IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 23, DECEMBER 1, 2021

17147

Temperature Forecasting for Stored Grain: A Deep
Spatiotemporal Attention Approach

Shanshan Duan™, Student Member, IEEE, Weidong Yang

, Xuyu Wang"™', Member, IEEE,

Shiwen Mao*, Fellow, IEEE, and Yuan Zhang

Abstract—The development of Internet-of-Things (IoT) tech-
nology promotes the advances of grain condition detection and
analysis systems. Temperature monitoring is a main element
to maintain grain quality, and effective control of grain tem-
perature is crucial to safe storage of grain. In this article, an
encoder—decoder model with attention mechanism is proposed to
accurately forecast the temperature of stored grain. Considering
that the points on the gradient direction of the temperature sur-
face have a great influence on the temperature of the target
point, the Sobel operator is used to extract the local character-
istics of the target point. In addition, considering the correlation
structure in the sensory data, the attention mechanism is used
to extract the global features of the target point. The extracted
spatial features are fed into long short-term memory (LSTM)
networks to obtain the long-term state information of spatial
factors. LSTM unit and convolutional neural network are used
to encode the spatial features of the target points. Taking mete-
orological factors as the external input of the decoder, temporal
attention mechanism and LSTM unit are used to complete the
decoding process and realize the prediction of grain tempera-
ture in the future. The results with real grain storage data show
that the proposed model outperforms several schemes, includ-
ing Kalman-modified the least absolute shrinkage and selection
operator (Kalman-modified LASSO), temporal graph convolu-
tional network (T-GCN), LSTM, CNN-LSTM, and convolutional
LSTM (Conv-LSTM), with considerable gains.
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I. INTRODUCTION

P TO 2050, the world cultivated land will increase from
U nearly 0% to nearly 1% every year and the annual growth
rate of world medial grain production may be as high as 1.43%
to meet the world’s food needs [1]. The predicted world grain
inventory is 876 million tons by the end of 2021. It was
also estimated that China’s wheat output would be 134 mil-
lion tons in 2020. According to the organization for economic
co-operation development (OECD) and the food and agricul-
ture organization (FAO) of the United Nations (OECD-FAO)
agricultural outlook 2020-2029, the COVID-19 pandemic may
further undermine food security. In 2020/2021, wheat inven-
tories will increase further, most of which will come from
China [2], [3]. The storage period (three to five years) of wheat
in China is longer than that in developed countries. However,
estimates suggest that poor grain storage management in
developing countries results in 20%—-50% postharvest losses
of grains grown [4], which is a huge waste. Consequently,
ensuring safe food storage is of critical importance.

Usually mold and pest are the two major causes of loss of
stored food, while the main cause of mold and pest growth in
grain pile is high temperature and high humidity of grain [5].
To ensure high quality of grain storage, it is necessary to mon-
itor and predict the temperature and moisture levels properly
to prevent the growth of mold and insects. The Internet of
Things (IoT) has been more and more widely used in precision
agriculture in recent years [6]-[8]. With the development of
the IoT, temperature sensors, humidity sensors, and gas sen-
sors are widely deployed in grain storage, which allow closely
monitoring the state of stored grain to a certain extent, which
plays an important role for safe food storage. It is neces-
sary to control the key storage factors that affect the grain
quality. For instance, a low-cost and nondestructive detection
system based on Wi-Fi is used to estimate the humidity and
mildew conditions of stored wheat with machine learning algo-
rithms [9]-[11]. A network of smart sensors is used to cover
and monitor grain storage area, which achieves effective cover-
age, high detection accuracy, and message transmission ability
with its chain-based structure that is not affected by various
obstacles in the grain storage facility [12]. The finite element
method (FEM) and other numerical simulation methods have
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been applied to predict all kinds of thermal physics and mass
transfer in the process of grain storage. However, it is usu-
ally difficult and complex to determine the parameters of such
methods [13], [14]. It would be interesting to develop more
effective storage parameter analysis and prediction methods
with more advanced techniques from time-series analysis and
machine learning, in particular, deep learning.

There are many factors affecting the safety of grain stor-
age. Since temperature sensor networks are widely deployed
in grain storage systems and their wired transmissions are
usually reliable, grain temperature data are usually available
and complete for many storage systems. In addition, the heat
gradient in stored grain pile leads to natural convection flow
and moisture migration in bulk grain. Therefore, the knowl-
edge of temperature distribution is the basis of the research.
Most of the prior works attempt to ensure safe storage of
grain by understanding the trend of temperature change inside
the grain pile in advance. Some statistical models have been
proposed to forecast the grain temperature, such as the least
square method, time-series regression, and so on. In addi-
tion, machine learning models are utilized to achieve enhanced
temperature predication performance. Considering that tem-
perature, humidity, and other storage parameters are affected
by the relevant meteorological conditions, machine learning
algorithms [e.g., support vector machine (SVM) and adaptive
boosting (AdaBoost) [9], [15], [16]] are utilized to forecast
the average temperature of the upper layer of stored wheat
where historical grain temperature data and the correspond-
ing meteorological data are utilized [15], [16]. Nevertheless,
those models ignore the temporal and spatial correlation of
temperature in the grain pile. Therefore, there is still consid-
erable room for improvement in machine learning-based grain
temperature prediction.

In this article, a temporal and spatial approach based on
the attention mechanism is proposed to forecast the grain
temperature in a granary [17]. The proposed approach is moti-
vated by several observations. First, we perform a preliminary
analysis of the grain temperature data collected from a spe-
cific granary and the weather data of the corresponding area.
Considering the grain temperature data measured by each
sensor as a target time series, we examine the influence of rel-
evant weather factors on grain temperature. We find that there
is a considerable correlation between grain temperature and
the external meteorological factors. Second, there is consider-
able spatial correlation among the temperature data collected
from neighboring sensors deployed at different positions in
the granary. Moreover, each temperature time series itself also
exhibits considerable autocorrelation and self-similarity over
time. Such correlations motivate us to explore the temporal and
spatial interdependencies in grain temperature data for better
prediction. Third, the temporal attention mechanism has been
shown effective to adaptively select the relevant state of the
encoder for improving temperature forecasting performance.

The proposed spatial and temporal approach is based on
the attention mechanism and consists of four main compo-
nents: 1) spatial feature extraction, where the Sobel operator
is used to extract local features and the spatial attention
mechanism is used to extract global features of the target
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Fig. 1. Grain condition measurement sensor network and the collection and
control system. Note that this is an illustrative plot. The sensor network used
in this article consists of 200 sensors deployed in ten rows, five columns, and
four layers.

sensor locations; 2) the encoder: an artificial recurrent neu-
ral network (RNN) deep learning model, i.e., long short-term
memory (LSTM), is incorporated to obtain the long-term state
information of spatial features, and the Inceptions modules are
used to extract all the spatial information to complete the cod-
ing process; 3) the decoder: the temporal attention mechanism
is used to adaptively capture the relevant information and com-
bine it with the corresponding weather factors to achieve the
final temperature prediction; and 4) the selection of model
parameters and the evaluation of prediction results by using
real grain storage data sets. It can be seen from the exper-
imental results that the prediction accuracy of the proposed
approach is superior to the several other schemes used in our
comparison study, including Kalman-modified least absolute
shrinkage and selection operator (Kalman-modified LASSO),
a temporal graph convolutional network (T-GCN), LSTM, con-
volutional neural network (CNN)-LSTM, and convolutional
LSTM (Conv-LSTM).

In the remainder of this article, Section II provides the
problem description and preliminary analysis of grain tem-
perature data. Section III introduces the proposed temporal
and spatial prediction approach. Section IV presents our
performance evaluation of the proposed model using real
granary data. Section V reviews the related work. Finally,
Section VI summarizes this article.

II. PROBLEM DESCRIPTION AND PRELIMINARY ANALYSIS
A. Data Set and Problem Statement

A grain measurement and control system based on the IoT
is designed and deployed to collect food condition data in a
granary, as shown in Fig. 1. The IoT system for grain mon-
itoring and control consists of computer technology, network
technology, and electronic technology to detect grain, data
transmission, data storage, and analysis, and to improve the
grain situation of the system through the control of grain stor-
age equipment. The system is composed of a host computer, a
transmission interface, a slave computer, sensors for condition
of stored grain, thermometric cable and other hardware, and
grain monitoring software. The host computer is a computer
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that has been installed with the software of grain situation mea-
surement and control system. It controls the actions of all kinds
of equipment by sending commands and receives the detection
signals. It has the functions of signal correction, data display,
storage, statistical analysis, management of network connec-
tion, etc. The transmission interface is a device that receives
and transmits signals between the host computer and the slave
computer. The slave computer receives the commands of the
host computer, returns the grain information and the status
information of the grain condition control equipment collected
by the sensors to the host computer, and executes the control
actions. A thermometric cable is a special cable for detecting
grain temperature, which is usually composed of temperature
sensor, wire, tensile steel wire, and sheath. The temperature
sensor is a DS18B20 digital temperature sensor produced by a
Dallas, TX company. The absolute value of temperature error
is not more than 0.5°. In the IoT system, the control host is
connected to the Internet and transmits the grain information
to the central control center. The control center can remotely
operate the grain condition control equipment in the granary
following the data analysis (e.g., start the ventilation system
or the air conditioning system).

In this article, 200 temperature sensors are arranged in a 3-D
array in a large wheat warehouse. In the tall square granary,
the temperature sensor layout principle is that the distance
between the horizontal and horizontal temperature measuring
cables should be no more than 5 m, the distance between the
vertical cables should be no more than 2 m, and the distance
from the cables to the grain surface, granary bottom, and gra-
nary wall should be within 0.3-0.5 m. More details on data
collection and preprocessing of the IoT system can be found
in [17], but omitted here for brevity.

According to their locations, the sensors can be orga-
nized into three planes: 1) the x-y plane; 2) the x-z plane;
and 3) the y-z plane. The historical data collected from the
200 temperature sensors in the past 7 days are denoted as
X = (xl,xz, ...,XZOO) € R20xT  where x! € RI*T is the
sensory data from the sensor i. The objective is to combine
the sensory temperature data with the corresponding historical
weather data to predict the temperatures at each target loca-
tion in the future t days (i.e., T-step ahead forecast), which
are denoted as §' = (jfiTH,jziTH, ...,)AJ"TJFT)T € R, with a
temporal and spatial distribution approach.

The complex process of mass and heat transfer in the
ecosystem of stored grain challenges the accurate prediction
of grain temperature. Several key problems must be solved to
accurately predict the temperature of stored grain by using the
spatiotemporal model and historical data. First, the tempera-
ture of stored grain piles is affected by external meteorological
factors. For example, when the grain in the granary is dry and
free of insects, the activities of the organisms in the grain
pile will be extremely weak, and the heat generated has no
significant impact on changing the grain temperature. The
normal grain temperature changes with the external temper-
ature, which affects the air temperature in the grain bin, and
the air temperature change in the grain bin, in turn, affects
the grain temperature. The driving force of heat transfer is
the temperature gradient developed throughout the grain mass
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due to the effects of ambient temperature, solar radiation, and
other meteorological factors. The temperature gradient induces
natural convection currents of varying speeds that also trans-
fer heat. Second, grain is a poor conductor of heat, and the
natural convection of air in grain pile is usually very weak.
Therefore, although the change of grain temperature is affected
by external factors, it has its special characteristics. The grain
temperature is affected by the temperature from the surface to
the center and from the outside to the inside, developing to
the depth gradually and slowly.

Therefore, the change of grain temperature lags far behind
that of the air temperature and bin temperature. The daily low-
est and highest temperature values usually occur 1-2 h later
than the lowest and highest temperature values of the ware-
house, respectively. A similar trend is observed for the annual
variation of grain temperature, which changes with the air
temperature, but with a big lag. In the rising season of air
temperature, the grain temperature gradually rises, but is usu-
ally lower than the air temperature. In the falling season of air
temperature, the grain temperature also gradually drops, but is
usually higher than the air temperature. In general, the occur-
rence of the lowest and the highest values in a year is usually
delayed for one to two months compared with the lowest and
the highest values of the air temperature, respectively. In a
certain area, the air temperature, bin temperature, and surface
grain temperature all show a periodic law of daily and annual
patterns, but sometimes the periodicity is not very regular.

B. Correlation Structure Analysis of Grain Temperature Data

In this article, the temperature time series collected by sen-
sors deployed at different locations in the stored grain pile
are first analyzed from the perspective of temporal and spatial
correlations. Our main findings are presented in the remainder
of this section.

1) Autocorrelation and Self-Similarity in the Time Domain:
The autocorrelation coefficient of the temperature samples
collected by a sensor can be defined as [18]

3ot O = ) (w4 — 3)
P= l l 2
\/Zi:l(xf - 5‘)2\/21':1 (xr4s — %)

where x; and x,4¢ are the observations of grain temperature
at time ¢ and 7 + &, respectively; x is the mean value of tem-
perature; and [ is the time length (or, number of samples).
The autocorrelation analysis results of temperature samples
are shown in Table I. The natural ordinal number in the first
column of the table is the value of the lag period & from 1 to
20. The column AC is the computed autocorrelation value, the
PAC column is the estimated partial autocorrelation coefficient
value, the Q-stat column is the value of g-statistic, and the
Prob column is the probability that the value of the g-statistic
is greater than the Q-value calculated by the samples. The
original hypothesis of the Q statistic is that the sequence is
nonautocorrelation. If the p value is greater than 1% sig-
nificance level, the original hypothesis is accepted, that is,
the sequence is not autocorrelated. If the Prob value is less
than a given significance level (1%), the original hypothesis
is rejected, i.e., there is autocorrelation in the time series. The

(D
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TABLE I
AUTOCORRELATION IN THE TIME DOMAIN

13 AC PAC Q-Stat Prob
1 0.998 0.998 1261.1  0.000
2 0994 —-0.387 2512.8 0.000
3 0989 —0.034 3753.1 0.000
4 0984 0.048 4981.5 0.000
5 0.979 0.043 6198.7 0.000
6 0974 0.021  7405.3  0.000
7 0970 0.017  8601.9 0.000
8 0.965 0.023 9789.2  0.000
9 0961 —0.020 10967. 0.000
10 0.957 —0.030 12136. 0.000
11 0.953 0.000  13296. 0.000
12 0.948 —0.044 14445. 0.000
13 0.944 —0.046 15584. 0.000
14 0938 —0.013 16711. 0.000
15 0933 —0.017 17827. 0.000
16 0.928 —0.025 18930. 0.000
17 0.922 —0.029 20020. 0.000
18 0916 —0.036 21098. 0.000
19 0910 —-0.030 22162. 0.000
20 0.903 —0.043 23212. 0.000

Prob values in Table I are all zero, which indicate that the
time series of grain temperature samples have self-correlation.
The AC column shows that the autocorrelation values are quite
high (i.e., all above 0.9).

We also find that the temperature time series of stored
grain exhibit the characteristics of partial and overall similarity
under different time scales, namely, self-similarity. In this arti-
cle, we use the Hurst exponent H to measure the self-similarity
of stochastic processes. When 0 < H < 0.5, the time series
has long-term correlation, but the overall trend in the future
is contrary to that of the past, i.e., the anti-persistence. When
H = 0.5, the time series is uncorrelated. When 0.5 < H < 1,
the time series has the characteristics of long-term correlation,
that is, the process is self-similar. Rescaled range (R/S) anal-
ysis is usually used to obtain the value of H [19]-[21]. The
process of calculating the Hurst parameter by rescaled range
analysis (R/S) is as follows.

Step 1: The temperature time series {x1,x2,...,x,} 1is
divided into g nonoverlapping subsequences
with length r, denoted as {x;i,xp,..., X},
i=1,2,...,g
Step 2: The mean value of each subsequence is calcu-
lated as
1 r
fciz;zx,-j, i=1,2...,8. )
j=1
Step 3: The deviation of each subsequence is calculated as
yi=xj—X, i=12,...,8,j=12,...,r. 3)
Step 4: The accumulated deviation of each subsequence is

calculated as

J
=) vk i=12....gj=12...r (4
k=1
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Step 5: The range each subsequence is calculated as
R; = max(z,-j) — min(zij), i=1,2...,g
j=12,...,r 3)

Step 6: The standard deviation of each subsequence is

calculated as

| — 2
Z(xij—)_ci) . i=1,2,...

J=1

Si= » 8- (6)

r—1

Step 7: Calculate the value of the rescaled range as

R;

RSl:—’ i:1,2,...,g. (7)

Step 8: The R/S values of the calculated subsequences are
averaged as

1 8
®R/S):r =~ D RS ®)

i=1

Step 9: Increase the value of r and repeat the previous steps
to obtain the rescaled range (R/S), of logarith-
mic temperature series over time span of different
length r. According to the definition of the Hurst
index H, it describes the proportional relationship

between (R/S), and !, namely
(R/S)n = C x n'l. )

Step 10: Taking logarithm on both sides of (9), log(r) is used
for a linear regression of log((R/S),). The intercept
of the regression equation is the constant C in (9),
and the slope is the Hurst exponent H.

As shown in Fig. 1, the sensor nodes are deployed in four
vertical layers from the top to the bottom of the granary. We
calculate the Hurst parameter for the average temperature of
each layer. The average temperature time series of each layer
. layer -« layer layer
is denoted as X[, X 5, ..., X [he4s for layer = 1,2, 3, 4.
The time series of average temperature in each layer is divided
into nonoverlapping sections and the Hurst parameter is cal-
culated, respectively. The results are presented in Fig. 2. It can
be seen that the Hurst parameter of temperature time series has
values between 0.7 and 0.9 under different time lengths, while
the Hurst parameter value of the entire time series is relatively
smaller, and the value is around 0.72. Therefore, we conclude
that the time series of grain temperature is self-similar. Such
self-similarity indicates long-range dependence in the tempera-
ture time-series data and historical data is useful for predicting
future temperature samples due to such long-term correlation.

2) Spatial Correlation: According to the definition of the
Pearson correlation coefficient [22], the correlation coeffi-
cient between sensor nodes (i.e., the temperature samples) at
different locations is expressed as

Yo G — %) (i — Xj)
Ppp = - S " )
VI i = 502 S (i~ )

where x;; and x;, represent the temperature samples from dif-
ferent locations i and j at time ¢, respectively; and x; and Xx; are

(10)
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the mean values of temperature at the two locations, respec-
tively. The correlation coefficients among different locations
are shown in Fig. 3. The three parameters in the bracket, e.g.,
L(1, 1, 2), indicate the row, column, and layer of the sensor
node in the grain pile (see Fig. 1). It can be seen that the cor-
relation coefficient among the different sampling positions is
irregular in a certain range. For example, the correlation coeffi-
cient between sensor node L(1, 1, 2) and sensor node L(1, 1, 3)
is 0.559, However, the correlation coefficient between the sen-
sor node L(1, 1,3) and sensor node L(1, 1,4) is 0.964, even
if the spatial distance between L(1, 1,2) and L(1, 1, 3) is the
same as that between sensor node L(1, 1, 3) and sensor node
L(1,1,4). The above results also indicate that the temperature
samples in the grain pile have strong spatial correlation.

In fact, stored grain is a kind of active substance, i.e., it
has the respiration function, and the granary is an open nona-
diabatic system. However, in the spatial distribution of grain
temperature, the main function is the heat transfer caused by
the spatial temperature difference. Thus, the temperature data
of stored grain sampled at the same time exhibit certain spatial
correlation.
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Fig. 5. Isotherm of the third column (i.e., the vertical slice at the center) in
the grain pile.

Our correlation analysis of the grain temperature data show
that there is considerable mutual influence among the temper-
ature samples over time and at different locations. The overall
temperature of the stored grain is a dynamic process. We plot
the isotherm of the average temperature of the four sensor
node layers in Fig. 4 to show how temperature is changing
over space. It can be seen that the average temperature of the
grain pile decreases from the first layer (the upper layer) to the
fourth layer (the bottom layer). Then, we analyzed the temper-
ature isotherm diagram of the third column [i.e., sensor nodes
L(%,3,*)] in the grain pile using data collected in October
2016, which is shown in Fig. 5. It can be seen that there is an
obvious hot-skin-and-cold-core phenomenon, which is in line
with the temperature change rule of stored grain pile. In the
following, we will analyze the grain temperature isotherm map
to obtain the local factors that affect the temperature change
of the target location.

III. PROPOSED TEMPORAL AND SPATIAL
PREDICTION APPROACH

According to the analysis of the time series of grain temper-
ature in the time domain and the spatial domain in Section II,
we find that the time series of grain temperature not only
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has strong correlation and self-similarity in the time domain
but also has considerable correlation in the spatial domain.
Based on the analysis, a temporal and spatial approach based
on the attention mechanism is proposed to predict the temper-
ature of stored grain utilizing both historical grain temperature
data and the meteorological data of the corresponding area. By
predicting the grain temperature, we can obtain “early knowl-
edge” of the grain situation, so as to take countermeasures in
advance to avoid damage of stored grain. The proposed process
of grain temperature prediction is presented in this section.

A. Spatial Factor Extraction

To predict the temperature at a target location, the points in
the gradient direction are considered to have a bigger impact
on the temperature change. However, considering that the
stored grain pile is usually a small ecological environment, the
temperature samples collected at all the nodes of the entire sen-
sor network interact with each other. Based on this observation,
spatial features include local features and global features. The
process of extracting the spatial features is illustrated in Fig. 6.

1) Local Features: According to the exploration of the
change law of grain temperature observed in Section II, the
driving force of heat transfer is the temperature gradient
formed in the entire grain pile due to the influence of ambient
temperature. The temperature gradient leads to natural convec-
tion with different velocity, and in turn transfers heat through
convection.

In view of the relatively limited space stored grain, the Sobel
operator is used to obtain the approximate gradient of the tar-
get location in the grain pile [23]-[25]. The Sobel operator
includes two groups of 3 x 3 matrices, which are in the land-
scape orientation and portrait orienttion, as illustrated in Fig. 7.
The procedure of the Sobel operator is expressed as follows:

Gy = (X7 4+ 2Xg + X9) — (X1 + 22X + X3)

Gy = (X3 +2X6 + Xo) — (X1 + 2X4 + X7). (11)
The gradient orientation angle is derived as
Gy
a(x,y) = arctan| — |. (12)
Gy
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(a)

Fig. 7. (a) 3 x 3 area on the grain heap level. (b) and (c¢) Convolution
templates of the Sobel operators.

The gradient directions of the target location on the three
planes are calculated. Then, 10 values are taken in each gra-
dient direction, and the 30 values are obtained as the local
characteristics of the target location. The output vector of the
local spatial factor is given by

1 = (x;grad,l’ xtgrad,2 grad’L>T

PP t

(13)
where xtgrad’g is the {th temperature value in the direction of
the temperature gradient at the target location (e.g., L is 30
for the temperature sensor network).

2) Global Features: By analyzing the correlation coef-
ficient among temperature samples collected at different
locations (see Section II-B), it can be seen that even for
some locations with small spatial distance, the correlation
coefficient between them could be small and the spatial cor-
relation is weak. Therefore, the performance of prediction
may be reduced if all other temperature samples are taken
as global characteristics. Based on this rational, we introduce
the attention mechanism to capture the key features of target
temperature prediction.

Taking the ith temperature sensor as the prediction target,
the attention score between the pth sensor and the target sensor
i in the sensor network can be calculated as follows [26], [27]:

af = v, tanh(Wa[h—1;5-1] + Usx” + Vox' +b,)  (14)
8 = _old) . (15)
j=1 eXP(“’t)

where [-; -] represents the concatenation operation, x” and X!
are the temperature time series from sensor p and target sen-
sor i, respectively, and v, b, € RT, W, € RT*?" U, €
RT*T and V, € RT*T are model parameters. According to
the target temperature series and the observed input tempera-
ture series, the spatial attention mechanism adaptively selects
the most suitable input to predict the target sequence. When
the attention score is obtained, the output vector of the global
spatial factor at time step ¢ is computed as
) . N T
g = (agx;’l, 53x;’2,...,5{’x;”’) (16)
where x,” is the temperature sample at sensor p in the sensor
network (i.e., P is 200 for the temperature sensor network).
Note that 87 is calculated as in (15).
After obtaining the local factors {lt}tT:1 and the global fac-
tors {g,}tT:1 of the target location, they are concatenated as the
overall spatial features as: m; = [l;; g;], where m, € RL+P,

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 03:42:02 UTC from IEEE Xplore. Restrictions apply.



DUAN et al.: TEMPERATURE FORECASTING FOR STORED GRAIN: DEEP SPATIOTEMPORAL ATTENTION APPROACH

S

- I

| : .

I'| Spatial Information = !

| —- = - |

I of Sensor 1 “ ch |

| AN e

| — Yz g | |5

| =} H £
i i = 2] 7| <

! Spatial Information = E =

| of Sensor 2 “ S I &

| = | 8.

| — & : g

: E C | g

| ] H, e

I : . s — I

1| Spatial Information = :

! of Sensor n Z

| — :

| L Encoder

| |

Fig. 8. Encoding process of spatial features.

B. Encoder Design

The encoding process of spatial features is shown in Fig. 8.
In the encoder, the aggregate information sequence m; of spa-
tial features is taken as input to the encoder LSTM, which
usually defines a function f,(-). According to the spatial data
information m, of the current time step 7 and output state
h;_; of the last time step r — 1, the current output state h; is
calculated for each time step ¢ as

h; = fe(my, hy_y). (17)
The hidden state H' = {h{,h}, ... hi_}
(where i=1,2,...,200) of different temperature sensors

generated by the LSTM contains all the spatial information
of the sensor network. For the hidden state of LSTM in each
time step, their features are convoluted by a CNN to extract
the features of spatial information.

For the process of using the CNN model to extract spatial
features, we refer to the Inception model [28]-[30]. The CNN
model contains four Inception modules with a similar struc-
ture, each of which has four branches as shown in Fig. 9. The
first branch starts with a 1 x 1 convolution block with 16 out-
put channels, followed by a 3 x 3 convolution block with 16
output channels. The second branch starts with a 1 x 1 con-
volution block with 16 output channels, followed by a 5 x 5
convolution block with 16 output channels. The third branch
begins with a maximum-pooling layer, which is connected to
a 1 x 1 convolution block of ten output channels. The fourth
branch is a 1 x 1 convolution block with 16 output channels.
The outputs of the four branches are then combined to produce
the output of the first Inception module. The output of the first
module, which is connected with a 1 x 1 convolution of a 16
output channels and a maximum pooling layer, is then used
as input to the second Inception module. The structure of the
first module is shown in Fig. 9. The structures of the second
module, third module, and fourth module are similar to that of
the first module except that the number of output channels is
different. Finally, there is a fully connected layer whose output
is the result of spatial feature extraction and used as input to
the decoder.
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Fig. 9. Structure of the first Inception modules in the CNN model.
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Fig. 10. Grain temperature and meteorological factors over time.

C. External Meteorological Features

In the process of grain storage, the external meteorologi-
cal factors have a significant impact on the grain temperature.
In general, grain temperature changes with external tempera-
tures, which include solar radiation, atmospheric temperature,
and ground temperature. In this article, eight meteorological
factors are utilized for grain temperature prediction, including
daily average air temperature (denoted by Air Tem), air pres-
sure (Air Pressu), 0-cm ground surface temperature (Ground
Tem), relative humidity (Relative Hum), daily average evap-
oration, sunshine duration (Sunshine Dur), wind speed, and
precipitation (PRE). The time series of meteorological fac-
tors and the time series of mean grain surface temperature are
plotted in Fig. 10. It can be seen that the trend of mean gain
surface temperature is consistent with that of air temperature
and ground temperature, but lags behind with some delay. The
correlation coefficients between the mean grain surface tem-
perature and the meteorological factors are plotted in Fig. 11.
It can be seen from the figure that there is considerable correla-
tion between grain temperature and meteorological factors, and
there is mutual influence among the meteorological factors.

In view of this, in order to avoid using too much redundant
information, the CNN composed of Inception modules is used
to extract meteorological features. The CNN model contains
four Inception modules with a similar structure, each of which
has three branches. The first branch has three layers, which
are one 1 x 1 convolution block with 64 output channels and
two 3 x 3 convolution blocks with 64 output channels. The
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Fig. 12. Decoding process with the temporal attention mechanism.

second branch starts with a 1 x 1 convolution block with 64
output channels, followed by a 3 x 3 convolution block with 64
output channels. The third branch is a 1 x 1 convolution block
with 64 output channels. The outputs of the three branches
are then combined to produce the output of the first Inception
module. The output of the first module, which is connected
with a 1 x 1 convolution block with 64 output channels, is then
used as input to the second Inception module. The structure of
the second module, third module, and fourth module is similar
to that of the first module except that the number of output
channels is different. Finally, there is a fully connected layer
whose output is used to make the final prediction together with
the output of the temporal attention mechanism.

D. Decoder

For each time step ¢, there is a corresponding space vector
HtC In order to capture the temporal correlation between spa-
tial factors and enable the model to select relevant information
across multiple time steps, the temporal attention mechanism
is introduced in this article. The input temperature time series
is usually long. The vector generated by the encoder can-
not save all the information of the time series, which limits
the prediction ability of the model. The temporal attention
mechanism is used to overcome this problem. It is designed
to calculate a matching weight between the current input
sequence and the output vector, and adaptively select the rele-
vant information to predict the target sequence [31]—-[33]. The
decoding process with the temporal attention mechanism is
shown in Fig. 12.
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In order to obtain the attention vector, the context vector ¢,
of each output time period 7 is computed, which depends on
the annotation vector of the encoder, i.e., (HC, H2C e, Hf_l).
The encoder maps the input spatial factors into these anno-
tation vectors, and each annotation contains the information
about the input time sequence. The context vector ¢, is
calculated as a weighted sum of the annotation vectors HE, as

T
/
Cy = Z (xlt ch
i=1

where the weight af/ of each annotation vector ch is calcu-
lated as

(18)

/
ol = softmax(u

, and (19)

1

7\ _ exp(u{)
i) - ZTzl exp(”}/)
W =v] tanh(W1 [de_1is)_ ]+ WoHE + bd> (20)

where W € R™"*21 W, ¢ R"™*" v, and by € R™ are model
parameters, dy_; € R” is the state of the previous time step
t — 1 in the decoder, and s;_; € R" is the cell state of the
decoder at time ¢ — 1. ozf/ or its associated quantity uﬁ/ indicates
the importance of the annotation vector H,.C in determining the
next hidden state compared to the previous hidden state. Once
the external meteorological information ex,, the context vector
¢;, and the previous temperature value &;}71 are acquired, they
are fed into the decoder LSTM, and the hidden state of the
decoder is updated as

dy :fd(dt/,l , [j}i,_l; exy; ct/])

where f;(-) is the LSTM unit used in the decoder and 7 is
a future time step. Then, we feed the context vector ¢, and
the hidden state dy to the LSTM unit. Finally, the decoder is
trained to obtain the grain temperature of the target point at
the next time, which is given by

3 = v;—(Wm[c,/; dy/]+by) + by

21

(22)

where W,, € R™ @+ and b,, € R” map the concatenated
[ey; dy] € R™ to the size of the decoder hidden state; and
vy € R" and by, € R are linear transformation parameters,
which can predict the final output. The Adam optimizer is
used to train the model to minimize the root mean-square error
(RMSE) between the predicted temperature value §' and the
ground-truth temperature value y'.

IV. PERFORMANCE EVALUATION

The grain temperature data set used in our performance eval-
uation is obtained from a temperature sensor network deployed
in a large warehouse in Zhumadian, Henan Province, China.
The corresponding meteorological data are obtained from the
China meteorological data network. The data set includes daily
grain temperature measured by the temperature sensors from
July 3, 2015 to December 17, 2018. The frequency of measur-
ing temperature data with a temperature sensor is three times
a week. We interpolate the grain temperature data to obtain
daily temperature samples, which is then synchronized with
the daily meteorological data.
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RMSEs of grain temperature prediction under different time window

In this article, model training is implemented using the ten-
sorflow library. In the model training, the initial learning rate is
0.001, and the coefficient of avoiding gradient explosion is 2.5.
Data expansion and dropout [34], [35] are used to avoid over-
fitting, and the ratio of dropout is set to 0.3. We use the RMSE
as a performance metric for the accuracy of grain temperature
prediction, given by

n

RMSE = % Z(|yi - 9i|2)

i=1

(23)

where y; is the ground-truth grain temperature data collected
by the sensor network, y; is the grain temperature data pre-
dicted by the proposed model, and n represents the number of
grain temperature samples.

A. Parameter Tuning Results

First, we train the parameters that affect the performance of
the model to select the appropriate model parameters to ensure
the accuracy of prediction. We then analyze the influence of
time window size, epochs, and batch size on the prediction
performance of the model.

1) Impact of Time Window Size: We set the time window
size to 5, 10, 15, 20, 25, 30, 35, 40, and 50 to test the effect of
time window size on the prediction accuracy. In order to ensure
that the results of different time window sizes are not affected
by other variables, we assume that the values of other parame-
ters are fixed. The hidden units, epochs, and batch size are set
to 128, 150, and 100, respectively. Fig. 13 shows the RMSE of
the prediction model under different time window sizes. When
the time window size is 10, the prediction errors of three tar-
get temperature locations [including two boundary locations
L(1,2,1) and L(10, 3, 1), and one center location L(7, 3, 3)]
are all the minimum. In addition, we find that with the increase
of time window size, the model training time becomes longer
and the training speed becomes slower. Therefore, we choose
10 as the time window size of the prediction model by con-
sidering both the prediction accuracy and the training time of
the model.
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2) Impact of Epochs and Batch Size: An epoch is when a
complete data set passes through the model once and returns
once. Batch size refers to the number of samples selected for
one training process. For different temperature locations, we
train the model with different epoch values and then select the
appropriate epoch value by analyzing the resulting prediction
errors. Fig. 14 plots the effect of different epoch values on the
prediction error. It can be seen from Fig. 14 that the RMSE
is the largest when the epoch value is 50. When the value
of epoch is greater than 150, the RMSE becomes smaller.
However, in addition to the RMSE, the trend of training loss
and testing loss should also be considered. As can be seen from
Figs. 15-17, the testing loss exhibits a trend of divergence
when the value of epoch is less than 150, which indicates that
the model is under fitting. However, when the epoch value is
greater than 150, the testing loss is greater than the training
loss, which indicates that the model is overfitting. As a result,
150 is selected as the optimal value of epoch.

In the training process, we also investigate the influence of
batch size on the model performance. We find that the value of
batch size has a great influence on the convergence of training.
When the value of batch size is small, the training loss curve
oscillates and does not converge to a stable value. As the value
of batch size is increased, the loss curve becomes smooth and
convergent. Finally, we choose 100 as the value of batch size.
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B. Comparison Study With State-of-the-Art Schemes

In order to verify the performance of the proposed model,
we predict the grain temperature at different target locations,
including the boundary of the grain pile (i.e., the the upper,
lower, southeast, northeast, southwest, and northwest boundary
locations) and near the center of the grain pile. We compare
the performance of the proposed model with the following
five baseline schemes selected from the recent literature in the
following comparison study.

1) Kalman-modified LASSO [36], which first filters the
time series, then removes the corresponding variables
from the model to perform variable selection, and in
this case, sparse solution is realized.

2) A temporal graph convolutional network (T-GCN),
which combines graph convolution with gating cycle
unit [37].

3) LSTM network [38], which is suitable for dealing with
and predicting the problems with relatively long interval
and delay in time series.

4) Convolutional LSTM network (ConvLSTM) [39], for
the matrix obtained by the sensor network, convolu-
tion operation is added to LSTM to extract features
effectively.
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5) A convolutional neural network (CNN)-long short-term
memory (LSTM) combined network (CNN-LSTM) [40],
where CNN is used to extract the correlation between
multiple sequences recorded by the sensors, and LSTM
is used to model and forecast the extracted time
information.

The results are presented in Figs. 18-23. In particular,
Figs. 18 and 19 present the grain temperature prediction results
at two locations close to the eastern boundary of the granary;
Fig. 18 is for the sensor close to the southern side of the gra-
nary; and Fig. 19 is for the sensor close to the northern side of
the granary. Moreover, Figs. 20 and 21 present the grain tem-
perature prediction results for the sensors in the center of the
grain pile. Finally, Figs. 22 and 23 present the results for the
sensors close to the western boundary of the granary. Fig. 22
is for the sensor close to the northern side of the granary and
Fig. 23 is for the sensor close to the southern side of the gra-
nary. Figs. 18 and 22 are for the sensors on the upper layer of
the grain pile. Figs. 19 and 23 are for the sensor on the lower
layer of the grain pile. The results show that the proposed
model can accurately predict temperature for all the positions
in the grain pile.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 03:42:02 UTC from IEEE Xplore. Restrictions apply.



DUAN et al.: TEMPERATURE FORECASTING FOR STORED GRAIN: DEEP SPATIOTEMPORAL ATTENTION APPROACH

22

20 q
g
2
=18 F ,
L
a.
g
e |
= 16 - —— Observation i
‘s Proposed Model
o —=—ConvLSTM

——CNN-LSTM
14 - LSTM : S
—— T-GCN
Kalman-modified LASSO
12 i i i i i i
0 5 10 15 20 25 30
Day Index
Fig. 20. Grain temperature prediction results at location (row 5, column 3,

and layer 3) of stored grain.

=
2
S17r 1
[
£
s 16 - J
=15k —e— Observation 1
= Proposed Model
O 14} .|—=—ConvLSTM 1
——CNN-LSTM
13 - LSTM 1
| |-- T-GCN |
12 Kalman-modified LASSO
1 i i i i i i
0 5 10 15 20 25 30
Day Index
Fig. 21. Grain temperature prediction results at location (row 6, column 3,

and layer 3) of stored grain.

16 1
o 147 A
5
£
o 12 1
=9
g
&
= 10 [~|—e—Observation b
‘s Proposed Model
&) g .=~ ConvLSTM 4
——CNN-LSTM
LSTM
6 - - T-GCN , -
Kalman-modified LASSO

4 i i i i i i
0 5 10 15 20 25 30

Day Index

Fig. 22. Grain temperature prediction results at location (row 10, column 5,
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The RMSE results of the six prediction models are presented
in Table II. For the sensor at (1, 1, 1), i.e., located at the upper
layer of the southeast boundary, the RMSE of the proposed
model is 0.2794, which achieves a reduction of 48% over the
ConvLSTM model, 50% over the CNN-LSTM model, 52%
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TABLE I
RMSES ACHIEVED BY THE SIX APPROACHES AT DIFFERENT LOCATIONS

RMSEs of different points | (1,1,1) | (1,54) | (5.3.3) | (6.3.3) | (10.1,4) | (10.5.1)
Proposed 0.28 0.17 0.34 0.27 0.13 0.18
ConvLSTM 0.54 0.69 0.74 0.56 0.47 0.42
CNN-LSTM 0.56 0.65 0.8 0.51 0.59 0.46

LSTM 0.58 0.47 0.97 0.75 0.41 0.63
T-GCN 0.49 0.38 0.42 0.60 0.39 0.41
Kalman-modified LASSO 0.85 0.9 1.33 0.95 0.81 0.73

over the LSTM model, 43% over the T-GCN model, and 67%
over the Kalman-modified LASSO method. For the sensor
at (1, 5, 4), i.e., located at the lower layer of the northeast
boundary, the RMSE of the proposed model is 0.1736, which
achieves a reduction of 74% over the ConvLSTM model, 73%
over the CNN-LSTM model, 63% over the LSTM model, 54%
over the T-GCN model, and 81% over the Kalman-modified
LASSO method. For the sensor at (5, 3, 3), i.e., located
in the center of the grain pile, the RMSE of the proposed
model is 0.3423, which achieves a reduction of 54% over the
ConvLSTM model, 57% over the CNN-LSTM model, 65%
over the LSTM model, 19% over the T-GCN model, and 74%
over the Kalman-modified LASSO method. For the other sen-
sor at (6, 3, 3), i.e., located in the center of the grain pile,
the RMSE of the proposed model is 0.2684, which achieves a
reduction of 52% over the ConvLSTM model, 47% over the
CNN-LSTM model, 64% over the LSTM model, 55% over the
T-GCN model, and 72% over the Kalman-modified LASSO
method. For the sensor at (10, 1, 4), i.e., located at the lower
layer of the southwest boundary, the RMSE of the proposed
model is 0.1307, which achieves a reduction of 72% over the
ConvLSTM model, 78% over the CNN-LSTM model, 68%
over the LSTM model, 66% over the T-GCN model, and 84%
over the Kalman-modified LASSO method. For the sensor at
(10, 5, 1), i.e., located at the upper layer of the northwest
boundary, the RMSE of the proposed model is 0.1817, which
achieves a reduction of 57% over the ConvLSTM model, 60%
over the CNN-LSTM model, 71% over the LSTM model,
56% over the T-GCN model, and 75% over the Kalman-
modified LASSO method. Among the five other schemes, the
statistics method Kalman-modified LASSO has the poorest
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performance, compared to other deep learning-based schemes.
The proposed model outperforms all the five other schemes
with considerable gains.

C. Application of Developed Prediction Models

The developed prediction models can be used to guide the
operation of the intelligent control system of grain storage,
as shown in Fig. 24. The intelligent control system of grain
depot can acquire temperature and humidity index automati-
cally through the grain condition detection system in real time.
Data transmission is carried out by the IoT, network equip-
ment, and communication module. The computer evaluates
and intelligently analyzes the information of grain and envi-
ronment in the granary, and forms the action control strategy
or auxiliary suggestions. It is of great importance to realize
the temperature reduction, ventilation, dehumidification, and
insect control by intelligent control and storage technologies,
such as ventilation equipment, air conditioning equipment,
low temperature control equipment, and circulation fumiga-
tion, and to achieve automatic monitoring of high efficiency,
high reliability, and automation of grain warehouse, which is
of great importance. for reducing the cost of grain storage,
maintaining the quality of stored grain, reducing grain loss,
and improving the storage capacity of grain safety.

V. RELATED WORK

The IoT has become a critical technology toward the future
precision agriculture, while safe storage of grain is becoming
increasingly concerned of the world. In this section, we review
related works with respect to deep learning models, spatiotem-
poral prediction models, and the attention mechanism of deep
learning.

CNN is an end-to-end learning model in the field of deep
learning, which connects two adjacent layers through global
sliding, local connection, and weight sharing, making the
network structure simpler and more adaptive [41]. LSTM is
an improved model based on RNNs. The basic unit of the
LSTM hidden layer is a special cell structure rather than a
traditional neuron node. Through the input gate, output gate,
and forgetting gate in the cell structure, the inflow and outflow
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of information and the update of the previous state are real-
ized, respectively. CNN and LSTM were integrated and used
in a PM2.5 forecasting system that considers the factors, such
as accumulated hours of rain, wind speed, and PM2.5 concen-
tration [42]. LSTM, CNN, and multilayer perceptron (MLP)
have been used to predict the electricity demand [43]. A deep
long short-time memory (DLSTM) model, which uses the
genetic algorithm to optimize its allocation, was developed
to accurately predict oil production [44].

Meanwhile, approaches that consider both temporal and
spatial impacts have been developed for accurate prediction.
A temporal approach that is based on LASSO and LSTM
has been integrated for forecasting short-term solar intensity
using meteorological data [45]. Lyu et al. [46] proposed a
smart WiFi access point (AP) management program LAM,
which can dynamically control a large amount of APs (i.e.,
turning on or off) without losing WiFi coverage to achieve
the goal of energy saving by mining large-scale spatiotem-
poral user association data. A spatiotemporal visual question
answering model using two dual-layer LSTMs was presented
to understand visual content and find the associations of pairs
of questions and answers in the natural language form [47].
A deep-metalearning-based spatial and temporal approach was
utilized to overcome the diversification and sophistication of
urban traffic forecasting [48]. Deep RNNs, such as LSTM and
gated recurrent unit (GRU) networks, were utilized for fore-
casting traffic load of base stations [49]. A two-branch deep
learning model was established to predict winter wheat yield in
the main producing regions of China at the county level [50].
The deep belief network (DBN) GRU hybrid neural network
based on deep learning was used to predict meteorological
time series, which avoids the problems of low generalization
ability and long training time of RNNs [51]. Furthermore,
a deep hybrid spatial and temporal dynamic neural network
(DHSTNet) was utilized for forecasting both inflows and
outflows at different positions along conurbation [52]. A
spatiotemporal position forecasting approach on account of
LSTM was used for forecasting the next spatiotemporal track
of mobile user [53]. A deep spatial model consisting of a
global stacked autoencoder (GSAE) and multiple local SAEs
(LSAESs), which can reduce the model size and enable parallel
training, was utilized for forecasting the mobile traffic load in
cellular networks [54].

Compared with conventional spatiotemporal approaches, the
attention mechanism can significantly decrease the number
of parameters in the deep spatiotemporal process, and adap-
tively choose relevant temporal and spatial features to enhance
temperature forecasting performance. Furthermore, the compu-
tation of the attention mechanism in each step is independent
to the results of the previous step, which is amenable for
parallel processing in GPU-accelerated deep models. An inter-
pretable spatiotemporal attention LSTM model (STA-LSTM)
based on LSTM and the attention mechanism was utilized for
flood prediction, where the visualization and interpretation of
spatial and temporal attention weights represent the rationality
of the attention-based model [55]. A new attention mechanism
was used to select the relevant time series, and its frequency-
domain information is utilized to make multiple predictions.
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It achieved superior performance in many practical tasks, and
overcame the shortcoming that the traditional attention mech-
anism could not capture time patterns across multiple time
steps [33]. The attention mechanism has also been effectively
used in geography-sensor data prediction [27] and intelligent
traffic prediction [56], [57] due to its advantages of using fewer
parameters, fast execution, and superior performance.

VI. CONCLUSION

It is of great practical importance to develop IoT systems of
intelligent grain state control for safe grain storage. In this arti-
cle, a new temporal and spatial approach based on the attention
mechanism was proposed to predict the temperature of stored
grain. The proposed model captures the temporal and spatial
correlation structure in grain temperature data, as well as the
influence of external meteorological factors. It overcomes the
limitation of traditional prediction methods, which only con-
sider historical temperature data. Our experimental study using
real granary sensor network and meteorological data validate
the superior prediction performance of the proposed model
over five other schemes.

For future work, we will investigate what is a suitable
timescale for temperature measurement/forecasting for food
storage. The developed grain temperature prediction model
will be used in the development of the IoT system for grain
intelligent control, so as to realize the automatic notification
of dangerous grain situation, optimize the layout of sensors
in the grain pile, and reduce the use of sensors and conserve
energy.
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