the velocity fixed to fast and
observed the impact of the trajectory and sensitivity. As shown
in Tab. III, the test results showed that FNS is less safe based
on both during and after trial responses. On the other hand, we
failed to reject the null hypothesis for FNN and FES for both
collection methods. The p val is greater than the α = 0.05.
Similar to the previous analysis, we can see that sensitivity
plays a vital role when velocity is fast as well.
H3: Participants would feel less safe when changing velocity

or sensitivity while trajectory is fixed to extreme (H3 :
MNEN > MFEN ,MNEN > MNES).

TABLE IV: Right-Tailed non-parametric paired t-test between
NEN and FEN and NES, respectively for both methods.

# A B Cond. During Trial
(p val)

After Trial
(p val)

1 NEN FEN greater 0.007 0.064
2 NEN NES greater 0.010 0.219

Similar to H2, we kept the trajectory extreme and manipu-
late the velocity and sensitivity. As shown in Tab. IV, in this
analysis, FEN and NES statistically significant which it means
they are less safe than NEN on for during trial. Thus, we accept
the alternative hypothesis. For the after trial we fail to reject
H0 due to limited evidence. The p vals are low for the after
trial this again may happen due to limited sample size.
H4: Participants would feel less safe when changing velocity

or trajectory while the sensitivity is fixed to the extreme (H4 :
MNNS > MFNS ,MNNS > MNES).
As shown in Tab. V, the only test that was statistically

significant was when MNNS > MFNS for the after trial

TABLE V: Right-Tailed non-parametric paired t-test between
NNS and FNS and NES, respectively for both methods.

# A B Cond. During Trial
(p val)

After Trial
(p val)

1 NNS FNS greater 0.059 0.035
2 NNS NES greater 0.335 0.219

response. The rest of the tests’ p vals were greater than
α = 0.05, hence we failed to reject the null hypothesis.
In this test, we set all independent variables to the extreme

levels. The velocity was set to fast, trajectory was set to
extreme, and the sensitivity was set to sensitive. We compared
this robot behavior with other behaviors where we kept one
variable fixed and changed the other two behaviors.
H5 : MFES < MNES ,MFES < MFNS ,MFES < MFEN

TABLE VI: Left-Tailed non-parametric paired t-test between
FES and NES, FNS, and FEN, respectively for both methods.

# A B Cond. During Trial
(p val)

After Trial
(p val)

1 FES NES less 0.002 0.041
2 FES FNS less 0.567 0.479
3 FES FEN less 0.059 0.057

Table VI shows the test results of FES vs. NES, FNS, and
FEN. The table shows that FES was less safe than NES but
there is not enough evidence to reject the null hypothesis for
FNS and FEN. However, the p val for MFES < MFEN is
very close to the α = 0.05 value.
Based on all the statistical tests we conducted, FES is the

least safe robot behavior. However, we conducted a trial type
of RRR where the robot changes its behavior during the trial
randomly from 1 to 8 in Tab. I.
H6: Participants would feel least safe when robot behavior

is RRR in comparison to all other trial types (H6 : MRRR <
MALL).
The p vals were 0.174 and 0.125 for during and after trial

respectively. Hence, we failed to reject the null hypothesis. In
order words, the RRR is not the least safe robot behavior.

VI. CONCLUSION

This research investigates the effect of the robot’s behavior
on the participants’ perceived safety during human robot
collaboration. An experiment was conducted involving HRC
in order to accomplish a task. Data was collected from twenty
participants to evaluate their perceived safety during and after
the experiment. The pros and cons of the two methods were
discussed.
The result of the experiment showed that robot behavior

has an effect on the perceived safety. In addition, the Pear-
son correlation showed that there is moderate positive linear
correlation between during and after trial response. From
the subjective responses, we can see that each parameter of
velocity, trajectory, and sensitivity of the robot has a different
effect. From these three parameters, when we change only one
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parameter, the sensitivity is the most critical one that affects the
perceived safety, followed by trajectory, and finally velocity.
This paper found that for improved perceived safety, the better
robot behavior recommended is normal sensitivity.
We also compared RRR trials, where the robot randomly

chose from the independent variables, with the rest of the
behaviors. There was not enough evidence to say that RRR
was the least safe robot behavior.
In conclusion, when evaluating the perceived safety of a

robot, during trial data will provide more information about
the effect of the robot behavior on human perceived safety
level. Alternatively, after trial data collection provides a suf-
ficient overall perceived safety level. Based on the desired
application, either of these methods can be useful. This paper
compares two data collection methods to determine which one
provides more accurate results.
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