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Abstract—Unmanned aerial vehicle (UAV)-enabled mobile
edge computing (MEC) has emerged as a promising paradigm
to extend the coverage of computation service for Internet of
Things (IoT) applications, which are usually time-sensitive and
computation-intensive. In this paper, a novel design framework
is proposed for a multi-UAV-enabled MEC system, where edge
servers are equipped on multiple UAVs to provide flexible
computation assistance to IoT devices with hard deadlines. The
aim is to maximize the number of served IoT devices through
jointly optimizing UAV trajectory and service indicator as well
as resource allocation and computation offloading, where the
chosen IoT devices will complete their computation tasks on
time under given energy budgets and co-channel interference
is taken into account. We formulate the optimization problem
as a mixed integer nonlinear programming (MINLP), which is
challenging to solve directly. The problem is first reformulated
to a more mathematically tractable form by adding a penalty
term to the objective function. We then decouple the problem
into two sub-problems and develop an iterative algorithm by
solving the two sub-problems with alternating optimization and
successive convex approximation techniques, where the proposed
algorithm converges to a Karush-Kuhn-Tucker (KKT) solution.
In addition, an efficient initialization scheme is proposed based
on multiple traveling salesman problem with time windows (m-
TSPTW) method. Finally, simulation results are provided to
demonstrate that the proposed joint design achieves significant
performance gains over baseline schemes.

Index Terms—Unmanned aerial vehicles, timely edge comput-
ing, Internet of Things (IoT), resource allocation.

I. INTRODUCTION

With the rapid development of software and hardware tech-
nologies, an increasing number of devices (e.g. smart cameras,
smartphones, smart vehicles, etc) can access the Internet for
various services (e.g., game, video, smart city etc.), and Inter-
net of Things (IoT) devices as well as their applications have
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become more pervasive. Such explosive growth of devices
generate a large amount of data which needs storage and
computation processing. As reported in [1] that global mobile
data traffic is expected to reach 77.5 exabytes per month by
2022. Although this will come with positive impacts including
new applications, e.g., virtual reality (VR), augmented reality
(AR), and high-definition (HD) video streaming, it also poses
pressure on the existing network infrastructure with critical
requirements on communication and computation.

However, most of the IoT devices, such as sensors and
mobile devices, have limited capacity for communication,
computing, and storage, which has great impact on the per-
formance of the above resource-hungry IoT applications. As
such, computation cannot be performed solely on the IoT
devices and mobile edge computing (MEC) is introduced [2],
[3]. MEC provides computational service near the edge of
structured core network. As such, tasks and data generated
from IoT devices no longer need to be forwarded to remote
IoT clouds, but just be analyzed and processed immediately
near the edge of the mobile network, which not only eases
backhaul impacts but also facilitates low latency. In addition,
by offloading computation tasks to edge servers, the energy
consumption of IoT devices can be saved compared to the
traditional cloud computing approach [4], [5]. However, the
geographic areas of IoT applications may be still far from
the the edge of core network, e.g., video surveillance for
precision agriculture, smart factory, underwater monitoring,
etc. It would be difficult for IoT devices to access the remote
MEC server with reliable links due to the long distance [6].
Moreover, IoT devices are flexibly and widely distributed in
and it is difficult for the conventional ground base station to
provide enough service coverage.

In contrast to edge servers at fixed locations, unmanned
aerial vehicle (UAV)-enabled MEC has recently emerged as
a promising paradigm to extend the coverage of computation
service for IoT applications and provide more flexible and
cost-efficient computing services [7], [8]. Such UAV-enabled
MEC platforms can also provide fast and flexible deployment
in emergency scenarios, e.g., traffic disruptions in intelligent
transport systems, etc. In particular, by deploying MEC servers
on UAVs, computation tasks can be offloaded from ground
IoT devices to the aerial MEC servers. Due to the agility
for convenient deployment and its desired channel conditions
to devices, UAV-enabled MEC can be deployed with flexible
mobility and support reliable line-of-sight (LoS) connections
to devices. Consequently, more data can be transmitted from
IoT devices when the UAVs are close enough through the LoS
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channels, such that the computation offloading related energy
consumption at devices can be greatly reduced [9].

On the other hand, many tasks generated by IoT devices
usually need to be accomplished with strict time constraints.
In other words, the computation tasks should be finished
before their deadlines; otherwise, the input data becomes
outdated and loses its value. Such tasks are typically energy-
consumptive, computing-intensive, and time-sensitive. In gen-
eral, it is difficult to satisfy the latency requirements for all
IoT devices. As a result, the effective design of task offloading
and device selection scheme becomes important. Furthermore,
a single UAV usually has limited computation capability,
which motivates the deployment of multiple UAVs to serve
IoT devices cooperatively to achieve more efficient offloading
service. As such, IoT devices are served simultaneously with
higher computation capacity and lower access delay. Such
multi-UAV-enabled MEC should be carefully designed to
work efficiently and cooperatively, i.e., the resources (both
computation and communication) should be efficiently allo-
cated.

Motivated by the issues discussed above, in this paper,
we propose a multi-UAV-enabled network architecture to
provide edge computing for IoT devices with target hard
deadlines. More flexible services to the area can be provided
by dynamically adjusting the UAVs’ positions. Our aim is to
maximize the number of served IoT devices through jointly
optimizing UAV trajectory and service indicator as well as
resource allocation and computation offloading, while the
chosen IoT devices will complete their computation task on
time under given energy budgets. We summarize the main
contributions of this paper as follows.
• First, a novel design framework is proposed for multi-

UAV-enabled MEC to provide computation services for
time-constrained IoT applications. The UAVs coopera-
tively serve the offloaded tasks to meet their deadlines.
It is assumed that all UAVs operate at the same frequency
band, where co-channel interference is considered.

• Second, an optimization problem is formulated to maxi-
mize the number of served IoT devices by optimizing
UAV trajectory jointly with service indicators as well
as resource allocation and computation offloading. Our
problem formulation considers both IoT devices’ en-
ergy budget and dynamic allocation of CPU frequency
for computing. The formulated optimization problem is
mixed integer nonlinear programming (MINLP), which
is challenging to solve for optimal solutions.

• Third, we reformulate the problem to a more tractable
form using deductive penalty functions, and then decom-
pose it into two sub-problems: (i) computation offloading
and service indicator optimization as well as resource
allocation, and (ii) UAV trajectory optimization. An ef-
ficient iterative algorithm is proposed by jointly solving
the two sub-problems with alternating optimization and
successive convex approximation (SCA) techniques. We
also prove that the proposed algorithm is guaranteed to
converge to a solution satisfying the Karush-Kuhn-Tucker
(KKT) conditions.

• Finally, a systematic initialization scheme is proposed

based on multiple traveling salesman problem with time
windows (m-TSPTW) method. Simulations results are
provided to demonstrate that the proposed scheme is
more advantageous and effective compared with sev-
eral benchmark schemes. Furthermore, new insights for
multi-UAV movement for time-constrained IoT applica-
tions have been revealed.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III presents the multi-
UAV-enabled MEC system model and problem formulation.
Section IV reformulates the problem and develops an effective
iterative algorithm, and analyzes its convergence and complex-
ity. Section V presents our simulation study and the conclusion
is given in Section VI.

II. RELATED WORK

In this section we introduce the related work on MEC and
UAV-enabled MEC.

A. Mobile Edge Computing

Compared to the traditional cloud computing, MEC puts
forward new requirements for equipment requirements and re-
lated technologies, such as computation offloading techniques
that characterize the network with low-latency. Computation
offloading and resource allocation are very critical aspects
in affecting communication and service quality over MEC
system. The problem of delay minimization for task offloading
ultra-dense network was studied in [10], subject to the battery
constraints. In [11], an energy-efficient computation offloading
scheme was proposed for MEC system in heterogeneous cellu-
lar Networks networks, such that the total energy consumption
of all ground devices is minimized. The work in [12] studied
the computation offloading problem over a software-defined
access network, where edge computing services are provided
by multi-hop access-points (APs). The work in [13] analyzed
effective capacity of MEC with a two-stage tandem queue,
based on which a joint computation and bandwidth resource
allocation problem was solved such that the total revenue of
the network was maximized. The work in [14] maximized the
throughput and minimized the operational cost in a mobile
edge cloud network, where a specified network function is
requested by each offloading task with a tolerable delay.

Delay-sensitive computation offloading over MEC system
should be taken into account to satisfy the quality-of-service
(QoS) requirements of heterogeneous devices. The joint trans-
mission scheduling and computation offloading for delay-
sensitive applications was investigated in [17] by leveraging
game theory. The work in [18] studied task delay minimization
problem in non-orthogonal multiple access (NOMA) enabled
MEC networks, where computation tasks can be offloaded
simultaneously for multiple users. The work in [19] minimized
the weighted sum of average number of requested resources
and average completion time of jobs in IoT edge computing
with deep reinforcement learning. In [20], the cost for periodic
tasks in MEC system was minimized based on game theory,
where the cost is represented by the linear combination of the
task completion time and energy consumption. In summary,
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MEC over traditional cellular networks has been well studied
in the literature.

B. UAV-Enabled Mobile Edge Computing
Due to the flexibly and high mobility of the UAV, UAV

communication has attracted significant research as UAVs
can substitute for the terrestrial base stations such that the
network coverage area can be further enlarged [21]. Unlike
ground MEC networks, UAV-enabled MEC provides wide
coverage and flexible mobility management for computation
offloading. The work in [22] considered a UAV-enabled
MEC wireless powered system and studied the computation
rate maximization problem with UAV’s speed and energy-
harvesting constraints. In [23], a ground-air-space integrated
network edge computing architecture was proposed, where
edge computing was provided by flying UAVs. In [24], orthog-
onal frequency-division multiple access scheme was employed
in UAV-enabled network for serving multiple ground users
with different delay requirements. The authors in [25] inves-
tigated a UAV-enabled wireless powered cooperative MEC
system, where an MEC server and energy transmitter were
equipped at a UAV to provide both computing and energy
services to ground devices. The economics of UAV-enabled
service provisioning was studied in [26], where the dynamic
service, capacity allocation, and UAV-network deployment
were taken into account. In [27], the queuing delay behavior
was investigated with software-defined coexisting WiFi AP
and UAV-mounted base station, via designing the AP traffic
offloading and UAV positioning. However, only a single flying
UAV MEC server was employed in these existing works to
provide computation service.

Multiple UAVs can cooperate to provide MEC services
for ground IoT nodes [28]. The authors in [29] integrated a
UAV swarm and edge/cloud computing together and proposed
a hybrid UAV-edge-cloud computing model, such that high
quality of service could be guaranteed. A new architecture
was proposed in [30] for UAV clustering to enable efficient
multi-task multi-modal offloading. In [31], a differential evo-
lution based multi-UAV deployment scheme was presented by
considering the average transmission cost and load balancing
requirement. The work [6] proposed a UAV-enabled MEC
framework where each UAV was able to turn on and off
the onboard computing elements. However, these works only
considered one snapshot optimization without considering the
UAV trajectory optimization. Different from the UAV-enabled
coordinated multi-points (CoMP) transmission [15], [16], the
delay-sensitive computation offloading should be taken into
account for the trajectory design over multi-UAV enabled
MEC. The above existing works relied on the assumption that
edge computing can complete the computation task without
considering its strict deadline. Unlike the aforementioned
studies, we study the problem of multi-UAV-enabled MEC
in this paper for time-constrained IoT applications with target
hard deadlines, the cooperation among multiple UAVs in the
MEC network, as well as co-channel interference.

Notations: In this paper, matrices and vectors are repre-
sented by boldface upper-case and lower-case letters, respec-
tively. The Euclidean norm of a vector x is denoted by ‖x‖.

The space of m × n real matrices is denoted by Rm×n. E[·]
and V ar(·) denote the statistical expectation and variation
operations, respectively. The cardinality of a set X is denoted
by |X|. O(·) denotes the standard big-O notation.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first give the system model and then
formulate the optimization problem. We summarize the main
notations used in this paper in Table I.

TABLE I
SUMMARY OF MAIN NOTATIONS AND DEFINITIONS

Notation Definition
B Signal bandwidth (Hz)
H The altitude of UAVs (m)
M The number of UAVs
um The m-th UAV
K The number of IoT devices
sk The k-th device
T Mission completion time required for all UAVs (s)
N The number of time slots for T
δt The element slot length (s)
gk The horizontal coordinate of device sk
Ik The size of computation task-input data for device sk (bit)

Ck
The number of CPU cycles required for computing

1-bit of input data for sk

Dk
The maximum tolerable latency for task completion

at device sk (s)
Pmax
k The maximum transmit power of device sk (W)
fk[n] CPU frequency of sk at time slot n

fUm,k[n]
Allocated CPU frequency of UAV um

for task offloaded from sk at time slot n
fmax
k The maximum allowable CPU frequency of device sk

fU,max
m The maximum allowable CPU frequency of UAV um
uI The initial/final positions of all UAVs

um[n] The horizonal location of UAV um at time slot n
dmin The minimum inter-UAV distance to avoid collision
Vmax The maximum UAV speed (m/s)

ak[n]
The fraction of time allocated for device sk to offload task

to UAV um at time slot n

pk[n]
The transmit power used by device sk

for computation offloading

hm,k[m]
The channel coefficient between sk and UAV um

at time slot n

Rm,k[m]
The achievable rate between sk and UAV um

at time slot n (bps)

θk
The service indicator to illustrate whether computation task

at device sk can be finished before its deadline or not
κ The effective switched capacitance of CPU

Emax
k The energy budget of device sk

A. Network Model

As shown in Fig. 1, we consider a multi-UAV enabled
MEC system, which consists of M UAVs and K ground
IoT devices (e.g., smart cameras). The set of UAVs and
IoT devices are represented by M = {u1, u2, . . . , uM} and
K = {s1, s2, . . . , sK}, respectively. Denote gk ∈ R2×1 as
the horizontal coordinates of the kth device on the ground.
We consider a time-constrained application in the IoT system,
e.g., video analysis or face recognition, etc. Each IoT device
sk has a computation task Sk to be completed. In particular,
Sk can be described as a triple tuple Sk = (Ik, Ck, Dk),
where Ik denotes the task-input data size measured in bits
(e.g., input data and program codes), Ck denotes the number
of CPU cycles required to finish one bit of the computation
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task, and Dk denotes the maximum tolerable latency measured
in seconds for computation task Sk. In other words, Sk should
be finished before its deadline Dk; otherwise, the task-input
data loses its significance and becomes irrelevant (e.g., the
person to be recognized is out of the surveillance area).

Sk Ik Ck Dk

Ek

Fig. 1. System model for the multi-UAV enabled MEC system

To mitigate the limited computing capabilities of IoT de-
vices, the M UAVs equipped with MEC servers are deployed
to provide edge computing services within time horizon T .
In practice, T can be set based on the limited flying/hovering
time of UAVs [32]. The initial/final locations of all UAVs are
pre-determined, denoted by uI ∈ R2×1. In general, uI corre-
sponds to the depot where UAVs can replenish energy. Since
level flight is less energy-consuming than frequent ascending
or descending [33], [35], all UAVs are assumed to fly at a
constant altitude of H , corresponding to the the minimum
UAV flying altitude for building avoidance. We assume that
the UAVs are assigned with an exclusive frequency band such
that there exists no inter-cell interference from co-channel base
stations. To facilitate the trajectory design, we discretize the
time horizon T into N equal time slots with slot length δt.
In practice, δt is chosen to be small enough such that the
distances between all devices and UAVs are considered to
be constant within each time slot. Denoting the horizontal
location of UAV um at time slot n by um[n] ∈ R2×1, the
flying trajectory of UAV um can be approximated by the
discrete set {um[n], 1 ≤ n ≤ N}. As such, a continuous
UAV trajectory can be easily constructed by connecting the
locations in {um[n]} with line-segments.

The distance between UAV um and IoT device sk at time
slot n can be calculated as dm,k[n] =

√
H2 + ‖um[n]− gk‖.

Furthermore, the UAV’s maximum speed is denoted as Vmax

due to the mechanical limitation. Then we have the following
flying constraints.

‖um[n+ 1]− um[n]‖ ≤ Vmaxδt,∀m,n, (1)
um[1] = uI ,um[N ] = uI ,∀m, (2)
‖um[n]− ui[n]‖ ≥ dmin,∀m, i > m,n = 2, . . . , N − 1, (3)

where dmin is the minimum inter-UAV distance for collision
avoidance. We assume that the partial offloading strategy is
adopted [36], [37], where each task can be divided into two
parts: one for local computing at IoT devices, and the other
for offloading to the associated UAV for remote computing.

B. Communication Model
The channels between UAVs and IoT devices are assumed

to follow the quasi-static fading model, where the corre-
sponding channel coefficients remain the same within each
time slot, but may vary across different time slots [38],
[39]. Denote hm,k[n] as the channel coefficient between UAV
um and device sk at time slot n. Then hm,k[n] can be
represented by hm,k[n] =

√
βm,k[n]h̃m,k[n], where βm,k[n]

and h̃m,k[n] account for large-scale channel coefficient and
small-scale fading, respectively. βm,k[n] can be calculated
by βm,k[n] = β0d

−α
m,k[n], where α and β0 denote the path-

loss exponent average channel power gain at 1 m, respec-
tively. h̃m,k[n] is represented by a complex-valued random
variable with E[|h̃m,k[n]|2] = 1. Typically, h̃m,k[n] can be
modelled by Rician fading with Rician factor Kc [39]–[41].
In particular, h̃m,k[n] =

√
Kc
Kc+1 ḡ+

√
1

Kc+1 g̃, where ḡ is the
deterministic LoS component with |ḡ| = 1 and g̃ is random
Non-line-of-sight (NLoS) component modelled by a zero-
mean unit-variance circularly symmetric complex Gaussian
(CSCG) random variable. Therefore, the variance for h̃m,k[n]
is given as V ar(h̃m,k[n]) = 1

Kc+1 . It is assumed that the
channel distribution information (CDI) (including β0, α,Kc)
is available prior to the UAVs’ flight.

We assume that all UAVs operate at the same frequency
and the K IoT devices offload their computation tasks to the
associated UAVs with time-division multiple access (TDMA)
scheme [25], [42]. Let am,k[n] be the fraction of time
allocated to device sk for offloading computation task to UAV
um at time slot n, 0 ≤ am,k[n] ≤ 1,∀k, n. Thus, am,k[n]
specifies not only computation offloading but also UAV-device
association at each time slot. Due to the TDMA scheme,
at each time instant, each UAV receives the offloaded task
from at most one IoT device. Furthermore, each IoT device is
assumed to connect to at most one UAV at each time instant.
Thus, we have

K∑
k=1

am,k[n] ≤ 1,∀m, (4)

M∑
m=1

am,k[n] ≤ 1,∀k. (5)

As a result, a device can be served by different UAVs but not
at the same time.

Denote pk[n] as the transmit power used by device sk for
computation offloading, 0 ≤ pk[n] ≤ Pmax

k , where Pmax
k

represents for the maximum transmit power of IoT device sk.
As such, the achievable rate at time slot n for computation
offloading from device sk to UAV um, measured in bits per
second (bps), can be expressed by

Rm,k[n] = B log2

(
1 +

pk[n]|hm,k[n]|2∑K
j=1,j 6=k pj [n]|hm,j [n]|2 + σ2

)
, (6)

where B and σ2 denote the channel bandwidth and noise
power, respectively. The term

∑K
j=1,j 6=k pk[n]|hm,j [n]|2 is the

interference from all other IoT devices at time slot n. There-
fore, the amount of data that could be offloaded from device sk
to UAV um at time slot n is calculated as Rm,k[n]am,k[n]δt.
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C. Computation Model

We assume that task computation adopts the dynamic
frequency and voltage technique [43]. In particular, at time
slot n, let the CPU frequency of IoT device sk be fk[n],
then 0 ≤ fk[n] ≤ fmax

k , where fmax
k represents for the

maximum allowable CPU frequency of sk. The amount of
computation bits executed by device sk at time slot n is
calculated as fk[n]δt

Ck
. Similar to [36], the power consumption

of IoT device sk for local computing at time slot n is
modelled as κf3

k [n], where κ denotes the effective switched
capacitance of CPU, and its value is relevant to the chip
architecture. Note that the IoT device’s energy consumption
includes both computation and communication related energy,
then the energy consumption of device sk at time slot n can
be calculated as κf3

k [n]δt + pk[n]δt. It follows that
N∑
n=1

(κf3
k [n]δt + pk[n]δt) ≤ Ek,∀k, (7)

where Ek denotes the energy budget of IoT device sk.
Denoting fUm,k[n] as the CPU frequency allocated to the task
of device sk by UAV um at time slot n, then we have

K∑
k=1

fUm,k[n] ≤ fU,max
m ,∀m, (8)

where fU,max
m denotes the maximum CPU frequency of UAV

uk. Similarly, the amount of computation bits executed by
UAV um for the device sk task at time slot n is given by
fUm,k[n]δt

Ck
.

It is worth noting that the amount of computation bits
executed at each UAV’s MEC server for a given device should
not exceed the total amount of bits that have already been
offloaded from that device. By assuming that processing delay
for offloaded task (e.g., decoding and computation prepa-
ration) is one time slot, the following information-causality
constraints for computation offloading holds, i.e.,

t−1∑
n=1

Rm,k[n]am,k[n]δt ≥
t∑

n=2

fUm,k[n]δt

Ck
,

∀m, k, t = 2, . . . , N. (9)

The left-hand-side (LHS) and right-hand-side (RHS) of (9)
denote the amount of task-input data at UAV um that have
been offloaded from sk before time slot t and those that have
been executed at time slot t, respectively. It is observed in (9)
that devices should not offload tasks to UAVs at the last time
slot N , since offloaded tasks are no longer executed after time
slot N . On the other hand, edge computing at UAVs should
not be activated in the first time slot since no task has been
offloaded yet. In general, the one time slot processing delay
can be neglected when N is large enough [9], [44].

We assume that the size of computation results is suffi-
ciently small (e.g., as in video analysis or face recognition),
and thus the downloading time for computation results is
negligible as in [8], [45]. Note that the computation tasks
can be done by local computing at IoT devices or remote
computing at UAVs, and thus the total number of computation
bits executed for task Sk within time slot n can be written

as fk[n]δt
Ck

+
∑M
m=1

fUm,k[n]δt
Ck

. Recall that Ik and Dk are the
data size and deadline for computation task Sk, respectively.

If
∑bDk/δtc
n=1

(
fk[n]δt
Ck

+
∑M
m=1

fUm,k[n]δt
Ck

)
≥ Ik, then the

computation task Sk for IoT device sk can be finished before
its deadline; otherwise, the deadline for Sk is violated.

D. Problem Formulation
Define θk ∈ {0, 1} as a service indicator variable to

illustrate whether computation task Sk can be finished before
its deadline or not. If task Sk can be finished on time, then
θk = 1; otherwise, θk = 0. Thus, the total number of served
IoT devices can be expressed as

∑K
k=1 θk. In this paper, we

aim to maximize the total number of served IoT devices in
the multi-UAV-enabled MEC system with given time horizon
T , while ensuring that the time sensitive computation tasks
for served IoT devices can be finished before their deadlines
and the energy budget constraints of the devices are also
satisfied, via jointly optimizing service indicator Θ , {θk},
computation offloading and association A , {am,k}, trans-
mit power allocation P , {pk[n]}, computation resource
allocation F , {fk[n], fUm,k[n]}, as well as UAV trajectory
U , {u[n]}. The optimization problem can be expressed as
follows:

(P1) : max
Θ,A,P,F,U

K∑
k=1

θk

s.t. (1)− (5), (7)− (9),
bDk/δtc∑
n=1

(
fk[n]δt
Ck

+

M∑
m=1

fUm,k[n]δt

Ck

)
≥ θkIk,∀k, (10)

θk ∈ {0, 1},∀k, (11)
0 ≤ am,k[n] ≤ θk,∀m, k, n, (12)
0 ≤ pk[n] ≤ θkPmax

k ,∀k, n, (13)
0 ≤ fk[n] ≤ θkfmax

k ,∀k, n. (14)

In (P1), the objective is to maximize the total number of
served IoT devices. Constraints in (10) guarantee that the
computation task for each served IoT device can be finished
before its deadline. Constraints in (12)-(14) are imposed to
prevent wasting communication and computation resources for
tasks on devices that cannot be served within their deadlines,
which are valid for both θk = 0 and θk = 1. For example,
if θk = 0, then am,k, pk[n], and fk[n] can all be set to 0.
Due to the lack of instantaneous channel state information
(CSI) between the IoT devices and UAVs, hm,k[n] is a
random variable. Furthermore, Problem (P1) consists of binary
constraints in (11) and non-convex constraints in (3) and (9).
Therefore, this is a mixed-integer nonlinear programming
(MINLP) problem, and is challenging to solve directly.

IV. PROPOSED SOLUTION METHOD

In this section, we first reformulate the problem into a more
tractable form using deductive penalty functions, and then
decompose the reformulated problem into two sub-problems.
We then develop an iterative algorithm to obtain a suboptimal
solution through solving the two sub-problems jointly by
employing alternating optimization and SCA techniques.
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A. Problem Reformulation

Since only CDI knowledge for the random channel
hm,k[n] is available prior to the UAV’s flight, we focus
on the expected communication rate as in [38], [46],
denoted by E[Rm,k[n]]. It is shown in [47], [48] that
E[Rm,k[n]] can be lower bounded as E[Rm,k[n]] ≥

B log2

(
1 +

pk[n]E[|hm,k[n]|2]

pk[n]V ar(hm,k[n])+
∑K
j=1,j 6=k pj [n]E[|hm,j [n]|2]+σ2

)
=

B log2

(
1 +

pk[n]βm,k[n]

pk[n]βm,k[n]/(Kc+1)+
∑K
j=1,j 6=k pj [n]βm,j [n]+σ2

)
,

R̄m,k[n]. We adopt R̄m,k[n] in resource allocation and
trajectory design as in [41], [46], such that the worst-case
achievable rate can be achieved. As a result, Problem (P1)
can be rewritten as

(P2) : max
Θ,A,P,F,U

K∑
k=1

θk

s.t. (1)− (5), (7), (8), (10)− (14),
t−1∑
n=1

R̄m,k[n]am,k[n] ≥
t∑

n=2

fUm,k[n]

Ck
,∀m, k, t = 2, . . . , N.(15)

To tackle the binary constraints (11), we redefine (11)
with an equivalent continuous representation while enforcing
variables θk to take binary values. Specifically, we can ex-
press (11) as intersection of the following regions,

0 ≤ θk ≤ 1,∀k, (16)
K∑
k=1

(θk − θ2
k) ≤ 0. (17)

It can be verified that any feasible point in (11) satisfies both
constraints in (16) and (17) and vice versa. Thus, we can
rewrite Problem (P2) as

(P3) : max
Θ,A,P,F,U

K∑
k=1

θk

s.t. (1)− (5), (7), (8), (10), (12)− (17).

Note that we need binary solutions for variables in Θ. To
ensure this feasible condition, we add a cost function to the
objective function to penalize the objective for non-binary
values of Θ. As such, the problem can be rewritten as

(P4) : max
Θ,A,P,F,U

K∑
k=1

θk − λ
K∑
k=1

(θk − θ2
k)

s.t. (1)− (5), (7), (8), (10), (12)− (16),

where λ � 1 is the penalty factor which defines the penalty
when variables θk are set to values other than 0 or 1.

Proposition 1. When λ is sufficiently large, Problem (P3) is
equivalent to Problem (P4) .

Please refer to Appendix A for the proof of this proposition.
It can be seen that Problem (P4) remains non-convex due

to constraints (3) and (15). In the following, we propose an
effective method to obtain a sub-optimal solution to Problem
(P4) by solving its two sub-problems iteratively. Specifically,
in the first sub-problem, the computation offloading, service

indicator, and resource allocation (i.e., A, Θ, P , F) are
optimized with given UAV trajectory U . For any feasible (A,
Θ, P , F), the second sub-problem is only the UAV trajectory
optimization problem. These sub-problems are solved in the
following subsections. Afterwards, we will provide the overall
algorithm, and examine its convergence and complexity.

B. Computation Offloading, Service Indicator Optimization,
and Resource Allocation

We first consider computation offloading and service indi-
cator optimization as well as resource allocation with given
UAV flight U . The problem is written as

(P5) : max
Θ,A,P,F

K∑
k=1

θk − λ
K∑
k=1

(θk − θ2
k)

s.t. (4), (5), (7), (8), (10), (12)− (16).

With given UAV trajectory U , Problem (P5) is still a
non-convex optimization problem. By employing the slack
variables X , {xm,k[n]}, Problem (P5) can be reformulated
as

(P6) : max
Θ,A,P,F,X

K∑
k=1

θk − λ
K∑
k=1

(θk − θ2
k)

s.t. (4), (5), (7), (8), (10), (12)− (14), (16),
t−1∑
n=1

xm,k[n]am,k[n] ≥
t∑

n=2

fUm,k[n]

Ck
,∀m, k, t = 2, . . . , N, (18)

R̄m,k[n] ≥ xm,k[n],∀m, k, n. (19)

It can be shown that in the optimal solution to (P6), all
constraints in (19) are met with equality, i.e., R̄m,k[n] =
xm,k[n],∀m, k, n. Otherwise, xm,k[n] can always be in-
creased to satisfy the equality, while the objective value re-
mains unchanged with all other constraints are met. Therefore,
there always exists an optimal solution to Problem (P5) and
R̄m,k[n] = xm,k[n],∀m, k, n. By substituting xm,k[n] with
R̄m,k[n] in (18) and (19), Problem (P6) is equivalent to
Problem (P5).

Problem (P6) is still non-convex since the objective function
is non-concave and both constraints in (18) and (19) are non-
convex. We find the SCA technique can be utilized to effec-
tively solve Problem (P6): the non-convex constraints can be
replaced with convex approximations, and a sequence of im-
proved solutions for the original problem can be derived [33].
In particular, to tackle the non-convex term in (18), we rewrite
the LHS of (18) as the difference of two convex functions,
i.e., xm,k[n]am,k[n] = 1

2 (xm,k[n]+am,k[n])2− 1
2 (xm,k[n]2 +

am,k[n]2). By applying first-order Taylor expansion on the
convex term (xm,k[n] + am,k[n])2, the following inequalities
hold at the rth iteration, i.e.,

xm,k[n]am,k[n] ≥ (xm,k[n]r + am,k[n]r)(xm,k[n] + am,k[n])

−1

2
(xm,k[n]r + am,k[n]r)2 − 1

2
(xm,k[n]2 + am,k[n]2)

, ym,k[n]. (20)

To tackle the non-convex term in (19), we first
rewrite R̄m,k[n] as the difference of two concave
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functions, i.e., R̄m,k[n] = Řm,k[n] − R̂m,k[n], where
Řm,k[n] = B log2

(
γm,k[n] +

∑K
j=1 pj [n]βm,j [n]

)
,

R̂m,k[n] = B log2

(
γm,k[n] +

∑K
j=1,j 6=k pj [n]βm,j [n]

)
,

and γm,k[n] , pk[n]βm,k[n]
Kc+1 + σ2. Note that βm,k[n] is fixed

due to the given UAV trajectory. By applying first-order
Taylor expansion on the concave term R̂m,k[n], the following
inequalities hold at the rth iteration, i.e.,

R̂m,k[n] ≤ Φ̂rm,k[n] + Ψ̂r
m,k,k(pk[n]− prk[n])

+

K∑
j=1,j 6=k

Ψ̂r
m,k,j(pj [n]− prj [n]) , R̂ubm,k[n], (21)

where Φ̂rm,k = B log2(Ω̂rm,k[n]), Ω̂rm,k[n] =
prk[n]βm,k[n]

Kc+1 +∑K
j=1,j 6=k p

r
j [n]βm,j [n] + σ2, Ψ̂r

m,k,k[n] =
Bβm,k[n] log2(e)

(Kc+1)Ω̂rm,k[n]
,

and Ψ̂r
m,k,j [n] =

Bβm,j [n] log2(e)

Ω̂rm,k[n]
. Due to (21), we have the

following lower bound for R̄m,k[n], i.e.,

R̄m,k[n] ≥ Řm,k[n]− R̂ubm,k[n],∀m, k, n. (22)

For the objective function, by applying first-order Taylor
expansion on the convex term θ2

k at the rth iteration, we
have θ2

k ≥ (θrk)2 + 2θrk(θk − θrk),∀k. Therefore, we have the
following lower bound for the objective function, i.e.,

K∑
k=1

θk − λ
K∑
k=1

(θk − θ2
k) ≥

K∑
k=1

θk − λ
K∑
k=1

(θk − (θrk)2 − 2θrk(θk − θrk)). (23)

By replacing term xm,k[n]am,k[n], R̄m,k[n] and the objec-
tive function with lower bounds expressions derived in (20),
(22), and (23), Problem (P6) can be approximated as

(P7) : max
Θ,A,P,F,X

K∑
k=1

θk − λ
K∑
k=1

(θk − (θrk)2 − 2θrk(θk − θrk))

s.t. (4), (5), (7), (8), (10), (12)− (14), (16),
t−1∑
n=1

ym,k[n] ≥
t∑

n=2

fUm,k[n]

Ck
,∀m, k, t = 2, . . . , N, (24)

Řm,k[n]− R̂ubm,k[n] ≥ xm,k[n],∀m, k, n. (25)

In Problem (P7), the objective function is linear and all the
constraints are convex constrains. Therefore, Problem (P7) is
a standard convex optimization problem. As a result, existing
solvers such as CVX [49] and many standard convex opti-
mization techniques can be leveraged to solve Problem (P7).
Note that the feasible set of Problem (P7) is always a subset
of Problem (P6) due to the lower bound approximations.
Therefore, the objective value of Problem (P7) serves as a
lower bound of that in Problem (P6). The accuracy of such
approximation will be evaluated in Section V.

C. UAV Trajectory Optimization

In this subsection, we consider the sub-problem of UAV
trajectory optimization problem with given (A, Θ, P , F).

In this case, the objective function is fixed. Note that after
solving Problem (P5), the constraints in (15) are satisfied with
equality. Since otherwise, we can always increase fUm,k[n]
until the equality holds, and the objective value remains
unchanged with all the other constraints are met. In the UAV
trajectory optimization problem, we maximize the minimum
ratio between the amount of offloaded data and those that have
been computed at the UAVs, which is written as problem (P8).
As a result, we can relax the constraints in (15) such that more
optimization space can be preserved for further maximizing
the number of served devices in Problem (P5). Detailed proof
of the convergence of the alternating optimization technique
will be given in Section IV-D.

(P8) : max
ρ,U

ρ

s.t. (1)− (3),∑t−1
n=1 R̄m,k[n]am,k[n]∑t

n=2

fUm,k[n]

Ck

≥ ρ,∀m, k, t = 2, . . . , N. (26)

Problem (P8) is non-convex since both constraints (3)
and (26) are non-convex. To tackle the non-
convex term in R̄m,k[n], R̄m,k[n] is rewritten as
R̄m,k[n] = Řm,k[n] − R̂m,k[n], where Řm,k[n] =

B log2

(
γm,k[n] +

∑K
j=1

pj [n]β0

(H2+‖um[n]−gj‖2)α/2

)
, R̂m,k[n]

= B log2

(
γm,k[n] +

∑K
j=1,j 6=k

pj [n]β0

(H2+‖um[n]−gj‖2)α/2

)
,

and γm,k[n] , pk[n]β0/(Kc+1)

(H2+‖um[n]−gk‖2)α/2
+ σ2. By employing

slack variables W , {ωm[n]} and letting R̂ωm,k[n] =

B log2

(
pk[n]β0/(Kc+1)

(H2+ωm,k[n])α/2
+
∑K
j=1,j 6=k

pj [n]β0

(H2+ωm,j [n])α/2
+ σ2

)
,

Problem (P8) can be reformulated as follows:

(P9) : max
ρ,U,W

ρ

s.t. (1), (2),
t−1∑
n=1

(
(Řm,k[n]− R̂ωm,k[n])am,k[n]

)
/

t∑
n=2

fUm,k[n]

Ck
≥ ρ,

∀m, k, t = 2, . . . , N, (27)
‖um[n]− gj‖2 ≥ ωm,j [n],∀m, j, n, (28)

‖um[n]− ui[n]‖2 ≥ d2
min,∀m, i > m,n = 2, . . . , N − 1.(29)

It is not hard to see that equality holds in all constraints (28) in
the optimal solution to Problem (P9). Otherwise, ωm,j [n] can
always be increased to achieve equality. Then the objective
value remains unchanged with all other constraints are met.
Furthermore, the constraints in (3) and (29) are equivalent.
Thus Problem (P9) is equivalent to Problem (P8).

Due to the non-convex constraints (27)–(29), Problem
(P9) is a non-convex optimization problem. To deal with
such challenges, we use SCA technique to derive convex
approximation. In particular, for constraints in (28) and (29),
by applying first-order Taylor expansion on convex terms
‖um[n]− ui[n]‖2 and ‖um[n]− gj‖2, the following inequal-
ities hold, respectively, at the rth iteration:

‖um[n]− gj‖2 ≥ ‖urm[n]− gj‖2

+2(urm[n]− gj)
T (um[n]− urm[n]) , µ̌m[n],∀m, j, n, (30)
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‖um[n]− ui[n]‖2 ≥ −‖urm[n]− uri [n]‖2

+2(urm[n]− uri [n])T (um[n]− ui[n]) , µ̂m,i[n],∀m, i, n,(31)

In (27), it can be verified that Řm,k[n] is a convex function
with respect to term ‖um[n]− gk‖2. Thus, the lower bound
for Řm,k[n] can be obtained at the given point urm[n] as in
[33], [34], i.e.,

Řm,k[n] ≥ Φ̌rm,k[n]

−
K∑
j=1

Ψ̌r
m,k,j(‖um[n]− gk‖2 − ‖urm[n]− gk‖2)

−
Ψ̌r
m,k,k

Kc + 1
(‖um[n]− gk‖2 − ‖urm[n]− gk‖2) , Řlbm,k[n],(32)

where Φ̌rm,k = B log2(Ω̌rm,k[n]), Ω̌rm,k[n] =

σ2 + pk[n]β0/(Kc+1)

(H2+‖urm[n]−gk‖2)α/2
+
∑K
j=1

pj [n]β0

(H2+‖urm[n]−gj‖2)α/2
,

Ψ̌r
m,k,j [n] =

Bpj [n]β0(α/2) log2(e)

Ω̌rm,k[n](H2+‖urm[n]−gk‖2)(1+α/2)
.

By substituting the lower bounds derived in (30) and (31)
into the LHSs of (28) and (29), respectively, and substituting
Řlbm,k[n] into the LHS of (27), Problem (P9) can be approxi-
mated as:

(P10) : max
ρ,U,W

ρ

s.t. (1), (2),
t−1∑
n=1

(
(Řlbm,k − R̂ωm,k[n])am,k[n]

)
/

t∑
n=2

fUm,k[n]

Ck
≥ ρ,

∀m, k, t = 2, . . . , N, (33)
µ̌m[n] ≥ ωm,j [n],∀m, j, n, (34)
µ̂m,i[n] ≥ d2

min,∀m, i > m,n = 2, . . . , N − 1. (35)

Problem (P10) is now a convex optimization problem, and
many existing solvers, e.g., CVX, can be used to solve it.

D. Overall Iterative Algorithm, Convergence, and Complexity

Based on the results obtained in the previous two sub-
sections, we now propose an iterative algorithm to solve
Problem (P4) for suboptimal solutions, by applying SCA and
alternating optimization, as shown in Fig. 2. The details are
summarized in Algorithm 1. The computation offloading and
service indicator as well as resource allocation (A, Θ, P ,
F), and UAV trajectory U are optimized alternately in each
iteration, by solving Problems (P7) and (P10) correspondingly.

Fig. 2. The procedure of Algorithm 1.

Theorem 1. The proposed Algorithm 1 is convergent.

Algorithm 1 Iterative Computation Offloading, Service In-
dicator, Resource Allocation, and Trajectory Optimization
Algorithm for Problem (P4)

1: Initialize U0; let r ← 0.
2: repeat
3: With given Ur, obtain the optimal solution Ar+1,
Pr+1, Fr+1, and Θr+1 by solving convex problem (P7);

4: With given Ar+1, Pr+1, Fr+1, Θr+1, as well as
Ur, obtain the optimal solution Ur+1 by solving convex
problem (P10);

5: r ← r + 1;
6: until The objective value of (P4) converges

Proof. Let Rr , {Ar,Pr,Fr,Θr}, and denote Λ(Rr,Ur)
as the objective value of problem (P4) in the rth iteration. Let
Λ̂ be the objective value of Problem (P7), then we have

Λ(Rr,Ur) (a)
= Λ̂(Rr,Ur)

(b)

≤ Λ̂(Rr+1,Ur)
(c)

≤ Λ(Rr+1,Ur),

where (a) holds due to the tightness of first-order Taylor
expansions at given local points in Problem (P7); (b) holds
since Problem (P7) is optimally solved. Since the objective
value of Problem (P7) is a lower bound of that of Problem
(P4), the inequality (c) holds. Similarly, for the SCA-based
UAV trajectory optimization problem, we have

ρ(Rr+1,Ur) ≤ ρ(Rr+1,Ur+1), (36)

where ρ(Rr+1,Ur) denotes the objective value of Problem
(P8) with given (Rr+1,Ur). After Step 3 in Algorithm 1,
denote Γm,k,t(Rr,Ur) =

∑t−1
n=1 R̄m,k[n]am,k[n]∑t

n=2

fU
m,k

[n]

Ck

for (Rr,Ur).

It follows that

1
(d)

≤ min
m,k,t

Γm,k,t(Rr+1,Ur) (e)
= ρ(Rr+1,Ur)

(f)

≤ ρ(Rr+1,Ur+1)
(e)
= min

m,k,t
Γm,k,t(Rr+1,Ur+1), (37)

where (d) holds since Rr+1 is a feasible solution of Problem
(P5) with given Ur, and constraints in (15) should be satisfied;
(e) and (f ) hold due to the definition of Problem (P8)
and (36), respectively. Since minm,k,t Γm,k,t(Rr+1,Ur+1) ≥
1, (Rr+1,Ur+1) is a feasible solution of Problem (P4),
and Λ(Rr+1,Ur) = Λ(Rr+1,Ur+1) since the objective
value of Problem (P4) only depends on Rr+1. As a result,
Λ(Rr,Ur) ≤ Λ(Rr+1,Ur+1), then the objective value of
Problem (P4) is non-decreasing over iterations and it is upper
bounded by a finite value. Therefore, the proposed Algorithm
1 is convergent. Furthermore, it is worthwhile to note the first-
order Taylor expansions have identical gradients as original
functions, then Algorithm 1 with SCA technique converges to
a KKT solution [33].

Theorem 2. The computational complexity of Algorithm 1 is
O((MKN)3.5 log2(1/ε)), where ε corresponds to the given
solution accuracy.

Proof. Note that the overall iterative algorithm requires solv-
ing Problems (P7) and (P10) alternatively, which are both
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standard convex optimization problems and can be solved
by using the convex solver CVX with interior-point method,
whose complexity are given by O((MKN)3.5 log(1/ε)) with
given solution accuracy ε [50], [51], since the number of
optimization variables depend on M , K, and N . Therefore,
accounting for the number of iterations with the order of
O(log(1/ε)), the computational complexity of Algorithm 1
is given as O((MKN)3.5 log2(1/ε)).

E. Trajectory Initialization Scheme

Note that the system performance and the converged so-
lution is relevant to the initialization scheme in general. In
this section, an efficient initialization scheme is proposed for
Q0. Note that some straightforward relationships between the
total number of served IoT devices and UAV trajectory can
be obtained as follows:

• Observation 1: The UAV should move close to IoT
devices to provide better computation offloading service
with better communication channel.

• Observation 2: Multiple UAVs may serve different groups
of IoT devices simultaneously.

• Observation 3: Each UAV may fly with the maximum
speed and tries to serve as many devices as possible
within given time horizon.

• Observation 4: The UAV should fly to and complete
computation offloading for IoT devices before given
deadlines.

As a result, the initial trajectory should consider the above
four aspects. Note that multiple traveling salesman problem
with time windows (m-TSPTW) [52] is to find a set of routes
for a group of vehicles such that a set of locations are served,
each one within a specified time window. Thus, it is reasonable
to set the UAV initial trajectory Q0 based on the m-TSPTW
path to minimize the total traveling distance of multiple UAVs
to visit each IoT device sk within time window [0, Dk] with
the maximum speed, which starts from qI and also ends
with qI . The m-TSPTW is a generalization of the classical
TSP which is a well-known NP-hard problem, and thus m-
TSPTW is also a NP-hard problem and more difficult to solve
[52]. Note that the m-TSPTW belongs to the class of time-
constrained vehicle routing problems [53], which have been
well studied in the past few decades, and various efficient
exact and heuristic algorithms have been proposed to find
optimal solutions for small scale scenarios and high-quality
approximate solutions for large scale scenarios, respectively
[53], [54].

After solving the m-TSPTW over IoT devices set K, we
obtain the total flying time TI and the m-TSPTW path
which are denoted by device groups {Gm, 1 ≤ m ≤ M}
and permutation orders {Γm, 1 ≤ m ≤ M}. In particular,
Gm represents for IoT devices visited by UAV um, where
Gm1

⋂
Gm2

= ∅, 1 ≤ m1 < m2 ≤ M . Γm represents for
the visiting order in device group Gm for UAV um, and
Γm = (π1, . . . , π|Gm|), with 1 ≤ πi ≤ K, 1 ≤ i ≤ |Gm|
representing the index of the ith node si in K to be visited by
UAV um. Note that the given time horizon T may be different

from TI for m-TSPTW solution. As a result, we propose a m-
TSPTW based initial trajectory applied in two-cases:

• Case 1: T ≥ TI . In this case, each UAV um is able
to reach the top of IoT devices before deadlines in Gm
within time horizon TI , and then the remaining T − TI
can be utilized for the UAV um to hover above the final
location uI .

• Case 2: T < TI . In this case, each UAV um is not able
to reach the top of devices in Gm within time duration
T . As a result, with given visiting order Γm, we should
determine the waypoint for UAV um to visit each device
sπi , denoted as um,πi , 1 ≤ i ≤ |Gm|. Similar to [55], we
construct a disk-shaped region for devices in Gm with
radius r, and UAV um only needs to to reach the disk
region of devices in Gm within time duration T . Note
that with given r and visiting order Γm, the minimum
flying distance of UAV um can be obtained by solving
the following problem (P11), which is a standard convex
optimization problem and can be efficient solved.

(P11) : min
{um,πi}

|Gm|+1∑
i=1

∥∥um,πi − um,πi−1

∥∥
s.t. ‖um,πi −wπi‖ ≤ r, 1 ≤ i ≤ |D|, (38)

where wπi is the horizonal location of device sπi , and we
let um,π0

= uI and um,π|Gm|+1
= uI . It is worthwhile

to note that the objective value of (P11) is non-increasing
with r, since the optimal solution to (P11) with r is
always a feasible solution to (P11) when r increases
to r + ε, ε > 0. Thus, the waypoints {um,πi} of UAV
um are obtained by solving (P11) with fixed r, and then
efficient bisection search can be employed to find the
optimal radius r with given time horizon T .

Using the results obtained above, the details of UAV trajec-
tory initialization algorithm is summarized in the following
Algorithm 2.

In Algorithm 2, we obtain the visiting order with m-TSPTW
method at step 1, where various efficient algorithms exist for
m-TSPTW with polynomial complexity, e.g., O(K2) [54].
From step 6 to step 16, the bisection search approach is
employed to find the optimal radius r with given T , with com-
plexity O(log((r2−r1)/ε)), which is unrelated to the number
of IoT devices K and r2 can be set as the maximum radius of
the considered region. At step 9 during each iteration, standard
convex optimization problem (P11) can be solved by using
interior-point method based CVX solver, whose complexity is
given by O(K3.5 log(1/ε)) with a solution accuracy of ε [50],
[51]. To sum up, the computation complexity of Algorithm 2
can be roughly given by O(K3.5 log2(1/ε)).

V. SIMULATION STUDY

In this section, we provide the system setup and evaluate the
performance of the proposed algorithms via simulations with
detailed performance analysis. We also investigate the impact
of important parameters on the performance of the proposed
algorithms.
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Algorithm 2 UAV trajectory initialization algorithm
1: Given the locations of K, obtain devices set Gm and

visiting order Γm for each UAV um as well as TI with
m-TSPTW method [54].

2: if T ≥ TI then
3: Construct the UAV trajectory Q0 by letting each UAV
um fly to the top devices in Gm with maximum speed
Vmax and visiting order Γm, and hover over final location
qI for duration T − TI .

4: else
5: Let r1 = 0, r2 be sufficiently large, and let tolerance
ε > 0.

6: repeat
7: Update r = r1+r2

2 .
8: for m = 1 to M do
9: Given r, solve convex optimization problem

(P11) for UAV um to obtain the objective value Tm and
optimal solution {um,πi}.

10: end for
11: if ∀m,Tm ≤ T then
12: Let r2 = r, and update {q∗m,πi} = {qm,πi}.
13: else
14: Let r1 = r.
15: end if
16: until (r2 − r1) ≤ ε.
17: Construct the UAV trajectory Q0 by letting each UAV

um fly to the waypoint q∗m,πi of device sπi in Gm with
maximum speed Vmax by following the visiting order Γm,
1 ≤ i ≤ |Gm|.

18: end if

A. Simulation Setting

We consider a multi-UAV-enabled MEC system, where
there are M = 2 UAVs and K = 20 IoT devices. The IoT
devices are randomly and uniformly distributed in a square
area of 2.0× 2.0 km2. The task deadlines of the IoT devices
are randomly generated in [0, Dmax], where Dmax denotes the
maximum deadline. We assume that all devices have identical
energy budget, task-input data size, maximum CPU frequency,
maximum transmit power, and required CPU cycles per bit,
i.e., Ek = Ē, Ik = Ī , fmax

k = f̄max, Pmax
k = P̄max, Ck =

C̄,∀k. All UAVs are assumed to have identical maximum CPU
frequency, i.e., fU,max

m = f̄U,max. Unless otherwise stated,
the common parameters adopted in the simulations are set
as follows: H = 100 m, Vmax = 50 m/s, dmin = 10 m,
P̄max = 0.1 W, Ē = 2 Joule, Dmax = 200 s, T = 200 s,
B = 1 MHz, α = 2.2, β0 = −60 dB, σ2 = −110 dBm,
Kc = 20, δt = 1 s, f̄U,max = 4 GHz, f̄max = 0.5 GHz,
C̄ = 103 cycles/bit, κ = 10−28, λ = 105.

B. Convergence of the Proposed Algorithm

In order to verify the convergence of the proposed itera-
tive algorithm, the obtained objective value versus iteration
number is given in Fig. 3. Recall that the objective value of
Problem (P7) can be regarded as a lower bound of the objec-
tive value of Problem (P6). Thus, the objective value obtained
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Fig. 3. Convergence of the proposed iterative Algorithm 1.

by Algorithm 1 is a lower bound of the exact value, which
is calculated from the objective function of Problem (P4). In
Fig. 3, both the lower bound and the exact value become closer
as iteration number increases, and the two curves meet when
the objective value converges, which demonstrates that the
lower bound for the number of served IoT devices with SCA
technique is tight in Algorithm 1. Moreover, it can be seen
that the proposed algorithm is quite efficient since it converges
within 5 iterations with a prescribed accuracy ε = 10−4.

C. Optimized Trajectory, Service Indicator, Computation Of-
floading and Resource Allocation

The optimized trajectories and service indicator with dif-
ferent task-input data size Ī are shown in Fig. 4. The hollow
circles and solid circles denote the served IoT devices and
non-served IoT devices, respectively. It is observed that with
the increase of task-input data size Ī , fewer IoT devices can be
served on time since more computation resource is required,
which is expected. For example, in Fig. 4(a) only s9 cannot
be served before its deadline, while in Fig. 4(b) s9, s11 and
s16 cannot be served on time. The UAVs will adjust their
trajectories to move closer to the IoT devices to obtain more
offloaded data for computation before deadlines, since better
channel quality can be achieved when UAVs are close to
devices. It can be seen in Fig. 4(b) that there exist some
devices which are served by different UAVs, e.g., s2, s5, s8,
s12, s17, s20, and UAVs u1 and u2 work cooperatively to serve
these devices before their deadlines. This can also be verified
in Fig. 5(a), which illustrates the computation offloading for
all devices.

Fig. 5 illustrates the computation offloading and resource
allocation results when Ī = 100 Mbits. The corresponding
results for other values of Ī follow similar trends and thus are
omitted for brevity. Unless otherwise stated, we set Ī = 100
Mbits in the following. From Fig. 5(a), it can be seen
that different devices can offload tasks to different UAVs at
the same time, and each device offloads computation task
when the corresponding UAV flies close to it, as expected.
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Fig. 4. Optimized trajectories with different task-input data size Ī . The
triangle denotes the initial and final UAV locations. The hollow circles and
solid circles denote the served and non-served IoT devices, respectively. The
red number to the right of an IoT device denotes its deadline.

After receiving the data offloaded from device, computation
resource (i.e., CPU frequency) of the UAV can be allocated
to the corresponding task, which is required by computation
offloading constraints in (9) and verified in Fig. 5(b). The
CPU frequency allocation of UAV u2 over time for all IoT
devices is shown in Fig. 5(b), the result for UAV u1 follows
similar trends and is thus omitted for brevity. Since the
UAV’s computation resources are shared by different devices,
then it can be seen from Fig. 5(b) that the UAV’s CPU
frequency is allocated to tasks that are offloaded from different
devices simultaneously. From Fig. 5(b), it can be seen that
the computation resource of UAV u2 is no longer allocated
to devices whose deadlines are expired, and non-served IoT
devices (e.g., s9, s11, s16) are not allocated with any resource,
such that the computation resource can be efficiently utilized.
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Fig. 5. Computation offloading and resource allocation with Ī = 100 Mbits.

D. Performance Comparison

Before performance comparisons over benchmarks, let us
first investigate the effect of various initialization schemes.
Fig. 6 shows the percentage of served IoT devices versus
the task-input data size Ī with different initialization schemes
when Ē = 2 Joule. Different from our proposed m-TSPTW
based trajectory initialization scheme, m-TSP based trajectory
initialization scheme constructs the UAV initial trajectory
with m-TSP methods [57] applying on the devices set K
without considering the effect of time windows or deadlines,
while hovering based trajectory initialization constructs the
UAV initial trajectory by letting the UAV hover over the
centers of M non-overlap clusters of devices all the time
which are determined by the K-means clustering strategy.
It is observed that the performance gap among the three
initialization scheme is not large, which demonstrates the
effectiveness of our proposed iterative algorithm. It can be
seen that m-TSP based initialization scheme performs worse
than hovering based initialization scheme. The reason is that
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Fig. 6. Performance comparisons for different initialization schemes.

the visiting order determined by m-TSP based initialization
scheme may not be appropriate and then has negative effect for
path planning with time windows, while no visiting order has
been determined by hovering based initialization scheme and
it can be further obtained by our proposed iterative algorithm.
The proposed m-TSPTW trajectory initialization outperforms
the other two. This is expected since the m-TSPTW based
trajectory initialization scheme takes the time windows into
account, based on which the computation and communication
resources can be more efficiently allocated to satisfy the
deadline constraints.

To show the performance gain achieved by the proposed
joint optimization scheme, we compare the percentage of
served IoT devices between our proposed scheme and four
benchmark schemes, which are referred to Local computing
only, Offloading only, Static UAVs, and Greedy deadline-
based. In the local computing only scheme, the IoT devices
only perform local computing without offloading, while in
the offloading only scheme, the task computation are only
performed on UAVs, as in [36]. In the static UAVs scheme, M
UAVs are fixed over the centers of M non-overlap clusters of
devices to provide edge computation services as in [30], where
the M clusters can be determined by the K-means clustering
strategy. In the greedy deadline-based scheme, the UAVs serve
the IoT devices by following the order of deadline from small
to large, and allocates resource to maximize the computation
service rate of each device.

From Fig. 7, it can be seen that our proposed scheme can
serve more IoT devices than other benchmark schemes, and
the percentage of served IoT devices increases when task-
input data size Ī decreases or energy budget Ē increases, as
expected. More performance gain can be achieved with large
Ī . When Ē is sufficiently large, the percentage of served IoT
devices saturates. The reason is that when Ē is sufficiently
large, it is not the system bottleneck anymore, while the maxi-
mum computation capacity of UAVs and devices (i.e., f̄U,max,
f̄max) become the bottleneck. By comparing local computing
only benchmark and offloading only benchmark with our
proposed scheme, the gain brought by collaborative resource
allocation with UAV offloading and local computing is shown.
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Fig. 7. Percentage of served IoT devices versus the task-input data size Ī or
device’s energy budget Ē.

The gain brought by the mobility of UAVs is demonstrated by
the performance gap between the static UAVs scheme and our
proposed scheme. The performance gap between the greedy
deadline-based benchmark and our proposed scheme demon-
strates the additional gain of efficient collaborative UAV
trajectory design. Fig. 8 shows the percentage of served IoT
devices versus the number of IoT devices K when Ī = 100
Mbits and Ē = 2 Joule. For each K, the average performance
of the algorithm is obtained over 100 independent settings of
locations and deadlines of IoT devices. It is observed that the
percentage of served IoT devices decreases with the increase
of the number of IoT devices K. The reason is that the
computation and communication resources as well as UAV
flying/hovering time are limited, if more devices are deployed
in the considered area, then less resources are allocated for
each IoT device and thus results in less served devices. It can
be seen that none of the IoT devices can be served before
their deadlines with local computing only benchmark, which
demonstrates the advantages of collaborative UAV-enabled
computation offloading and local computing.
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VI. CONCLUSION

This paper considers a UAV-enabled MEC where multiple
UAVs are employed as edge servers to provide computation
assistance to IoT devices with hard deadlines. Our objective
is to maximize the number of served IoT devices by jointly
optimizing UAV trajectory and service indicator, as well as
resource allocation and computation offloading, where the
served IoT devices should complete their computation tasks
before their deadlines with given energy budgets. To solve the
formulated MINLP problem, we first reformulate the problem
by penalizing the objective through a deductive penalty term,
and then decompose the problem into two sub-problems.
By alternately solving each of the two sub-problems with
the SCA techniques, we propose an iterative algorithm to
obtain a KKT solution. The performance is analyzed and
then evaluated numerically as compared to several baseline
schemes, where the superior performance of the proposed
scheme is demonstrated.

APPENDIX A
PROOF OF PROPOSITION 1

Let V , {A,P,F ,U}. Similar to [56], define Lagrangian
L(V,Θ, λ) =

∑K
k=1 θk − λ

∑K
k=1(θk − θ2

k) with Lagrangian
multiplier λ to handle the non-convex constraint (17). Problem
(P3) can be expressed as max

V,Θ
min
λ
L(V,Θ, λ), whose dual

problem is min
λ

max
V,Θ
L(V,Θ, λ). Due to the max-min inequal-

ity, we have

max
V,Θ

min
λ
L(V,Θ, λ) ≤ min

λ
max
V,Θ
L(V,Θ, λ). (39)

Let ϑ(λ) , max
V,Θ
L(V,Θ, λ) and define ϑ(λ∗) , min

λ
ϑ(λ).

Then we have

ϑ(λ∗) ≤ max
V,Θ
L(V,Θ, λ). (40)

Note that for all θk, 0 ≤ θk ≤ 1, it can be verified
that

∑K
k=1(θk − θ2

k) ≥ 0. If
∑K
k=1(θk − θ2

k) > 0, then
ϑ(λ) tends to −∞ at the optimal solution, since ϑ(λ) is

monotonically decreasing with λ. This contradicts with (39),
which shows that ϑ(λ) is lower bounded. Therefore, we
should have

∑K
k=1(θk − θ2

k) = 0. In this case, L(V,Θ, λ) =
min
λ
L(V,Θ, λ). Due to (40), we have

min
λ

max
V,Θ
L(V,Θ, λ) ≤ max

V,Θ
min
λ
L(V,Θ, λ). (41)

Combining (39) and (41) yields max
V,Θ

min
λ
L(V,Θ, λ) =

min
λ

max
V,Θ
L(V,Θ, λ). On the other hand, ϑ(λ) is monoton-

ically decreasing with λ. Thus, we can conclude that for
any λ > λ∗, ϑ(λ) = max

V,Θ
min
λ
L(V,Θ, λ), where the LHS

and RHS of the equality are from Problem (P4) and (P3),
respectively. This completes the proof.
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