2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC) | 978-1-6654-3161-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/CCNC49033.2022.9700600

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

RIRL: A Recurrent Imitation and Reinforcement
Learning Method for Long-Horizon Robotic Tasks

t1Zhitao Yu, $Jian Zhang, fShiwen Mao, ¥Senthilkumar CG Periaswamy, and Justin Patton
"Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA
fRFID Lab, Auburn University, Auburn, AL 36849, USA
$Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA 30060, USA
Email: zzy0021@auburn.edu, {jianzhang, smao} @ieee.org, {szc0089, jbp0033} @auburn.edu

Abstract—The developments in reinforcement learning provide
a powerful and efficient learning framework for autonomous
robotic systems. However, prior works rarely embed historical
observations due to the exponentially increasing complexity,
which may not perform well for large-scale long-horizon tasks
that might require hundreds and thousands of steps to complete.
In this paper, we propose Recurrent Imitation and Reinforcement
Learning (RIRL) to address the challenges and enable robots
for such tasks. The proposed RIRL incorporates a long short-
term memory (LSTM) network to retain long-term memories,
which could be an effective and efficient method to tackle the
long dependency problem raised in long-horizon robotic tasks.
To assess the performance of the RIRL, we test it with an
optimized path planning problem for a robot to perform a Radio-
frequency identification (RFID) inventory in dynamic and previ-
ously unknown environments. We experimentally validate RIRL’s
feasibility and effectiveness in a visual game-based simulation
platform, where the proposed RIRL model outperforms three
baseline schemes with considerable gains.

Index Terms—Long-horizon task, long short-term memory
(LSTM), robotics, deep reinforcement learning (DRL).

I. INTRODUCTION

With the considerable developments of deep learning meth-
ods in the past few years, reinforcement learning (RL), a
method that has been proposed for over 20 years [1], is
equipped with deep learning models and re-attracted the at-
tention of academia and industry. It has been widely deployed
to lead intelligent agents to interact with an environment to
maximize the obtained cumulative rewards. Meanwhile, more
and more robots are being deployed in various environments
to accomplish tasks, such as inventory counting in retails
and warehouses [2], [3]. In the past few years, researchers
have shown a growing interest in applying deep reinforcement
learning (DRL) methods to enable robotic systems to task in
complex environments. For example, Kober et al. presented an
automated meta-parameter acquirement for adjusting robots’
movement by reinforcement learning [4]. The authors in [5]
proposed a DRL-based motion planner that generates linear
and angular velocities directly for navigation without an ex-
isting map. A model-based reinforcement learning framework
for legged locomotion was introduced in [6], which allows
the learned model to generalize to new tasks without any fine-
tuning or using any extra collected data.

This work is supported in part by the NSF under Grant ECCS-1923163.

Currently, the RL methods applied to robotics could be
roughly divided into two categories: traditional policy-based
reinforcement learning and imitation learning methods. Some
RL based algorithms only utilize the received rewards to gain
an approximated optimal policy, which makes them heavily
rely on the effectiveness of the reward function [7]. In [8],
the author proposed two new dense reward functions to learn
robust strategy in path planning tasks. The reward sketching
method was proposed in [9] that extracts human preferences
to learn a reward function for a new task. However, manually
designed reward functions that gratify the desirable agent
actions are extremely complicated and usually not feasible,
especially in the scenarios of dynamic and real environments
with only sparse rewards. Moreover, even an expert cannot
accurately quantify the reward of every behavior for various
agents. A practical solution for the problems above is imitation
learning (IL). Instead of manually designing a reward function,
a set of well-prepared demonstrations provided by experts are
followed and imitated by agents to learn the optimal policy
of given tasks. An imitation learning method was introduced
by Abbeel et al. in [10] to predict the agent’s actions from
a set of demonstrations and sequential states for another
demonstration with different initial conditions. However, the
agent must consume over 100,000 demonstrations to learn a
simple strategy for reacting to different situations and initial-
izations for the same task. Ho and Ermon proposed Generative
Adversarial Imitation Learning (GAIL) [11], which combined
Generative Adversarial Network (GAN) [12] with imitation
learning. First, it trains the discriminator with the current
policy’s sampled data and expert data. Then, the discriminator
plays the role of reward function to lead the agent to learn the
optimal policy.

Long-horizon tasks planning is a challenging and open
problem in robotics. Its complexity grows exponentially with
increased numbers of acting steps and sub-tasks. In many
of these applications, the robotic agents need to execute a
very large number of steps to reach the goal in unseen
environments, considering an autonomous robot patrolling,
searching, and retrieving objects in a giant unexplored build-
ing. In [13], the authors simplified the long-horizon policy
learning problem to a hierarchical and goal-conditioned policy,
where the low-level policy only requires a fixed, low number
of steps to accomplish. Their simulation scenario was based

97 8- heifabided ldohsad 22453110 6@ 2022 UREkEsity. DownloadeddB @iy 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

on a simple kitchen environment, where tasks can be executed
with a short sequence of discrete actions. Pitis et al. designed
a strategy that the agent pursues the maximization of the
entropy of the historical achieved goal distribution instead
of inaccessible goals when facing sparse extrinsic learning
signals [14]. Similarly, in order to solve the sparse extrinsic
reward problem of long-horizon tasks, the authors in [15]
incorporated demonstrations into the RL method that is built
on top of Deep Deterministic Policy Gradients (DDPG). They
focused on teaching agents to stack blocks with a robot arm
by continuous multi-steps control and generalize to varying
goal states. However, the multi-step behavior needs far fewer
steps for achieving the goal than in our target scenario,
which requires thousands of operational steps for a robot to
accomplish the task.

In addition, the training samples impose one more challenge
for deploying RL methods in robotics. An RL based method
requires a great number of training samples. It may take
millions of steps of experience to learn a strategy for a simple
task. It is a great challenge and even infeasible to collect such a
large amount of operational data in many robotic applications.
Although with IL methods, robots are able to learn a robust
strategy with a small number of expert demonstrations in
short-term tasks, they still suffer from compounding errors
and the massive growth of expert demonstration demands
when facing longer and complicated tasks. Some Pioneer-
ing works have exploited methods by combining the RL
with demonstrations to overcome this challenge. For instance,
demonstrations are used to initialize policy and accelerate
training for reinforcement learning [16]. In addition to these
challenges mentioned above, we find an additional difficulty
of key interest: long-term dependency problem, which some
robotic tasks not only depend on the current observation but
also rely on previous observations.

In this paper, we present a novel method called Recurrent
Imitation and Reinforcement Learning (RIRL) to remedy the
above limitations, which enables agents to leverage historical
observations as well as environment feedback for more accu-
rate action prediction. Our method exploits the robustness of
Long Short-Term Memory (LSTM) in representing sequential
information and solving the long-range dependency problem
in long-horizon tasks. The main contributions of our work are
summarized as follows:

1) To the best of our knowledge, this is the first work
to develop an LSTM-embedded imitation network to
better reasoning the underlying relationship among a
sequence of historical data from the demonstration.
Combining with a reinforcement learning network, it
enhances the action prediction ability of the agent by
exploiting historical observations.

2) The proposed model allows the agent to achieve long-
horizon goals with the capability to deal with the ex-
ponentially boosted complexity and uncertainty (e.g., to
explore a large scale of the unknown environment in a
continuous action space).

3) We experimentally validate the feasibility of RIRL in a

visual game-based simulated environment and demon-
strate that the proposed model enables the robot to
perform inventory tasks in a dynamic environment.

The rest of this paper is organized as follows. In Section II,
we present the proposed approach. Our experimental study is
discussed in Section III. Section IV concludes this paper.

II. PROPOSED APPROACH

A. Problem Statement and Challenges

We are interested in large-scale, long-horizon robotic tasks
that require an agent to take thousands of steps to achieve
the goal in unseen and dynamic environments. The problem
can be formulated as an Partially Observable Markov Decision
Process (POMDP) denoted by (S, A, R, T, O, 2), where S and
A are the state and action spaces, respectively; T'(s¢y1|st, at)
is the state-transition probability for the agent to state s;i;
given it was at state s; and takes action a;; R(sy, ay) is the
reward function to provide an instant reward r; = R(s¢, a); €
is a finite set of observations that the agent can experience of
its world; O(o¢|st) is the probability for the agent to receive
an observation o; while it is at state s;.

In a practical robotic application, the state s, of the envi-
ronment is hidden from the agent. Instead, it can only partially
perceive the environment to attain an observation o; by built-
in sensors (e.g., cameras, sonar, LIDAR, etc.). Furthermore, to
perform large-scale long-horizon tasks, the action a; at step ¢
not only depends on the current observation o, but also relies
on the fixed length historical observations og, 01, ...,0¢—1. We
illustrate this long-range dependency problem in Fig. 1, where
a robot is deployed for a patrolling task. It needs to patrol the
area and cycle around the two objects (A and B) to check the
target features, e.g., to inspect the corrosion of power poles or
towers. As shown in Fig. 1(a), the robot at state s; gains ob-
servation o; to represent the surrounding environment (such as
its distance to the objects). However, o; lacks the information
for a fully understanding of the environment, such as which
area it has already scanned. Based on the information from
o4, it is difficult to correctly choose the subsequent actions
that could lead to a better navigational path. Fig. 1(b) and
Fig. 1(c) illustrate that if we know the historical information,
the next actions could be easily made to enable the robot with
a better strategy to complete the task. Therefore, in the long-
horizon task scenario, historical observations provide valuable
information for predicting the action a;. However, most of the
existing RL based methods predict action a ~ m(a;|o;) only
depending on the current observation, making them perform
badly in the above described scenario. Thus, we formulate
the objective policy as 7(a:|Oy¢) to tackle the historical and
instant observations, where Oy = (09, 01, ..., 0;) represents a
finite set including the historical and instant observations.

Our goal is to find such a policy 7 that maximizes
the expected future discounted reward Ew[Ztho ~try], where
0 < v < 1 is a discount factor. We adopt a value-action
function Qr(at,O¢;6) = Eﬂ[zg‘lo y'ry] to represent the
above reward. Therefore, the goal of RIRL is to learn a policy

Authorized licensed use limited to: Auburn University. DownIoadedZB.LIy 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

B B B

[\
8]
S

(@) (b) ()

Fig. 1. A brief scenario illustrates the long-range dependency problem of
long-horizon robotic tasks: (a) the robot at state s¢, while two potential paths
2 and 3 are available; (b) if it has moved from path 3 to state s¢, the next
actions lead to path 2 is a better choice; (c) if it has moved from path 2 to state
st, the next actions lead to path 3 is a better choice. Note that the completion
state s¢ is hidden from the root. Instead, it can only partially perceive s; with
limited historical data by built-in sensors, which, thus, makes it incapable of
reasoning the covered paths.

7 and @, that empowers the agent to achieve stable maximum
overall rewards while performs various long-horizon tasks in
dynamic environments. The objective function is given by

argmax Qr (ar, Og; 0), ey
anvT
where 6 serves as the parameter set of the value function
Qx; ar ~ A € RY denotes an action in a continuous
space for the agent at time t; N is the dimension of the
control space (usually, N = 2 for a ground robotic agent).
The complexity of gaining such an optimized policy m grows
exponentially with the increased amount of training data from
historical observations. It is challenging and even infeasible for
a traditional DRL method to converge quickly in the training
processes for such tasks.

B. RIRL Network Architecture

The proposed RIRL is a model-free method that can learn
a strategy from demonstrations to tackle the long-horizon task
and subsequently fine-tune this strategy through the interaction
with the environment for handling dynamics. As shown in
Fig. 2, it deploys an architecture based on an Imitation Learn-
ing (IL) augmented Deep Reinforcement Learning (DRL)
network that was introduced in [17]. The IL module adopts
a Generative Adversarial Imitation Learning (GAIL) [11]
network enhanced with an LSTM layer to enable it with the
recurrent capability to retrain historical data and effectively
learn the strategy from the demonstrations.

The recurrent enabled IL module, discussed in Section
II-A, is the key to overcoming the complexity challenge by
providing a seed policy through the demonstration data to
reduce the searching space significantly for the DRL to learn
an optimized policy m. The DRL module is based on the
Proximal Policy Optimization (PPO) [18] and is also enhanced
by an LSTM layer that enables it to tackle both historical and
instant data.

The IL and the DRL modules are marked in pink and green
in Fig. 2, respectively. The IL module helps to learn a seed

A

IL Module
“Expert” . . .
Data Set Discriminator D (a¢, O¢ ; w)
.4>] .
Imitation
reward:

Pollcy/acmu' 7(a.|0,] l Tim
r[— Action a;

V

. TD error
Value function/critic
Compound
Qr(ar,0¢; 6 r po)
. [
Extrinsic
DRL Module reward:

Tex

Fig. 2. The architecture of the proposed RIRL method.

strategy from demonstration data and subsequently augments
the training of the DRL module to build an optimized policy 7
to solve the long-dependency problem in long-horizon tasks.

1) The LSTM Network: As mentioned before, the key
to tackling the long-dependency problem is to incorporating
memory at the agent to exploit historical data for predicting
actions. To this end, we adopt an LSTM network [19] layer to
both the IL and DRL module in our proposed RIRL. LSTM
is a popular Recurrent Neural Network (RNN) for effectively
solving the long-term dependency problem. The architecture
of its basic cell unit is shown in Fig. 3. There are three
control gates: forget gate, input gate, and output gate. The
forget gate determines which information from the last cell
state could still continue to pass through the current cell. The
input gate controls the new data to flow into the memory
and update the cell state. The output gate selects which part
of the cell state can be exported as output. This structure
helps to avoid the gradient exploding or vanishing problems of
traditional RNN models. It exploits the temporal information
of the observations by using the recursive hidden LSTM units.
Important information over a long time horizon is stored by
non-linear gate units of the built-in memory cell in each LSTM
hidden unit. The last cell in the LSTM network outputs a
vector h;, which contains extracted features that not only
include the information from the input data but also contain the
important information from long-term historical observations.
The memory built-in features h; will be treated as the input of
the subsequent network units to allow the proposed RIRL to
obtain an optimized policy for tackling the long-dependency
problem in long-horizon robotic tasks.

2) The Recurrent IL Module: The backbone of the proposed
IL module is based on the GAIL framework [11] that adopts
a network architecture developed from Generative Adversarial
Network (GAN) [12]. It is composed of two basic parts,

Authorized licensed use limited to: Auburn University. DownIoadedZBley 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

LSTM
Layer

Input
Layer

Layer 1

Fig. 3. The LSTM structure.

a Discriminator D and a Generator G, which work in an
adversarial and cooperative manner of learning a strategy from
a set of demonstration data. Discriminator D is responsible
for distinguishing the data produced by G from demonstration
data, while both D and G are simultaneously trained in an
adversarial and competitive way. During the training process,
Discriminator D will be wiser to tell the generated data
while Generator G gains more expertise in counterfeiting
data. Eventually, the IL module converges when the generated
“fake” data from G could pretend as demonstration data and
pass the detection of D. In our proposed network architecture,
Generator G is shared by the IL and the DRL module. It also
serves as the policy 7 of the DRL module; the terms Generator
G and policy 7 are interchangeably in this paper. To enable
the IL module with recurrent capability, we deploy an LSTM
layer to enhance both Discriminator D and Generator G.

3) The Recurrent Discriminator D: The recurrent enabled
Discriminator D(a¢, O¢;w) of the IL module evaluates the
data based on instant and historical observations to augment
the process of predicting the next action. The discriminator
D:0xA — (0,1) is a function with weight w, where
O and A are the observation and action space, respectively.
The Discriminator D model is shown in Fig. 4, which is a
fully connected LSTM layer followed by m hidden layers.
The LSTM and each hidden layer have the same number of
units. The size of the input layer is decided by the number of
inputs. The LSTM layer maps the inputs to a feature vector
h;, which also carries the information from longer memories
beyond the input vectors. Then the m fully connected hidden
layer will convert the memory built-in features h; to a score
to measure the similarity of input data and “expert” data. By
deploying an LSTM layer, any actions a; will be evaluated on
a large time scale to consider its performance for the long-
horizon task. To train the Discriminator D, we update and
maximize the following value function, which is derived from
the objective function of the GAIL network:

V(w) = Ex[log(1 — D(a, O;w))] +

]Eﬂg [log(D(at, Ot; U)))] -)‘H(ﬂ-)a (2

where 7. refers to the “expert” policy provided by a demon-
stration dataset, which provides seeds for subsequently training
of the optimized policy w. Although referred as “expert,”
it is not a perfect policy the agent should take under any
circumstance. In (2), 7. is collected by manipulating in several

FCHidden |

Fig. 4. Architecture of Discriminator D.

/

-

=" e® ®

| T e e
.

. FCHidden
Layer m

Output
Layer

Fig. 5. Layout of the simulated apparel store.

sample scenarios by manual settings with primitive strategies,
which can only allow the agent to complete the long-horizon
task in a non-optimized manner. H(w) denotes the causal
entropy of 7 and is defined as H(w) = E,[—log 7(a:|O¢)].
It serves as a policy regulator. It encourages the exploration
behaviors and lets the learned strategy to be as random as
possible while optimizing the objective, instead of quickly
greedily converging to a local optimum. A > 0 is the discount
weight of H. The Discriminator D is updated to improve its
ability to tell the similarity of a policy with expert data by
increasing V(w). A well-trained D provides a higher score if
the given data is more similar to the demonstrations. Therefore,
by coordinating with Generator G, the actions similar to the
one provided in the demonstrations will get a higher selection
rate. This way, the search space for the subsequent training
can be narrowed to close to the seed behaviors and quickly
converge to an optimized policy 7.

4) The Recurrent DRL Module: In the proposed RIRL, the
IL module could effectively learn a seed policy by imitating
the behaviors from the demonstration dataset. This seed policy
requires fine-tuning to allow the agent to engage with a
dynamic environment. Therefore, we deployed a DRL module
to learn an optimized policy 7 by interacting with the dynamic
and complex environment.

The DRL module is based on a PPO network and has
an actor-critic architecture to exploit the environment with a
continuous action space. It consists of an actor representing
policy m and a critic shown as the value function @Q,. The
policy 7 is responsible for generating the action, a;, based
on given observations o. The value function @), processes the
received rewards and evaluates the current action prescribed
by policy m. As shown in Fig. 2, we implement these two
components with two neural networks embedded with an
LSTM layer for referencing historical observations recurrently.
The architectures of these two neural networks are similar to
that shown in Fig. 4, except for the number of layers. Let N
and N be the numbers of hidden layers for the actor and
critic network, respectively. Each hidden layer has the same
number of units. The size of the input layer is decided by the
input vector dimension. The size of the generated action a,
determines the final output layer size of the actor.

The goal of training the DRL network is to maximize the

Authorized licensed use limited to: Auburn University. DownloadedZBBJIy 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

value function @), for a given policy T, i.e.,

Q‘n’ (at; Ot; 9) = E[Tcp(oh at)+’yEat+1~7r[Qﬂ' (atJrl, 0t+1)“7
3)

where 6 represents the parameter of the value function @,
7y is the discount factor for future reward, 7., is a compound
reward that consists of reward from the IL module and the
extrinsic reward while interacting with the environment, i.e.,

T'cp(ota at) =" /r'eat(oty at) + (1 - p,) . 7"im(0t; at)» (4)

where € (0,1) is a proportion parameter: a smaller
will be implemented if the demonstration data is closer to
the optimal policy. It helps the learning process to trade-off
between demonstration data and engagement of the environ-
ment. In (4), 7, = log(D(ay, Og;w)) is the reward that comes
from the IL module, measuring how similar the action a; is
with the “expert policy” from demonstrations. The extrinsic
rewards r., is provided as a sparse function to represent the
basic constraints and rules for the agent to interact with the
environment and guide it to the desired goals. For example, we
can give a penalty if the agent collides with an object in the
environment and a positive reward if it reaches a goal position.

During the training process, policy m will be updated to
choose the actions a; to increase (), by gaining a larger r.,
and r;,,. From (2), (3), and (4), increasing r;,, by updating
policy 7, which also acts as the generator of the IL module,
will decrease the value of V(w). Together with the training of
the discriminator in the IL module, which tends to maximize
V(w), the competitive processes end up with a policy 7 that
roots with the strategies provided in the demonstration data.
Furthermore, increasing extrinsic rewards r., will eventually
lead the trained policy 7 to react to the environment with a
better strategy. The built-in LSTM layers in the components
of policy , value function @, and Discriminator D enhance
the agent with memories for action predicting and evaluation.
Therefore, the proposed RIRL provides an effective means to
train an optimized policy 7 for long-horizon tasks, especially
for the scenarios that require long-term memories.

III. EXPERIMENTAL STUDY
A. Experiment Setup

We deploy the proposed RIRL system in a simulated envi-
ronment using the Unity3D platform to simulate an application
of deploying a mobile robot for RFID-based inventory in an
apparel store, which is the same scenario as in [2]. Unity3D
is a powerful game engine to render larger, detailed, 3D
environments. It also simulates visually realistic worlds with
sophisticated physics and complex interactions between agents
with varying capacities. These characteristics enable it to be
widely deployed as a simulation tool for the research of a
variety of intelligent agents [20]. As shown in Fig. 5, we
create a four-wall enclosed environment to simulate an apparel
store of dimension 50 x 50m?2, which is crowded with racks
(represented by blue circles) and obstacles (e.g., furniture).
RFID tagged items are hosted on the racks. A simulated
robotic agent is deployed to patrol the area to scan all the

RFID tags. The positions of racks and the agent are randomly
generated inside the room at the beginning of each episode.
The agent simulates an RFID-enabled mobile robot controlled
by action a; = (v¢, ¢¢), where v; € [—Upaz, Umaz| Tepresents
the linear speed, while v,,,, is the maximum linear velocity,
and ¢; € [—Pmaz, Pmazx] denotes the rotation speed, while
Pmaz 1S the maximum rotation velocity.

The task of the agent is to scan all the RFID tags in the
room with the shortest trajectory. Each training episode ends
with all RFID tags scanned or maximum steps are reached.
The number of agent collisions is also considered as one of
the criteria for measuring the quality of training results. The
robotic agent is equipped with two sensors, a ray-cast sensor
and a simulated RFID reader to collect observations. Unity3D
provides the ray-cast sensor to simulate a widely deployed
Lidar sensor. It detects the surrounding environment by casting
rays and outputs a vector with the detected objects and the
corresponding distances. We design a simulated RFID reader
for the agent to mimic the characteristics of practical RFID
applications. For example, it can only scan the tags within a
detectable range, and the probability of reading a tag decreases
as the distance between the reader and a tag increases.

The RIRL network is implemented with Tensorflow on a
computer with an Intel 9900K CPU and two Nvidia 2080
GPUs. We conducted all our experiments with the same
network: Discriminator D is implemented with one LSTM
layer and two fully connected hidden layers, where each
layer has 128 units. For the DRL network module, both the
value function @, and policy 7 consist of an LSTM layer
with 128 units and three hidden layers each with 512 units.
We set the proportion parameter p in (4) as 0.1 for the
remaining experiments. In the experiments, the robotic agent
will be deployed in the simulated apparel store, while its initial
position is randomly generated at each episode.

B. Results and Analysis

1) Training Results: We compare the proposed RIRL with
three existing methods: the PPO network introduced in [18],
the GAIL proposed by [11], and the IADRL scheme [17] that
is an RL and IL combined method without the LSTM layers.
We use the same basic reward settings and training parameters
in the same environment set for these four approaches to
guarantee a fair comparison. Fig. 6 plots the cumulative
rewards acquired by the agent when it interacts with the
environment. We only set several basic and sparse reward
configurations: scanning a new RFID tag gains +10 rewards,
collision results in a -1 punishment, and moving costs -0.001
for each step. Our approach, shown as the red solid line in
Fig. 6, achieves the best reward in the training process, which
is higher and more stable compared to the other three methods.

Fig. 7 presents the number of steps for finishing the tag
scanning task in each episode. We set a maximum number of
20,000 steps for each training episode that aims to decrease the
unnecessarily long training time. The red solid line depicts that
our method result stabilizes after around 200 episodes. The
agent implemented with RIRL could stably and consistently

Authorized licensed use limited to: Auburn University. Downloadedza.ﬂﬂly 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

=== GAIL
PPO

Cumulative Reward
Steps for Completing One Episode

IADRL N i

—RIRL ~
GAIL
PPO

CDF

Trﬁinir;g Steps
Fig. 6. Accumulated training rewards values.

handle the given tasks within 2,000 steps. Apparently, as
shown in Fig. 7, the other three methods cannot even converge
with the same training process, indicating that the agent is
unable to find a reliable strategy to accomplish the given task.

2) Testing Results: Fig. 8 presents the cumulative distri-
bution function (CDF) of the percentage of unscanned tags
in the testing stage. We test all the four trained models in
200 episodes within the required 20,000 steps. Fig. 8 shows
that in about 96% of the episodes, the proposed RIRL model
scans all the tags, while the IADRL scans all the tags in about
55% of the episodes. Obviously, the GAIL and PPO model
cannot even scan all the tags in an episode. Moreover, RIRL
attains a maximum unscanned tag percentage of 28.2%, which
is much lower than the almost 90% missing rate achieved
by the other three methods. Apparently, the proposed RIRL
exhibits considerably higher effectiveness and robustness for
such long-horizon tasks in dynamic environments.

The experiments validate that our proposed RIRL outper-
forms the three benchmark approaches. It help the agent
to accomplish the long-horizon tag scanning task with high
efficiency and robustness. Moreover, it proves the feasibility of
utilizing the LSTM network to enhance the agent performance
by leveraging historical observations.

IV. CONCLUSION

In this paper, we proposed RIRL, a deep recurrent imita-
tion and reinforcement learning-based system, which enables
agents to accomplish long-horizon tasks in dynamic and
complicated environments. We also experimentally validated
the feasibility of embedding an LSTM layer in the traditional
IL and DRL methods. The outstanding result achieved by
our method proved the effectiveness of leveraging history
observations for enhancing RIRL to solve the long-range
dependency problem in various long-horizon robotic tasks.

REFERENCES

[1] C.J. Watkins and P. Dayan, “Q-learning,” Springer Machine Learning
J., vol. 8, no. 3-4, pp. 279-292, May 1992.

[2] J. Zhang, Y. Lyu, T. Roppel, J. Patton, and C. Senthilkumar, “Mobile
robot for retail inventory using RFID,” in Proc. IEEE ICIT’16, Taipei,
Taiwan, Mar. 2016, pp. 101-106.

[3] J. Zhang, Y. Lyu, J. Patton, S. C. Periaswamy, and T. Roppel, “BFVP: A
probabilistic UHF RFID tag localization algorithm using Bayesian filter
and a variable power RFID model,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 10, pp. 8250-8259, Oct. 2018.

miEpisodes‘w

, cmmnf
Percentage of unscanned tags in the total

Fig. 7. Steps for finishing the tag scanning task. Fig. 8. CDF of percentage of total unscanned tags.

[4] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” in Robotics: Science and Systems,
Y. Matsuoka, H. Durrant-Whyte, and J. Neira, Eds. Cambridge, MA:
The MIT Press, 2011, pp. 33-40.

[5] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE IROS’17, Vancouver, Canada, Sept. 2017, pp. 31-36.

[6] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” in Proc. 3rd
Conf. Robot Learning, Osaka, Japan, Nov. 2020, pp. 1-10.

[71 X. Xia, T. Roppel, J. Y. Hung, J. Zhang, S. C. Periaswamy, and

J. Patton, “Balanced map coverage using reinforcement learning in

repeated obstacle environments,” in Proc. IEEE ISIE’20, Delft, The

Netherlands, June 2020, pp. 41-48.

J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, “Deep reinforcement learning

with optimized reward functions for robotic trajectory planning,” IEEE

Access, vol. 7, pp. 105 669-105 679, July 2019.

[9] S. Cabi et al., “Scaling data-driven robotics with reward sketching and
batch reinforcement learning,” arXiv preprint arXiv:1909.12200, Sept.
2019. [Online]. Available: https://arxiv.org/abs/1909.12200

[10] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
L. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learning,”
arXiv preprint arXiv:1703.07326, Mar. 2017. [Online]. Available:
https://arxiv.org/abs/1703.07326

[11] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc.
ACM NIPS’16, Red Hook, NY, July 2016, pp. 4572—4580.

[12] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. ACM NIPS’14, Montreal, Canada, Dec. 2014, pp. 2672-2680.

[13] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay pol-
icy learning: Solving long-horizon tasks via imitation and reinforcement
learning,” in Proc. CORL’19, Osaka, Japan, Oct. 2020, pp. 1025-1037.

[14] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba, “Maximum entropy
gain exploration for long horizon multi-goal reinforcement learning,” in
Proc. PMLR ICML’20, Virtual Conference, July 2020, pp. 7750-7761.

[15] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in Proc. IEEE ICRL’1S8, Vancouver, Canada, Apr.-May 2018,
pp. 6292-6299.

[16] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Elsevier Neural Networks, vol. 21, no. 4, pp. 682—697,
May 2008.

[17] J.Zhang, Z. Yu, S. Mao, S. Periaswamy, J. Patton, and X. Xia, “IADRL:
Imitation augmented deep reinforcement learning enabled UGV-UAV
coalition for tasking in complex environments,” IEEE Access, vol. 8,
no. 1, pp. 102335-102 347, June 2020.

[8

[t

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, July 2017. [Online]. Available:

https://arxiv.org/abs/1707.06347

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[20] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion,
C. Goy, Y. Gao, H. Henry, M. Mattar et al., “Unity: A general platform
for intelligent agents,” arXiv preprint arXiv:1809.02627, Oct. 2018.
[Online]. Available: http://arxiv.org/abs/1809.02627

Authorized licensed use limited to: Auburn University. Downloadedzaﬁjly 27,2022 at 04:22:25 UTC from IEEE Xplore. Restrictions apply.

