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ABSTRACT

Mildew is recognized as one of the most critical causes of the damages in food storage. Due to the complex
operation and high cost, many advanced detection instruments cannot be widely deployed, while the detection
of grain mildew are mostly carried out manually (i.e., inspection by experts) nowadays with very low efficiency.
To address this problem, we present a non-destructive, non-intrusive, and low-cost mildew detection system for
stored wheat implemented with off-the-shelf WiFi devices, which represents a new application of the Internet of
Things (IoT) for smart agriculture. In this paper, we introduce the impact of wheat mildew in stored food, and
demonstrate that it is viable to utilize WiFi Channel State Information (CSI) amplitude for detection of mildew in
stored wheat. Next, we propose the MiFi system, which comprises sensing of WiFi CSI data, data preprocessing, a
radial basis function (RBF) neural network-based detection model, and mildew detection. We conduct extensive
experiments to validate the performance of the proposed MiFi system using real grain samples. The results show
that MiFi achieves an average detection accuracy of over 90% in both line-of-sight (LOS) and non-line-of-sign

(NLOS) scenarios, as well as a comparable detection performance as manual detection by an expert.

1. Introduction

The world’s population is fast growing and the people’s quality
of life is being improved. These both put every increasing demands
and requirements on the quantity and quality of food such as wheat
and grain Hu et al. (2019); Vasisht et al. (2017). Although the an-
nual production of food over the world has exceeded 2 billion tons re-
cently Jayas (2012), considerable amount of food is lost due to the dam-
age incurred during the storage process, since the produced food are not
to be consumed immediately and sometimes the food needs to be stored
for a few years. Among many factors, wheat mildew can lead to consid-
erable loss of both wheat processing quality and nutritional quality, and
even leads to fungal contamination in many cases Lanier et al. (2010).
Usually farmers and distributors lack the necessary professional knowl-
edge and do not have access to the high-cost testing equipment. There-
fore, they are not able to test the status of stored food on a timely basis,
except for inspecting the food samples and judge by experience. Rapid
detection of mildew in grain is important to achieve efficient and se-
cure food storage, and to reduce the waste incurred during the storage
process and reduce the cost of food.
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However, detection mildew in stored grain is a challenging problem.
The present approach for detection of mildew in stored grain is largely
done manually, i.e., inspection by an expert. That is, the level of grain
mildew is determined by visual inspection and the olfactory experience
of the inspector. Such a manual approach is usually inefficient and un-
reliable, since it depends on the subjective judgment of the expert. With
the advance of the Internet of Things (IoT), various sensors and expen-
sive instruments have been developed for detection of grain mildew, in-
cluding electronic nose sensors Zhang et al. (2007); Zhao et al. (2008),
near infrared spectroscopy Fernandez-Ibafiez et al. (2009), image pro-
cessing Hong et al. (2007); Zhong-zhi et al. (2010), among others. Al-
though being effective, the wide deployment of these techniques is hin-
dered by the relatively high cost and the complex operation. Conse-
quently, non-intrusive, low-cost, fast and accurate detection of wheat
mildew is in great demand.

WiFi is a dominant wireless communications technology to serve mo-
bile users. The physical layer (PHY) of the WiFi standard incorporates
Orthogonal Frequency-Division Multiplexing (OFDM) to combat the se-
vere propagation impairments in indoor environments, such as multi-
path propagation and frequency-selective fading. For some commercial
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network interface cards (NIC) of WiFi, open-source device drivers have
been developed, which enables the receiver to obtain channel state in-
formation (CSI) from each received WiFi packet. For instance, the Intel
5300 NIC Halperin et al. (2010) can provide amplitude and phase read-
ings for 30 subcarriers, and the Atheros 9kth NIC Xie et al. (2018) can
the CSI samples for 56 subcarriers over a 20 MHz band channel for each
received packet. Unlike received signal strength (RSS), CSI is a fine-
grained channel model that better captures the features of the propa-
gation environment that the WiFi packet has experienced, e.g., attenu-
ation, distortion, and the multipath effect. Unlike RSS, CSI samples are
usually more stable, and consequently, they have utilized in many RF
sensing applications Jiang (2018); Wang et al. (2018), such as human
vital sign estimation Wang et al. (2021b, 2017e) and indoor fingerprint-
ing Wang et al. (2017b).

In this paper, we propose to leverage WiFi CSI for contact-free wheat
mildew detection. The goal is to develop a low-cost, non-intrusive, and
automated mildew monitoring system for stored grain. The development
of mildew in store grain usually involves physiological changes in a
number of external and internal states. When a WiFi signal propagates
through the grain, such physiological change will cause considerable
and measurable changes in the received signal, as reflected in the corre-
sponding CSI samples. Through extensive experiments with real stored
grain samples, we validate this hypothesis, where three types of mildew
states are tested, including normal samples, samples in the initial stage
of mildew, and samples in the complete mildew stage. It is demonstrated
that there is slight differences in CSI amplitude between normal samples
and initial mildew stage samples, and significant differences in CSI am-
plitude between initial mildew stage samples and completely mildewed
samples. Our experiments justify the feasibility of leveraging WiFi CSI
data for detection of wheat mildew.

Specifically, we present the design of the MiFi system, a device-free
wheat Mildew detection system with WiFi CSI amplitude data. The pro-
posed system comprises a sensing module, a preprocessing module, a
detection modeling module, and a mildew detection module. CSI am-
plitude samples are first measured in the sensing module. The prepro-
cessing module is to calibrate the CSI data using a Hampel identifier,
environmental noise remover, and by subcarrier selection and normal-
ization. The Hampel identifier is used to eliminate outliers in the mea-
sured raw data, and the Butterworth filter is applied to eliminate the
ambient noisein the raw data. The most sensitive subcarrier is then se-
lected according to a mean absolute deviation algorithm. Finally, the
CSI amplitude samples on the selected subcarrier is normalized. In the
detection modeling module, a Radial Basis Function (RBF) neural network
is utilized for mildew detection using the calibrated CSI amplitude data.
The K-means clustering algorithm is applied to determine the parameter
setting of the RBF neural network model. The overall goal is to develop
a simple and fast system for rapid determination of the mildew level
in stored wheat. The use of radial basis function and K-means cluster-
ing has the desirable characteristics of low computational complexity,
fast convergence, and better results, which is important to achieve rapid
wheat mildew detection. In the last detection module, the wheat mildew
level is estimated using a classification matrix through a combination of
linear (i.e., the output layer) and non-linear (i.e., the Gaussian kernel)
RBF neural networks.

The main contributions made in this paper are summarized in the
following.

e Through an extensive experimental study, this paper verifies the
feasibility of leveraging WiFi CSI amplitude data for detection the
mildew of stored gain. Our results demonstrate that the WiFi CSI
can capture the physiological variations caused by different mildew
states when propagating through wheat samples, and thus can be
used to distinguish different wheat mildew states.

¢ We present the MiFi system design, composed of (i) a sensing module
that measure the WiFi CSI data; (ii) a preprocessing module that
calibrates raw CSI amplitude data; (iii) a detection modeling module
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with a novel RBF neural network based learning method; and (iv) a
mildew detection module. To the best of our knowledge, this is the
first work that applies WiFi based RF sensing for non-intrusive wheat
mildew detection.

e We implement the proposed MiFi system using off-the-shelf WiFi
devices and carry out extension experiments to validate its perfor-
mance with real wheat samples. Our experimental results show that
MiFi can achieve an average detection accuracy of over 90% in both
line-of-sight (LOS) and non-line-of-sign (NLOS) scenarios, as well as
a comparable detection performance as manual detection by an ex-
pert.

In the rest of this paper, we present the background and our fea-
sibility study in Section 2. The MiFi system design if elaborated in
Section 3 and evaluated in Section 4. Section 5 reviews related work
and Section 6 concludes this paper.

2. Preliminaries and feasibility study
2.1. Wheat mildew detection: State-of-the-Art

Mildew is very harmful for stored wheat, since it causes pollution of
stored food, loss of nutrients, as well as food-borne diseases. Microbial
and environmental factors are the main causes of mildew development
in stored wheat. Mildew is usually caused by the microbes in wheat
granules during harvesting and by the granary microorganisms during
storage Magan and Aldred (2007). In addition, wheat mildew is also af-
fected by granary type, temperature, humidity, and other environmental
factors during storage Nithya et al. (2011). If timely measures are taken,
the wheat in the early stage of mildew can still be used. However, com-
pletely mildewed wheat will not be useful and should be destroyed as
soon as possible to avoid further damage such as causing human dis-
eases. A low-cost and non-destructive detection system of wheat mildew
state will be helpful for avoiding losses in foot storage.

In this paper, we propose to detect the mildew state of stored grain by
passing WiFi signals through gain samples. This is achieved by analyz-
ing the received WiFi signal, after it passing through the grain samples,
to learn the characteristics of the WiFi channel with respect to shad-
owing fading, reflection, and small-scale fading. To model the impact
of mildew state on the received WiFi signal (or the WiFi channel), the
concept of dielectric constant can be used as an indicator of the wheat
mildew state. The complex relative permittivity £* of a material in the
frequency domain is given by Komarov et al. (2005)
e =g —je". 1
The real part €' in (1) is the dielectric constant, which represents the
ability of the material to store energy of the electric field; and the imag-
inary part ¢” is a dielectric loss factor, which usually indicates the ability
of a material to consume electrical energy. Thus these factors affect the
attenuation and absorption of WiFi signals when propagating through
the material.

The authors in Nelson et al. (2002) showed that the dielectric con-
stant and the loss factor are affected by the moisture content of wheat.
Therefore they can serve as an indicator of moisture content in grains.
In particular, the dielectric constant can be indirectly utilized to de-
termine whether the grain is mildewed or note by moisture. However,
the technique in Komarov et al. (2005) requires an expensive and cus-
tomized equipment to detect the dielectric constant, which hinders the
wide deployment of this technique in the field. In contrast, we propose
to leverage off-the-shelf WiFi devices to detect wheat mildew, which is
low-cost and easy to deploy. In particular, as the WiFi signal propagates
through the wheat sample, the strength of the electric field will vary
along with the distance to the wheat surface. This effect will be cap-
tured by the attenuation factor « of the dielectric properties of grain,
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Fig. 1. CSI raw amplitude samples measured from the

same wheat sample that is developing mildew through
the three states: normal, initial state, and complete
state.
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which can be written as Komarov et al. (2005): 2.3. Feasibility
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where A, represents the wavelength of the WiFi signal.

As mildew is developed in store wheat, i.e., from the normal state to
the initial state, and eventually to the complete state, both the temper-
ature and moisture level of the wheat will increase, as well as the hu-
midity of the surrounding environment. Such variations will then cause
changes in both the dielectric constant ¢’ and dielectric loss factor ¢”.
According to the relationship in (2), the attenuation factor « will also
be affected, since a is a function of ¢ and ¢”. Eventually, the electric
field, i.e., the WiFi channel, and the received WiFi CSI data will be influ-
enced. Since the CSI can capture such changes in the electric field, we
can detect the mildew state of the wheat sample by analyzing the WiFi
CSI amplitude data. With such an approach, no expensive equipment
is needed to measure the dielectric constant (i.e., by utilizing low-cost
WiFi devices).

2.2. Wifi channel state information

As discussed, open-source device drivers for certain WiFi NICs al-
lows collection of CSI samples from the OFDM subcarriers. Assume there
are N, subcarriers, Each measured CSI sample comprises the amplitude
and phase of the subcarrier experienced by the corresponding received
packet. The overall captured data consists of the number of transmit-
ting antennas N,,, the number of receiving antennas N,.,, the channel
frequency f, and CSI data H. The captured CSI data H is in the form of
an N, X N,, x N tensor, which is given by

H=(H,) )

NixXNp XN

Our implementation of MiFi is based on the Atheros AR5BHB
NIC Xie et al. (2018), which allows sampling from the 56 subcarriers
of the 20 MHz WiFi channel. The kth subcarrier in H corresponding to
a specific transmitting and receiving antenna pair can be expressed as

“

where |H, | is the amplitude on the subcarrier and £ H, is the phase on
the subcarrier.

H, = |H| - el 4Hk
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is different from Wi-Wheat since wheat mildew does not only change
the moisture level, but also the temperature of the wheat, as well as
the air humidity of the surrounding environment, which then affects
the WiFi propagation environment. Through extensive experiments, we
verify that wheat mildew does affect the propagation of WiFi signals.
To validate the feasibility of using WiFi CSI for detecting the mildew
state of wheat samples, we measure CSI amplitude samples from the
same wheat sample, which develops mildew through the three stages,
while the WiFi transmitter, receiver, and wheat sample is placed at the
same locations in the same environment. The measured CSI amplitude
samples are plotted in Fig. 1, for the three mildew states, i.e., normal
stage, initial stage of mildew, and complete stage of mildew. We observe
from the figure that the CSI amplitude only changes slightly when the
mildew state develops from normal to the initial stage. However, the
CSI amplitude samples are significantly different when mildew further
develops from the initial state to the complete state. Therefore, it can be
concluded that WiFi CSI amplitude data can be useful for wheat mildew
detection.

3. Design of the proposed mifi system

The architecture of the proposed MiFi system is presented in Fig. 2,
which comprise four major modules: (i) the sensing module, (ii) the
preprocessing module, (iii) the detection modeling module, and (iv) the
mildew detection module. The detailed design of each of these modules
are provided in this section.

3.1. Measure CSI amplitude samples

First, we utilize the Atheros ARSBHB NIC to collect CSI data from
the 56 subcarriers of the WiFi OFDM channel, by transmitting multiple
WiFi packets throgh wheat samples placed in the middle. In order to
experiment with the initial stage of mildew and complete mildew con-
ditions, we cultivate mildew in the same wheat examples. To accelerate
the development of wheat mildew, a closed chamber with temperature
and humidity control capability is used. For the experiments reported in



P. Hu, W. Yang, X. Wang et al.

International Journal of Cognitive Computing in Engineering 3 (2022) 9-23

2N Fig. 2. The system architecture of the proposed MiFi
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this paper, the temperature is maintained at 30 °C and the air humidity
is maintained at 90%. After 2 to 3 days, the wheat will begin to grow
mildew. Thus samples are obtained in the initial stage of mildew, and
are used in our experiments. Then we let the mildew continue to de-
velop in the same samples. Complete mildew samples will be obtained
on the 8th day, and are used in our experiments. In this way, three types
of CSI amplitude data will be obtained, one for each mildew state, for
our experimental study of detecting different wheat mildew stages.

3.2. Hampel identifier

The collected WiFi CSI data is usually noisy with outliers. Fig. 3 plots
the CSI amplitude samples measured on the 20th subcarrier of the OFDM
channel, where many outliers, indicated by the high peaks and low val-
leys, can be observed. Such outliers should be removed to avoid their
effect on the detection performance. In our MiFi system, we incorporate
a Hampel filter to detect and remove such outliers in measured WiFi CSI
data.

In particular, the Hampel filter comprises a sliding window on the
data from each subcarrier to eliminate the outliers. A CSI amplitude se-
ries with K samples captured from a specific subcarrier can be denoted
as (Y}, Y,, ..., Yg), where Y; is the ith sample of CSI amplitude measured
from the subcarrier. Let Y’ be the median of the sequence of samples.
The Hampel identifier classifies a sample Y; as abnormal, if the sam-
ple deviates from the median absolute difference (MAD) more than a

12

predefined threshold, as

{|Y,.—y'|>1~R,

outlier
|Y,-Y'|<I-R, L.

i= , K,
normal,

)
where [ is the predefined threshold value and R is the MAD, which is
defined as

R=14286 x MED{|Y, = Y'|.i=1,2,....K}, 6)

where MED(-) returns the median value. In (6), the coefficient 1.4286
makes sure that the expected value of R be equal to the standard devi-
ation of the data, which is assumed to be Gaussian Pearson (2002). In
Fig. 3, the calibrated CSI amplitude data after Hampel filtering is also
plotted. It can be seen from the figure that the outliers in the CSI data
are effectively removed.

3.3. Remove the environmental noise

Although the outliers are removed by Hampel filtering, the resulting
data is still noisy with environmental noise, which should be mitigated
in order to achieve a high detection accuracy. In Fig. 4, we plot the
spectrum of the CSI data measured from the 20th subcarrier for the
three mildew states. It can be seen that the frequency variation caused
by the wheat sample over a period of 15 seconds ranges from 0 Hz to
30 Hz. Based on this observation, we adopt a Butterworth filter to reduce
the noise outside this band. The Butterworth filter uses a Butterworth
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Fig. 3. Illustration of calibrating the WiFi CSI data
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function to define the amplitude-frequency characteristics in the pass-
band. The low-pass mode squared function of the Butterworth filter used
in MiFi is written as

2 _ 1
laﬁl_G:IEZFS’

where n is the order, and f, is the cutoff frequency of the filter. In our
MiFi implementation, we choose n = 4 and set the cutoff frequency to
30 Hz (see Fig. 4).

O]

3.4. Subcarrier selection

After denoising the CSI data, the CSI amplitude consists of a set of low
frequency components. Through out experimental study, we also find
that some subcarriers are more sensitive than others to the mildew state
of the wheat samples. Specifically, we use the mean absolute deviation
of CSI amplitude data from each subcarrier to characterize the sensitivity

Complete
Mildew

13

1000

Fig. 4. Spectrum of the WiFi CSI data collected from
the 20th subcarrier corresponding to the three mildew
states.

15

of the subcarrier Wang et al. (2017e). Generally speaking, the larger the
mean absolute deviation, the higher the sensitivity. The sensitivity of
the 56 subcarriers are plotted in Fig. 5. We observe from the figure that
the subcarriers with an index below 35 (among the 56 subcarriers) are
more sensitive (as indicated by the red area in the figure) to the mildew
state of wheat samples. In MiFi, a more sensitive subcarrier is chosen
(with an index below 35) in order to achieve a high detection accuracy.

3.5. Nomalization of data

To speed up the computation of MIFI and achieve a high detection
accuracy, the zero-mean normalization method (i.e., Z-score normaliza-
tion) is applied in MiFi to normalize the calibrated CSI amplitude data.
The normalized data ¥; is calculated by

v=Ll.-v. ®)
(o3
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where Y is the mean, and ¢ is the standard deviation of the subcarrier’s
calibrated CSI amplitude data.

3.6. CSI-RBF Neural network

The normalized calibrated CSI amplitude data will be fed into a RBF
neural network, termed CSI-RBF, to accurately detect the state of wheat
mildew, and the K-means algorithm is used to set the parameters for
the RBF kernel function.

3.6.1. K-Means clustering

K-means clustering is an unsupervised learning approach that has
been widely used in many fields. In MiFi, K-means clustering is used
to determine the parameters of a basis function and to determine the
number of hidden neurons (which is equal to the number of clusters
given by the K-means algorithm).

In the CSI-RBF model adopted in MiFi, the CSI amplitude sample
sequences are clustered based on a similarity score, which is defined to
be the Euclidean distance between the amplitude samples and the cluster
center. The Euclidean distance between two GSI amplitude sequences V'
and V? (in the form of two K-element time series) is computed by

DVLV?) =\ (V! =122 ek (V) = V) ©
3.6.2. CSI-RBF

RBF neural networks have the desirable capability of global approxi-
mation, by overcoming the shortcomings of slow convergence and local
minima Johnson and Wichern (2002). Thus it is capable of modeling
nonlinear relationships with fast convergence. Due to such advantages,
we incorporate RBF neural networks in MiFi for rapid detection of wheat
mildew states.

The MiFi system leverages the RBF neural network as a classifier.
The basic structure of RBF consists of input neurons, hidden neurons,
and output neurons, as shown in Fig. 6. In our MiFi design, the input
layer is clustered and the CSI amplitude matrix V = (V},V,,...,V,) is
passed to the hidden layer with F hidden neurons. The hidden layer
then maps the network inputs in a non-linear manner, with each hidden
neuron connected to each cluster center and width. Multiple activation
functions can be used in the hidden layer to maximize the accuracy of
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Fig. 5. CSI amplitude samples collected from each
subcarrier after calibration, for selecting the most sen-
sitive subcarrier.
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the output. In MiFi, the Gaussian function is adopted, given by

9(u):e{’(u_ )2}, (10)

where v, y, and p are the input vectors, cluster center vectors, and hid-
den neuron widths obtained by K-means clustering Johnson and Wich-
ern (2002). Here the number of hidden neurons is equal to the number
of clusters.

The output layer implements a weighted sum linear function to the
output of the hidden layer. The m = 3 categories of wheat mildew states
are then detected. The linear function in the output layer is given by:

N
i

F
Zy = ym(w,v) = Z Wiy - 0;(V) + b,
j=1

an

where Z,, is the mth output neuron, w;,, is the weight from the jth hid-
den neuron to the mth output neuron, 6;(-) is the jth Gaussian function
in the hidden neuron, and 4 is the deviation. The CSI amplitude data col-
lected from different mildew states are classified into m = 3 categories.
The weights between the hidden layer and the output layer can be easily
determined by linear regression using the ordinary least squares (OLS)
method.

3.7. Mildew detection

In the mildew detection module, the wheat mildew detection clas-
sification matrix is derived through the combination of linear and non-

linear RBF neural network models, which is given by
Z=[Zl,Zz,Z3], (12)

In (12), the Z, vector is the output regarded as normal stage, the Z,
vector is the output regarded as initial stage of mildew, and the Z; vector
is the output regarded as complete mildew.

4. Implementation, experiments and discussions
4.1. Wheat preparation
We use real wheat samples in different stage of mildew develop-

ment in our experiments. In Figs. 7(a) and 7(b), we show the normal
wheat sample and the mildewed wheat sample, respectively. The sample
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(a) Normal wheat

shown in Fig. 7(b) was taken from the chamber with constant temper-
ature and humidity on the eighth day, when the sample is completely
mildewed. We measure the temperature and humidity inside both wheat
samples. In addition, we employ a standard drying method to measure
the moisture content of the wheat sample, which uses a high-speed uni-
versal pulverizer and an electrothermal constant temperature blast dry-
ing oven, as shown in Fig. 8.

During the experiments, we take three different types of samples of
wheat with the same weight to test their mildew conditions, including
the normal wheat sample, the sample in the initial stage of mildew, and
the sample in the complete stage of mildew. The water content, temper-
ature, and humidity of the three types of wheat samples are provided
in Table 2. It can be seen that the temperature, humidity, and inter-
nal air humidity of the wheat samples after mildew are all significantly
increased.
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Fig. 6. The system architecture of the CSI-RBF neural
network model.

Output nodes

Fig. 7. The wheat samples used in our experiments.

4

(b) Mildewed wheat

Table 1
Experimental Wheat Sample Conditions.

Normal  Initial Stage of Mildew  Complete Mildew
Moisture 11.8% 12.9% 16.8%
Temperature 17 °C 20 °C 30°C

Internal air humidity =~ 32% 48% 77%

4.2. Implementation of the mi-Fi system

The prototype of MiFi is implemented using two Dell PP181 laptops
equipped with Atheros ARSBHB NICs. One laptop serves as the transmit-
ter using a single antenna, and the other laptop serves as a receiver us-
ing three antennas. Both laptops run the kernel 4.1.10+ 32-bit Ubuntu
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(a) The high speed

disintegrator. drying oven.

(a) The LOS scenario

Table 2
Comparison between MiFi system and manual detection of wheat mildew.

Wheat Samples MiFi (LOS) MiFi (NLOS) Manual Detection
1. Normal v v
2. Normal v v v
3. Normal v v v
4. Initial Stage of Mildew 4/ X X
5. Initial Stage of Mildew X v v
6. Initial Stage of Mildew ~ / v v
7. Initial Stage of Mildew 4/ X X
8. Complete Mildew v v v
9. Complete Mildew v v v
10. Complete Mildew v v v

Linux 14.04 operating system and have 2 GB of RAM. The transmitter
keeps on sending WiFi packets, while the receiver extract CSI samples
for each received packet through the device driver.

International Journal of Cognitive Computing in Engineering 3 (2022) 9-23

Fig. 8. The oven-drying method for measuring the
moisture content in wheat samples.

universal (b) Electric thermostat blast

Fig. 9. Experimental configuration of the MiFi system.

(b) The NLOS scenario

We conduct extensive experiments in the Research Laboratory in the
campus of Henan University of Technology, Zhengzhou, China. To test
the effectiveness of the proposed MiFi system, experiments are carried
out in both LOS and NLOS scenarios, which are shown in Figs. 9(a)
and 9(b), respectively. In both cases, we place the transmitter and re-
ceiver on both ends of a bench, and different wheat samples in the mid-
dle for acquiring WiFi CSI data.

4.3. Experimental results

Fig. 10 presents the detection accuracy of wheat mildew states in the
LOS scenario. It can be seen that when the mildew state of the wheat
sample is normal or completely mildewed, the MiFi system can achieve
a detection accuracy of over 90% in both cases. Specifically, the detec-
tion accuracy is 91.34% and 92.6% for the normal and complete stages,
respectively. When the wheat sample is in the initial stage of mildew,
the detection accuracy of MiFi becomes lower than 90%. However, the
detection accuracy in this case is 87.5%, which is still acceptable. We
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conclude that the MiFi system can accurately detect wheat mildew state
in the LOS scenario.

Fig. 11 presents the detection accuracy results of wheat mildew de-
tection in the NLOS scenario. It can be seen that when the state of the
wheat sample is normal or completely mildewed, MiFi can achieve a de-
tection accuracy of over 90% in both cases, which are 90% and 91.5%,
respectively. When the wheat sample is in the initial stage of mildew,
the accuracy of MiFi becomes lower than 90%, which is 89.1% and is
still acceptable. We conclude that the MiFi system can effectively detect
wheat mildew state in the NLOS scenario as well.

Present mildew detection is mostly based on manual operations
(i.e., inspection by an expert). We compare the proposed MiFi sys-
tem with manual wheat mildew detection to illustrate the effective-
ness of our proposed method. Specifically, we prepared ten wheat sam-
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ples, where three examples are normal, four samples are in the initial
stage of mildew, and three samples are in the complete mildew stage.
We first use the MiFi system to examine the samples in both LOS and
NLOS scenarios. Then manual detection is executed for the ten sam-
ples. Table 2 presents the results of wheat mildew detection by MiFi
and manual detection. The “ \/” sign indicates correct detection results,
while the “X” sign indicates misdetection. Based on the results in the ta-
ble, we find that both MiFi and manual detection are highly effective for
both normal wheat and completely mildew wheat samples. For the sam-
ples in the initial stage of mildew, both MiFi and manual detection have
some misdetection results, since this mildew stage is much harder to
detect.

From these experiments, we show that the proposed MiFi system
is effective for detecting wheat mildew state in both LOS and NLOS
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scenarios, as well as achieving a performance comparable to manual
detection by an expert.

4.4. Impact of system parameters

We next examine the impact of MiFi system design parameters on the
mildew detection accuracy. We examine the impacts of different trans-
mit antennas, different distances between the transmitter and receiver,
the spread parameter setting, the K-means algorithm, the CSI subcar-
rier selection, the ratio of training data to test data, the wheat sample
container, and the antenna type.

We first examine the impact of using different antennas. Fig. 12 plots
the average detection accuracy of achieved by using different antennas
at the transmitter in the LOS and NLOS scenarios. Note that the receiver
always uses three antennas to receive packets. The results show that the
average mildew detection accuracy by using each of the three anten-
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nas is always higher than 90%. The difference in detection accuracy of
using different transmit antennas is negligible, which evidence the ro-
bustness of MiFi. Using any of the transmit antennas in the MiFi system
can effectively detect wheat mildew in both LOS and NLOS scenarios.
We next examine the mildew detection accuracy for different
transmitter-receiver distances. Because the difference among the detec-
tion results of using the three transmit antennas is again very small,
we only present the results using transmit antenna 1 as an example.
Fig. 13 shows the average detection accuracy for different distances be-
tween the transmitter and receiver in the LOS and NLOS scenarios. It can
be seen that for different distances in the range of 30cm to 150cm, the
average detection accuracy using CSI amplitude data is very stable, and
the detection accuracy of the MiFi system is always higher than 90%.
We also consider the impact of different spread parameter values
in the RBF network on the detection accuracy. The larger the spread
parameter value, the more the hidden neurons are needed, which will
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Fig. 14. Average detection accuracy achieved by us-
ing different spread parameter values in the LOS and
NLOS scenarios.

Fig. 15. Average detection accuracy of MiFi with and

without K-means clustering in the LOS and NLOS sce-
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incur more computation. In addition, the smaller the spread parame-
ter value, the worse the performance of the neural network. Thus, the
best value needs to be tuned. Fig. 14 presents the average detection ac-
curacy achieved by using different spread parameter values in the LOS
and NLOS scenarios. We find that when the spread parameter is set to
3, the average detection accuracy will be the highest. When the spread
value is less than 3 or greater than 3, the average detection accuracy
of the system will drop below 90% in both cases. Therefore, the spread
parameter value is set to 3 in the MiFi system.

Next, we study the impact of K-means clustering in the RBF network
on the detection accuracy. Fig. 15 shows the average detection accuracy
of the system with and without K-means clustering in the LOS and NLOS
scenarios. The figure shows that, when K-means clustering is not used,
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Directional Antenna

the average detection accuracies in the LOS and NLOS scenarios drop to
74.75% and 73.49%, respectively, from the over 90% accuracy achieved
when K-means clustering is used. Therefore K-means clustering can sig-
nificantly improve the detection performance of the MiFi system.

In MiFi, the CSI data from the most sensitive subcarrier is selected
and used for mildew detection. Fig. 16 presents the average detection ac-
curacy achieve with or without subcarrier selection in the LOS and NLOS
scenarios. The figure shows that the average detection accuracies with-
out subcarrier selection are 82.74% and 80.95% in the LOS and NLOS
scenarios, respectively. These are also much lower than the over 90%
detection accuracy achieved with subcarrier selection. We conclude that
subcarrier selection can significantly improve the detection accuracy of
the system in both LOS and NLOS scenarios.
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Fig. 16. Average detection accuracy of the CSI subcar-

rier selection and non-selection in the LOS and NLOS
scenarios.

Fig. 17. Average detection accuracy with different ra-
tios for training data over test data.
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Since machine learning is used in MiFi, it is also interesting to exam-
ine the impact of the ratio of training data to test data. Fig. 18 shows
the average detection accuracy of different ratios of training data to test
data in LOS and NLOS scenarios. When the ratio is 0.8, the average de-
tection accuracies are higher than 90% in both cases. Specifically, the
average detection accuracy is 90.48% in the LOS scenario and 90.2%
in the NLOS scenario. When the ratio is lower than 0.7, the average de-
tection accuracies in both the LOS and NLOS scenarios drop below than
80%. Therefore the best ratio chosen in the MiFi system is 0.8.

In MiFi, the wheat samples are placed between the WiFi transmitter
and receiver. In this experiment, we examine the impact the way the
wheat samples are placed on the detection performance. Fig. 19 shows
the average detection accuracy of different wheat containers in LOS and
NLOS scenarios. When wheat is placed in an organic glass box and in
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a scattered heap, the corresponding average detection accuracies are
both higher than 90%, while the detection accuracies are close to each
other. When a paper box is used to hold the wheat sample, the average
detection accuracy drops to 82.5% and 80.8% in the LOS and NLOS
scenarios, respectively. Compared with the first two ways of placement,
the result by using the paper box much worse. We can see that carton
boxes have a negative impact on the MiFi system performance.

Finally, we investigates the impact of different types of antenna on
the performance of wheat mildew detection. Fig. 20 shows the average
detection accuracy of wheat mildew using different types of antenna in
LOS and NLOS scenes, where omnidirectional antenna and directional
antenna are used. From Fig. 20, it can be seen that when directional an-
tenna is used, the average detection accuracy is higher than 90%, while
when omnidirectional antenna is used, the average detection accuracy
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Fig. 18. Average detection accuracy with different ratios for training data over
test data.

of wheat mildew drops to 83% and 80.4% in LOS and NLOS scenarios,
respectively. The detection result of omnidirectional antenna is lower
than that of directional antenna, which is due to the fact that omnidirec-
tional antenna is more vulnerable to interference from the environment,
resulting in a degraded detection accuracy.

4.5. Discussions and future work

The proposed MiFi system has been shown effective in a laboratory
environment and is highly suited for detection of wheat samples. How-
ever, there are still uncertain factors need to be dealt with in the real,
complex storage environment. First of all, it will be interesting to inves-
tigate how to deploy the system in the field. Due to the difference in
size and shape of grain inventories in various regions, the gap between
the real site environmental and the laboratory environment should be
investigated and closed. Second, it is important to study the influence
of the human body in the surroundings of the detection system, which
introduces additional interference to the WiFi signal. Finally, it would
be interesting to study the impact of pests in stored wheat. Usually the
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impact of the microbial pests on WiFi signal is very small and can be
ignored. However, larger-sized pests, e.g., mice, will affect the propaga-
tion of WiFi signal. Note that the proposed scheme can also be leveraged
to detect the presence of such larger pests.

Thus, interesting future work is needed on how to develop a WiFi
based system for easy deployment in grain inventories, while robust
mildew detection becomes an important problem. In our future work,
we will consider several approaches to address the challenges of dy-
namic environments and human influence. The first method is to use
adversarial domain adaptation to remove the influence of environment
or human factors while extracting effective features of WiFi CSI for ro-
bust mildew detection. Second, we will consider few-shot learning or
meta-learning to adjust the model parameters when applied to a new
environment, using a small number of new samples Wang et al. (2021a).
In addition, we will develop unsupervised methods (e.g., using a varia-
tional autoencoder) for detection of pest movements using WiFi CSL

5. Related work

Mildew is one of the most critical causes of the damage in food se-
curity. Our work mainly is focused on mildew detection and WiFi-based
contactless sensing. The related works in these two areas are discussed
as follows.

5.1. Mildew detection technology

Traditional mildew detection mainly relies on human manual opera-
tions through smelling and inspection to determine whether the grain is
mildewed. This approach usually requires considerable manpower and
time, and is subjective to the experience of the inspector. It has low
efficiency and could be harmful to the human inspector. In addition,
electronic noise sensors Zhang et al. (2007); Zhao et al. (2008), near-
infrared spectroscopy Fernandez-Ibafiez et al. (2009), image process-
ing Hong et al. (2007); Zhong-zhi et al. (2010) and other methods have
also emerged. The electronic noise sensor method requires to deploy
sensors into the food, which requires considerable manpower and in-
curs high cost. It is also costly to remove the malfunctioning sensors out
of the grain. The use of near-infrared spectroscopy can effectively detect
grain mildew, but near-infrared instruments are expensive and hard to
be deployed in farms and operated by farmers. The image processing

100 ; ; ; Fig. 19. Average detection accuracy using different
wheat containers in LOS and NLOS scenarios.
I 1.0S Amplitude
[ INLOS Amplitude
/\90 - .
&
S
>
Q
S
]
=
Q
Q
<80 .
70 1 1 1

Paper Box Scattered Heap

Organic Glass

Wheat Placement Equipment



P. Hu, W. Yang, X. Wang et al.

International Journal of Cognitive Computing in Engineering 3 (2022) 9-23

Fig. 20. Average detection accuracy for different an-

tenna types in LOS and NLOS scenarios.
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method requires a high-definition camera to achieve a satisfactory de-
tection performance. This method is also hard to be deployed in the
field. Only the surface of the grain pile can be captured by the cam-
era, while the inner part of the grain pile, which is more likely to be
mildewed, is invisible to the camera. Therefore, designing a real-time,
non-destructive, and low-cost mildew detection system is of great value
for food storage.

5.2. Wifi-based contactless sensing

Recently, CSI-based sensing technologies have been applied in many
fields such as indoor positioning, vital signs detection, and gesture and
activity identification Wang et al. (2018). For indoor positioning, CSI
has been widely utilized since it can provide fine-granular information
of the propagation channel than RSS. The deep learning based schemes
DeepFi Wang et al. (2015c, 2017b) and FIFS Xiao et al. (2012) leveraged
CSI amplitude data, while PhaseFi Wang et al. (2015b, 2016b) and BiLoc
systems Wang et al. (2017a) utilized calibrated CSI phase data and dual-
mode CSI data (AoA and amplitude), respectively. The CiFi system Wang
et al. (2020, 2017c) and ResLoc system Wang et al. (2017d) used deep
convolution networks and deep residual sharing learning for indoor lo-
calization, respectively, where CSI images and CSI tensors were used for
learning the location features and for location estimation. In addition to
indoor localization, CSI has also been used in RF sensing applications.
For example, in vital signs monitoring applications, PhaseBeat Wang
etal. (2021b, 2017e) and TensorBeat Wang et al. (2017g) used CSI phase
different data to monitor the respiratory process of a single or multiple
subjects. ResBeat was proposed for robust breathing monitoring using
bio-modal CSI amplitude and phase difference data Wang et al. (2017f),
which are complementary to each other. For activity recognition, RT-
Fall Wang et al. (2016a) and WiFall Wang et al. (2017h) identified
whether the patient falls or not using CSI phase difference and am-
plitude data, respectively. The E-eyes system Wang et al. (2014) and
CARM system Wang et al. (2015a) utilized CSI data for activity recogni-
tion in indoor environment. The authors in Wu (2016) used CSI sensing
technology to detect metal, while Wi-Fire Zhong et al. (2017) used CSI
data to detect fire events. Recently, WiFi CSI have been leveraged for
wheat moisture detection Yang et al. (2018a,b) as well as soil detec-
tion Ding and Chandra (2019). To the best of our knowledge, this is the
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first work that uses WiFi based contactless sensing for wheat mildew
detection.

6. Conclusion

We proposed to use commodity WiFi for contact-free mildew de-
tection for stored grain. In particular, we presented MiFi, a low-cost
and non-destructive wheat mildew detection system based on WiFi CSIL
We introduced the background of wheat mildew detection, and demon-
strated the feasibility of wheat mildew detection using CSI amplitude
data. We then presented the MiFi system design, including CSI data ac-
quisition, data preprocessing, CSI-RBF detection modeling, and mildew
detection modules. Our experimental results demonstrated the impact of
various design parameters on the detection performance of the proposed
MiFi sytem, and validated the high efficacy of MiFi, which achieved an
average accuracy over 90% under both LOS and NLOS scenarios.
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