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Abstract—The developments in reinforcement learning provide
a powerful and efficient learning framework for autonomous
robotic systems. However, prior works rarely embed historical
observations due to the exponentially increasing complexity,
which may not perform well for large-scale long-horizon tasks
that might require hundreds and thousands of steps to complete.
In this paper, we propose Recurrent Imitation and Reinforcement
Learning (RIRL) to address the challenges and enable robots
for such tasks. The proposed RIRL incorporates a long short-
term memory (LSTM) network to retain long-term memories,
which could be an effective and efficient method to tackle the
long dependency problem raised in long-horizon robotic tasks.
To assess the performance of the RIRL, we test it with an
optimized path planning problem for a robot to perform a Radio-
frequency identification (RFID) inventory in dynamic and previ-
ously unknown environments. We experimentally validate RIRL’s
feasibility and effectiveness in a visual game-based simulation
platform, where the proposed RIRL model outperforms three
baseline schemes with considerable gains.

Index Terms—Long-horizon task, long short-term memory
(LSTM), robotics, deep reinforcement learning (DRL).

I. INTRODUCTION

With the considerable developments of deep learning meth-

ods in the past few years, reinforcement learning (RL), a

method that has been proposed for over 20 years [1], is

equipped with deep learning models and re-attracted the at-

tention of academia and industry. It has been widely deployed

to lead intelligent agents to interact with an environment to

maximize the obtained cumulative rewards. Meanwhile, more

and more robots are being deployed in various environments

to accomplish tasks, such as inventory counting in retails

and warehouses [2], [3]. In the past few years, researchers

have shown a growing interest in applying deep reinforcement

learning (DRL) methods to enable robotic systems to task in

complex environments. For example, Kober et al. presented an

automated meta-parameter acquirement for adjusting robots’

movement by reinforcement learning [4]. The authors in [5]

proposed a DRL-based motion planner that generates linear

and angular velocities directly for navigation without an ex-

isting map. A model-based reinforcement learning framework

for legged locomotion was introduced in [6], which allows

the learned model to generalize to new tasks without any fine-

tuning or using any extra collected data.

This work is supported in part by the NSF under Grant ECCS-1923163.

Currently, the RL methods applied to robotics could be

roughly divided into two categories: traditional policy-based

reinforcement learning and imitation learning methods. Some

RL based algorithms only utilize the received rewards to gain

an approximated optimal policy, which makes them heavily

rely on the effectiveness of the reward function [7]. In [8],

the author proposed two new dense reward functions to learn

robust strategy in path planning tasks. The reward sketching

method was proposed in [9] that extracts human preferences

to learn a reward function for a new task. However, manually

designed reward functions that gratify the desirable agent

actions are extremely complicated and usually not feasible,

especially in the scenarios of dynamic and real environments

with only sparse rewards. Moreover, even an expert cannot

accurately quantify the reward of every behavior for various

agents. A practical solution for the problems above is imitation

learning (IL). Instead of manually designing a reward function,

a set of well-prepared demonstrations provided by experts are

followed and imitated by agents to learn the optimal policy

of given tasks. An imitation learning method was introduced

by Abbeel et al. in [10] to predict the agent’s actions from

a set of demonstrations and sequential states for another

demonstration with different initial conditions. However, the

agent must consume over 100,000 demonstrations to learn a

simple strategy for reacting to different situations and initial-

izations for the same task. Ho and Ermon proposed Generative

Adversarial Imitation Learning (GAIL) [11], which combined

Generative Adversarial Network (GAN) [12] with imitation

learning. First, it trains the discriminator with the current

policy’s sampled data and expert data. Then, the discriminator

plays the role of reward function to lead the agent to learn the

optimal policy.

Long-horizon tasks planning is a challenging and open

problem in robotics. Its complexity grows exponentially with

increased numbers of acting steps and sub-tasks. In many

of these applications, the robotic agents need to execute a

very large number of steps to reach the goal in unseen

environments, considering an autonomous robot patrolling,

searching, and retrieving objects in a giant unexplored build-

ing. In [13], the authors simplified the long-horizon policy

learning problem to a hierarchical and goal-conditioned policy,

where the low-level policy only requires a fixed, low number

of steps to accomplish. Their simulation scenario was based
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on a simple kitchen environment, where tasks can be executed

with a short sequence of discrete actions. Pitis et al. designed

a strategy that the agent pursues the maximization of the

entropy of the historical achieved goal distribution instead

of inaccessible goals when facing sparse extrinsic learning

signals [14]. Similarly, in order to solve the sparse extrinsic

reward problem of long-horizon tasks, the authors in [15]

incorporated demonstrations into the RL method that is built

on top of Deep Deterministic Policy Gradients (DDPG). They

focused on teaching agents to stack blocks with a robot arm

by continuous multi-steps control and generalize to varying

goal states. However, the multi-step behavior needs far fewer

steps for achieving the goal than in our target scenario,

which requires thousands of operational steps for a robot to

accomplish the task.

In addition, the training samples impose one more challenge

for deploying RL methods in robotics. An RL based method

requires a great number of training samples. It may take

millions of steps of experience to learn a strategy for a simple

task. It is a great challenge and even infeasible to collect such a

large amount of operational data in many robotic applications.

Although with IL methods, robots are able to learn a robust

strategy with a small number of expert demonstrations in

short-term tasks, they still suffer from compounding errors

and the massive growth of expert demonstration demands

when facing longer and complicated tasks. Some Pioneer-

ing works have exploited methods by combining the RL

with demonstrations to overcome this challenge. For instance,

demonstrations are used to initialize policy and accelerate

training for reinforcement learning [16]. In addition to these

challenges mentioned above, we find an additional difficulty

of key interest: long-term dependency problem, which some

robotic tasks not only depend on the current observation but

also rely on previous observations.

In this paper, we present a novel method called Recurrent

Imitation and Reinforcement Learning (RIRL) to remedy the

above limitations, which enables agents to leverage historical

observations as well as environment feedback for more accu-

rate action prediction. Our method exploits the robustness of

Long Short-Term Memory (LSTM) in representing sequential

information and solving the long-range dependency problem

in long-horizon tasks. The main contributions of our work are

summarized as follows:

1) To the best of our knowledge, this is the first work

to develop an LSTM-embedded imitation network to

better reasoning the underlying relationship among a

sequence of historical data from the demonstration.

Combining with a reinforcement learning network, it

enhances the action prediction ability of the agent by

exploiting historical observations.

2) The proposed model allows the agent to achieve long-

horizon goals with the capability to deal with the ex-

ponentially boosted complexity and uncertainty (e.g., to

explore a large scale of the unknown environment in a

continuous action space).

3) We experimentally validate the feasibility of RIRL in a

visual game-based simulated environment and demon-

strate that the proposed model enables the robot to

perform inventory tasks in a dynamic environment.

The rest of this paper is organized as follows. In Section II,

we present the proposed approach. Our experimental study is

discussed in Section III. Section IV concludes this paper.

II. PROPOSED APPROACH

A. Problem Statement and Challenges

We are interested in large-scale, long-horizon robotic tasks

that require an agent to take thousands of steps to achieve

the goal in unseen and dynamic environments. The problem

can be formulated as an Partially Observable Markov Decision

Process (POMDP) denoted by (S,A, R, T,O,Ω), where S and

A are the state and action spaces, respectively; T (st+1|st, at)
is the state-transition probability for the agent to state st+1

given it was at state st and takes action at; R(st, at) is the

reward function to provide an instant reward rt = R(st, at); Ω
is a finite set of observations that the agent can experience of

its world; O(ot|st) is the probability for the agent to receive

an observation ot while it is at state st.

In a practical robotic application, the state st of the envi-

ronment is hidden from the agent. Instead, it can only partially

perceive the environment to attain an observation ot by built-

in sensors (e.g., cameras, sonar, LIDAR, etc.). Furthermore, to

perform large-scale long-horizon tasks, the action at at step t

not only depends on the current observation ot, but also relies

on the fixed length historical observations o0, o1, ..., ot−1. We

illustrate this long-range dependency problem in Fig. 1, where

a robot is deployed for a patrolling task. It needs to patrol the

area and cycle around the two objects (A and B) to check the

target features, e.g., to inspect the corrosion of power poles or

towers. As shown in Fig. 1(a), the robot at state st gains ob-

servation ot to represent the surrounding environment (such as

its distance to the objects). However, ot lacks the information

for a fully understanding of the environment, such as which

area it has already scanned. Based on the information from

ot, it is difficult to correctly choose the subsequent actions

that could lead to a better navigational path. Fig. 1(b) and

Fig. 1(c) illustrate that if we know the historical information,

the next actions could be easily made to enable the robot with

a better strategy to complete the task. Therefore, in the long-

horizon task scenario, historical observations provide valuable

information for predicting the action at. However, most of the

existing RL based methods predict action a ∼ π(at|ot) only

depending on the current observation, making them perform

badly in the above described scenario. Thus, we formulate

the objective policy as π(at|Ot) to tackle the historical and

instant observations, where Ot = (o0, o1, ..., ot) represents a

finite set including the historical and instant observations.

Our goal is to find such a policy π that maximizes

the expected future discounted reward Eπ[
∑T

t=0
γtrt], where

0 ≤ γ < 1 is a discount factor. We adopt a value-action

function Qπ(at,Ot; θ) = Eπ[
∑T

t=0
γtrt] to represent the

above reward. Therefore, the goal of RIRL is to learn a policy
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value function Qπ for a given policy π, i.e.,

Qπ(at,Ot; θ) = E[rcp(ot, at)+γEat+1∼π[Qπ(at+1,Ot+1)]],
(3)

where θ represents the parameter of the value function Qπ ,

γ is the discount factor for future reward, rcp is a compound

reward that consists of reward from the IL module and the

extrinsic reward while interacting with the environment, i.e.,

rcp(ot, at) = µ · rex(ot, at) + (1− µ) · rim(ot, at), (4)

where µ ∈ (0, 1) is a proportion parameter: a smaller µ

will be implemented if the demonstration data is closer to

the optimal policy. It helps the learning process to trade-off

between demonstration data and engagement of the environ-

ment. In (4), rim = log(D(at,Ot;ω)) is the reward that comes

from the IL module, measuring how similar the action at is

with the “expert policy” from demonstrations. The extrinsic

rewards rex is provided as a sparse function to represent the

basic constraints and rules for the agent to interact with the

environment and guide it to the desired goals. For example, we

can give a penalty if the agent collides with an object in the

environment and a positive reward if it reaches a goal position.

During the training process, policy π will be updated to

choose the actions at to increase Qπ by gaining a larger rex
and rim. From (2), (3), and (4), increasing rim by updating

policy π, which also acts as the generator of the IL module,

will decrease the value of V(ω). Together with the training of

the discriminator in the IL module, which tends to maximize

V(ω), the competitive processes end up with a policy π that

roots with the strategies provided in the demonstration data.

Furthermore, increasing extrinsic rewards rex will eventually

lead the trained policy π to react to the environment with a

better strategy. The built-in LSTM layers in the components

of policy π, value function Qπ , and Discriminator D enhance

the agent with memories for action predicting and evaluation.

Therefore, the proposed RIRL provides an effective means to

train an optimized policy π for long-horizon tasks, especially

for the scenarios that require long-term memories.

III. EXPERIMENTAL STUDY

A. Experiment Setup

We deploy the proposed RIRL system in a simulated envi-

ronment using the Unity3D platform to simulate an application

of deploying a mobile robot for RFID-based inventory in an

apparel store, which is the same scenario as in [2]. Unity3D

is a powerful game engine to render larger, detailed, 3D

environments. It also simulates visually realistic worlds with

sophisticated physics and complex interactions between agents

with varying capacities. These characteristics enable it to be

widely deployed as a simulation tool for the research of a

variety of intelligent agents [20]. As shown in Fig. 5, we

create a four-wall enclosed environment to simulate an apparel

store of dimension 50 × 50m2, which is crowded with racks

(represented by blue circles) and obstacles (e.g., furniture).

RFID tagged items are hosted on the racks. A simulated

robotic agent is deployed to patrol the area to scan all the

RFID tags. The positions of racks and the agent are randomly

generated inside the room at the beginning of each episode.

The agent simulates an RFID-enabled mobile robot controlled

by action at = (vt, φt), where vt ∈ [−vmax, vmax] represents

the linear speed, while vmax is the maximum linear velocity,

and φt ∈ [−φmax, φmax] denotes the rotation speed, while

φmax is the maximum rotation velocity.

The task of the agent is to scan all the RFID tags in the

room with the shortest trajectory. Each training episode ends

with all RFID tags scanned or maximum steps are reached.

The number of agent collisions is also considered as one of

the criteria for measuring the quality of training results. The

robotic agent is equipped with two sensors, a ray-cast sensor

and a simulated RFID reader to collect observations. Unity3D

provides the ray-cast sensor to simulate a widely deployed

Lidar sensor. It detects the surrounding environment by casting

rays and outputs a vector with the detected objects and the

corresponding distances. We design a simulated RFID reader

for the agent to mimic the characteristics of practical RFID

applications. For example, it can only scan the tags within a

detectable range, and the probability of reading a tag decreases

as the distance between the reader and a tag increases.

The RIRL network is implemented with Tensorflow on a

computer with an Intel 9900K CPU and two Nvidia 2080

GPUs. We conducted all our experiments with the same

network: Discriminator D is implemented with one LSTM

layer and two fully connected hidden layers, where each

layer has 128 units. For the DRL network module, both the

value function Qπ and policy π consist of an LSTM layer

with 128 units and three hidden layers each with 512 units.

We set the proportion parameter µ in (4) as 0.1 for the

remaining experiments. In the experiments, the robotic agent

will be deployed in the simulated apparel store, while its initial

position is randomly generated at each episode.

B. Results and Analysis

1) Training Results: We compare the proposed RIRL with

three existing methods: the PPO network introduced in [18],

the GAIL proposed by [11], and the IADRL scheme [17] that

is an RL and IL combined method without the LSTM layers.

We use the same basic reward settings and training parameters

in the same environment set for these four approaches to

guarantee a fair comparison. Fig. 6 plots the cumulative

rewards acquired by the agent when it interacts with the

environment. We only set several basic and sparse reward

configurations: scanning a new RFID tag gains +10 rewards,

collision results in a -1 punishment, and moving costs -0.001

for each step. Our approach, shown as the red solid line in

Fig. 6, achieves the best reward in the training process, which

is higher and more stable compared to the other three methods.

Fig. 7 presents the number of steps for finishing the tag

scanning task in each episode. We set a maximum number of

20,000 steps for each training episode that aims to decrease the

unnecessarily long training time. The red solid line depicts that

our method result stabilizes after around 200 episodes. The

agent implemented with RIRL could stably and consistently
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handle the given tasks within 2,000 steps. Apparently, as

shown in Fig. 7, the other three methods cannot even converge

with the same training process, indicating that the agent is

unable to find a reliable strategy to accomplish the given task.

2) Testing Results: Fig. 8 presents the cumulative distri-

bution function (CDF) of the percentage of unscanned tags

in the testing stage. We test all the four trained models in

200 episodes within the required 20,000 steps. Fig. 8 shows

that in about 96% of the episodes, the proposed RIRL model

scans all the tags, while the IADRL scans all the tags in about

55% of the episodes. Obviously, the GAIL and PPO model

cannot even scan all the tags in an episode. Moreover, RIRL

attains a maximum unscanned tag percentage of 28.2%, which

is much lower than the almost 90% missing rate achieved

by the other three methods. Apparently, the proposed RIRL

exhibits considerably higher effectiveness and robustness for

such long-horizon tasks in dynamic environments.

The experiments validate that our proposed RIRL outper-

forms the three benchmark approaches. It help the agent

to accomplish the long-horizon tag scanning task with high

efficiency and robustness. Moreover, it proves the feasibility of

utilizing the LSTM network to enhance the agent performance

by leveraging historical observations.

IV. CONCLUSION

In this paper, we proposed RIRL, a deep recurrent imita-

tion and reinforcement learning-based system, which enables

agents to accomplish long-horizon tasks in dynamic and

complicated environments. We also experimentally validated

the feasibility of embedding an LSTM layer in the traditional

IL and DRL methods. The outstanding result achieved by

our method proved the effectiveness of leveraging history

observations for enhancing RIRL to solve the long-range

dependency problem in various long-horizon robotic tasks.
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