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Abstract

Entity types and textual context are essential
properties for sentence-level relation extraction
(RE). Existing work only encodes these prop-
erties within individual instances, which limits
the performance of RE given the insufficient
features in a single sentence. In contrast, we
model these properties from the whole dataset
and use the dataset-level information to enrich
the semantics of every instance. We propose the
GRAPHCACHE (Graph Neural Network as
Caching) module, that propagates the features
across sentences to learn better representations
for RE. GRAPHCACHE aggregates the features
from sentences in the whole dataset to learn
global representations of properties, and use
them to augment the local features within indi-
vidual sentences. The global property features
act as dataset-level prior knowledge for RE, and
a complement to the sentence-level features.
Inspired by the classical caching technique in
computer systems, we develop GRAPHCACHE
to update the property representations in an on-
line manner. Overall, GRAPHCACHE yields
significant effectiveness gains on RE and en-
ables efficient message passing across all sen-
tences in the dataset.

1 Introduction

Sentence-level relation extraction (RE) aims at
identifying the relationship between two entities
mentioned in a sentence. RE is crucial to the struc-
tural perception of human language, and also ben-
efits many NLP applications such as automated
knowledge base construction (Distiawan et al.,
2019), event understanding (Wang et al., 2020a),
discourse understanding (Yu et al., 2020), and ques-
tion answering (Zhao et al., 2020). The modern
tools of choice for RE are the large-scale pre-
trained language models (PLMs) that are used to
encode individual sentences, therefore obtaining
the sentence-level representations (Liu et al., 2019;
Joshi et al., 2020; Yamada et al., 2020).

Existing work considers entity types and textual
context as essential properties for RE (Peng et al.,
2020; Peters et al., 2019; Zhou and Chen, 2021).
Nonetheless, most existing RE models only capture
these properties locally within individual instances,
while not globally modeling them from the whole
dataset. Given the insufficient features of a single
sentence, it is beneficial to model these properties
from the whole dataset and use them to enrich the
semantics of individual instances.

To overcome the aforementioned limitation, we
propose to mine the entity and contextual informa-
tion beyond individual instances so as to further
improve the relation representations. Particularly,
we first construct a heterogeneous graph to con-
nect the instances sharing common properties for
RE. This graph includes the sentences and prop-
erty caches. Each cache represents a property of
entity types or contextual topics. We connect every
sentence to the corresponding property caches (see
Fig. 1), and perform message passing over edges
based on a graph neural network (GNN). In this
way, the property caches aggregate the features
from connected sentences, which will act as a com-
plement to the sentence-level features and provide
prior knowledge when identifying relations.

The constructed graph connecting sentences has
the same scale as the whole dataset, which leads
to high computational complexity of the GNN. To
address this issue, our idea is to view the message
passing of GNNs as data loading in computer sys-
tems, adapting the classical caching techniques to
efficiently mining the property information from
all sentences. We encapsulate this computational
idea in a new GNN module, called GRAPHCACHE
(Graph Neural Network as Caching), that uses
an online updating strategy to refresh the property
caches’ representations. In addition, we design an
attention-based global-local fusion module to aug-
ment the sentence-level representations using the
property caches with adaptive weights.
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| Alice (Person) is the daughter of |

Bob(Person). Person (subject)
Person (object)
{ Marry (Person) gave birth to Jerry (Person) |
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'LJeny (Person) was born in Seattle (City). \
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City (object)

topic sentence entity type

Figure 1: We construct a heterogeneous graph to con-
nect the sentences sharing common properties for RE.
We consider two kinds of properties: contextual topics
and entity types.

GRAPHCACHE can be incorporated into popular
RE models to improve their effectiveness without
increasing their time complexity, as analyzed in the-
ory (§3.2). As far as we know, ours is the first work
to propagate the features across instances to enrich
the semantics for sentence-level RE. We evaluate
GRAPHCACHE on three public RE benchmarks
including TACRED (Zhang et al., 2017), SemEval-
2010 task 8 (Hendrickx et al., 2019), and TACREV
(Alt et al., 2020a). Empirical results show that
GRAPHCACHE consistently improves the effective-
ness of popular RE models by a significant margin
and propagates features between all sentences in
an efficient manner.

2 Related Work

Sentence-Level Relation Extraction. Early re-
search efforts (Zeng et al., 2014; Wang et al., 2016;
Zhang et al., 2017) train RE models from scratch
based on lexicon-level features. Recent work has
shifted to fine-tuning pretrained language models
(PLMs; Devlin et al. 2019; Liu et al. 2019) result-
ing in better performance. For example, BERT-
MTB (Baldini Soares et al., 2019) continually fine-
tunes the PLM with a matching-the-blanks objec-
tive that decides whether two sentences share the
same entity. SpanBERT (Joshi et al., 2020) pre-
trains a masked language model on random con-
tiguous spans to learn span-boundaries and predict
the entire masked span. LUKE (Yamada et al.,
2020) extends the PLM’s vocabulary with enti-
ties from Wikipedia and proposes an entity-aware
self-attention mechanism. K-Adapter (Wang et al.,
2020b) fixes the parameters of the PLM and uses
feature adapters to infuse factual and linguistic
knowledge. Despite their effectiveness, most exist-

ing work on sentence-level RE exploits the entity
information and context within only an individual
instance, while we propose to globally capture the
semantic information from the whole dataset to
augment the relation representations. Our model
can be flexibly plugged into existing RE models
and improve their effectiveness without increasing
the time complexity.

Graph Neural Networks for Natural Language
Processing. Due to the large body of work on
applying GNNs to NLP, we refer readers to a re-
cent survey (Wu et al., 2021) for a general review.
GNNs have been explored in several NLP tasks
such as semantic role labeling (Marcheggiani and
Titov, 2017), machine translation (Bastings et al.,
2017), and text classification (Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2016;
Peng et al., 2018; Yao et al., 2019). GNNs have
also been widely adopted in various variants of
relation extraction on the sentence level, (Zhang
etal., 2018; Zhu et al., 2019; Guo et al., 2019a), the
document level (Sahu et al., 2019; Christopoulou
et al., 2019; Nan et al., 2020; Zeng et al., 2020),
and the dialogue level (Xue et al., 2021). However,
on the sentence-level relation extraction, most ex-
isting work (Zhang et al., 2018; Guo et al., 2019b;
Wu et al., 2019) uses the graph neural networks to
encode the relation representations from individual
instances instead of operating the message passing
between instances. In contrast, we build a heteroge-
neous graph to connect the instances that share the
properties for RE, and design the caching updater
to efficiently perform the message passing between
instances.

3 Methodology

Task Definition. Sentence-level relation extrac-
tion (RE) aims to identify the relation between a
pair of entities in a sentence. In this task, each
instance is composed of a sentence, the subject and
object entities, and entity types. For example, in
the sentence ‘Mary gave birth to Jerry at the age of

211, ‘Mary’ and ‘Jerry’ are the entities, the entity
types are both person, and the ground-truth relation
between ‘Jerry’ and ‘Mary’ is parent.

We propose GRAPHCACHE (Graph Neural Net-
works as Caching) as a message passing method-
ology to model the dataset-level property repre-

"We use underline and wavy line to denote subject and
object respectively by default.
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sentations and use them to enrich every instance’s
semantics. GRAPHCACHE creates a graph repre-
sentation where sentences with shared property
information are connected with property caches.
GRAPHCACHE first models the global semantic
information by aggregating the features from the
whole dataset, and then fuses the global and local
features to augment the relational representations
for every sentence.

We analogize the message passing in GNNs to
caching in computer systems. Caching is about
loading data from high volume disks to low vol-
ume caches, so as to accelerate data loading. Anal-
ogously, when GNNs perform the message passing
between sentences through a smaller number of
bridge nodes, we can think of the massive sentences
in the dataset as the disk data, and the properties,
which aggregates the features from sentences, as
caches. GRAPHCACHE can be flexibly plugged
into existing RE models. As far as we know, ours
is the first work to propagate the features between
instances to enrich the semantics for RE. GRAPH-
CACHE takes an existing RE model as the back-
bone, e.g., BERT, and takes the sentence-level rep-
resentations given by the backbone as the inputs of
message passing.

A GRAPHCACHE module consists of three key
components: (i) A graph construction technique
builds a few property caches. Each cache repre-
sents a property for RE: entity type or contextual
topic. We connect each sentence to its correspond-
ing properties, so that every property aggregates the
features from its neighbor sentences. (ii) Caching
message passing aggregates the sentence-level rep-
resentations to model the properties’ representa-
tions in an online manner. (iii) Global-local fusion
fuses the global property representations and local
sentence-level ones to augment the relation repre-
sentations. Next, we will discuss the three main
components in more detail.

3.1 Graph Construction for Sentence-level
Relation Extraction

We build a large and heterogeneous graph to con-
nect the sentences sharing the properties: entity
types and textual context, which are essential for
RE (Peng et al., 2020; Peters et al., 2019; Zhou and
Chen, 2021). The heterogeneous graph is defined
as G = (V, &), where V is the set of nodes, and £
is the set of edges. V = Vg U Vp, where Vg is the
set of sentences, and Vp = V¢ U Vg is the property

caches. Here V¢ is the set of latent topics (Zeng
et al., 2018) mined from the latent topics from the
text corpus using LDA (Blei et al., 2003), which
has been found effective in modeling useful con-
textual patterns (Jelodar et al., 2019). Each topic is
represented by a probability distribution over the
words, and we assign each sentence to the top P
topics with the largest probabilities. Vr is the set
of entity types, where every cache represents the
types of an entity pair. The entity types are also
crucial for predicting relations (Peng et al., 2020;
Zhou and Chen, 2021). An edge (p, s) € € exists
if the sentence s € Vg has the property p € Vp.

We will implement a GNN on this graph. Specif-
ically, to incorporate the global property informa-
tion into relation extraction, the property caches
aggregates the features from the connected neigh-
boring sentences. This step enables property caches
to globally model the properties from the whole
dataset. We then use the global property represen-
tations from the caches to enrich every sentence’s
semantics. In this way, the property caches act
as prior knowledge when identifying relations and
provide each sentence with more representative
features.

3.2 Caching Message Passing

We take an existing RE model as the backbone, e.g.,
BERT (Devlin et al., 2019), which produces the
sentence-level representation as h. Next, we de-
ploy a two-layer GNN on our heterogeneous graph
for message passing across sentences. Specifically,
the first GNN layer aggregates the sentence-level
representations to property caches at the ¢th train-
ing step:

h,(t) = MEAN ({h4(t),s € N(p)}),
h,(t) = FFN (hy(?)), (1)

where p € Vp is a property, s € N (p) is a sen-
tence having property p, MEAN(-) is the mean
aggregator (Hamilton et al., 2017), and FFN(-) is
the feed-forward network. FFN(-) can be a linear
layer in SGC (Wu et al., 2019), a linear layer fol-
lowed by a nonlinear activation function in Graph-
SAGE (Hamilton et al., 2017), or a multi-layer
perception in GIN (Xu et al., 2018), etc. We fol-
low SGC (Wu et al., 2019) to implement FFN(-)
by default. For each property p, this layer aggre-
gates the sentence-level representations hg(¢) from
s € N(p) to obtain a global property embedding
h, (t). In this way, the generalized context of each
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Figure 2: (left) Existing models encode individual instances for RE. (middle) In standard GNNs (Kipf and Welling,
2016), we predict for an instance by aggregating the features from many other sentences in the dataset, leading to
high time complexity. (right) Our GRAPHCACHE implements a caching updater (see Eq. 2) to update the properties’
representations in an online manner, which significantly reduces the time complexity.

Algorithm 1 GRAPHCACHE for Relation Extrac-
tion

Input: The number of training steps 7', the dataset
D = {ses,r5|]s =1,2,..., N}, where ses, 15 are
the sentence and relation of the sth instance, our
graph G defined in §3.1, and the batch size B.
Output: The model’s trained parameters.

1: Initialize the model’s parameters as random
values, and initialize the values of memory M
and property caches h,(t) as zero.

: fort < 1toT do

Sample a batch 5(t) from D.

for s in B(t) do

h,(t) < Backbone(ses)
end for

for pin V), do

Update hy,(t) as Eq. 2.

h,(t) <~ FFN(h,(t)) as Eq. 1.
10: end for

R A U R o

11: for s in B(t) do

12: Update 75(t) as Eq. 7.

13: M(s] < hy(t).

14: end for

15: Back-propagate to update the parameters

by minimizing the cross entropy loss between
7s(t) and r; of instances in 3.

16: end for

property is captured from the whole dataset, which
is further used to enhance the relation representa-
tions for each sentence in the second GNN layer.
We describe the details of the second GNN layer in
§3.3.

Recall our heterogeneous graph for RE defined
in §3.1. At each training step, classical GNNs

perform message passing across edges between the
sentences and properties. In this case, the time
complexity of the first GNN layer at each training
step is |€]. Note that |£| is larger than | V|, which is
the number of sentences in the dataset. This leads
to poor scalability of GNN, since |V;]| is large in
practice.

To address this efficiency issue, we propose
Caching GNN for RE in Alg. 1. Our GRAPH-
CACHE implements a memory dictionary M to
store the sentence-level representations from the
backbone. To keep consistency with the updating
parameters during training, we deploy a caching
updater to refresh the properties’ representations at
each training step:

by (t)
:Updater(ﬁp(t —1),{hy(t),s € B(t)})
=h,(t-1)+ > }W, )

seN (p)NB(t)

where B(t) denotes the batch at the ¢th training
step. By doing so, GRAPHCACHE greatly reduces
the time complexity from |€| to |B(t)| at each train-
ing step by using Updater to obtain the property
caches’ representations h,,(t).

Our caching updater is much more efficient
than the classical message passing of GNNss, since
|B(t)] < |Vs| < |€| generally holds in practice.
When we aggregate the sentence-level representa-
tions from M, we provide the following proposi-
tion to show that our cache updater is as effective
as the first GNN layer in Eq. 1.

Proposition 1. At the tth training step, denote the
property caches’ representations in the first GNN
layer (see Eq. 1) as hy(t), and those returned by
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our updater in Eq. 2 as h,(t). There is hy,(t) =
h,(t) forVp € Vp,t > 0.

Proof. Whent > 1,if h,(t — 1) = h,(t — 1), we
have:

by (t)
=Updater(h,(t — 1), {hy(t),s € B(t)})  (3)
h hs (t) - M[S]
=h,(t—1)+ Y = A
SEN (p)NB(t) |N(p)|
Ms] h,(t) — M]s]
=y Tl U
seN(p) V@) SEN (p)NB(t) N ()]
4)
Ms] h(t)
+ 5)
senarsm VO e V@)
=hy (). (©6)

Besides, because h,(0) = h,(0) for Vp € Vp
holds as initialized in Alg. Alg. 1, we have h,(t) =
h,(t) for Vp € Vp,t > 0. O

3.3 Global-Local Fusion

In the second GNN layer, we propagate the prop-
erties’ representations from the property cache to
their neighboring sentences in the batch. Since a
sentence s may have more than one latent topic
Ve NN (i) > 1, we utilize the attention mech-
anism to enable the target sentence to attend to
different topics with adaptive weights.

h'tSOpic(t) = Attention(hs(t)7 {hp(t)7p S VC})7

where we follow (Vaswani et al., 2017) to imple-
ment Attention. The output hi?”“(¢) is the topic
embedding fused for sentence s. In this way, a
sentence can be trained to attend to more relevant
topics with higher weights.

Next, we have the entity type embedding of sen-
tence s as h{"™""™(t) = h,(t),p € Vg NN (s),
where p € Vg NN (s) is the entity type node con-
nected to sentence s. h'“(¢) and h&™""™ (t) are
the global representations of the properties related
to sentence s, while hy is the local representation
of sentence s. We fuse the global and local rep-
resentations to enrich the semantics of sentence s
through a sentence-wise head:

7i(t) = Head (hy(t)|[h(t)[[h™ (1)) , (D)

Dataset ‘ #Train #Dev #Test +#Classes
TACRED | 68,124 22,631 15,509 42
SemEval 6,507 1,493 2,717 19
TACREV | 68,124 22,631 15,509 42

Table 1: Statistics of datasets.

where || denotes concatenation. GRAPHCACHE
makes sentence-wise relation predictions 7;(t) us-
ing a sentence-wise Head, implemented as a multi-
layer perception (MLP), analogous to a PointNet
(Qietal., 2017). Since GRAPHCACHE predicts a
relation label for each sentence, it can be trained
by standard task-specific classification losses, e.g.,
cross-entropy (Mannor et al., 2005). During infer-
ence, we take 7;(t) after convergence as the output
for RE.

4 Experiments

In this section, we evaluate the effectiveness of our
GRAPHCACHE method when incorporated into var-
ious RE models. We compare our methods against
a variety of strong baselines on the task of sentence-
level RE. We closely follow the experimental set-
ting of the previous work (Zhang et al., 2017; Zhou
and Chen, 2021; Zhang et al., 2018) to ensure a fair
comparison, as detailed below.

4.1 Experimental Settings

Datasets. We use the standard sentence-level RE
datasets: TACRED (Zhang et al., 2017), SemEval-
2010 Task 8 (Hendrickx et al., 2019), and TACREV
(Alt et al., 2020b) for evaluation. TACRED con-
tains over 106k mention pairs drawn from the
yearly TAC KBP challenge. SemEval does not
provide entity type annotations, for which we only
construct the topic caches for message passing. Alt
et al. (2020b) relabeled the development and test
sets of TACRED to build TACREV. The statistics
of these datasets are shown in Tab. 1. We follow
(Zhang et al., 2017) to use F1-micro as the evalua-
tion metric.

Compared Methods. We compare GRAPHCACHE
with the following state-of-the-art RE models:
(1) PA-LSTM (Zhang et al., 2017) extends the
bi-directional LSTM by incorporating positional
information to the attention mechanism. (2)
GCN (Zhang et al., 2018) uses a graph convo-
lutional network to gather relevant contextual in-
formation along syntactic dependency paths. (3)
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Method TACRED SemEval TACREV
PA-LSTM (Zhang et al., 2017) 65.1 82.1 73.3
GCN (Zhang et al., 2018) 64.0 80.7 71.9
C-GCN (Zhang et al., 2018) 66.4 84.2 74.6
C-SGC (Wu et al., 2019) 67.0 84.8 75.1
SpanBERT (Joshi et al., 2020) 70.8 86.1 78.0
RECENT (Lyu and Chen, 2021) 75.2 85.8 83.0
IREggRrT (Zhou and Chen, 2021) 72.9 86.4 81.3
LUKE (Yamada et al., 2020) 72.7 87.8 80.6
LUKE + GRAPHCACHE (ours) 74.8 89.1 81.5

IRERoBERTa (Zhou and Chen, 2021)  74.6 87.5 83.2
IRERoBERT2 + GRAPHCACHE (ours) 75.5 88.2 84.2

Table 2: F1 scores (%) of Relation Extraction on the
test set of TACRED, SemEval, and TACREYV. The best
results in each column are highlighted in bold font.

C-GCN (Zhang et al., 2018) combines GCN and
LSTM, leading to improved performance than
each method alone. (4) C-SGC (Wu et al., 2019)
simplifies GCN by removing the nonlinear lay-
ers and achieves higher effectiveness. (5) Span-
BERT (Joshi et al., 2020) extends BERT by intro-
ducing a new pretraining objective of continuous
span prediction. (6) RECENT (Lyu and Chen,
2021) restricts the candidate relations based on
the entity types. (7) LUKE (Yamada et al., 2020)
pretrains the language model on both large text
corpora and knowledge graphs and further pro-
poses an entity-aware self-attention mechanism.
(8) IRE (Zhou and Chen, 2021) proposes an im-
proved entity representation technique in data pre-
processing, which enables ROBERTa to achieve
state-of-the-art performance on RE.

Model Configuration. For the hyper-parameters
of the considered baseline methods, e.g., the batch
size, the number of hidden units, the optimizer, and
the learning rate, we set them as those in the origi-
nal papers. For LDA used in GRAPHCACHE, we
set the number of topics K as 50, and the number
of top relevant topics for every sentence P as 2. For
all experiments, we report the median F-1 scores of
five runs of training using different random seeds.

4.2 Overall Performance

We incorporate the GRAPHCACHE framework
with LUKE and IRER.BERTa, and report the re-
sults in Tab. 2. Our GRAPHCACHE method im-
proves LUKE by 2.9% on TACREY, 1.5% on Se-
mEval, and 1.1% on TACREYV in the F1 score.
For IREroBERT2, GRAPHCACHE leads to the im-
provement of 1.2% on TACRED, 0.8% on Se-
mEval, 1.2% on Re-TACRED. As a result, our

Method | Complexity | Time | F1 (%)
IRERoBERTa (Zhou and Chen, 2021) | O(B) | 74925 | 746
IRERoBERTa + GNN O(N) NA. | NA.
IRERoBERTa + GRAPHCACHE (0urs) O(B) 7681s 75.5

Table 3: Training time, the time complexity per training
step, and F1 scores of IREr,prRrTs With our proposed
message passing implemented as GNN and GRAPH-
CACHE on TACRED. The training time of IREgR,rRrTa
with the classical GNN is unavailable due to the our-of-
memory error. B and N are the batch and dataset sizes
respectively.

GRAPHCACHE achieves substantial improvements
for LUKE and IRERr,BERTs and enables them to
outperform the baseline methods.

Note that LUKE and IRER,ggRT= are both based
on large pre-trained models, which have suffi-
ciently large learning capacity to encode the in-
dividual instances. In this case, our GRAPHCACHE
still improves their effectiveness by a large margin,
which validates the benefits of modeling the prop-
erties: entity types and contextual topics, globally
from the whole dataset. This is due to the use of
the global property representations that enrich the
semantics of each instance, which effectively act
as prior knowledge that helps identify the relations
and complements the sentence-level features.

4.3 Efficiency and Effectiveness of
GRAPHCACHE

As analyzed in §3.2, GRAPHCACHE enhances the
backbone RE models without increasing their time
complexity. In the experiments, we analyze the
efficiency and effectiveness of GRAPHCACHE on
the TACRED dataset, following the experimental
setting of RE in §4.2.

The methods we evaluate include IRER,BERT=,
IRERoBERT. implemented with classical GNN
for message passing, and IREr,grrTs With our
GRAPHCACHE. Tab. 3 reports the performance,
where “Time’ is the training time until convergence
using a Linux Server with an Intel(R) Xeon(R) E5-
1650 v4 @ 3.60GHz CPU and a GeForce GTX
2080 GPU.

We notice that, compared with the classical mes-
sage passing of GNN, our GRAPHCACHE method
significantly reduces the time complexity per train-
ing step. As a result, our GRAPHCACHE method
takes significantly less training time than the clas-
sical GNN method, and exhibits similar efficiency
to the original IREr,gERT. Without message pass-
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Method | TACRED TACREV
LUKE (Yamada et al., 2020) 76.5 82.9
LUKE + GRAPHCACHE (ours) 78.9 85.6
IRERoBERT2 (Zhou and Chen, 2021) 78.7 86.9
IRERoBERT2 + GRAPHCACHE (ours) 80.1 88.2

Table 4: Test F1 scores (%) of Relation Extraction on the
filtered test sets (see §4.4), i.e., the instances containing
unseen entities.

Technique | F1(%) | A | Cumu A
LUKE (Yamada et al., 2020) 72.7 0 0

+ Entity Types 73.4 +0.7 +0.7

+ Contextual Topics 74.8 +1.4 +2.1

Table 5: Effects of different properties in our heteroge-
neous graph on the RE of TACRED.

ing between sentences. The running time and F1
of IRERogrRT2 With GNN is unavailable due to
the out-of-memory error. This agrees with the
theoretical analysis in §3.2. N and B denote the
data and batch sizes respectively. IRERr,BERT.’S
time complexity is O(B), which is the same as the
original ROBERTa, while the time complexity of
RoBERTa with GNN is O(V), being significantly
higher than our GRAPHCACHE. In practice, N is
generally large, and N > B, e.g., |&] > 1 x 10°
and B < 100 holds for TACRED and state-of-the-
art models.

In terms of effectiveness, our GRAPHCACHE
leads to substantial improvements for RoBERTa.
Our GRAPHCACHE enriches the input features
for RE on every sentence by utilizing the dataset-
level information beyond the individual sentences.
GRAPHCACHE implements the attention module
to incorporate the global property features from
different topic caches with adaptive weights, which
capture the most relevant information for the tar-
get relation. The improvements in effectiveness
are rooted in the message passing mechanism be-
tween sentences, which mines the property infor-
mation beyond individual instances and acts as
a complementary to the sentence-level semantics.
Our GRAPHCACHE method resolves the efficiency
issues of message passing based on the caching
mechanism, which updates the properties’ repre-
sentations in an online manner.

4.4 Analysis on Unseen Entities

Some previous work (Zhang et al., 2018; Joshi
et al., 2020) suggests that RE models may not gen-

75.6 .
75.4
75.2.
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P 6 1 20
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Figure 3: The F1 scores (% in z-axis) of IRERoBERTa
with GRAPHCACHE on relation extraction on TACRED
with different hyper-parameters P and K.

eralize well to unseen entities. To evaluate whether
the RE models can generalize to unseen entities,
existing work designs a filtered evaluation setting
(Zhou and Chen, 2021). This setting removes all
testing instances containing entities from the train-
ing set of TACRED and TACREY, which results
in filtered test sets of 4,599 instances on TACRED
and TACREV. These filtered test sets only contain
instances with unseen entities during training.

We present the experimental results on the fil-
tered test sets in Tab. 4. Our GRAPHCACHE
still achieves consistently substantial improve-
ments for LUKE and IREropgrTa On the TA-
CRED and TACREV datasets. Specifically, our
GRAPHCACHE improves the F1 scores of LUKE
by 3.1% on TACRED, 3.3% on TACREY, and im-
proves IREroBERTS bY 1.8% on TACRED, 1.5%
on TACREV. Taking a closer look, we observe
that the improvements given by GRAPHCACHE on
the filtered test sets are generally larger than those
on the original test sets. The reason is that our
GRAPHCACHE mines global information from the
whole dataset and uses it as the prior knowledge
for RE, which is not influenced by the entity names
in individual sentences. When the entity names are
new to the RE models, the semantic information
is relatively scarce and our mined global informa-
tion plays a more important role to augment the
sentence-level representations.

4.5 Ablation Study

We investigate the contributions of properties that
we consider for constructing the heterogeneous
graph. We apply different kinds of properties se-
quentially with our GRAPHCACHE on the LUKE
model. The results are presented in Tab. 5. Our en-
tity type nodes improve the effectiveness of LUKE
by modeling the entity information globally on the
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Input sentence Method

Prediction

Entity type Topic keyword

Founded in 1947 by two brothers,

Eugene and Quentin Fabris, New LUKE

founded X

[brother, found, sister, parent,

subject: Person R . X
) establish, machine, business,

Fabris started out making sewing

machine parts in the 1990s. + GRAPHCACHE

object: Date L
organize, instrument, make]

no_relation v/

According to the suspect, Gonzalez LUKE

was strangled and buried the day after

no_relation X

[strangle, die, after, when, injury,

subject: Person day, hospital, police, murder,

the video was made, Rosas said.
+ GRAPHCACHE

object: Date Jater]

date_of_death v/

He was forced to close his bar and now

works occasionally at the University of LUKE

no_relation X

subject: Person [university, student, attend,

. . object: opening, work, school, job,
Foreigners, which Knox and Kercher J L. P & J .
) ded Organization professor, exchange, education]
attended. + GRAPHCACHE  schools_attended v
Margaret Garritsen graduated from the subject: [graduate, government,
University of Michigan as an LUKE schools_attended X Organization association, degree, university,
American Association of University object: technology, science, scholar,
scholar. + GRAPHCACHE no relation v/ Organization receive, research]

Table 6: A case study for LUKE and our GRAPHCACHE on the relation extraction dataset TACRED. We report the
predicted relations of different methods, the entity types, and the top 10 words with the highest probabilities of the
topic that the sentence attends with the highest attention weight.

dataset level to enrich the semantics of every sen-
tence. This finding is consistent with Peng et al.
(2020), suggesting that the entity information can
provide richer information to improve RE. Further-
more, the contextual topics lead to more significant
improvements than the entity types, since the con-
textual information is fundamental for identifying
the relations.

Finally, we analyze the sensitivity of GRAPH-
CACHE to the hyper-parameters K, P, where
K is the number of topics and P is the num-
ber of relevant topics assigned to an instance.
The result is visualized in Fig. 3. We vary
K among {10, 20, 30,40, 50,60} and P among
{1,2,3,4,5,6}. The performance of IRER,BERTa
with GRAPHCACHE is relatively smooth when pa-
rameters are within certain ranges. However, ex-
tremely small values of K and large P result in
poor performances. Too small K cannot effec-
tively model the complex contextual topics in the
large text corpus, while too large P induces irrele-
vant or noisy features for every instance. Moreover,
only a poorly set hyper-parameter does not lead to
significant performance degradation, which demon-
strates that our GRAPHCACHE framework is able
to effectively mine the beneficial properties at the
dataset level and use them to enhance the relation
representations for RE.

4.6 Case Study

We conduct a case study to investigate the effects
of our GRAPHCACHE. Tab. 6 gives a qualita-
tive comparison example between LUKE and the
LUKE with our GRAPHCACHE on the relation ex-
traction dataset TACRED. The result shows that
the global property information that we mine from
the whole dataset can guide the RE systems to
make correct predictions. For example, in the first
row, we model the global entity type information
of the subject as the person and the object as the
date from the whole dataset. This type informa-
tion acts as the prior knowledge that prevents the
model from making the wrong relation prediction
of ‘founded’ between the entities ‘Quentin Fab-
ris’ and ‘1947’ (date). Similarly, in the final row,
our GRAPHCACHE filters out the incorrect relation
‘schools_attend’, since we model the entity type
information from the whole dataset and thus enable
the model to be aware that this relation cannot hold
for the subject type as ‘organization’.

In addition, in the second row, the sentence ‘Ac-
cording to the suspect, Gonzalez was strangled and
buried the day after the video was made, Rosas
said.’ attends to the topic of keywords ‘[stran-
gle, die, after, when, injury, day, hospital, police,
murder, later]” in our heterogeneous graph, which
enriches the semantics of the sentence with the
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context related to the death and time. This helps
the model to make the correct relation prediction
*date_of death’.

5 Conclusion

In this paper, we study the efficient message pass-
ing to enhance the relation extraction models. We
propose a novel method named GRAPHCACHE,
which provides efficient message passing between
instances in the whole dataset. GRAPHCACHE is
a model-agnostic technique that can be incorpo-
rated into popular relation extraction models to
enhance their effectiveness without increasing their
time complexity. In our work, we present a sim-
ple yet effective implementation of GRAPHCACHE,
which models two universal and essential proper-
ties for relation extraction: entity information and
textual context. Our experimental results show
that GRAPHCACHE, with our heterogeneous graph,
yields significant gains for the sentence-level rela-
tion extraction in an efficient manner.
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