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Abstract—The development of Internet-of-Things (IoT) tech-
nology promotes the advances of grain condition detection and
analysis systems. Temperature monitoring is a main element
to maintain grain quality, and effective control of grain tem-
perature is crucial to safe storage of grain. In this article, an
encoder–decoder model with attention mechanism is proposed to
accurately forecast the temperature of stored grain. Considering
that the points on the gradient direction of the temperature sur-
face have a great influence on the temperature of the target
point, the Sobel operator is used to extract the local character-
istics of the target point. In addition, considering the correlation
structure in the sensory data, the attention mechanism is used
to extract the global features of the target point. The extracted
spatial features are fed into long short-term memory (LSTM)
networks to obtain the long-term state information of spatial
factors. LSTM unit and convolutional neural network are used
to encode the spatial features of the target points. Taking mete-
orological factors as the external input of the decoder, temporal
attention mechanism and LSTM unit are used to complete the
decoding process and realize the prediction of grain tempera-
ture in the future. The results with real grain storage data show
that the proposed model outperforms several schemes, includ-
ing Kalman-modified the least absolute shrinkage and selection
operator (Kalman-modified LASSO), temporal graph convolu-
tional network (T-GCN), LSTM, CNN-LSTM, and convolutional
LSTM (Conv-LSTM), with considerable gains.
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I. INTRODUCTION

U
P TO 2050, the world cultivated land will increase from

nearly 0% to nearly 1% every year and the annual growth

rate of world medial grain production may be as high as 1.43%

to meet the world’s food needs [1]. The predicted world grain

inventory is 876 million tons by the end of 2021. It was

also estimated that China’s wheat output would be 134 mil-

lion tons in 2020. According to the organization for economic

co-operation development (OECD) and the food and agricul-

ture organization (FAO) of the United Nations (OECD-FAO)

agricultural outlook 2020–2029, the COVID-19 pandemic may

further undermine food security. In 2020/2021, wheat inven-

tories will increase further, most of which will come from

China [2], [3]. The storage period (three to five years) of wheat

in China is longer than that in developed countries. However,

estimates suggest that poor grain storage management in

developing countries results in 20%–50% postharvest losses

of grains grown [4], which is a huge waste. Consequently,

ensuring safe food storage is of critical importance.

Usually mold and pest are the two major causes of loss of

stored food, while the main cause of mold and pest growth in

grain pile is high temperature and high humidity of grain [5].

To ensure high quality of grain storage, it is necessary to mon-

itor and predict the temperature and moisture levels properly

to prevent the growth of mold and insects. The Internet of

Things (IoT) has been more and more widely used in precision

agriculture in recent years [6]–[8]. With the development of

the IoT, temperature sensors, humidity sensors, and gas sen-

sors are widely deployed in grain storage, which allow closely

monitoring the state of stored grain to a certain extent, which

plays an important role for safe food storage. It is neces-

sary to control the key storage factors that affect the grain

quality. For instance, a low-cost and nondestructive detection

system based on Wi-Fi is used to estimate the humidity and

mildew conditions of stored wheat with machine learning algo-

rithms [9]–[11]. A network of smart sensors is used to cover

and monitor grain storage area, which achieves effective cover-

age, high detection accuracy, and message transmission ability

with its chain-based structure that is not affected by various

obstacles in the grain storage facility [12]. The finite element

method (FEM) and other numerical simulation methods have
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been applied to predict all kinds of thermal physics and mass

transfer in the process of grain storage. However, it is usu-

ally difficult and complex to determine the parameters of such

methods [13], [14]. It would be interesting to develop more

effective storage parameter analysis and prediction methods

with more advanced techniques from time-series analysis and

machine learning, in particular, deep learning.

There are many factors affecting the safety of grain stor-

age. Since temperature sensor networks are widely deployed

in grain storage systems and their wired transmissions are

usually reliable, grain temperature data are usually available

and complete for many storage systems. In addition, the heat

gradient in stored grain pile leads to natural convection flow

and moisture migration in bulk grain. Therefore, the knowl-

edge of temperature distribution is the basis of the research.

Most of the prior works attempt to ensure safe storage of

grain by understanding the trend of temperature change inside

the grain pile in advance. Some statistical models have been

proposed to forecast the grain temperature, such as the least

square method, time-series regression, and so on. In addi-

tion, machine learning models are utilized to achieve enhanced

temperature predication performance. Considering that tem-

perature, humidity, and other storage parameters are affected

by the relevant meteorological conditions, machine learning

algorithms [e.g., support vector machine (SVM) and adaptive

boosting (AdaBoost) [9], [15], [16]] are utilized to forecast

the average temperature of the upper layer of stored wheat

where historical grain temperature data and the correspond-

ing meteorological data are utilized [15], [16]. Nevertheless,

those models ignore the temporal and spatial correlation of

temperature in the grain pile. Therefore, there is still consid-

erable room for improvement in machine learning-based grain

temperature prediction.

In this article, a temporal and spatial approach based on

the attention mechanism is proposed to forecast the grain

temperature in a granary [17]. The proposed approach is moti-

vated by several observations. First, we perform a preliminary

analysis of the grain temperature data collected from a spe-

cific granary and the weather data of the corresponding area.

Considering the grain temperature data measured by each

sensor as a target time series, we examine the influence of rel-

evant weather factors on grain temperature. We find that there

is a considerable correlation between grain temperature and

the external meteorological factors. Second, there is consider-

able spatial correlation among the temperature data collected

from neighboring sensors deployed at different positions in

the granary. Moreover, each temperature time series itself also

exhibits considerable autocorrelation and self-similarity over

time. Such correlations motivate us to explore the temporal and

spatial interdependencies in grain temperature data for better

prediction. Third, the temporal attention mechanism has been

shown effective to adaptively select the relevant state of the

encoder for improving temperature forecasting performance.

The proposed spatial and temporal approach is based on

the attention mechanism and consists of four main compo-

nents: 1) spatial feature extraction, where the Sobel operator

is used to extract local features and the spatial attention

mechanism is used to extract global features of the target

Fig. 1. Grain condition measurement sensor network and the collection and
control system. Note that this is an illustrative plot. The sensor network used
in this article consists of 200 sensors deployed in ten rows, five columns, and
four layers.

sensor locations; 2) the encoder: an artificial recurrent neu-

ral network (RNN) deep learning model, i.e., long short-term

memory (LSTM), is incorporated to obtain the long-term state

information of spatial features, and the Inceptions modules are

used to extract all the spatial information to complete the cod-

ing process; 3) the decoder: the temporal attention mechanism

is used to adaptively capture the relevant information and com-

bine it with the corresponding weather factors to achieve the

final temperature prediction; and 4) the selection of model

parameters and the evaluation of prediction results by using

real grain storage data sets. It can be seen from the exper-

imental results that the prediction accuracy of the proposed

approach is superior to the several other schemes used in our

comparison study, including Kalman-modified least absolute

shrinkage and selection operator (Kalman-modified LASSO),

a temporal graph convolutional network (T-GCN), LSTM, con-

volutional neural network (CNN)-LSTM, and convolutional

LSTM (Conv-LSTM).

In the remainder of this article, Section II provides the

problem description and preliminary analysis of grain tem-

perature data. Section III introduces the proposed temporal

and spatial prediction approach. Section IV presents our

performance evaluation of the proposed model using real

granary data. Section V reviews the related work. Finally,

Section VI summarizes this article.

II. PROBLEM DESCRIPTION AND PRELIMINARY ANALYSIS

A. Data Set and Problem Statement

A grain measurement and control system based on the IoT

is designed and deployed to collect food condition data in a

granary, as shown in Fig. 1. The IoT system for grain mon-

itoring and control consists of computer technology, network

technology, and electronic technology to detect grain, data

transmission, data storage, and analysis, and to improve the

grain situation of the system through the control of grain stor-

age equipment. The system is composed of a host computer, a

transmission interface, a slave computer, sensors for condition

of stored grain, thermometric cable and other hardware, and

grain monitoring software. The host computer is a computer
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that has been installed with the software of grain situation mea-

surement and control system. It controls the actions of all kinds

of equipment by sending commands and receives the detection

signals. It has the functions of signal correction, data display,

storage, statistical analysis, management of network connec-

tion, etc. The transmission interface is a device that receives

and transmits signals between the host computer and the slave

computer. The slave computer receives the commands of the

host computer, returns the grain information and the status

information of the grain condition control equipment collected

by the sensors to the host computer, and executes the control

actions. A thermometric cable is a special cable for detecting

grain temperature, which is usually composed of temperature

sensor, wire, tensile steel wire, and sheath. The temperature

sensor is a DS18B20 digital temperature sensor produced by a

Dallas, TX company. The absolute value of temperature error

is not more than 0.5◦. In the IoT system, the control host is

connected to the Internet and transmits the grain information

to the central control center. The control center can remotely

operate the grain condition control equipment in the granary

following the data analysis (e.g., start the ventilation system

or the air conditioning system).

In this article, 200 temperature sensors are arranged in a 3-D

array in a large wheat warehouse. In the tall square granary,

the temperature sensor layout principle is that the distance

between the horizontal and horizontal temperature measuring

cables should be no more than 5 m, the distance between the

vertical cables should be no more than 2 m, and the distance

from the cables to the grain surface, granary bottom, and gra-

nary wall should be within 0.3–0.5 m. More details on data

collection and preprocessing of the IoT system can be found

in [17], but omitted here for brevity.

According to their locations, the sensors can be orga-

nized into three planes: 1) the x-y plane; 2) the x-z plane;

and 3) the y-z plane. The historical data collected from the

200 temperature sensors in the past T days are denoted as

X = (x1, x2, . . . , x200) ∈ R
200×T , where xi ∈ R

1×T is the

sensory data from the sensor i. The objective is to combine

the sensory temperature data with the corresponding historical

weather data to predict the temperatures at each target loca-

tion in the future τ days (i.e., τ -step ahead forecast), which

are denoted as ŷi = (ŷi
T+1, ŷi

T+2, . . . , ŷi
T+τ )

� ∈ R
τ , with a

temporal and spatial distribution approach.

The complex process of mass and heat transfer in the

ecosystem of stored grain challenges the accurate prediction

of grain temperature. Several key problems must be solved to

accurately predict the temperature of stored grain by using the

spatiotemporal model and historical data. First, the tempera-

ture of stored grain piles is affected by external meteorological

factors. For example, when the grain in the granary is dry and

free of insects, the activities of the organisms in the grain

pile will be extremely weak, and the heat generated has no

significant impact on changing the grain temperature. The

normal grain temperature changes with the external temper-

ature, which affects the air temperature in the grain bin, and

the air temperature change in the grain bin, in turn, affects

the grain temperature. The driving force of heat transfer is

the temperature gradient developed throughout the grain mass

due to the effects of ambient temperature, solar radiation, and

other meteorological factors. The temperature gradient induces

natural convection currents of varying speeds that also trans-

fer heat. Second, grain is a poor conductor of heat, and the

natural convection of air in grain pile is usually very weak.

Therefore, although the change of grain temperature is affected

by external factors, it has its special characteristics. The grain

temperature is affected by the temperature from the surface to

the center and from the outside to the inside, developing to

the depth gradually and slowly.

Therefore, the change of grain temperature lags far behind

that of the air temperature and bin temperature. The daily low-

est and highest temperature values usually occur 1–2 h later

than the lowest and highest temperature values of the ware-

house, respectively. A similar trend is observed for the annual

variation of grain temperature, which changes with the air

temperature, but with a big lag. In the rising season of air

temperature, the grain temperature gradually rises, but is usu-

ally lower than the air temperature. In the falling season of air

temperature, the grain temperature also gradually drops, but is

usually higher than the air temperature. In general, the occur-

rence of the lowest and the highest values in a year is usually

delayed for one to two months compared with the lowest and

the highest values of the air temperature, respectively. In a

certain area, the air temperature, bin temperature, and surface

grain temperature all show a periodic law of daily and annual

patterns, but sometimes the periodicity is not very regular.

B. Correlation Structure Analysis of Grain Temperature Data

In this article, the temperature time series collected by sen-

sors deployed at different locations in the stored grain pile

are first analyzed from the perspective of temporal and spatial

correlations. Our main findings are presented in the remainder

of this section.

1) Autocorrelation and Self-Similarity in the Time Domain:

The autocorrelation coefficient of the temperature samples

collected by a sensor can be defined as [18]

ρ =

∑l
t=1(xt − x̄)

(

xt+ξ − x̄
)

√

∑l
i=1(xt − x̄)2

√

∑l
i=1

(

xt+ξ − x̄
)2

(1)

where xt and xt+ξ are the observations of grain temperature

at time t and t + ξ , respectively; x̄ is the mean value of tem-

perature; and l is the time length (or, number of samples).

The autocorrelation analysis results of temperature samples

are shown in Table I. The natural ordinal number in the first

column of the table is the value of the lag period ξ from 1 to

20. The column AC is the computed autocorrelation value, the

PAC column is the estimated partial autocorrelation coefficient

value, the Q-stat column is the value of q-statistic, and the

Prob column is the probability that the value of the q-statistic

is greater than the Q-value calculated by the samples. The

original hypothesis of the Q statistic is that the sequence is

nonautocorrelation. If the p value is greater than 1% sig-

nificance level, the original hypothesis is accepted, that is,

the sequence is not autocorrelated. If the Prob value is less

than a given significance level (1%), the original hypothesis

is rejected, i.e., there is autocorrelation in the time series. The
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TABLE I
AUTOCORRELATION IN THE TIME DOMAIN

Prob values in Table I are all zero, which indicate that the

time series of grain temperature samples have self-correlation.

The AC column shows that the autocorrelation values are quite

high (i.e., all above 0.9).

We also find that the temperature time series of stored

grain exhibit the characteristics of partial and overall similarity

under different time scales, namely, self-similarity. In this arti-

cle, we use the Hurst exponent H to measure the self-similarity

of stochastic processes. When 0 < H < 0.5, the time series

has long-term correlation, but the overall trend in the future

is contrary to that of the past, i.e., the anti-persistence. When

H = 0.5, the time series is uncorrelated. When 0.5 < H < 1,

the time series has the characteristics of long-term correlation,

that is, the process is self-similar. Rescaled range (R/S) anal-

ysis is usually used to obtain the value of H [19]–[21]. The

process of calculating the Hurst parameter by rescaled range

analysis (R/S) is as follows.

Step 1: The temperature time series {x1, x2, . . . , xn} is

divided into g nonoverlapping subsequences

with length r, denoted as {xi1, xi2, . . . , xir},

i = 1, 2, . . . , g.

Step 2: The mean value of each subsequence is calcu-

lated as

x̄i =
1

r

r
∑

j=1

xij, i = 1, 2, . . . , g. (2)

Step 3: The deviation of each subsequence is calculated as

yij = xij − x̄i, i = 1, 2, . . . , g, j = 1, 2, . . . , r. (3)

Step 4: The accumulated deviation of each subsequence is

calculated as

zij =

j
∑

k=1

yik, i = 1, 2, . . . , g, j = 1, 2, . . . , r. (4)

Step 5: The range each subsequence is calculated as

Ri = max
(

zij

)

− min
(

zij

)

, i = 1, 2, . . . , g,

j = 1, 2, . . . , r. (5)

Step 6: The standard deviation of each subsequence is

calculated as

Si =

√

√

√

√

1

r − 1

r
∑

j=1

(

xij − x̄i

)2
, i = 1, 2, . . . , g. (6)

Step 7: Calculate the value of the rescaled range as

RSi =
Ri

Si

, i = 1, 2, . . . , g. (7)

Step 8: The R/S values of the calculated subsequences are

averaged as

(R/S)r =
1

g

g
∑

i=1

RSi. (8)

Step 9: Increase the value of r and repeat the previous steps

to obtain the rescaled range (R/S)r of logarith-

mic temperature series over time span of different

length r. According to the definition of the Hurst

index H, it describes the proportional relationship

between (R/S)r and rH , namely

(R/S)n = C × nH . (9)

Step 10: Taking logarithm on both sides of (9), log(r) is used

for a linear regression of log((R/S)r). The intercept

of the regression equation is the constant C in (9),

and the slope is the Hurst exponent H.

As shown in Fig. 1, the sensor nodes are deployed in four

vertical layers from the top to the bottom of the granary. We

calculate the Hurst parameter for the average temperature of

each layer. The average temperature time series of each layer

is denoted as X
layer

a1 , X
layer

a2 , . . . , X
layer

a1264, for layer = 1, 2, 3, 4.

The time series of average temperature in each layer is divided

into nonoverlapping sections and the Hurst parameter is cal-

culated, respectively. The results are presented in Fig. 2. It can

be seen that the Hurst parameter of temperature time series has

values between 0.7 and 0.9 under different time lengths, while

the Hurst parameter value of the entire time series is relatively

smaller, and the value is around 0.72. Therefore, we conclude

that the time series of grain temperature is self-similar. Such

self-similarity indicates long-range dependence in the tempera-

ture time-series data and historical data is useful for predicting

future temperature samples due to such long-term correlation.

2) Spatial Correlation: According to the definition of the

Pearson correlation coefficient [22], the correlation coeffi-

cient between sensor nodes (i.e., the temperature samples) at

different locations is expressed as

ρpp =

∑d
t=1(xit − x̄i)

(

xjt − x̄j

)

√

∑d
t=1(xit − x̄i)

2

√

∑d
t=1

(

xjt − x̄j

)2
(10)

where xit and xjt represent the temperature samples from dif-

ferent locations i and j at time t, respectively; and x̄i and x̄j are
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Fig. 2. Hurst parameter of average grain temperature for each layer of sen-

sors in different time periods. A(1-300) denotes X
layer
a1

, X
layer
a2

, . . ., X
layer
a300

;

A(300-600) denotes X
layer
a300

, X
layer
a301

, . . ., X
layer
a600

; A(600-900) denotes X
layer
a600

,

X
layer
a601

, . . ., X
layer
a900

; A(900-1200) denotes X
layer
a900

, X
layer
a901

, . . ., X
layer
a1200

; and
A(1-1264) denotes the entire time length of average temperature in each layer.

Fig. 3. Correlation matrix showing the correlation between different sampling
locations.

the mean values of temperature at the two locations, respec-

tively. The correlation coefficients among different locations

are shown in Fig. 3. The three parameters in the bracket, e.g.,

L(1, 1, 2), indicate the row, column, and layer of the sensor

node in the grain pile (see Fig. 1). It can be seen that the cor-

relation coefficient among the different sampling positions is

irregular in a certain range. For example, the correlation coeffi-

cient between sensor node L(1, 1, 2) and sensor node L(1, 1, 3)

is 0.559, However, the correlation coefficient between the sen-

sor node L(1, 1, 3) and sensor node L(1, 1, 4) is 0.964, even

if the spatial distance between L(1, 1, 2) and L(1, 1, 3) is the

same as that between sensor node L(1, 1, 3) and sensor node

L(1, 1, 4). The above results also indicate that the temperature

samples in the grain pile have strong spatial correlation.

In fact, stored grain is a kind of active substance, i.e., it

has the respiration function, and the granary is an open nona-

diabatic system. However, in the spatial distribution of grain

temperature, the main function is the heat transfer caused by

the spatial temperature difference. Thus, the temperature data

of stored grain sampled at the same time exhibit certain spatial

correlation.

Fig. 4. Isotherm of the average grain temperatures in the four layers of
sensor nodes.

Fig. 5. Isotherm of the third column (i.e., the vertical slice at the center) in
the grain pile.

Our correlation analysis of the grain temperature data show

that there is considerable mutual influence among the temper-

ature samples over time and at different locations. The overall

temperature of the stored grain is a dynamic process. We plot

the isotherm of the average temperature of the four sensor

node layers in Fig. 4 to show how temperature is changing

over space. It can be seen that the average temperature of the

grain pile decreases from the first layer (the upper layer) to the

fourth layer (the bottom layer). Then, we analyzed the temper-

ature isotherm diagram of the third column [i.e., sensor nodes

L(∗, 3, ∗)] in the grain pile using data collected in October

2016, which is shown in Fig. 5. It can be seen that there is an

obvious hot-skin-and-cold-core phenomenon, which is in line

with the temperature change rule of stored grain pile. In the

following, we will analyze the grain temperature isotherm map

to obtain the local factors that affect the temperature change

of the target location.

III. PROPOSED TEMPORAL AND SPATIAL

PREDICTION APPROACH

According to the analysis of the time series of grain temper-

ature in the time domain and the spatial domain in Section II,

we find that the time series of grain temperature not only
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Fig. 6. Process for extracting the spatial features.

has strong correlation and self-similarity in the time domain

but also has considerable correlation in the spatial domain.

Based on the analysis, a temporal and spatial approach based

on the attention mechanism is proposed to predict the temper-

ature of stored grain utilizing both historical grain temperature

data and the meteorological data of the corresponding area. By

predicting the grain temperature, we can obtain “early knowl-

edge” of the grain situation, so as to take countermeasures in

advance to avoid damage of stored grain. The proposed process

of grain temperature prediction is presented in this section.

A. Spatial Factor Extraction

To predict the temperature at a target location, the points in

the gradient direction are considered to have a bigger impact

on the temperature change. However, considering that the

stored grain pile is usually a small ecological environment, the

temperature samples collected at all the nodes of the entire sen-

sor network interact with each other. Based on this observation,

spatial features include local features and global features. The

process of extracting the spatial features is illustrated in Fig. 6.

1) Local Features: According to the exploration of the

change law of grain temperature observed in Section II, the

driving force of heat transfer is the temperature gradient

formed in the entire grain pile due to the influence of ambient

temperature. The temperature gradient leads to natural convec-

tion with different velocity, and in turn transfers heat through

convection.

In view of the relatively limited space stored grain, the Sobel

operator is used to obtain the approximate gradient of the tar-

get location in the grain pile [23]–[25]. The Sobel operator

includes two groups of 3 × 3 matrices, which are in the land-

scape orientation and portrait orienttion, as illustrated in Fig. 7.

The procedure of the Sobel operator is expressed as follows:

Gx = (X7 + 2X8 + X9) − (X1 + 2X2 + X3)

Gy = (X3 + 2X6 + X9) − (X1 + 2X4 + X7). (11)

The gradient orientation angle is derived as

a(x, y) = arctan

(

Gy

Gx

)

. (12)

Fig. 7. (a) 3 × 3 area on the grain heap level. (b) and (c) Convolution
templates of the Sobel operators.

The gradient directions of the target location on the three

planes are calculated. Then, 10 values are taken in each gra-

dient direction, and the 30 values are obtained as the local

characteristics of the target location. The output vector of the

local spatial factor is given by

lt =
(

x
grad,1
t , x

grad,2
t , . . . , x

grad,L
t

)�
(13)

where x
grad,�
t is the �th temperature value in the direction of

the temperature gradient at the target location (e.g., L is 30

for the temperature sensor network).

2) Global Features: By analyzing the correlation coef-

ficient among temperature samples collected at different

locations (see Section II-B), it can be seen that even for

some locations with small spatial distance, the correlation

coefficient between them could be small and the spatial cor-

relation is weak. Therefore, the performance of prediction

may be reduced if all other temperature samples are taken

as global characteristics. Based on this rational, we introduce

the attention mechanism to capture the key features of target

temperature prediction.

Taking the ith temperature sensor as the prediction target,

the attention score between the pth sensor and the target sensor

i in the sensor network can be calculated as follows [26], [27]:

a
p
t = v�

a tanh
(

Wa

[

ht−1; st−1

]

+ Uaxp + Vaxi + ba

)

(14)

δ
p
t =

exp
(

a
p
t

)

∑G
j=1 exp

(

a
j
t

) (15)

where [·; ·] represents the concatenation operation, xp and xi

are the temperature time series from sensor p and target sen-

sor i, respectively, and va, ba ∈ R
T , Wa ∈ R

T×2m, Ua ∈

R
T×T , and Va ∈ R

T×T are model parameters. According to

the target temperature series and the observed input tempera-

ture series, the spatial attention mechanism adaptively selects

the most suitable input to predict the target sequence. When

the attention score is obtained, the output vector of the global

spatial factor at time step t is computed as

gt =
(

δ1
t x

i,1
t , δ2

t x
i,2
t , . . . , δP

t x
i,P
t

)�
(16)

where x
i,p
t is the temperature sample at sensor p in the sensor

network (i.e., P is 200 for the temperature sensor network).

Note that δ
p
t is calculated as in (15).

After obtaining the local factors {lt}
T
t=1 and the global fac-

tors {gt}
T
t=1 of the target location, they are concatenated as the

overall spatial features as: mt = [lt; gt], where mt ∈ R
L+P.
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Fig. 8. Encoding process of spatial features.

B. Encoder Design

The encoding process of spatial features is shown in Fig. 8.

In the encoder, the aggregate information sequence mt of spa-

tial features is taken as input to the encoder LSTM, which

usually defines a function fe(·). According to the spatial data

information mt of the current time step t and output state

ht−1 of the last time step t − 1, the current output state ht is

calculated for each time step t as

ht = fe(mt, ht−1). (17)

The hidden state Hi = {hi
1, hi

2, . . . , hi
t−1}

(where i = 1, 2, . . . , 200) of different temperature sensors

generated by the LSTM contains all the spatial information

of the sensor network. For the hidden state of LSTM in each

time step, their features are convoluted by a CNN to extract

the features of spatial information.

For the process of using the CNN model to extract spatial

features, we refer to the Inception model [28]–[30]. The CNN

model contains four Inception modules with a similar struc-

ture, each of which has four branches as shown in Fig. 9. The

first branch starts with a 1 × 1 convolution block with 16 out-

put channels, followed by a 3 × 3 convolution block with 16

output channels. The second branch starts with a 1 × 1 con-

volution block with 16 output channels, followed by a 5 × 5

convolution block with 16 output channels. The third branch

begins with a maximum-pooling layer, which is connected to

a 1 × 1 convolution block of ten output channels. The fourth

branch is a 1 × 1 convolution block with 16 output channels.

The outputs of the four branches are then combined to produce

the output of the first Inception module. The output of the first

module, which is connected with a 1 × 1 convolution of a 16

output channels and a maximum pooling layer, is then used

as input to the second Inception module. The structure of the

first module is shown in Fig. 9. The structures of the second

module, third module, and fourth module are similar to that of

the first module except that the number of output channels is

different. Finally, there is a fully connected layer whose output

is the result of spatial feature extraction and used as input to

the decoder.

Fig. 9. Structure of the first Inception modules in the CNN model.

Fig. 10. Grain temperature and meteorological factors over time.

C. External Meteorological Features

In the process of grain storage, the external meteorologi-

cal factors have a significant impact on the grain temperature.

In general, grain temperature changes with external tempera-

tures, which include solar radiation, atmospheric temperature,

and ground temperature. In this article, eight meteorological

factors are utilized for grain temperature prediction, including

daily average air temperature (denoted by Air Tem), air pres-

sure (Air Pressu), 0-cm ground surface temperature (Ground

Tem), relative humidity (Relative Hum), daily average evap-

oration, sunshine duration (Sunshine Dur), wind speed, and

precipitation (PRE). The time series of meteorological fac-

tors and the time series of mean grain surface temperature are

plotted in Fig. 10. It can be seen that the trend of mean gain

surface temperature is consistent with that of air temperature

and ground temperature, but lags behind with some delay. The

correlation coefficients between the mean grain surface tem-

perature and the meteorological factors are plotted in Fig. 11.

It can be seen from the figure that there is considerable correla-

tion between grain temperature and meteorological factors, and

there is mutual influence among the meteorological factors.

In view of this, in order to avoid using too much redundant

information, the CNN composed of Inception modules is used

to extract meteorological features. The CNN model contains

four Inception modules with a similar structure, each of which

has three branches. The first branch has three layers, which

are one 1 × 1 convolution block with 64 output channels and

two 3 × 3 convolution blocks with 64 output channels. The
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Fig. 11. Correlation coefficients between grain temperature and meteorolog-
ical factors.

Fig. 12. Decoding process with the temporal attention mechanism.

second branch starts with a 1 × 1 convolution block with 64

output channels, followed by a 3×3 convolution block with 64

output channels. The third branch is a 1×1 convolution block

with 64 output channels. The outputs of the three branches

are then combined to produce the output of the first Inception

module. The output of the first module, which is connected

with a 1×1 convolution block with 64 output channels, is then

used as input to the second Inception module. The structure of

the second module, third module, and fourth module is similar

to that of the first module except that the number of output

channels is different. Finally, there is a fully connected layer

whose output is used to make the final prediction together with

the output of the temporal attention mechanism.

D. Decoder

For each time step t, there is a corresponding space vector

HC
t . In order to capture the temporal correlation between spa-

tial factors and enable the model to select relevant information

across multiple time steps, the temporal attention mechanism

is introduced in this article. The input temperature time series

is usually long. The vector generated by the encoder can-

not save all the information of the time series, which limits

the prediction ability of the model. The temporal attention

mechanism is used to overcome this problem. It is designed

to calculate a matching weight between the current input

sequence and the output vector, and adaptively select the rele-

vant information to predict the target sequence [31]–[33]. The

decoding process with the temporal attention mechanism is

shown in Fig. 12.

In order to obtain the attention vector, the context vector ct′

of each output time period t′ is computed, which depends on

the annotation vector of the encoder, i.e., (HC
1 , HC

2 , . . . , HC
t′−1

).

The encoder maps the input spatial factors into these anno-

tation vectors, and each annotation contains the information

about the input time sequence. The context vector ct′ is

calculated as a weighted sum of the annotation vectors HC
i , as

ct′ =

T
∑

i=1

αt′

i HC
i (18)

where the weight αt′

i of each annotation vector HC
i is calcu-

lated as

αt′

i = softmax
(

ut′

i

)

=
exp

(

ut′

i

)

∑T
j=1 exp

(

ut′

j

) , and (19)

ut′

i = v�
d tanh

(

W1

[

dt′−1; s′
t′−1

]

+ W2HC
i + bd

)

(20)

where W1 ∈ R
m×2n, W2 ∈ R

m×m, vd, and bd ∈ R
m are model

parameters, dt′−1 ∈ R
n is the state of the previous time step

t′ − 1 in the decoder, and st′−1 ∈ R
n is the cell state of the

decoder at time t′−1. αt′

i or its associated quantity ut′

i indicates

the importance of the annotation vector HC
i in determining the

next hidden state compared to the previous hidden state. Once

the external meteorological information ext, the context vector

ct, and the previous temperature value ŷi
t′−1

are acquired, they

are fed into the decoder LSTM, and the hidden state of the

decoder is updated as

dt′ = fd
(

dt′−1,
[

ŷi
t′−1; ext′; ct′

])

(21)

where fd(·) is the LSTM unit used in the decoder and t′ is

a future time step. Then, we feed the context vector ct′ and

the hidden state dt′ to the LSTM unit. Finally, the decoder is

trained to obtain the grain temperature of the target point at

the next time, which is given by

ŷi
t′ = v�

y (Wm[ct′; dt′ ] + bm) + by (22)

where Wm ∈ R
n×(m+n) and bm ∈ R

n map the concatenated

[ct′; dt′ ] ∈ R
m+n to the size of the decoder hidden state; and

vy ∈ R
n and by ∈ R are linear transformation parameters,

which can predict the final output. The Adam optimizer is

used to train the model to minimize the root mean-square error

(RMSE) between the predicted temperature value ŷi and the

ground-truth temperature value yi.

IV. PERFORMANCE EVALUATION

The grain temperature data set used in our performance eval-

uation is obtained from a temperature sensor network deployed

in a large warehouse in Zhumadian, Henan Province, China.

The corresponding meteorological data are obtained from the

China meteorological data network. The data set includes daily

grain temperature measured by the temperature sensors from

July 3, 2015 to December 17, 2018. The frequency of measur-

ing temperature data with a temperature sensor is three times

a week. We interpolate the grain temperature data to obtain

daily temperature samples, which is then synchronized with

the daily meteorological data.
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Fig. 13. RMSEs of grain temperature prediction under different time window
sizes.

In this article, model training is implemented using the ten-

sorflow library. In the model training, the initial learning rate is

0.001, and the coefficient of avoiding gradient explosion is 2.5.

Data expansion and dropout [34], [35] are used to avoid over-

fitting, and the ratio of dropout is set to 0.3. We use the RMSE

as a performance metric for the accuracy of grain temperature

prediction, given by

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

∣

∣yi − ŷi

∣

∣

2
)

(23)

where yi is the ground-truth grain temperature data collected

by the sensor network, ŷi is the grain temperature data pre-

dicted by the proposed model, and n represents the number of

grain temperature samples.

A. Parameter Tuning Results

First, we train the parameters that affect the performance of

the model to select the appropriate model parameters to ensure

the accuracy of prediction. We then analyze the influence of

time window size, epochs, and batch size on the prediction

performance of the model.

1) Impact of Time Window Size: We set the time window

size to 5, 10, 15, 20, 25, 30, 35, 40, and 50 to test the effect of

time window size on the prediction accuracy. In order to ensure

that the results of different time window sizes are not affected

by other variables, we assume that the values of other parame-

ters are fixed. The hidden units, epochs, and batch size are set

to 128, 150, and 100, respectively. Fig. 13 shows the RMSE of

the prediction model under different time window sizes. When

the time window size is 10, the prediction errors of three tar-

get temperature locations [including two boundary locations

L(1, 2, 1) and L(10, 3, 1), and one center location L(7, 3, 3)]

are all the minimum. In addition, we find that with the increase

of time window size, the model training time becomes longer

and the training speed becomes slower. Therefore, we choose

10 as the time window size of the prediction model by con-

sidering both the prediction accuracy and the training time of

the model.

Fig. 14. RMSEs under different epochs.

Fig. 15. Training loss and testing loss when epoch is 120.

2) Impact of Epochs and Batch Size: An epoch is when a

complete data set passes through the model once and returns

once. Batch size refers to the number of samples selected for

one training process. For different temperature locations, we

train the model with different epoch values and then select the

appropriate epoch value by analyzing the resulting prediction

errors. Fig. 14 plots the effect of different epoch values on the

prediction error. It can be seen from Fig. 14 that the RMSE

is the largest when the epoch value is 50. When the value

of epoch is greater than 150, the RMSE becomes smaller.

However, in addition to the RMSE, the trend of training loss

and testing loss should also be considered. As can be seen from

Figs. 15–17, the testing loss exhibits a trend of divergence

when the value of epoch is less than 150, which indicates that

the model is under fitting. However, when the epoch value is

greater than 150, the testing loss is greater than the training

loss, which indicates that the model is overfitting. As a result,

150 is selected as the optimal value of epoch.

In the training process, we also investigate the influence of

batch size on the model performance. We find that the value of

batch size has a great influence on the convergence of training.

When the value of batch size is small, the training loss curve

oscillates and does not converge to a stable value. As the value

of batch size is increased, the loss curve becomes smooth and

convergent. Finally, we choose 100 as the value of batch size.
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Fig. 16. Training loss and testing loss when epoch is 150.

Fig. 17. Training loss and testing loss when epoch is 180.

B. Comparison Study With State-of-the-Art Schemes

In order to verify the performance of the proposed model,

we predict the grain temperature at different target locations,

including the boundary of the grain pile (i.e., the the upper,

lower, southeast, northeast, southwest, and northwest boundary

locations) and near the center of the grain pile. We compare

the performance of the proposed model with the following

five baseline schemes selected from the recent literature in the

following comparison study.

1) Kalman-modified LASSO [36], which first filters the

time series, then removes the corresponding variables

from the model to perform variable selection, and in

this case, sparse solution is realized.

2) A temporal graph convolutional network (T-GCN),

which combines graph convolution with gating cycle

unit [37].

3) LSTM network [38], which is suitable for dealing with

and predicting the problems with relatively long interval

and delay in time series.

4) Convolutional LSTM network (ConvLSTM) [39], for

the matrix obtained by the sensor network, convolu-

tion operation is added to LSTM to extract features

effectively.

Fig. 18. Grain temperature prediction results at location (row 1, column 1,
and layer 1) of stored grain.

Fig. 19. Grain temperature prediction results at location (row 1, column 5,
and layer 4) of stored grain.

5) A convolutional neural network (CNN)-long short-term

memory (LSTM) combined network (CNN-LSTM) [40],

where CNN is used to extract the correlation between

multiple sequences recorded by the sensors, and LSTM

is used to model and forecast the extracted time

information.

The results are presented in Figs. 18–23. In particular,

Figs. 18 and 19 present the grain temperature prediction results

at two locations close to the eastern boundary of the granary;

Fig. 18 is for the sensor close to the southern side of the gra-

nary; and Fig. 19 is for the sensor close to the northern side of

the granary. Moreover, Figs. 20 and 21 present the grain tem-

perature prediction results for the sensors in the center of the

grain pile. Finally, Figs. 22 and 23 present the results for the

sensors close to the western boundary of the granary. Fig. 22

is for the sensor close to the northern side of the granary and

Fig. 23 is for the sensor close to the southern side of the gra-

nary. Figs. 18 and 22 are for the sensors on the upper layer of

the grain pile. Figs. 19 and 23 are for the sensor on the lower

layer of the grain pile. The results show that the proposed

model can accurately predict temperature for all the positions

in the grain pile.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 03:42:02 UTC from IEEE Xplore.  Restrictions apply. 



DUAN et al.: TEMPERATURE FORECASTING FOR STORED GRAIN: DEEP SPATIOTEMPORAL ATTENTION APPROACH 17157

Fig. 20. Grain temperature prediction results at location (row 5, column 3,
and layer 3) of stored grain.

Fig. 21. Grain temperature prediction results at location (row 6, column 3,
and layer 3) of stored grain.

Fig. 22. Grain temperature prediction results at location (row 10, column 5,
and layer 1) of stored grain.

The RMSE results of the six prediction models are presented

in Table II. For the sensor at (1, 1, 1), i.e., located at the upper

layer of the southeast boundary, the RMSE of the proposed

model is 0.2794, which achieves a reduction of 48% over the

ConvLSTM model, 50% over the CNN-LSTM model, 52%

Fig. 23. Grain temperature prediction results at location (row 10, column 1,
and layer 4) of stored grain.

TABLE II
RMSES ACHIEVED BY THE SIX APPROACHES AT DIFFERENT LOCATIONS

over the LSTM model, 43% over the T-GCN model, and 67%

over the Kalman-modified LASSO method. For the sensor

at (1, 5, 4), i.e., located at the lower layer of the northeast

boundary, the RMSE of the proposed model is 0.1736, which

achieves a reduction of 74% over the ConvLSTM model, 73%

over the CNN-LSTM model, 63% over the LSTM model, 54%

over the T-GCN model, and 81% over the Kalman-modified

LASSO method. For the sensor at (5, 3, 3), i.e., located

in the center of the grain pile, the RMSE of the proposed

model is 0.3423, which achieves a reduction of 54% over the

ConvLSTM model, 57% over the CNN-LSTM model, 65%

over the LSTM model, 19% over the T-GCN model, and 74%

over the Kalman-modified LASSO method. For the other sen-

sor at (6, 3, 3), i.e., located in the center of the grain pile,

the RMSE of the proposed model is 0.2684, which achieves a

reduction of 52% over the ConvLSTM model, 47% over the

CNN-LSTM model, 64% over the LSTM model, 55% over the

T-GCN model, and 72% over the Kalman-modified LASSO

method. For the sensor at (10, 1, 4), i.e., located at the lower

layer of the southwest boundary, the RMSE of the proposed

model is 0.1307, which achieves a reduction of 72% over the

ConvLSTM model, 78% over the CNN-LSTM model, 68%

over the LSTM model, 66% over the T-GCN model, and 84%

over the Kalman-modified LASSO method. For the sensor at

(10, 5, 1), i.e., located at the upper layer of the northwest

boundary, the RMSE of the proposed model is 0.1817, which

achieves a reduction of 57% over the ConvLSTM model, 60%

over the CNN-LSTM model, 71% over the LSTM model,

56% over the T-GCN model, and 75% over the Kalman-

modified LASSO method. Among the five other schemes, the

statistics method Kalman-modified LASSO has the poorest
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Fig. 24. Intelligent control system of grain situation with IoT technologies
integration.

performance, compared to other deep learning-based schemes.

The proposed model outperforms all the five other schemes

with considerable gains.

C. Application of Developed Prediction Models

The developed prediction models can be used to guide the

operation of the intelligent control system of grain storage,

as shown in Fig. 24. The intelligent control system of grain

depot can acquire temperature and humidity index automati-

cally through the grain condition detection system in real time.

Data transmission is carried out by the IoT, network equip-

ment, and communication module. The computer evaluates

and intelligently analyzes the information of grain and envi-

ronment in the granary, and forms the action control strategy

or auxiliary suggestions. It is of great importance to realize

the temperature reduction, ventilation, dehumidification, and

insect control by intelligent control and storage technologies,

such as ventilation equipment, air conditioning equipment,

low temperature control equipment, and circulation fumiga-

tion, and to achieve automatic monitoring of high efficiency,

high reliability, and automation of grain warehouse, which is

of great importance. for reducing the cost of grain storage,

maintaining the quality of stored grain, reducing grain loss,

and improving the storage capacity of grain safety.

V. RELATED WORK

The IoT has become a critical technology toward the future

precision agriculture, while safe storage of grain is becoming

increasingly concerned of the world. In this section, we review

related works with respect to deep learning models, spatiotem-

poral prediction models, and the attention mechanism of deep

learning.

CNN is an end-to-end learning model in the field of deep

learning, which connects two adjacent layers through global

sliding, local connection, and weight sharing, making the

network structure simpler and more adaptive [41]. LSTM is

an improved model based on RNNs. The basic unit of the

LSTM hidden layer is a special cell structure rather than a

traditional neuron node. Through the input gate, output gate,

and forgetting gate in the cell structure, the inflow and outflow

of information and the update of the previous state are real-

ized, respectively. CNN and LSTM were integrated and used

in a PM2.5 forecasting system that considers the factors, such

as accumulated hours of rain, wind speed, and PM2.5 concen-

tration [42]. LSTM, CNN, and multilayer perceptron (MLP)

have been used to predict the electricity demand [43]. A deep

long short-time memory (DLSTM) model, which uses the

genetic algorithm to optimize its allocation, was developed

to accurately predict oil production [44].

Meanwhile, approaches that consider both temporal and

spatial impacts have been developed for accurate prediction.

A temporal approach that is based on LASSO and LSTM

has been integrated for forecasting short-term solar intensity

using meteorological data [45]. Lyu et al. [46] proposed a

smart WiFi access point (AP) management program LAM,

which can dynamically control a large amount of APs (i.e.,

turning on or off) without losing WiFi coverage to achieve

the goal of energy saving by mining large-scale spatiotem-

poral user association data. A spatiotemporal visual question

answering model using two dual-layer LSTMs was presented

to understand visual content and find the associations of pairs

of questions and answers in the natural language form [47].

A deep-metalearning-based spatial and temporal approach was

utilized to overcome the diversification and sophistication of

urban traffic forecasting [48]. Deep RNNs, such as LSTM and

gated recurrent unit (GRU) networks, were utilized for fore-

casting traffic load of base stations [49]. A two-branch deep

learning model was established to predict winter wheat yield in

the main producing regions of China at the county level [50].

The deep belief network (DBN) GRU hybrid neural network

based on deep learning was used to predict meteorological

time series, which avoids the problems of low generalization

ability and long training time of RNNs [51]. Furthermore,

a deep hybrid spatial and temporal dynamic neural network

(DHSTNet) was utilized for forecasting both inflows and

outflows at different positions along conurbation [52]. A

spatiotemporal position forecasting approach on account of

LSTM was used for forecasting the next spatiotemporal track

of mobile user [53]. A deep spatial model consisting of a

global stacked autoencoder (GSAE) and multiple local SAEs

(LSAEs), which can reduce the model size and enable parallel

training, was utilized for forecasting the mobile traffic load in

cellular networks [54].

Compared with conventional spatiotemporal approaches, the

attention mechanism can significantly decrease the number

of parameters in the deep spatiotemporal process, and adap-

tively choose relevant temporal and spatial features to enhance

temperature forecasting performance. Furthermore, the compu-

tation of the attention mechanism in each step is independent

to the results of the previous step, which is amenable for

parallel processing in GPU-accelerated deep models. An inter-

pretable spatiotemporal attention LSTM model (STA-LSTM)

based on LSTM and the attention mechanism was utilized for

flood prediction, where the visualization and interpretation of

spatial and temporal attention weights represent the rationality

of the attention-based model [55]. A new attention mechanism

was used to select the relevant time series, and its frequency-

domain information is utilized to make multiple predictions.
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It achieved superior performance in many practical tasks, and

overcame the shortcoming that the traditional attention mech-

anism could not capture time patterns across multiple time

steps [33]. The attention mechanism has also been effectively

used in geography-sensor data prediction [27] and intelligent

traffic prediction [56], [57] due to its advantages of using fewer

parameters, fast execution, and superior performance.

VI. CONCLUSION

It is of great practical importance to develop IoT systems of

intelligent grain state control for safe grain storage. In this arti-

cle, a new temporal and spatial approach based on the attention

mechanism was proposed to predict the temperature of stored

grain. The proposed model captures the temporal and spatial

correlation structure in grain temperature data, as well as the

influence of external meteorological factors. It overcomes the

limitation of traditional prediction methods, which only con-

sider historical temperature data. Our experimental study using

real granary sensor network and meteorological data validate

the superior prediction performance of the proposed model

over five other schemes.

For future work, we will investigate what is a suitable

timescale for temperature measurement/forecasting for food

storage. The developed grain temperature prediction model

will be used in the development of the IoT system for grain

intelligent control, so as to realize the automatic notification

of dangerous grain situation, optimize the layout of sensors

in the grain pile, and reduce the use of sensors and conserve

energy.
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