ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2022, 58, 1211

Received 10th November 2021 Accepted 21st December 2021

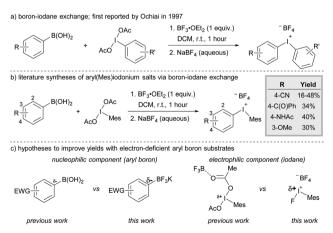
DOI: 10.1039/d1cc06341c

rsc.li/chemcomm

Refining boron-iodane exchange to access versatile arylation reagents†

Shubhendu S. Karandikar and David R. Stuart **D**

Aryl(Mes)iodonium salts, which are multifaceted aryl transfer reagents, are synthesized via boron-iodane exchange. Modification to both the nucleophilic (aryl boron) and electrophilic (mesityl- λ^3 -iodane) reaction components results in improved yield and faster reaction time compared to previous conditions. Mechanistic studies reveal a pathway that is more like transmetallation than SEAr.


Boron-iodane exchange, originally reported by Ochiai and co-workers, has become a standard method to synthesize symmetrical and unsymmetrical diaryliodonium salts (Scheme 1a).² This includes the synthesis of aryl(Mes)iodonium‡ salts, which are widely used as aryl transfer reagents in metal-catalyzed reactions,³ metal-free *ipso*-substitution reactions,⁴ and as aryne precursors.⁵ However, low yielding boron-iodane exchange with electron-deficient arylboronic acids diminishes the impact of this strategy to aryl(Mes)iodonium salts and their eventual use as reagents (Scheme 1b). 3b,c,6 The reduced reactivity of MesI(OAc)2 relative to PhI(OAc)2 (PIDA) may be attributed to increased steric effects. Given our interest in these compounds as aryne precursors,⁵ we have considered two distinct approaches to improve the yield of aryl(Mes)iodonium salts, especially from electron-deficient aryl boron compounds: (1) use a more nucleophilic aryl boron source and (2) generate a more electrophilic iodane in situ (Scheme 1c). The mechanistic insight gained from competitive Hammett correlation based on the former approach suggests that boron-iodane exchange lies closer to transmetallation than S_EAr on the spectrum of arene functionalization mechanisms.

We selected 4-nitrophenyl (1a) boron reagents as representative electron-deficient substrates to test our hypothesis on tuning nucleophilicity by changing the boron group (Table 1).⁷ Synthesis of the corresponding aryl(Mes)iodonium salt has not been demonstrated in the literature by this pathway, and so we

Portland State University, Chemistry, 1719 SW 10th Ave, Science Research and Teaching Center, Portland, Oregon 97201, USA. E-mail: dstuart@pdx.edu † Electronic supplementary information (ESI) available. See DOI: 10.1039/

first tested the original Ochiai conditions. We observed a low yield under previously reported conditions with the arylboronic acid 1a-B(OH)₂, which was increased slightly at longer reaction time (Table 1, entries 1 and 2). Additionally, the less nucleophilic aryl pinacolboronate 1a-B(pin) resulted in only trace product, but the more nucleophilic 1a-BF₃K produced 2a in moderate yield (Table 1, entries 3 and 4).7 Continuing with 1a-BF₃K, a similar yield was obtained in MeCN as solvent (52%) and higher temperature increased the yield to 85% (Table 1, entries 5 and 6). Notably, DiMagno⁸ and Legault⁹ have used potassium aryltrifluoroborates to synthesize other unsymmetrical diaryliodonium salts with electron rich (i.e., methoxy substituted) rings, though we are not aware that this strategy has been used to address low yields with electron withdrawing substituents. Several other Lewis and protic acids were also tested as activators for MesI(OAc)₂ though none provided higher yield than BF₃ (Table 1, entries 7 and 8). 10 Two other important features of the conditions developed here are the replacement of chlorinated solvent, DCM, with greener acetonitrile, and reduction of the reaction time from overnight to one hour or less.

Our hypothesis on the electrophilicity of the iodane component was inspired by Shafir's work on acid activation of

Scheme 1 Ochiai reaction to access diaryliodonium salts.

ChemComm Communication

Table 1 Screening of reaction conditions^a

O ₂ N [B]	+	OAc AcO Mes	BF ₃ •OEt ₂ (1 equiv.) solvent, temp., 1 hour	BF ₄ Mes
1a		(1.2 equiv.)		O ₂ N 2a

Entry	[B] group	Solvent	Temperature	$Yield^b$ (%)
1	B(OH) ₂	DCM	r.t.	11
2	$B(OH)_2$	DCM	r.t.	21^c
3	B(pin)	DCM	r.t.	< 5
4	BF_3K	DCM	r.t.	56
5	BF_3K	MeCN	r.t.	52
6	BF_3K	MeCN	65 °C	85 $(70)^d$
7	BF_3K	MeCN	65 °C	70^e
8	BF_3K	MeCN	65 °C	53^f

^a Conditions: 1a (0.1 mmol, 1 equiv.), MesI(OAc)₂ (0.12 mmol, 1.2 equiv.), BF₃·OEt₂ (0.1 mmol, 1 equiv.), MeCN (1 mL), see above for temp, 1 hour. ^b Yield determined by ¹H NMR spectroscopy with ethylene carbonate as internal standard. ^c 24 hour reaction time. ^d Isolated yield. ^e TMS-OTf used instead of BF₃·OEt₂. f TfOH used instead of BF₃·OEt₂.

phenyliodine dicarboxylates, 11 and reports by Shreeve, DiMagno, Legault, and Gilmour on the use of Selectfluor as an oxidant for aryl iodides.^{8,9,12} Specifically, Shafir's work suggests significant lowering of the LUMO for cationic [PhI(OAc)]⁺ relative to PhI(OAc)₂·BF₃, and Gilmour's work suggests a related fluxional acetonitrile solvated [ArIF]+ species is obtained by in situ oxidation of ArI with Selectfluor. 11,12b Therefore, we surveyed reaction conditions for 1a-BF3K with mesityl iodide and several F⁺-oxidants (Table 2). Indeed, Selectfluor 3 as oxidant provided the product 2a, though in low yield (6%, Table 2, entry 1). N-Fluoropyridinium tetrafluoroborate 4 as oxidant did not result in any product formation, consistent with Shreeve's observations with related oxidants (Table 2, entry 2). 12a

Table 2 Reaction screening with F⁺ oxidants^a

PF ₃ K +	Mes [F*]-oxidant MeCN, 65 °C, 15 min.	BF ₄ Mes O ₂ N 2a
[F ⁺]-oxidants		
CI N 2 BF ₄	BF ₄	CI N+ CI F
3	4	5

Entry	1a equiv.	Mes-I equiv.	[F ⁺] (equiv.)	Yield ^b (%)
1	1	1	3 (1.2)	6
2	1	1	4 (1.2)	< 5
3	1	1	5 (1.2)	47
4	1	2	5 (2)	61
5	1	1	5 (2)	62
6	2	1	5 (1.2)	48
7	2	1	5 (2)	89 $(81)^c$
8^d	2	1	5 (2)	$89 (81)^{c}$ < 5

^a Conditions: 1a (see Table), Mes-I (see Table), F⁺-oxidant (see Table), MeCN (1 mL), 65 °C, 15 min, note limiting reagent = 0.1 mmol. b Yield determined by crude 1 H NMR spectroscopy with ethylene carbonate as internal standard, based on 0.1 mmol scale of limiting reagent (see Table). c Isolated yield of **2a**-OTf on 0.5 mmol scale of Mes-I. d Used boronic acid of **1a**.

However, N-fluoro-2,6-dichloropyridinium tetrafluoroborate 5 as oxidant resulted in moderate yield of 2a (47%, Table 2, entry 3). Given that the putative [MesIF]⁺ is likely a very reactive intermediate, we increased the stoichiometry of both the electrophile and nucleophile components in order to more efficiently trap it and form product 2a. Increasing the equivalents of iodomesitylene and 5 resulted in a slight increase in yield to 61% (Table 2, entry 4). We found that increasing the equivalents of 1a alone did not result in improved yield of 2a (Table 2, entries 5 and 6). However, an increase in the equivalents of both 1a and oxidant 5 resulted in high yield of 2a (89%, 81% isolated yield, Table 2, entry 7). Consistent with our observations on the original Ochiai reaction, using 1a-B(OH) as the nucleophile resulted in very low yield of 2a (Table 2, entry 8). Although the highest yield with this approach uses two equivalents of the aryl boron reagent and iodomesitylene as the limiting reagent, the reaction is complete within 15 minutes.

The scope of the reaction was evaluated for the conditions developed with MesI(OAc)₂ because 1 is used as the limiting reagent in this case (Table 3). During our preliminary analysis of scope we found that some aryl(Mes)iodonium tetrafluoroborate salts gave very low isolated yield despite high yield based on crude ¹H NMR spectroscopy. Further analysis revealed that these salts are partially water soluble which was confirmed by low recovery from a liquid-liquid extraction between water and DCM.¹³ However, although the aryl(Mes)iodonium tetrafluoroborate salts may be obtained directly without the need for aqueous NaBF4 as described in the original Ochiai reaction, we found that omitting an aqueous extraction resulted in low purity of product. That is, artificially high yield of product was obtained due to inorganic impurities that were invisible by standard analytical characterization techniques (NMR, HRMS) and was only identified when product purity was determined by QNMR. We found that washing the reactions with NaOTf resulted in better recovery and generally higher isolated yields and high purity of product (\sim 95%). We primarily evaluated the scope with electron-deficient substrates 1, though several electron-rich substrates and heterocycles were also included (Table 3). In line with our goal, improved yield of aryl(Mes)iodonium salts 2 were achieved in almost all cases where comparison to previous literature yield is possible.¹⁴ For instance, substrates 1b, c, e, g-j, n-p, which contain electron-withdrawing substituents, lead to formation of the corresponding products 2 in yields ranging from 42-80% yield (62% avg.; Table 3). Conversely, these same products were obtained previously in yields ranging from 16-64% (41% avg.; Table 3). In three cases, **1b**, **j**, **n** the yields obtained here and previously are similar (i.e., within 3%), though in many of the other cases the improvement in yield is much greater (14-43% increase; Table 3). This approach also works for 1 with electron-rich substituents, 1k-m, q, r and heterocyclic substrates 1s-v. Finally, based on QNMR, all products were obtained in high purity (91-99%, 96% avg; Table 3). A limitation of this work, which remains a limitation of other boron-iodane exchange reactions, is that potassium pyridyl trifluoroborate salts resulted in complex mixtures and product could not be isolated.

ChemComm Communication

Table 3 Evaluation of scope^a

Entry	R-group on 1	Yield of 2^b (NMR) c (%)	Purity ^d (%)	Lit yield (%)
1	1a (4-NO ₂)	70 (85)	95	_
2	1b (4-CN)	42 (82)	99	$16-44^{3b,6}$
3	1c (4-SO ₂ Me)	65 (85)	93	35^{3b}
4	1d (4-CF ₃)	65 (82)	98	_
5	1e $(4-CO_2Me)^e$	80 (99)	99	64^{4g}
6	1f (4-CO ₂ Bn)	76 (93)	92	_
7	1g (4-Bz)	44 (75)	99	30^{3b}
8	1h (4-OCF ₃)	76 (88)	99	33^{4g}
9	1i (4-NHAc)	64 (88)	95	40^{3d}
10	1j (4-Cl)	48 (97)	91	45^{3b}
11	1k (4-OMe)	89 (98)	94	$70-85^{3a,b,f,6}$
12	1l $(4-Me)^x$	80 (97)	99	70^{3f}
13	1m (4- <i>i</i> -Bu)	68 (83)	99	_
14	1n (3-CHO)	60 (96)	94	57-63 ^{3d,e}
15	10 (3-CO ₂ Me)	66 (92)	96	35^{3b}
16	1p (3-OMe)	60 (84)	99	30^{3b}
17	1q (3-Cl-4-OMe)	53 (84)	99	
18	1r (R=H)	92 (99)	97	$64-99^{3b,g,6}$
19	1s	59 (87)	93	
20	1t	77 (93)	98	90^{3g}
21	1u	60 (79)	96	$68-84^{3c}$
22	1v	69 (78)	99	_

^a Conditions: 1 (0.5 mmol, 1 equiv.), MesI(OAc)₂ (0.6 mmol, 1.2 equiv.), BF₃·OEt₂ (0.6 mmol, 1.2 equiv.), MeCN (5 mL), 65 °C, 1 hour. ^b Isolated yield of triflate salt. ^c Yield of tetrafluoroborate salt determined by crude ¹H NMR spectroscopy vs. ethylene carbonate as internal standard (on 0.1 mmol scale of 1). ^d Purity of isolated material determined by QNMR with ethylene carbonate as internal standard. ^e Isolated as BF₄ salt.

Aryl boron compounds have been used extensively in both metal-free and metal-catalysed transformations, and their wide availability is an attractive feature. Irrespective of the reaction partner, substitution occurs almost exclusively at the *ipso* position. ¹⁵ However, Knochel and Mayr have discovered that the trifluoroborate group activates remote positions to attack

carbocations in some potassium heteroaromatic trifluoroborates. ¹⁶ For example, **1t**, which has a trifluoroborate group at the 3-position, reacts as π -nucleophile with benzhydrylium ion at the 2-position (eqn (1), left). ¹⁶ On the other hand, **1t** reacts with iodane electrophile derived from MesI(OAc)₂ and BF₃ at the *ipso* 3-position (eqn (1), right). These results point toward the possibility of different mechanisms for reaction of **1t** with carbon and iodine derived electrophiles, where in the latter is less reliant on the furan π -system. We further probed the relationship between substituent effects and the reaction

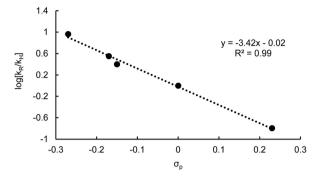


Fig. 1 Competitive Hammett correlation

mechanism by a one-pot competitive Hammett correlation. Specifically, competition experiments between compounds 1j-m bearing para-substituents and unsubstituted 1r were conducted and the ratio of products 2j-m/2r measured by crude ¹H NMR spectroscopy. A negative slope was observed consistent with a faster reaction rate for substrates with electron-donating substituents (i.e., OMe, Me, i-Bu) and a slower rate for substrates with electron-withdrawing substituents (i.e., Cl) relative to unsubstituted 1r (Fig. 1). The magnitude of the slope (ρ -value) can also be used to infer the sensitivity of the reaction mechanism to substituent effects and the degree of positive charge build up in the transition state. The ρ -value obtained in this work is -3.4. For comparison, the ρ -values obtained for bromination of simple arenes is -11.4, 17 bromination of arylboronic acids is -4.6,17 C-H functionalization by Rh,18 Ir, 18 and Ru 19 are -2.3, -2.7, and -2.4, respectively, and boron-palladium transmetallation is -0.5. At the two extremes of these examples are electrophilic aromatic substitution (S_EAr) and transmetallation which are likely connected by a spectrum of mechanisms that resemble each of these. SEAr involves breaking of the aromatic π -system and a positively charged Wheland intermediate which aligns with the large negative ρ -value (-11.4), ¹⁷ whereas transmetallation involves a σ -bond metathesis with very little positive charge build up on the aromatic ring manifested by a very small negative ρ -value (-0.5). Intermediate between these extremes, though closer to transmetallation, are reactions of arylboron compounds with non-metal electrophiles such as bromine¹⁷ and iodine, as well as C-H functionalization reaction by metal complexes of Rh, Ir, and Ru. 18,19 The C-H functionalization reactions have been proposed to proceed through a σ-bond metathesis-type transition state involving concerted metalation-deprotonation (CMD), which does not involve breaking the aromatic π -system. ^{18,19} Given the similar value obtained in this work (-3.4) to those obtained for a variety of concerted reactions, we propose that boron-iodane exchange likely proceeds through a mechanism that appears closer to transmetallation than S_EAr.

Communication ChemComm

In conclusion, we have analysed the nucleophilic and electrophilic components of boron-iodane exchange to synthesize aryl(Mes)iodonium salts and improved the yields, especially for electron-deficient substrates. Mechanistic analysis via Hammett correlation suggests a σ-bond metathesis type pathway with relatively little involvement of the aromatic π -system. We plan to use this approach in strategic applications of aryl(Mes)iodonium salts in synthesis.

We acknowledge Portland State University (PSU) and the National Science Foundation (NSF, CHE #1856705) for partial support of this work. S. S. K. is grateful to the El-Mansy family for a summer fellowship. The NSF provided instrument funding for the BioAnalytical Mass Spectrometry Facility at PSU (MRI 1828753).

S. S. K. and D. R. S. conceptualized the project. S. S. K. developed the methods and conducted the experiments. S. S. K. and D. R. S. analysed the experimental results. S. S. K. assembled the ESI.† D. R. S. wrote the manuscript with input from S. S. K.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- ‡ Mes = 2,4,6-trimethylphenyl.
- 1 M. Ochiai, M. Toyonari, T. Nagaoka, D.-W. Chen and M. Kida, Tetrahedron Lett., 1997, 38, 6709.
- (a) M. A. Carroll, V. W. Pike and D. A. Widdowson, Tetrahedron Lett., 2000, 41, 5393; (b) M. Bielawski, D. Aili and B. Olofsson, J. Org. Chem., 2008, 73, 4602; (c) R. J. Phipps and M. J. Gaunt, Science, 2009, 323, 1593-1597; (d) A. J. Hickman and M. S. Sanford, ACS Catal., 2011, 1, 170-174; (e) M. G. Suero, E. D. Bayle, B. S. L. Collins and M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 5332; (f) A. J. Walkinshaw, W. Xu, M. G. Suero and M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 12532; (g) S. G. Modha and M. F. Greaney, J. Am. Chem. Soc., 2015, 137, 4602; (h) Y. Gu, D. Chang, X. Leng, Y. Gu and Q. Shen, Organometallics, 2015, 34, 3065; (i) C. J. Teskey, S. M. A. Sohel, D. L. Bunting, S. G. Modha and M. F. Greaney, Angew. Chem., Int. Ed., 2017, 56, 5263.
- 3 (a) A. Bigot, A. E. Williamson and M. J. Gaunt, J. Am. Chem. Soc., 2011, 133, 13778; (b) N. Ichiishi, A. J. Canty, B. F. Yates and M. S. Sanford, Org. Lett., 2013, 15, 5134; (c) B. S. L. Collins, M. G. Suero and M. J. Gaunt, Angew. Chem., Int. Ed., 2013, 52, 5799; (d) N. Ichiishi, A. F. Brooks, J. J. Topczewski, M. E. Rodnick, M. S. Sanford and P. J. H. Scott, Org. Lett., 2014,

- 16, 3224; (e) Z. Huang, Q. P. Sam and G. Dong, Chem. Sci., 2015, **6**, 5491; (f) S. Korwar, M. Burkholder, S. E. Gilliland III, K. Brinkley, B. F. Gupton and K. C. Ellis, Chem. Commun., 2017, 53, 7022; (g) T. S. Alexander, T. J. Clay, B. Maldonado, J. M. Nguyen and D. B. C. Martin, Tetrahedron, 2019, 75, 2229.
- 4 (a) J. Malmgren, S. Santoro, N. Jalalian, F. Himo and B. Olofsson, Chem. - Eur. J., 2013, 19, 10334; (b) J. Guo, S. Dong, Y. Zhang, Y. Kuang, X. Liu, L. Lin and X. Feng, Angew. Chem., Int. Ed., 2013, 52, 10245; (c) Z. Chai, B. Wang, J.-N. Chen and G. Yang, Adv. Synth. Catal., 2014, 356, 2714; (d) C. Dey, E. Lindstedt and B. Olofsson, Org. Lett., 2015, 80, 2513; (e) X. Qian, J. Han and L. Wang, Adv. Synth. Catal., 2016, 358, 940; (f) D. I. Bugaenko, M. A. Yurovskaya and A. V. Karchava, Org. Lett., 2018, 20, 6389; (g) H. Yuan, Y. Du, F. Liu, L. Guo, Q. Sun, L. Feng and H. Gao, Chem. Commun., 2020, 56,
- 5 (a) S. K. Sundalam, A. Nilova, T. L. Seidl and D. R. Stuart, Angew. Chem., Int. Ed., 2016, 55, 8431; (b) M. Wang and Z. Huang, Org. Biomol. Chem., 2016, 14, 10185; (c) D. R. Stuart, Synlett, 2017, 275; (d) Z. Zhang, X. Wu, J. Han, W. Wu and L. Wang, Tetrahedron Lett., 2018, 59, 1737; (e) H. Chen, J. Han and L. Wang, Beilstein J. Org. Chem., 2018, 14, 354; (f) A. Nilova, P. A. Sibbald, E. J. Valente, G. A. Gonzalez-Montiel, H. C. Richardson, K. S. Brown, P. H. Y. Cheong and D. R. Stuart, Chem. - Eur. J., 2021, 27, 7168.
- 6 O. Sadek, D. M. Perrin and E. Gras, J. Fluorine Chem., 2019, 222, 68.
- 7 G. Berionni, B. Maji, P. Knochel and H. Mayr, Chem. Sci., 2012, 3, 878. 8 L. Qin, B. Hu, K. D. Neumann, E. J. Linstad, K. McCauley, J. Veness,
- J. J. Kempinger and S. G. DiMagno, Eur. J. Org. Chem., 2015, 5919.
- 9 R. Robidas, V. Guerin, L. Provencal, M. Echeverria and C. Y. Legault, Org. Lett., 2017, 19, 6420.
- 10 See the ESI† for the results of other Lewis and protic acids.
- 11 S. Izquierdo, S. Essafi, I. del Rosal, P. Vidossich, R. Pleixats, A. Vallribera, G. Ujaque, A. Lledos and A. Shafir, J. Am. Chem. Soc., 2016, 138, 12747.
- 12 (a) C. Ye, B. Twamley and J. M. Shreeve, Org. Lett., 2005, 7, 3961; (b) I. G. Molnar and R. Gilmour, J. Am. Chem. Soc., 2016, 138, 5004; (c) J. C. Sarie, C. Thiehoff, R. J. Mudd, C. G. Daniliuc, G. Kehr and R. Gilmour, J. Org. Chem., 2017, 82, 11792.
- 13 See the ESI† for yields of recovery from liquid-liquid extraction with different counter anions.
- 14 See the ESI† for a bar chart showing a comparison of yields from this work and those from previous work.
- 15 Strongly electron-donating methoxy substituents can override weakly activating B(pin) group in S_EAr-type reactions with λ^3 -iodane electrophiles, see: T. Dohi, T. Hayashi, S. Ueda, T. Shoji, K. Komiyama, H. Takeuchi and Y. Kita, Tetrahedron, 2019, 75, 3617.
- 16 G. Berionni, V. Morozova, M. Heininger, P. Mayer, P. Knochel and H. Mayr, J. Am. Chem. Soc., 2013, 135, 6317.
- 17 H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 1957, 79, 1913.
- 18 R. A. Alharis, C. L. McMullin, D. L. Davies, K. Singh and S. A. Macgregor, J. Am. Chem. Soc., 2019, 141, 8896.
- 19 R. A. Alharis, C. L. McMullin, D. L. Davies, K. Singh and S. A. Macgregor, Faraday Discuss., 2019, 220, 386.
- 20 T. Nishikata, Y. Yamamoto and N. Miyaura, Organometallics, 2004,