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Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based

on both explanatory features and surface topology. The problem is important in many spatial and spatiotem-

poral applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several

reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular

deep convolutional neural networks; second, there exists topological structure dependency between pixel

classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there

are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery

into patches and consider the elevation as an additional feature channel. These methods do not fully incorpo-

rate the spatial topological structural constraint within and across surface patches and thus often show poor

results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised

learning for earth imagery often focus on learning representation without explicitly incorporating surface

topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a ter-

rain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g.,

water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural

network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN)

to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The

two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show

that the proposed models outperform baseline methods in classification accuracy, especially when training

labels are limited.
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1 INTRODUCTION

Given earth imagery with spectral features on a terrain surface (defined by an elevation function
over a 2D grid), this paper studies the problem of surface segmentation based on both explana-
tory features and surface topology. The problem is important for many spatial and spatiotempo-
ral applications, such as mapping flood surface extent in hydrology and identifying pocket struc-
tures on protein elevation surface in biochemistry [12, 13, 19, 23, 48, 51]. Figure 1 provides a real-
world example in earth science and hydrology. Given remote sensing images with spectral features
(Figure 1(a)) and geographic terrains based on the digital elevation (Figure 1(b)), the problem aims
to classify pixels into flood and dry classes (Figure 1(c)) based on not only spectral features but also
spatial surface topography. Specifically, the spatial extent of the flood area in Figure 1(c) follows
the geospatial topological structural dependency on the elevation surface in Figure 1(b). Mapping
flood extent on the Earth’s surface can not only improve the situational awareness for disaster re-
sponse agencies, but also enhance the flood forecasting capabilities at the NOAA National Water
Center [35].
The problem is uniquely challenging for several reasons. First, the size of a terrain surface is

often very large beyond the input shape of common deep convolutional neural networks. For
example, the elevation surface in Figure 1(b) contains around 10.6 million pixels. Second, there
exists a global topological structure dependency between class locations on the surface, and such
dependency can follow an unknown and non-linear distribution. Consider the same example in
Figure 1. The floodwater locations on the surface are constrained by the surface topography due
to gravity. Third, there are often limited training labels due to the slow and expensive process of
collecting ground truth [26].
There exists extensive research in deep learning on image segmentation over the last decade [32].

The most popular technique is to learn a convolutional neural network [2, 30, 44] to extract high-
level semantic features together with deconvolution (or upsampling) layers to combine features at
multiple scales for detailed segmentation [7, 8, 38]. Promising results have been achieved on tra-
ditional camera photos and medical images. When applied to a large high-resolution topological
surface defined by an elevation (or depth) function [52], these methods often require partition-
ing the image into smaller patches (e.g., 224 by 224) and learning a convolutional neural network
for each patch with the depth channel as an additional feature [14, 31, 50]. Thus, these methods
are limited in capturing topological structures due to the rigid shape patterns in convolution ker-
nels. Some works aim to resolve this issue by adding spatial transformation in convolution kernels
through a depth or Gaussian term, e.g., bilateral filters [3] and depth-aware CNN [52], but they still
do not fully capture the topological structure for the entire surface. Also, these methods often re-
quire large amounts of labeled training data to ensure performance, which limits their application
in the real world. Other methods incorporate topological constraints into image segmentation in
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Fig. 1. A real-world example in the flood mapping application.

two ways: enforcing MRF or CRF-based topological constraints in the inference step [1, 6, 39, 49],
which is unable to fully utilize a topological prior to training a model; or using a topology-aware
loss function to train the neural network by leveraging persistent homology to define a topological
loss on the predicted class image [18, 33]. One example is retinal layer segmentation in a medical
application [17, 28], which only focuses on learning continuous boundaries between layers. But
these methods only focus on simple topology constraints (e.g., the number of connected compo-
nents or holes). In addition, due to the slow and expensive process of collecting a large number of
segment labels in neural network training, people also study semi-supervised image segmentation.
For example, some works use unlabeled data by enforcing consistency between model predictions
over multiple perturbations on the hidden layer representation [41]. Others use entropy regular-
ization to transfer the information from labeled images to unlabeled images [25]. However, these
methods still do not incorporate the explicit topological structural constraints on the surface. There
are also works for high-resolution image segmentation that integrates both global images and local
patches to capture semantic features of different granularity [10, 54], but these works also ignore
the topological structure in a terrain surface. Recently, a family of hidden Markov tree models has
been proposed to incorporate physics-guided topological structural constraint on terrains for flood
mapping [15, 16, 20–22, 24, 45–47, 53], but these models still use per-pixel explanatory features
without learning spatial contextual features in an end-to-end manner.

In contrast, we propose a novel framework that explicitly models the topological skeleton of
a terrain surface with a contour tree from computational topology, guided by the physical con-
straint (e.g., water flow directions on terrains). Our framework consists of two neural networks: a
convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid,
and a graph neural network (GNN) to learn the statistical distribution of topological depen-
dency on the contour tree. The two models are co-trained via variational EM. Evaluations on the
real-world flood mapping datasets show that the proposed models outperform baseline methods
in classification accuracy, especially when the number of training labels is small.

2 PROBLEM FORMULATION

2.1 Preliminaries

We now define some basic concepts. A list of symbols with description is in Table 1. 3D Spatial

Topological Surface: Given a 2D grid with N pixels, a 3D topological surface is defined as an
elevation (or depth) function over the grid. We denote the elevation function by an array E ∈ RN ,
them explanatory features (e.g., RGB feature) on the surface by an array X ∈ RN×m and the target
classes by an array Y ∈ RN . We denote a sample (pixel) on the surface by sn = (xn , en ,yn ), where
xn , en , and yn represent the m explanatory features, elevation value, and the class of the pixel,
respectively. For example, in flood mapping, the surface elevation is collected from 3D Lidar point
cloud, the explanatory features are the spectral bands from remote sensing imagery, and the target

ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 2, Article 26. Publication date: January 2022.



26:4 W. He et al.

Table 1. List of Major Symbols and Descriptions

Symbols Domain Descriptions

xn R
m m explanatory features of pixel n

en R elevation value of pixel n
yn {0, 1} class of pixel n
sn data sample of pixel n
X R

N×m features matrix of image with N pixels
E R

N elevation array of image with N pixels
Y R

N class array of image with N pixels
DL R

NL×m dataset for labeled image
DU R

NU ×m dataset for unlabeled image
V The set of nodes in contour tree
E The set of edges between nodes in contour tree

XG R
M×m Features matrix of contour tree

YG R
M Class array of contour tree withM nodes

ϕ R GNN Model parameters
θ R CNN Model parameters

Fig. 2. (a): An example of an elevation surface defined over a 2D image, each grid represents one pixel, the

number is its elevation level. (b): Contours of the surface, each circle is one contour, which represents a

set of connected pixels with the same elevation level (level set). (c): Contour tree of the surface, each node

represents one contour in (b). Two nodes are connected only if the two contours are adjacent.

classes are flood and dry categories. The above notations of the surface are based on a 2D grid view
with each pixel as a sample unit.

Geospatial Contour Tree: In computational topology, an elevation surface can also be char-
acterized by its level sets. Formally, a level set is a set of pixels with an equal elevation, i.e.,
l (e0) = {sn |en = e0}, where e0 is an elevation threshold. A level set consists of a number of con-
nected components called contours, which are in the form of equal elevation circles on a 2D surface
(see Figure 2(b)). As the elevation level rises, the topology of the corresponding level set and their
contours also evolve. Such evolution can be represented by a contour tree. A contour tree is a di-
rected polytree whose nodes represent contour components and whose edges represent the topo-
logical order (based on elevation gradient) between two adjacent contour components [5, 42]. This
paper focuses on a geospatial contour tree whose elevation function is defined on a 2D spatial grid
(e.g., elevation of the Earth’s surface). Figure 2(c) provides an example of the contour tree corre-
sponding to the elevation surface in Figure 2(a). Assume that the areas where elevation level is not
greater than 1 are flooded in Figure 2(a). Then in Figure 2(c) the two leaf nodes correspond to the
appearance of two separate lakes as water starts to accumulate to the elevation level of 1. The con-
tour tree skeleton captures how the surface class segments (e.g., flood extent) evolve with different
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elevation levels. Consider the contour tree node with elevation 3 asyn (the red node in Figure 2(c)),
then its parent nodes yPn are the set of adjacent nodes with elevation level 2, yPn = {yp1 ,yp2 } (as
shown in Figure 2(c)). Note that each contour tree node corresponds to a set of pixels on the
corresponding contour segment. For example, the red node in the contour tree with elevation 3
corresponds to all red pixels in the elevation map on the left. In a contour tree representation,
each contour component (node) is considered as a sample unit. The contour tree structure can be
represented with a graph G = (V,E), in whichV is a set of nodes and E is a set of edges between
the nodes. Each node vi corresponds to a level set l (ei ) in the elevation surface. Thus, the feature
of node vi is the aggregation of the feature of those pixels in the level set l (ei ). We denote the

feature matrix of all graph notes as XG , where each node feature xGi = Aдд(l (ei )), i ∈ V , and
l (ei ) represent those samples corresponding to ith contour component in surface image. For the
aggregation function, we choose to use the average function.
Specifically, we have two separate topological surfaces. One is for training with known class

labels, denoted by surface channels (XL,EL,YL ) or samples DL . The other is for testing with un-
known (hidden) class labels, denoted by surface channels (XU ,EU ,YU ) or samplesDU . We denote
X = XL ∪ XU and Y = YL ∪ YU . We denote the samples in entire dataset as D = DL ∪ DU .

Based on the elevation feature, we can construct the corresponding contour tree for the entire
training and test topological surface as one graph G = (V,E) (connected graph if training and
test region are adjacent). We denote the nodes with known class labels asVL , and the nodes with
unknown class labels asVU . The correspondence between the graph nodes and pixels in the sur-
face is represented by matrix H ∈ R

M×N , where M is the total number of vertices in the contour
tree, and N is the total number of pixels in the surface image. Hi j = 1 if the ith contour tree node
contains pixels sj in surface image and 0 otherwise. The feature and class label matrix of all nodes

is denoted by XG and YG , which are obtained by averaging the corresponding pixels feature and
label in the image. In the following, for simplicity, we omit the superscripts G for the graph rep-
resentation. In other words, X and Y can be the class and features of the surface image or contour
tree based on its context. xn and yn represent the feature and class label of node n in contour tree
if n ∈ V , and pixel n in surface image if n ∈ D.

Construction of Contour Tree: A contour tree can be constructed by the algorithm in [5].
The algorithm sorts surface pixels from low to high elevation values, creating a joint tree and a
split tree by scanning the pixels in different orders of elevation values. We need to customize the
original algorithm in [5] for our terrain surface. First, we assume each pixel center as a vertex
in the mesh surface format. Second, we add perturbation to surface elevation values to enforce a
total order on pixels with an equal elevation value (this is required by the algorithm). After the two
customizations, we can run the algorithm in [5] and then collapse the nodes on the same contour
segment into a single node [21]. The construction algorithm takes O (n logn) time where n is the
number of surface pixels.

2.2 Problem Definition

Given a training surface with labeled samples (XL,EL,YL ) and a test surface with unlabeled sam-
ples (XU ,EU ,YU ), the problem of topological surface segmentation aims to learn amodel to predict
the classes of test samples, i.e., YU = f (XU ,EU ). We assume the test surface is very large with
millions of pixels. In addition, we also assume that the pixel classes on the surface follow a contour
tree topological structure. From the perspective of the contour tree structure, this problem can be
formulated as a structured prediction problem that aims to model the distribution of nodes class
conditioned on node features and contour tree topology, i.e., p (Y G |X G,E). Specifically, we focus
on semi-supervised transductive learning, that is, to learn a model by utilizing not only the labeled
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Fig. 3. Overview of the co-training framework.

training surface but also the unlabeled test surface as well. The training and test surfaces may also
belong to a single larger surface that is partially labeled.

3 THE PROPOSED APPROACH

3.1 Overview of the Framework

Figure 3 provides an overview of our framework. Our idea is to use two deep neural networks: a
convolutional neural network (CNN) [30, 44] on an image grid and a graph neural network

(GNN) [11, 27] on a contour tree skeleton. The GNN model captures the topological structure
between contour classes but ignores the spatial contextual dependency among pixel features. The
CNN model captures the spatial context of features but ignores the topological structure between
classes. The backbone network for GNN we use is Graph Convolutional Network (GCN) [27],
for its simplicity and capability to aggregate neighborhood features. In our implementation, we
used 3 GCN layers to learn higher-order dependency between neighbors. The backbone network
for CNN is U-Net, because it can capture both global and local spatial contextual features for
segmentation. U-Net model consists of an encoder-decoder structure, where the encoder has six
double-convolution and fivemax-pooling operations, and the decoder uses transposed convolution
to upsample the feature map. More details of the U-Net and GCN models are provided in Section
4.1. The two models are co-trained iteratively via variational EM [37]. The intuition is to consider
the CNN and GNN models as two alternative ways to formulate the statistical distribution of all
sample locations and iteratively train the two models by approximating one with the other [43].
Specifically, we can first use a pre-trained CNN to predict class probabilities of pixels on the surface.
The predicted class probabilities will be aggregated into contour nodes and fed into a GNN to
learn topological structure dependency. The output classes from the GNN that enforce topological
structure dependency will in turn be used to re-train the CNNmodel. The iterations continue until
the two models are converged. The converged models combine the advantages of both sides, being
able to both learn spatial contextual features and enforce the topological structure between classes.
Next, we will introduce the specific statistical formulation and the detailed learning algorithms
under the variational EM framework.

3.2 Model Co-Training in Variational EM

Given a partially labeled surface (training surface and test surface), we assume the class labels and
features of all datasets follow the conditional distribution in Equation (1), where yn and yPn are
the class of the n-th contour tree node and the classes its parent contour nodes, respectively, xn is
the aggregated features for pixels on the contour, and ϕ is model parameters. In this formulation,
we make conditional independence assumptions between class nodes based on the topological
structure represented by a contour tree, i.e., a node’s class only depends on its parents’ classes
and its own feature. For example, in hydrology, the flood extent boundary on the elevation surface
only gradually spreads across different contours. The above distribution can be considered as a
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graphical model based on a contour tree. It captures the topological dependency between classes
of contour components on a surface, ignoring the spatial context of surface features (assuming xn
to be independent). In order to learn the function of pϕ (yn |yPn , xn ) in an unknown and nonlinear
manner, we use a graph neural network to model the probability distribution of pϕ . A graph neural
network generalizes the traditional deep convolutional neural networks from images to graphs
by designing convolutional operations on a node’s neighbors [11, 27]. If we feed the initial class
probability p (yi ) of each contour tree node into the input “feature” layer of the GNN, the output
layer will generate class probabilities of each node after considering all neighbors’ classes through
graph convolution operations. The neural network architecture is able to learn more complex
functions beyond a simple class transition matrix. In addition, with specific configurations of the
hyper-parameters such as the number of neighbor hops and the number of graph convolution
layers, we can learn higher-order dependency beyond a node and its parents.

pϕ (Y|X) = pϕ (YL,YU |X) =
∏

n∈V
pϕ (yn |yPn , xn ) (1)

Model parameters ϕ can be learned by maximizing the log-likelihood of observed node labels
logpϕ (YL |X). However, directly optimizing it is intractable because of the complicated structural
dependency between contours and a large number of unobserved contour classes YU. Alterna-
tively, we maximize the evidence lower bound of the log-likelihood function of the observed con-
tour classes, which is given in Equation (2), where qθ (YU |X) is a variational distribution over the
unlabeled pixels YU. The equation holds when qθ (YU |X) is equal to the true posterior distribu-
tion pϕ (YU |YL,X). Because the true posterior distribution of unlabeled pixels is intractable, we
use the variational distribution qθ (YU |X) to approximate it. The optimal qθ (YU |X) is the one that
maximizes the evidence lower bound L (qθ ,pϕ ).

logpϕ (YL |X) ≥ L (qθ ,pϕ ) = Eqθ (YU |X)[logpϕ (YL,YU |X) − logqθ (YU |X)] (2)

Specifically, we apply the mean-field theory in the approximation [40], assuming pixel classes
are conditionally independent given features. The variational distribution qθ (YU |X) can be factor-
ized as shown in Equation (3) below, where each factorized distribution qθ (yn |X) is a categorical
distribution of a pixel class based on complete surface features. To learn the complex unknown and
non-linear spatial contextual features that determine pixel classes, we use a convolutional neural
network (e.g., U-Net) to model variational distribution qθ (yn |X). The network takes the explana-
tory features of pixels on a surface as inputs and produces the class probabilities of each pixel
as output. Note that if the surface is much larger than the input shape of a normal CNN, we can
partition the surface into smaller patches and apply the CNN model to each patch to predict pixel
class probabilities.

qθ (YU |X) =
∏

n∈DU

qθ (yn |X) (3)

Note that we slightly abuse the notation to use the same element index n for both a contour node
(a set of pixels) in pϕ (yn |yPn , xn ) and a pixel in qθ (yn |X) for simplicity. In other words, en element
yn as a node in pϕ corresponds to a set of yn as pixels in qθ . The model learning process involves
iterations between an E-step and an M-step. In the E-step, we fix the parameters ϕ in GNN and
optimize qθ (i.e., re-training the CNN). In the M-step, we fix the parameter θ and optimize pϕ (i.e.,
re-training the GNN). The iterations continue until the two models converge. The specific details
are discussed below.

3.2.1 E-step: Fix pϕ and Update qθ . In E-step, we fix pϕ and optimize qθ through maximizing
the evidence lower bound in Equation (2) (making the lower bound as tight as possible). Recall that
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we use the mean field theory to express qθ in a factorized distribution qθ (yn |X) in Equation (3).
Such an optimal marginal variational posterior distribution qθ (yn |X) can be derived by the fixed-
point condition [4, 43] in Equation (4), where θ0 in the expectation is the old parameters of θ from
the previous iteration (the detailed proof is provided in Theorem 3.1). The intuition behind this
fix-point condition is that the logarithm of the optimal variational distribution on one factor yn
can be expressed as the posterior expectation of logarithm of pϕ over remaining factors yPn .

logqθ (yn |X) = Eqθ0 (yPn |X)[logpϕ (yn |yPn ,X)] + const (4)

The optimal solution involves the expectation over the variational posterior distribution of yPn .
The expectation may involve a large number of terms since the expectation ranges over all pos-
sible parent nodes classes. To address this challenge and simplify the condition, we estimate the
expectation by drawing a sample from qθ0 (yPn |X), denoted by ŷPn . In this way, the expectation
over qθ in Equation (4) can be simplified as Eqθ0 (yPn |X)[logpϕ (yn |yPn ,X)] ≈ logpϕ (yn |ŷPn ,X).
Thus, the optimal solution of marginal variational posterior satisfies the equation below.

qθ (yn |X) = pϕ (yn |ŷPn ,X) (5)

Based on the above analysis, in the E-step, we can fix parameter ϕ and use old parameter θ0 to
sample classes by distribution qθ0 . The sampled classes are fed into the GNN model pϕ to produce
pϕ (yn |ŷPn ,X). After this, we can fixpϕ (yn |ŷPn ,X) as a target to update parameter inqθ . According
to Equation (5), the optimal variational distribution qθ can be updated by minimizing the reverse
KL divergence between qθ (yn |X) and the target pϕ (yn |ŷPn ,X), which gives the following loss
function in Equation (6), which is similar to categorical cross entropy loss with a soft ground true
class probabilities.

Lθ,DU
=
∑

n∈DU

Epϕ (yn |ŷPn ,X)[logqθ (yn |X)]. (6)

Additionally, the labeled training pixels can also be utilized to enhance the inference network
by predicting the labels for the labeled pixels. We add a supervised learning loss function:

Lθ,DL
=
∑

n∈DL

logqθ (yn |X), (7)

where yn is the ground-truth label of n. Therefore, the overall loss function is as follows:

Lθ = Lθ,DU
+ λLθ,DL

, (8)

where λ is a hyperparameter to control the relevant weight of supervised learning objective.

Theorem 3.1. Assume qθ (yn |X) is the factorized variational distribution after assuming condi-

tional independence between pixel classes in qθ (YU |X) (the mean field approximation). Assume that

pϕ (yn |yPn ,X) is the true conditional class distribution of the n-th contour tree node given its parent

classes and the complete features. The optimal approximation of qθ to pϕ that maximizes the evidence

lower bound in Equation (2) is given by the following fixed point condition:

logqθ (yn |X) = Eqθ0 (yPn |X)[logpϕ (yn |yPn ,X)] + const.

Note that we slightly abuse the notation by defining yn as the set of classes of all pixels on the n-th
contour (node) in qθ , though yn in the original qθ is factorized by each pixel. We also define yn in pϕ
as the class of the n-th contour (node) assuming that all pixels on the contour share the same class.
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Proof. The evidence lower bound of the log-likelihood function of the observed contour classes
is:

Eqθ (YU |X)[logpϕ (YL,YU |X) − logqθ (YU |X)]

=
∑

YU

∏

n

qθ (yn |X)
⎡
⎢
⎢
⎢
⎢
⎣

logpϕ (YU,YL |X) −
∑

n

logqθ (yn |X)
⎤
⎥
⎥
⎥
⎥
⎦

=
∑

yn0

qθ (yn0 |X)
∑

YU\yn0

∏

n�n0

qθ (yn |X)
⎡
⎢
⎢
⎢
⎢
⎣

logpϕ (YU,YL |X) −
∑

n

logqθ (yn |X)
⎤
⎥
⎥
⎥
⎥
⎦

=
∑

yn0

qθ (yn0 |X)
∑

YU\yn0

∏

n�n0

qθ (yn |X) logpϕ (YU,YL |X)

−
∑

yn0

qθ (yn0 |X)
∑

YU\yn0

∏

n�n0

qθ (yn |X)
⎡
⎢
⎢
⎢
⎢
⎣

∑

n�n0

logqθ (yn |X) + logqθ (yn0 |X)
⎤
⎥
⎥
⎥
⎥
⎦

=
∑

yn0

qθ (yn0 |X)Eqθ (YU\n0 |X)[logpϕ (YU,YL |X)] −
∑

yn0

qθ (yn0 |X) logqθ (yn0 |X) + const.

=
∑

yn0

qθ (yn0 |X)Eqθ (YU\n0 |X)[logpϕ (yn0 |yPn0 ,X)] −
∑

yn0

qθ (yn0 |X) logqθ (yn0 |X) + const.

=
∑

yn0

qθ (yn0 |X)Eqθ (yPn0 |X)[logpϕ (yn0 |yPn0 ,X)] −
∑

yn0

qθ (yn0 |X) logqθ (yn0 |X) + const.

= −KL(qθ (yn0 |X) | |Eqθ (yPn0 |X) )[logpϕ (yn0 |yPn0 ,X)]) + const.

From the above Equation, the optimal qθ (yn0 |X) is equal to Eqθ (yPn0 |X) )[logpϕ (yn0 |yPn0 ,X)] �

3.2.2 M-step: Fix qθ and Update pϕ . In M-step, we fix the parameter θ in the CNN model and
update parameter ϕ in the GNN model. The objective is to maximize the evidence lower bound
of log-likelihhood in Equation (2), i.e., Eqθ (YU |X)[logpϕ (YL,YU |X)]. Similar to the E-step, directly
calculating the expectation over the variational posterior YU (or yn ) is infeasible due to the lack of
closed form expression in pϕ . We utilized the same idea to generate samples from distribution qθ ,
i.e. ŷn ∼ qθ (yn |X) if n is an unlabeled pixel. Otherwise, if n is a labeled pixel (from the training
surface), we set ŷn as its ground-truth. In this way, the model pϕ can be optimized by maximizing
the loss function below.

Lϕ =
∑

n∈D
logpϕ (ŷn |ŷPnX) (9)

Practically, the process is as follows: we first use qθ to predict the class probabilities of pixels
on the unlabeled (test) surface, aggregate those pixels classes into contours, and then use contour
classes to re-train the GNN model.

4 EVALUATION

The goal of the evaluation is to compare our proposed method with baseline methods in classi-
fication performance on two real-world flood mapping datasets. We compared the methods on
different numbers of training labels to evaluate the effectiveness of semi-supervised learning.
We also conducted self-comparison studies to evaluate the effect of different hyperparameters
in our model. Experiments were conducted on a workstation with four NVIDIA RTX 6000
GPUs (each with 24GB memory) installed with Keras and Tensorflow. The candidate methods
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in our comparison are listed below. There are four categories: base models, base models with
self-training, b models with the conditional random field (CRF) on the contour tree topological
skeleton, and base models with graph co-training (our proposed approach). We considered U-Net
and DeepLab as base models when evaluating the effect of existing self-training and our proposed
graph (contour tree) co-training.

• Base models:

• U-Net:We used the U-Net model with a 224 by 224 input shape implemented in Keras [44].
The U-Net model consists of an encoder-decoder structure. The encoder has six double-
convolution layers and five max-pooling layers. The number of output filters in each con-
volution layer is 32, 64, 128, 256, 512, 1024. There is a batch normalization operation within
each convolutional layer before non-linear activation based on ReLU (rectified linear

unit). The decoder of the model upsamples the encoded feature map to higher resolution
with transposed convolution and concatenates upsampled features with corresponding
feature maps from the encoder.

• DeepLabv3+:Weused theDeepLabv3+model [9] with an input shape of 224 by 224. It was
implemented in Keras.1 The DeepLabv3+ model has an encoder-decoder structure. The
encoder applies Atrous Spatial Pyramid Poolingwith four different rates to detect multiple-
scale features. The encoder feature output stride is 16. Then the encoder features are first
bilinearly upsampled by a factor of 4 and then concatenated with the corresponding low-
level features from backbone CNN. Then another bilinear upsampling by a factor of 4
is applied to obtain the original resolution. The network backbone we used is Xception
model.

• Base models with self-training: Specifically, we used a pre-trained U-Net or DeepLabv3+
model to make predictions on unlabeled image patches. Those patches with high confidence
predictions were added into the training set for the next iteration. The iteration continues
until the performance on the validation set stops improving.
• Base models with the conditional random field (CRF) on the contour tree topologi-

cal skeleton:We used the base segmentation model (e.g., U-Net, DeepLab) to infer per-pixel
class probability and then fed the per-pixel class probabilities as unary energy into a CRF
on the surface contour tree (the similar idea was proposed in [55]). The pair-wise energy
is defined to encourage nearby similar pixels to have the same predicted label. In order to
consider the topology dependency in our problem and do a fair comparison, we applied the
CRF in the contour tree structure instead of a grid graph of the image. The CRF model was
implemented in Matlab.2

• Base models with graph co-training on the contour tree (our approach): We co-
trained a U-Net or DeepLab model and a GNN in variational EM. The codes were imple-
mented in Tensorflow.

Dataset description: We used two real-world flood mapping datasets collected from North Car-
olina during Hurricane Matthew in 2016. Explanatory features were red, green, and blue bands in
aerial imagery from the NOAA National Geodetic Survey [34]. The digital elevation imagery was
downloaded from the University of North Carolina Libraries [36]. All data were resampled into
a 2 meter by 2-meter resolution. For the U-Net model, we partitioned a surface into 224 by 224
patches. In the first dataset, the complete training surface contains 171 square patches, the valida-
tion surface contains 120 patches, and the test surface contains 132 patches. In the second dataset,

1https://github.com/rishizek/tensorflow-deeplab-v3-plus.
2http://www.cs.ubc.ca/~schmidtm/Software/UGM.html.
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the complete training surface contains 416 patches, the validation surface contains 120 patches,
and the test surface contains 208 patches.
The evaluation metrics used include precision, recall, F-score, and overall accuracy.

4.1 Details in Model Training

Model Architectures: For U-Net, the model consists of five double convolutional layers and max-
pooling layers in the downsample path as well as five double convolutional layers and trans-
posed convolutional layers in the upsample path. There is a batch normalization operation within
each convolutional layer before non-linear activation based on ReLU (rectified linear unit). For
DeepLabv3+, we used Xception as the network backbone and atrous separable convolutions in
encoder-decoder.
Hyperparameter: In model training, we used Adam optimizer and binary cross-entropy loss for

all base segmentation models. The mini-batch size was 5. For U-Net, the learning rate was 10−4, We
trained the model for 300 epochs. For DeepLabv3+, the learning rate was 10−2. For our approach,
in the CNN part, we used the same model architecture and training methods as the baseline U-
Net and DeepLabv3+ model. The weight λ to control the relevant importance of the supervised
learning objective is set as 1, i.e., the weights of the labeled and unlabeled data are the same. In
the graph neural network, we used the GCNmodel with the loss function based on sparse softmax
cross-entropy with logits in Tensorflow. We used the MomentumOptimizer with a momentum of
0.9, a learning rate of 10−4, a decaying rate of 0.99, and L2 regularization with a weight of 10−3. We
also added a batch normalization layer before the non-linear activation in each graph convolution
layer. There was a total of three GCN layers. Each GCN layer has 32 output filters. We trained
the GCN model for 150 epochs. The mini-batch size was 1 since the graph topology of the input
patches was not the same. The selection of hyper-parameters was based on data characteristics
and the evaluation of validation data. For EM iterations, the convergence threshold is 0.001 (the
iteration will stop if there is less than 0.1% improvement on validation accuracy).
Self-training: For U-Net or DeepLabv3+ with self-training, we first pre-trained the U-Net or

DeepLabv3+ model based on a small set of labeled training patches to make predictions on unla-
beled image patches in the test area. Those image patches with high confidence predictions were
added into the training set to re-train the U-Net model. The confidence of one image patch was cal-
culated based on the average confidence over all pixels (predicted class probabilities) in the patch.
The confidence thresholds used in the first dataset were 0.85, 0.85, 0.90, 0.90, and 0.95, correspond-
ing to 5, 10, 30, 60, and 171 training patches, respectively. In the second dataset, the confidence
thresholds used were 0.85, 0.90, 0.90, 0.90, and 0.95 for 5, 20, 60, 120, and 416 training patches,
respectively.

4.2 Comparison on Classification Accuracy

We first compared the classification performance of three approaches on the two datasets. We
chose U-Net and DeepLab as representative base models in self-training and graph co-training
due to their superior performance. To test the effectiveness of semi-supervised learning, we chose
a sub-area containing only five patches from the training surface in each dataset. The results were
summarized in Tables 2 and 3, respectively. On the first dataset, we can see that U-Net performed
poorly when the training set was small (with an accuracy of 0.68). The reason was that the explana-
tory features on the surface contained a large number of obstacles that often confused a classifier.
More importantly, the number of training labels was very small. DeepLabv3+ could capture long-
range spatial context and achieved better performance than U-Net with an accuracy of 0.72, but it
still did not full resolved the spectral confusion issue. After using self-training, the overall classi-
fication accuracy of U-Net improved from 0.68 to 0.76, but the performance on the dry class was
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Table 2. Overall Comparison on Dataset 1

Methods Class Prec. Recall F Avg. F Accuracy

U-Net
Dry 0.61 0.74 0.67

0.68 0.68
Flood 0.76 0.63 0.69

U-Net with self-training
Dry 0.82 0.58 0.68

0.75 0.76
Flood 0.73 0.90 0.81

U-Net with CRF on contour tree
Dry 0.91 0.76 0.83

0.86 0.86
Flood 0.83 0.94 0.88

U-Net with graph co-training on contour tree
Dry 0.98 0.85 0.91

0.92 0.92
Flood 0.89 0.98 0.94

DeepLabv3+
Dry 0.85 0.46 0.61

0.71 0.72
Flood 0.69 0.94 0.80

DeepLabv3+ with self-training
Dry 0.80 0.69 0.75

0.80 0.80
Flood 0.78 0.88 0.84

DeepLabv3+ with CRF on contour tree
Dry 0.98 0.73 0.84

0.87 0.88
Flood 0.82 0.99 0.90

DeepLabv3+ with graph co-training on contour tree
Dry 0.98 0.76 0.88

0.91 0.91
Flood 0.84 0.99 0.92

Table 3. Overall Comparison on Dataset 2

Methods Class Prec. Recall F Avg. F Accuracy

U-Net
Dry 0.70 0.98 0.82

0.75 0.76
Flood 0.97 0.51 0.67

U-Net with self-training
Dry 0.88 0.80 0.83

0.83 0.83
Flood 0.79 0.86 0.82

U-Net with CRF on contour tree
Dry 0.98 0.85 0.91

0.92 0.92
Flood 0.86 0.98 0.92

U-Net with graph co-training on contour tree
Dry 0.97 0.98 0.97

0.97 0.97
Flood 0.98 0.96 0.97

DeepLabv3+
Dry 0.83 0.99 0.90

0.88 0.88
Flood 0.98 0.76 0.86

DeepLabv3+ with self-training
Dry 0.95 0.97 0.96

0.96 0.96
Flood 0.96 0.95 0.95

DeepLabv3+ with CRF on contour tree
Dry 0.96 0.97 0.97

0.97 0.97
Flood 0.97 0.98 0.97

DeepLabv3+ with graph co-training on contour tree
Dry 0.98 0.97 0.97

0.97 0.97
Flood 0.97 0.98 0.97

still poor (its F-score was around 0.68). The classification accuracy of DeepLabv3+ improved from
0.72 to 0.80 after adding self-training. But DeepLabv3+ with self-training still had errors since the
“high confidence” predictions on test area that were added into the training set could still contain
errors, which somehow confused the model. Moreover, self-training cannot capture the global 3D
topological structure on the surface. U-Net and DeepLabv3+ with CRF on a contour tree dramati-
cally improved the accuracy to around 0.86 and 0.88. The improvement is due to the fact that the
model considered the topological dependency in the contour tree and predict topologically con-
tinuous surface. However, the model prediction still gave a relatively low precision for the flood
class due to false positives from the deep learning predictions. In contrast, our model performed
the best due to explicitly modeling topological structural constraints and using graph co-training
to enhance unlabeled patches. Its overall accuracy was 0.91 with good performance in both classes.
We can observe similar trends in the second dataset. From results on the second dataset in Table 3,
we can see that U-Net alone achieved an overall accuracy of 0.76 and DeepLabv3+ achieved an
accuracy of 0.88 (which is somehow better than the first dataset due to training patches being
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Fig. 4. Training curves of different EM iterations on Dataset 1.

more representative of the test area). Adding self-training to U-Net improved the accuracy to 0.83
due to a better recall in the flood class. Adding self-training to DeepLabv3+ improved its accuracy
to 0.96. Such a great performance in self-training was likely due to the stronger base model (0.88
overall accuracy in DeepLabv3+ itself) on the second dataset. The results indicate that self-training
heavily relies on the performance of base models because it requires accurate predictions on test
data in training set expansion. The DeepLabv3+ model with CRF on contour tree achieved an F1-
score of 0.97 while the U-Net model with CRF achieved an F1-score of 0.92. The U-Net model with
CRF shows a lower precision for the flood class. In contrast, our approach persistently performed
the best with an overall accuracy of 0.97 with both U-Net and DeepLabv3+ base models because
it could both capture the topological structural dependency between surface locations and better
utilize unlabeled image patches through graph neural network co-training. In summary, the re-
sults showed that explicitly modeling the topological structural constraint in graph co-training
significantly boosted the classification performance when the training set was small.
For two datasets we also compared the learning curves in different EM iterations as shown in

Figures 4 and 5. For both datasets, on the first EM iteration, we can observe a big gap between the
training and validation curve. This is because the labeled dataset is small, and there is a significant
overfitting issue for U-Net training. The issue can be mitigated after we incorporated topologi-
cal dependency with the GNN model. In the next several iterations, the gap between the training
curves and validation curves decreases, and the validation accuracy improves a lot. At the last iter-
ation, the model converges to an optimum validation accuracy. We also observed some interesting
patterns in the learning curve. For example, there was a drop of validation accuracy in the first
few epochs of Figure 4(d). The pattern could be due to randomness since the model training was
not stabilized yet in the first few epochs. The same trend was not observed in the second dataset
(Figure 5(d)).
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Fig. 5. Training curves of different EM iterations on Dataset 2.

4.3 The Effect of the Number of Training Patches

To fully evaluate the effectiveness of the semi-supervised learning methods, we compared U-Net,
FCN, SegNet, and DeepLabv3+ base models with our approach (U-Net or DeepLabv3+ with graph
co-training) on different amounts of training patches. We used the U-Net model as a representative
base model in self-training and contour tree graph co-training. The FCN and SegNet model details
are as follows:

• FCN: We used the basic FCN-32s model [30] implemented in Keras.3 The model consists
of convolutional layers with max-pooling and one final bilinear upsampling layer.

• SegNet: We used the SegNet model [2] implemented in Keras.4 The model consists of an
encoder and a decoder. The decoder upsamples feature layers based on unpooling operations.

On the first dataset, we increased the size of the training surface from 5 patches to 171 patches
(the complete training surface). The overall accuracy of the three candidate methods was plotted
in Figure 6. The results on the first dataset were shown in Figure 6(a). We can see that as the size
of the training surface increased, the averaged F-score improved in all baselines methods, but the
performance of our model persistently outperformed the other two baseline methods. Specifically,
when the number of training patches increased from 5 to 20 and 40, the overall accuracy of U-Net
improved from 0.68 to 0.81 and 0.86, and other segmentationmodels SegNet, FCN, and DeepLabv3+
improved from around 0.70 to 87. In general, DeepLabv3+ performed the best compared with other
basemodels because the atrous convolution can extract dense featuremaps and capture long-range

3https://github.com/aurora95/Keras-FCN.
4https://github.com/ykamikawa/tf-keras-SegNet.
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Fig. 6. The comparison of three methods on different sizes of the training set.

spatial context. SegNet performed the worst because the upsampling with unpooling operations
may not generalize well to the test area. The accuracy of U-Net with self-training improved from
0.76 to 0.84 and 0.88, but the improvement was not significant compared with our model. The
reason was that the self-training method still relied on the assumption that its high-confidence
predictions were actually correct, which was not always true. The performance of models reached
a plateau after the number of training patches reached around 40 or 60. The maximum accuracy
of U-Net only, U-Net with self-training, and our model were 0.88, 0.90, and 0.96, respectively.
The results on the second dataset are shown in Figure 6(b). We can see similar trends that the

performance of all baseline methods improved as the training set size increases. Our method sig-
nificantly outperformed the other methods when the number of training patches was small (e.g.,
below 60). This showed that our method was more effective in addressing limited training labels.
However, we also observed that when the number of training patches was sufficiently large (e.g.,
around 120 or above), the performance of the U-Net with self-training and DeepLabv3+ model
also caught up, with an optimal F-score around 0.98 (close to our method). FCN and SegNet mod-
els showed around a 0.95 optimal F-score. We also observed that after we continued increasing the
training patches, all the models converged at an optimal F-score around 0.98, which is not plotted
in Figure 6(b). This showed that the second dataset was relatively easier to classify compared with
the first dataset.

4.4 The Effect of GNN Model Configurations

Next, we conducted several self-comparisons to test the effect of different configurations of the
GNN model in our method. We did experiments on the first dataset with 60 training patches and
132 test patches. We evaluated the effect of the number of output channels in each graph convolu-
tional layer, the number of neighbor hops in each graph convolutional layer, the total number of
graph convolutional layers in the GNN, as well as the type of graph convolutional kernels. When
evaluating the effect of the number of output channels in each graph convolutional layer in our
GNN model, we fixed the number of neighbor hops in each graph convolutional layer as 1, used
three diffusion graph convolutional layers, and increased the number of output channels from
16 to 64. Results in Figure 7(a) show that the effect of the number of output channels was not
significant in the final accuracy, and the optimal accuracy was achieved when the number of out-
put channels was 32 and 64. When evaluating the effect of the number of neighbor hops in each
graph convolutional layer in our GNNmodel, we used diffusion graph convolution, fixed the num-
ber of output channels to 32, and increased the number of neighbor hops from 1 to 3. Results in
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Fig. 7. The effect of the number of output channels and neighbor hops in a graph convolution layer.

Fig. 8. The effect of the number (a) and the type (b) of graph convolution layers.

Figure 7(b) show that when increasing the number of neighbor hops, the final accuracy decreases.
The model can achieve the best performance with 1-hop neighbors in graph convolution.

When evaluating the effect of the number of graph convolutional layers in our GNN model, we
fixed the diffusion graph convolution output channel as 32, used 1-hop neighbor, and increased the
number of convolutional layers from 1 to 4. Results in Figure 8(a) show that increasing graph con-
volutional layers can increase model performance, and achieve the best performance with three
layers because with more layers the model can well model the higher-order topological structure
constraint. When evaluating the effect of the type convolutional filters in our GNN model, we
fixed the number of graph convolution layers as 3, the number of output channels as 32, used
1-hop neighbors and compared two types of graph convolution: diffusion graph convolution [29]
and ChebyNet [11]. Results in Figure 8(b) show that diffusion graph convolution can achieve bet-
ter performance than ChebyNet because diffusion graph convolution can model the directional
topological dependency.

4.5 Case Study

We also conducted a case study to interpret the performance of different models through visual-
ization. In Figures 9 and 10, we provide the aerial image, digital elevation, and the ground truth
class labels in the two datasets, as well as the predictions of U-Net, U-Net with self-training, and
U-Net with graph co-training (our model) on two datasets with five training patches. Figure 9(a)
shows the input surface features as spectral bands of the earth imagery. From the image, we can
see that the lower half of the area is flooded (in brown color) but the flooded area was obscured
by tree canopies (in green color). The tree canopies created spectral confusion for classifiers since
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Fig. 9. The aerial image (a), digital elevation (b), ground truth (c), U-Net prediction (d), U-Net with self-

training prediction (e), U-NetwithCRF on contour tree prediction (f), and ourmodel prediction (g) onDataset

1 (Yellow is flood class, purple is dry class).

the same spectral signatures also exist in the dry areas. Figure 9(b) shows the elevation surface
and its topography. The U-Net prediction results in Figure 9(d) show much salt-and-pepper noise
and misclassifications compared with the ground truth in Figure 9(c) due to spectral confusion
among those area covered by obstacles (e.g., trees canopies). Moreover, the prediction class map
was not smooth near the boundary of each image patch because U-Net classified each image patch
(224 × 224) independently from each other and thus cannot capture the topological dependency
across image patches. This limitation causes discontinuity in the prediction of the high-resolution
test image. The U-Net with self-training in Figure 9(e) could alleviate the salt-and-pepper
noise errors and make smoother classification, but the prediction results still show vertical and
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Fig. 10. The aerial image (a), digital elevation (b), ground truth (c), U-Net prediction (d), U-Net with self-

training prediction (e), U-NetwithCRF on contour tree prediction (f), and ourmodel prediction (g) onDataset

2 (Yellow is flood class, purple is dry class).

horizontal artifacts near patch boundaries. The U-Net model with CRF on the contour tree dramat-
ically reduces the classification errors due to incorporating the topological structure (Figure 9(f)).
But the results still contain errors when the initial classification is heavily erroneous. In contrast,
our model with graph co-training in Figure 9(g) can capture the dependency across image patches,
which gave smoother and more accurate predictions on the whole test image. Similar results are
observed on the second dataset in Figure 10.

4.6 Analysis of Computational Time Costs

We evaluated the computational efficiency of our proposed approach. The experiments were con-
ducted on our deep learning workstation with 4 NVIDIA RTX 6000 GPUs connected by NV-Link
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Fig. 11. Time cost of GCNmodel and U-Net model training during different iterations. (best viewed in color).

(each GPU has 24GB memory). The total number of unlabeled input image patches in the test area
for CNN is 132. The time costs in different EM iterations were summarized in Figure 11. The blue
bar and red bar showed the time costs of the GCN model training and the U-Net model training
within each EM iteration. From the results, we can see that the GCN model training took about
half of the time cost of U-Net training and their time costs were relatively stable across EM itera-
tions. Each iteration took about 15 minutes. The numbers were highly dependent on the hardware
platform.We acknowledge that the time cost of our approach is higher than the baseline of a single
U-Net training, but our model can address the limited training sample issue and take advantage of
the topological structure of the terrain surface.

5 CONCLUSION AND FUTURE WORKS

This paper focuses on the problem of earth imagery segmentation on terrain surface with limited
training labels. The problem is important for many applications such as water surface mapping
in hydrology but is challenging due to the existence of topological structure and limited train-
ing labels. Existing methods are often limited in not explicitly modeling the topological structural
dependency on the class surface. In contrast, we proposed a new method that represents the topo-
logical surface as a contour tree skeleton based on the physics of water flow directions. Ourmethod
co-trains a convolutional neural network on image patches and a graph neural network on the con-
tour tree. Evaluations on real-world flood mapping datasets show that our method significantly
outperforms baselines, especially when the size of the training surface is small.
In future work, we plan to expand our evaluations to more applications such as rock art sur-

face segmentation in archaeology and protein elevation surface segmentation. We also plan to
generalize our ideas from transductive learning to inductive learning.
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