


where many egocentric videos are required to be summa-

rized collectively. For instance, rising claims of police mis-

conduct led to a proliferation of body cameras recordings

[45, 2]. Typical police patrols contain multiple officers

working 10-12 hour shifts. Although it is crucial to thor-

oughly inspect key details, manually going through 10-hour

video content is extremely challenging and prone to human

errors. Multiplying shift lengths by the number of officers

on duty, it is obvious that there are copious amounts of data

to analyze with no guiding index. A similar example occurs

at social events such as concerts, music shows, and sports

games. Those events tend to be recorded by many several

cameras simultaneously that are dynamically changing their

fields-of-view. Nevertheless, the final highlight summary of

such events is likely to contain frames from all cameras.

Despite considerable progress in single-view video sum-

marization for both egocentric and fixed cameras (e.g.,

[55, 38, 9, 29]), those techniques are not readily applicable

to summarizing multi-view videos. Single-view summariz-

ers ignore the temporal order by processing simultaneously-

recorded views in a sequential order to fit as a single-view

input. This results in redundant and repetitive summaries

that do not exhibit the multi-stream nature of the footage.

On the other end of spectrum, the literature of multi-view

video summarization mainly focuses on fixed surveillance

camera summarization (e.g., [35, 34]). This enables some

methods to rely on geometric alignment of cameras infer-

ring the relationship between their fields-of-view and uti-

lizing it for a representative summary (e.g., [1, 8]). Thus,

previous work mostly uses unsupervised methods that are

based on heuristic-based objective functions, which are not

suitable to a dynamic change in cameras’ geometric posi-

tioning. A key motivation for our work is to generalize

the multi-stream summarization to accommodate dynamic

cameras and extend the capacity of existing supervised and

unsupervised summarization techniques.

Contributions. We extend single-view and fixed-

cameras methods to be applied on the generalized multi-

stream dynamic-cameras setting. We propose a new adap-

tation of the widely used Determinantal Point Process

(DPP) [55, 29, 9, 42], Multi-DPP, generalizes it to accom-

modate multi-stream setting while maintaining the temporal

order. Our approach is orthogonal to other summarization

approaches and can be embedded with fixed- or moving-

cameras and operating on a supervised or unsupervised set-

ting. Furthermore, our method is shown to be scalable (can

be trained on labels of any available number-of-views in the

supervised setting) and generic (encompasses both single-

view and fixed-cameras settings as special cases). Since

no existing dataset is readily applicable to evaluate such

setting, we collect and annotate a new dataset, Multi-Ego.

With extensive experiments, we show that our method out-

performs state-of-the-art supervised and unsupervised base-

lines on our generic configuration as well as the special case

of fixed-cameras multi-view summarization.

2. Related Work

Single-View Video Summarization Among many ap-

proaches proposed for summarizing single-view videos su-

pervised approaches usually stood out with best perfor-

mances. In such a setting, the purpose is to simulate the pat-

terns that people exhibit when performing the summariza-

tion task, by using human-annotated summaries. There are

two-factor influence the supervised models’ performance:

(a) reliability of annotations, and (b) framework’s modeling

capability. Ensuring the reliability of annotations is evalu-

ated based on a consensus analysis as in several benchmark

datasets [27, 43, 22]. As for the modeling capabilities, su-

pervised approaches vary in their modeling complexity and

effectiveness [9, 12, 54, 11, 53, 6].

Recently, [40] proposed to use convolutional sequences

to summarize videos in both supervised and unsupervised

settings. By formulating the problem as a sequence label-

ing problem, they established a connection between seman-

tic segmentation and video summarization and used net-

works trained on the former to improve the latter. Others

have formulated the summarization problem within a rein-

forcement learning paradigm either with an explicit clas-

sification reward as in [57] or a more subtle diversity-

representativeness reward [58]. Both approaches provided

relatively competitive results on single-view, nonetheless

they suffer from unstable training in the multi-view setting

as we detail in the experiments section.

Recurrent Neural Networks in general, and Long Short-

Term Memory (LSTM) [13] in particular has been widely

used in video processing to obtain the temporal features

in videos [47, 33, 59, 26]. In the recent years, using

LSTMs has been a common practice to solve video sum-

marization problem [15, 44, 51, 56, 52, 25, 4]. For ex-

ample, Zhang et al. [55] use a mixture of Bi-directional

LSTMs (Bi-LSTM) and Multi-Layer Perceptron to summa-

rize single-view videos in a supervised manner. They maxi-

mize the likelihood of Determinantal point processes (DPP)

measure[21, 10, 48] to enforce diversity within the selected

summary. Also, Mahasseni et al. [29] present a framework

that adversarially trains LSTMs, where the discriminator is

used to learn a discrete similarity measure for training the

recurrent encoder/decoder and the frame selector LSTMs.

Multi-view Video Summarization Most multi-view

summarization methods tend to rely on feature selection in

an unsupervised optimization paradigms [32, 34, 35, 39,

30]. Fu et al. [8] introduce the problem of multi-view video

summarization as tailored for fixed surveillance cameras.

They construct a spatiotemporal graph and formulate the

problem as a graph-labeling task. Similarly, in [35, 34, 30]
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authors assume that cameras in a surveillance camera net-

work have a considerable overlap in their fields-of-view.

Therefore they apply well-crafted objective functions that

learn an embedding space and jointly optimize for a suc-

cinct representative summary. Since those approaches tar-

get fixed surveillance cameras, they rightfully assume a sig-

nificant correlation among the frames along the same view

over time. In our generalized setting, cameras move dy-

namically and contain rapid changes in the field-of-view

rendering the aforementioned assumption weak and make

the problem harder to solve.

Multi-Video Summarization Unlike multi-view, multi-

video [49, 24] focuses on spatio-temporally independent

videos and thus, can be processed individually. The key

challenge is scalling the framework onto a large number of

input videos. [16] formulated the problem into finding the

dominant sets in a hypergraph. Then, refine these keyframe

candidates using the web images of the same query. Re-

cently, [17] proposed a similar method that differs in using

a multi-modal weighted archetypal analysis instead of a hy-

pergraph as a structure of the large number of web videos.

3. Multi-Ego: A new multi-view egocentric

summarization dataset

While a number of multi-view datasets exist (e.g. [8,

32]), none of them are recorded in egocentric perspective.

Therefore, we collect our own data that aligns with the es-

tablished problem setting. We asked three users to indepen-

dently collect a total of 12 hours of egocentric videos while

performing different real-life activities. Data covers various

uncontrolled environments and activities. We also ensured

to present different levels of interactions among the individ-

uals: (a) two views interacting while the third one is inde-

pendent, (b) all views interacting with each other, and (c)

all views independent of each other. Then, we extracted 41

different sequences that vary in length from three to seven

minutes. Each sequence contains three views covering a va-

riety of indoors and outdoors activities. We made the data

more accessible for training and evaluation by grouping the

sequences into 6 different collections.

To put our dataset size (41 videos of 3-7 minutes) in per-

spective, we refer to the most commonly used summariza-

tion benchmarks: SumMe (25 videos of 2-4 minutes), TV-

Sum (50 videos of 2-4 minutes) [43], Office (4 videos of

11 minutes), Lobby (3 videos of 8 minutes) and Campus (4

videos of 15 minutes) [8, 32]. Even though that collecting

larger sizes and longer videos is desirable, nonetheless, an-

notating simultaneously collected views by several annota-

tors is a notoriously hard task. In the following section, we

shed some light on the difficulties encountered in that task

and we propose annotating-in-stages approach to reduce the

annotation uncertainty. More details about data-collection

and a behavioral analysis on the obtained annotations are

provided in supplementary materials.

3.1. Collecting User Annotations

To annotate and process the data for the summarization

task, we sub-sample the videos uniformly to one fps follow-

ing [42]. Then, every three consecutive frames are com-

bined to construct a shot for an easier display to annotators.

The number of frames per shot was chosen empirically to

maintain a consistent activity within one shot.

We asked five human annotators to perform a three-stage

annotation task. In stage one, they were asked to choose the

most interesting and informative shots that represent each

view independently without any consideration towards the

other views. To construct two-view summaries in stage two,

we only displayed the first two views simultaneously, while

asking the users to select the shots from any of the two

views that best represent both cameras. Similar to stage

two, in stage three the users were asked to select shots

from any of the three views that best represent all the cam-

eras. It is worth noting that the annotators were not limited

to choose only one view of a certain shot, and they could

choose as many as they deem important.

The annotating-in-stages procedure explained above

was employed due to the human’s limited capability in

keeping track of unfolding storylines along multiple views

simultaneously. Consequently, using this technique resulted

in a significant improvement in the consensus between user

summaries compared to when we initially collected sum-

maries in an unordered annotation task.

3.2. Analyzing User Annotations

To ensure the reliability and consistency of the obtained

annotations, we perform a consensus analysis using two

metrics: average pairwise f1-measure and selection ratio.

Following [43, 42, 38], we compute the average pairwise

f1-measure to estimate the frame-level overlap and agree-

ment. We calculated the f1-measure for all possible pairs

of users’ annotations and averaged the results across all the

pairs, obtaining an average of 0.803, 0.762, and 0.834 for

the first, second, and third stage respectively.

3.3. Creating Oracle Summaries

Finally, training a supervised method usually requires a

single set of labels. That means in our case, we need to

use only one summary per video, which is often referred

to as Oracle Summary. To create an oracle summary using

multiple human-created summaries, we follow [9, 20] to

greedily choose the shot that results in the largest marginal

gain on the f-score, and iteratively keep repeating the greedy

selection until the length of the summary reaches 15% of the

single-view length.

341



4. Approach

4.1. Determinantal Point Process (DPP)

DPP is a probabilistic measure that provides a tractable

and efficient means to capture negative correlation with re-

spect to a similarity measure [28, 21]. Formally, a dis-

crete point process P on a ground set Y is a probabil-

ity measure on the power set 2N , where N = |Y| is the

ground set size. A point process P is called determinantal

if P(y ⊆ Y ) ∝ det(Ly); ∀ y ⊆ Y . Y is the selection ran-

dom variable sampled according to P and L is a symmetric

semi-definite positive matrix representing the kernel.

Kulesza et al. [19] proposed modeling the marginal ker-

nel L as a Gram matrix in the following manner:
P(y = Y ) ∝ det(Φ>

y Φy)
∏

i∈y

q2i , (1)

When optimizing the DPP kernel, this decomposition learns

a “quality score" of each item, where qi ≥ 0. It also al-

lows learning a feature vector Φy of subset y ⊆ Y . In

this case, the dot product Φy = [φi|...|φj ], where φ>
i φj ∈

[−1, 1]; ∀i, j ∈ y is evaluated as a “pair-wise similarity

measure" between the features of item i, φi and the features

of item j, φj . Thus, the DPP marginal kernel Ly can be used

to quantify the diversity within any subset y selected from

a ground set Y . Choosing a diverse subset is equivalent

to a brief representative subset since the redundancy is be-

ing minimized. Hence, it is only natural that a considerable

number of document and video summarization approaches

use this measure to extract representative summaries of doc-

uments and videos [20, 29, 9, 48].

4.2. Adapting DPP to Multi-stream: Multi-DPP

The standard DPP process described above is suitable

for selecting a diverse subset from a single ground set.

However, when presented with several temporally-aligned

ground sets {Y1,Y2, ...,YM}, the standard process can only

be applied in one of two settings: either (a) merging all

the ground sets into a single ground set Ymerge = {Y1 ∪
Y2 ∪ ... ∪ YM} and selecting a diverse subset out of the

merged ground set, or (b) selecting a diverse subset from

each ground set and then merging all the selected subsets

Y merge = {Y1 ∪ Y2 ∪ ... ∪ YM}.

Even though that the former setting preserves the infor-

mation of all elements of the ground sets, but it causes the

complexity of the subset selection to exponentially grow. In

practice, this leads to an accumulation of error due to over-

flow and underflow computations as well as substantially

slower running-time. Additionally, latter setting assumes

no-intersection between features of the different ground-

sets. This is essentially inapplicable if the ground-sets have

a significant dynamic feature overlap, leading to redun-

dancy and compromising the very purpose of the DPP. To

address these shortcomings, we propose a new adaptation

of Eq. 1, called Multi-DPP.

In Multi-DPP, ground sets are processed in parallel al-

lowing any potential feature overlap across the ground sets

to be processed temporally-appropriate and keeping a lin-

ear growth with respect to the number of streams. For every

element in the ground sets, we need to represent two joint

quantities: features and quality, such that they follow the

following four characteristics. First, we need a model that

can operate on any number of streams (i.e., generic to any

number of ground sets M ). Second, we need a joint rep-

resentation of the features at each index, such that it only

selects the most effective ones (i.e., invariance to noise and

non-important features). Third, we need a joint representa-

tion of the qualities at each index, such that is affected by

the quality of each ground set at a particular index (i.e., vari-

ance to the quality of each ground set). Forth, we need to

ensure that our adaptation follows the DPP decomposition

in Eq. 1, by selecting joint features φ>
i φj ∈ [−1, 1], and

joint qualities qi ≥ 0; ∀i, j ∈ y.

To account for joint features, we apply max-pooling

choosing the most effective features across all ground sets

at every index, which satisfies the feature decomposition in

Eq. 1. Selecting joint qualities -on the other hand- needs

to account for the quality of each ground set in every in-

dex. We use the product of all the qualities at each index.

This deems the joint quality at each index to be dependent

on all ground-sets while also ensuring qm ≤ 1. Therefore,

we generalize the Determinantal Point Process based on the

decomposition in Eq. 1 as follows:

P(Y = y) ∝ det(Φ>
y Φy)

M
∏

m=1

∏

i∈ym

[qmi ]2

φj = max(φ1
j , ..., φ

M
j ) ; ∀j ∈ y

(2)

where M is the number of the ground sets and ym is the

subset selected from ground set m. This decomposition al-

lows both a scalable multi-stream (by constructing a joint

feature representation with max-pooling), and monitoring

the egocentric-introduced noise (by learning an independent

quality measure for each view at each time-step).

Summarizing videos using Multi-DPP. Since Multi-

DPP formulation of Eq. 2 does not require any extra super-

visory signals, it can be adopted to an optimization formula

for both supervised and unsupervised training. In particu-

lar, we follow [21] in defining the similarity measure of su-

pervised summarization approaches based on a Maximum

Likelihood Estimation of the Multi-DPP measure with re-

spect to the ground-truth labels as follows:

θ∗ = argmaxθ

∑

i

log
{

P (Y (i) = y(i)∗;L(i)(θ)
}

(3)

where θ is the set of supervised parameters, y∗ is the target

subset (i.e., ground-truth) and i indexes training examples.

For unsupervised summarization, we define the Multi-

DPP loss based on a diversity regularization introduced in
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Figure 2: Multi-DPP is applied to increase diversity within the

selected time-steps. When view labels are available, we also use

cross-entropy to learn representative view(s) at each time-step.

[29] that aims to only increase diversity since no summary

labels are being provided.

θ∗ = argmaxθ log
{

P (Y ;L(i)(θ)
}

(4)

where θ is the set of unsupervised parameters.

Finally we note that our supervised and unsupervised

adaptations are orthogonal to other summarization ap-

proaches and can be embedded to allow any DPP-based ap-

proach (e.g., [55, 29, 3, 41, 5]) to summarize multi-stream

data while preserving the temporal order and monitoring

the quality of a dynamic input. Additionally, Multi-DPP

is equivalent to the standard DPP decomposition in Eq.1

when M = 1 at Eq.2. This renders Multi-DPP summa-

rization approach as a generalization of the standard single-

view summarization DPP approaches as well as orthogonal

to other summarization approaches that allows them to pro-

cess multi-stream data in a proper temporal order. The dis-

cussed theoretical advantage of such generalization will be

further analyzed empirically at Section 5.3.

4.3. Summarization Framework

Figure 2 shows the input as M independent views, with

N frames at each view. We follow [55, 29, 3, 41] in con-

structing features of each frame across the streams. First,

spatial features are extracted from each frame at each view

using a pre-trained CNN. Then, spatial features are tem-

porally processed using a Bidirectional LSTM layer. By

aggregating both spatial and temporal features, we obtain a

comprehensive spatio-temporal feature vector of each frame

at each view. We choose to share the weights of the Bi-

LSTM layer across the views for two reasons: (a) it allows

the system to operate on any number of views without in-

creasing the number of trainable parameters which allevi-

ates overfitting, and (b) learning temporal features is inde-

pendent of the view, thus it utilizes data from all views to

produce better temporal modeling.

We break down our objective into two tasks: selecting

diverse events and identifying the view(s) contributing to

illustrating each selected event in summary. In first task,

to select diverse events, we construct a feature set account-

ing for all the views at each time-step. We do so by max-

pooling the spatio-temporal features from all the views,

resulting in the most prominent feature at each index of

the feature vector. We follow max-pooling by a two-layer

Multi-Layer Perceptron (MLP) that applies non-linear acti-

vation on joint features that are represented as Φ in Eq. 2.

The second task, however, is used to identify the most

representative view(s) at each event. We use a two-layer

MLP that classifies each view at each time step. Formu-

lating this task as a classification problem serves three pur-

poses. First, it selects the views that are included in the

summary, which is an intrinsic part of the solution. Second,

it regularizes the process of learning the importance of each

event by not selecting any view when the time-step is non-

important. Finally, the classification confidence of view m

can be used to represent the quality (qmn ) at time-step n.

This is later used to compute the Multi-DPP measure that

determines which time-steps are selected. In the case of

non-overlapping views, the framework may need to select

multiple views at the same time-step. That’s why, we con-

duct an independent view classification by applying binary

classification, which allows classifying each view indepen-

dently from the rest.

Similar to the weights of the Bi-LSTM, the view classi-

fier MLP weights are also shared across the views for two

reasons. First, it uses the same number of trainable parame-

ters for any number-of-views data, resulting in fewer train-

able parameters which limit the problem of overfitting to

training data. Second, it establishes a view-dependent clas-

sification. That is, at any time-step, choosing a represen-

tative view among all the views is affected by the relative

quality of all the views, rather than each one independently.

During training, we start by estimating the quality qmn of

each view m at each time-step n, which serves as the view

selection. Then we evaluate Multi-DPP measure by merg-

ing the computed qmn with the joint-features Φ as in Eq. 2.

In our supervised setting, we optimize the view(s) se-

lection procedure by using the binary cross-entropy objec-

tive: − 1
M

∑M

m=1

∑N

n=1 y
m
n log(pmn ); where ymn , pmn are the

ground truth and model’s prediction for the time-step n in

view m. We jointly optimize the framework by minimizing

the sum of the cross entropy loss as well as Eq. 3 and using

the Oracle summary as the ground-truth in the supervised

setting. In the unsupervised setting, view selection weights

are only learned by learning the quality qmn from the Multi-

DPP measure and we only optimize the Multi-DPP loss cri-

terion Eq. 4.

Lastly, while input views are not required to be tempo-

rally aligned, they are assumed to have timestamps. This is

a commonly held assumption in previous multi-view liter-

ature (e.g., [8, 18]) due to its default presence in nearly all
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modern recording devices. If given non-aligned views, our

framework can process any number of views at each time-

step since the weights of the Bi-LSTM and the MLPs are

shared among the views.

4.4. Multi-view supervised scalability

Supervised summarization tends to have a superior gen-

eralization performance when compared to unsupervised

ones, e.g., [9, 38, 55, 29]. Relying on human-annotated la-

bels allows learning generic behavioral patterns instead of

customized heuristics as in most unsupervised approaches.

Nonetheless, supervision requires an abundance of labeled

training data. Thus, a crucial concern of a multi-view super-

vised system is to be scalable in order to utilize all available

forms of labels for an improved performance. Obviously,

unsupervised systems do not undergo this challenge since

they do not utilize labels.

In particular, a scalable multi-view video summarizer is

invariant to view order and number-of-views, and therefore

can learn from any data regardless of those properties. First,

invariance to view order implies producing the same sum-

mary for input views (vi, vj , vk) as to (vj , vi, vk); ∀i, j, k ∈
{1, 2, ..,M}, for all possible permutations of (i, j, k). Our

approach satisfies this requirement by constructing joint-

features via max-pooling. Thus, summary is only shaped

by the most effective features regardless of view order.

The second condition, invariance to number-of-views,

entails the ability to train on data with varying numbers-

of-views and test on data of any number-of-views. Satis-

fying this condition requires the number of trainable pa-

rameters to be invariant from the number-of-views of the

input. This way the same set of parameters can be used

to train/test on data with any number-of-views. We fol-

lowed two techniques ensuring a fixed number of trainable

parameters: (a) max pooling view-specific features, and

(b) weight-sharing for Bi-LSTM and view selection lay-

ers. Firstly, Applying max-pooling on view-specific fea-

tures produces a fixed-size joint feature vector that is in-

variant from the number-of-views in the input. Addition-

ally, choosing the prominent features across views entails

learning intra-view dependencies. Secondly, weight sharing

across Bi-LSTM view-streams and view selection layers en-

sures our framework has a single set of trainable parameters

for each of those layers regardless number-of-views.

5. Experiments and Results

5.1. Baseline Methods

Since our supervised approach is the first supervised

multi-view summarization method, we could not compare

with other supervised Multi-View approaches. Nonethe-

less, we compare our criterion with supervised and unsu-

pervised single-view, and unsupervised multi-view summa-

rizations. Additionally, we include Reinforcement Learning

baselines that showed competitive performance on single-

view videos.

To apply the single-view configuration on multi-view

videos, we examine two settings:

• Merge-Views: Aggregating views then summarizing

aggregate footage using a single-view summarizer.

Summary is consistent if the views are independent.

• Merge-Summaries: Summarizing each view indepen-

dently and then aggregating the summaries. Comple-

mentary to the former setting, this should result in a

consistent summary if the summaries are independent.

In our experiments, we observed that the supervised ver-

sion of Convolutional Sequences [40] tends to diverge when

using Merge-summaries method in training due to relatively

short videos in their case. Thus, we compare with the more

reliable version of Merge-views. On the contrary, reinforce-

ment learning methods [57, 58] tend to be unstable for the

merge-views due to the long sequential input where the re-

ward is usually far away from the start of the sequence, and

thus it may lead to vanishing the gradients. So, we compare

with the merge-summary concatenation, where the reward

function tends to be more stable. This observed instability

faced in training the baselines establishes a better motive

for developing an objective like ours that is curated to be

independent of number views, making it tractable during

training/testing when the number of views is large, and at

the same time incorporates the information from all views

while preserving temporal ordering.

5.2. Experimental Setup

We use GoogLeNet [46] features for all the methods

as an input. For a fair comparison, we train all supervised

baselines [12, 55] and Ours with the same experimental

setup: iterations number, batch size, and optimization. We

note that all neural-network models have the same architec-

ture (same number of trainable parameters) and only differ

in the objective function and their training strategy to ensure

a fair comparison.

The supervised frameworks are trained for twenty itera-

tions with a batch size of 10 sequences. Adam optimizer is

used to optimize the losses with a learning rate of 0.001. Af-

ter each iteration, we calculate the mean validation loss and

only evaluate the model with the best validation loss across

all iterations. We discuss further details of the architecture

and training in the supplementary materials.

As discussed in section 3.1, we categorize our dataset

sequences into six collections to facilitate the training and

evaluation. In our experiments, we follow a round-robin ap-

proach to train-validate-test the supervised/semi-supervised

learning frameworks. We use four collections for training,
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Two-View Three-View

Precision Recall F1-Score Precision Recall F1-Score

Random Baseline Uniform Sampling 9.83 10.65 9.85 5.83 5.16 5.77

Unsupervised

& Sub-modular

Multi-View

feature selection [31] 17.83 19.15 17.46 12.33 16.28 10.70

joint embedding [34] 18.37 25.20 20.66 13.88 24.85 17.17

Unpaired Data [39] 21.26 22.16 21.81 19.62 19.93 19.41

Sub-modular [12] 19.91 25.21 22.71 18.49 22.71 20.19

Unsupervised

Single-View

Adversarial [29]: Merge-Views 21.16 23.42 22.35 20.2 18.94 19.76

Adversarial [29]: Merge-Summaries 20.61 22.05 21.12 19.32 18.24 18.96

Convolutional [40]: Merge-Views 21.05 22.92 22.26 19.86 20.68 20.13

Convolutional [40]: Merge-Summaries 20.64 22.34 21.87 16.52 20.47 18.91

Ours-unsupervised Multi-DPP 23.91 24.72 24.18 21.96 22.24 22.61

Supervised

& RL

Single-View

LSTM [55]: Merge-Views 27.87 28.57 27.67 23.25 23.87 22.95

LSTM [55]: Merge-Summaries 26.61 27.25 26.43 22.86 23.59 22.76

Convolutional [40]: Merge-Views 26.84 26.01 26.38 22.28 23.47 22.92

RL Diversity [57]: Merge-Summaries 25.02 27.00 25.97 23.78 22.14 23.14

RL Classification [58]: Merge-Summaries 26.01 26.71 26.27 22.74 23.68 23.37

(Ablation Study)

Ours-supervised

Only Cross-Entropy (CE) 27.33 27.83 27.13 21.33 22.03 21.10

Full: Multi-DPP + CE 28.58 29.05 28.30 25.06 25.79 25.03

Table 1: MultiEgo benchmarking for two-view and three-view settings. Ours consistently outperforms the baselines on all the measures.

We also run an ablation study to show the effect of optimizing the supervised Multi-DPP measure as compared to using only Cross-Entropy.

one for validation, and one for testing across all the 30 dif-

ferent combinations of collections. Since no training is re-

quired for unsupervised approaches, we only test methods

on each collection separately and report their means.

To evaluate the summaries produced by all the methods,

we follow the protocols in [29, 55, 15, 43] to compare

the predictions against the oracle summary. We start by

temporally segmenting all views using the KTS algorithm

[38] to non-overlapping intervals. Then, we repetitively ex-

tract key-shot based summaries using MAP [54] while set-

ting the threshold of summary length to be 15% of a single

view’s length. For each of the selected shots, we consider

all of its frames to be included in the summary.

5.3. Performance Evaluation

We follow [36, 34, 55, 29, 8] in using f1-score, preci-

sion, and recall to evaluate the quality of the produced sum-

maries by comparing frame-level correspondences between

the predicted summary and the ground-truth summary. Ta-

ble 1 shows the mean precision, recall, and F1-score across

all the combinations of training-validation-testing for both

the two-view setting and three-view setting.

In general, supervised frameworks perform better than

unsupervised ones due to learning from human annotations.

For unsupervised methods, [34, 31, 12, 39] obtain the low-

est performance indicating their inability to adapt to visual

changes occurring in egocentric motion due to the lack of

summary labels. However, using adversarial training [29]

seems to improve the results even with a single-view setting

since the learning distribution converges to true data distri-

bution, and it better learns to isolate egocentric-noise. Sim-

ilarly, the supervised single-view BiLSTM [55] and Con-

volutional Sequences [40] reasonably adapt to egocentric

visual noise utilizing the summary labels. Only our model

monitors the egocentric-introduced noise and process data

in a proper temporal order, achieving the best performance

in both unsupervised and supervised comparisons.

To study the impact of enforcing diversity, we run an

ablation study by evaluating our supervised approach with

only optimizing cross-entropy loss(Ours: Cross-Entropy

(CE) in Table 1). This corresponds to training our model

by only selecting representative views, without explicitly

enforcing diversity. Evidently, adding Multi-DPP measure

to the CE loss improves the results, especially in the three-

view setting due to the increase of input footage required to

diversify. It is worth noting that using only Multi-DPP is

equivalent to our unsupervised version.

Generally, it can be noticed that performance in the two-

view setting is higher than that in the three-view setting,

although methods’ ranking remains the same. This is be-

cause of the increase in problem complexity when consider-

ing more views to be summarized, causing the performance

to drop. Additionally, the performance gap increases as we

move from two-view to three-view setting. Theoretically,

we expect approaches such as [40, 55, 29, 57] drop per-

formance as the number of views grows and this is backed

up empirically. Secondly, whether we concatenate views or

concatenate summaries in order to adapt [55, 57, 40, 29],

the complexity of the adaptation is unnecessarily high (ei-

ther a larger DPP kernel in case of view concatenation and
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Method Office Campus Lobby

Graph [37] 41.3 49.1 73.4

RandomWalk [8] 75.8 61.6 86.8

RoughSets [23] 75.8 62.1 84.2

BipartiteOPF [18] 81.8 71.8 88.2

Unpaired Data [39] 91.0 80.5 89.3

Joint embedding [34] 89.4 77.8 92.5

Convolutional [40]-Unsup 90.2 78.6 92.5

Convolutional [40]-Sup 94.0 81.9 93.0

RL Diversity [57] 92.9 80.6 91.4

RL Classification [58] 92.1 82.5 92.2

Ours-unsupervised 90.7 81.2 92.7

Ours-supervised 94.2 86.1 93.4

Table 2: Fixed-cameras multi-view f1-scores. We train our super-

vised model on Multi-Ego and test it on three datasets.

processing each view separately in summary concatenation

scenario). Our proposed approach uses a maxpool opera-

tion as well as view quality multiplication to represent all

views while preserving computational/memory efficiency.

Finally, we investigate the performance of our approach

on fixed-cameras multi-view setting, which is a special case

of our generic configuration. We evaluate our model on

three standard fixed-cameras multi-view benchmarks: Of-

fice, Campus, and Lobby datasets [8, 32]. We train our

supervised model on our Multi-Ego dataset, and evaluate

it on the testing dataset. Table 2 shows a substantial suc-

cess in transferring the learning from one domain (egocen-

tric multi-view) to another domain (static multi-view) with-

out the need to specifically-tailored training data. Thus, we

provide the first supervised multi-view summarization that

significantly outperforms state-of-the-art unsupervised ap-

proaches while only being trained on our data. Addition-

ally, our unsupervised model outperforms them due to ex-

plicitly enforcing diversity and quality constraint. The con-

sistent advantage in the three experimental environments

for both our supervised and unsupervised models demon-

strates the versatility of the proposed approach in handling

static/egocentric videos in a generic summarization setting.

5.4. Supervised Scalability Analysis

In this section, we study our supervised framework’s ca-

pability to learn from a varying number-of-views in a se-

quence by verifying if the training process can exploit any

increase in data regardless of its numbers-of-views. We

start by splitting our data into two categories of nearly the

same number of sequences: (a) three-view (Collections:

Indoors-Outdoors, SeaWorld, Supermarket), and (b) two-

view (Collections: Car-Ride, College-Tour, Library). We

investigate the performance of three train/test configura-

tions where testing data is limited to a single category:

1. Same category training (2×two-view& 1×two-view):

Test Train Precision Recall F1-Score

tw
o

-v
ie

w

2×two-view 29.83 29.77 29.67

3×three-view 29.77 30.30 30.2

2×two-view +

3×three-view
34.37 35.03 34.33

th
re

e-
v

ie
w 2×three-view 18.53 18.80 18.33

2×two-view 18.23 18.27 17.67

3×two-view +

2×three-view
21.53 21.87 21.33

Table 3: Scalability Analysis: Our framework can be trained and

tested on data of different number-of-views.

Train on 2 collections from same category as testing.

2. Different category training (3×two-view& 3×three-

view): Train on 3 collections from one category, and then

test it on a collection belonging to a different category.

3. Training using Data from the two categories (3×two-

view + 2×two-view& 2×two-view + 3×two-view): Train

on data from different categories, and test it on a collection

from one of the categories in the training data.

As shown in Table 3, training our framework on same

categories or different categories obtain comparable results

when testing on both two-view and three-view settings.

However, increasing training data size by combining both

categories significantly improves the results. This shows

that our model can be trained and tested on data of various

number-of-views and also is able take advantage of any data

increase with no regard to its number-of-views setting.

6. Conclusion

In this work, we proposed the problem of multi-view

video summarization for dynamically moving cameras that

often do not share the same field-of-view. Our formulation

provides the first supervised solution to multi-stream sum-

marization in addition to an unsupervised adaptation. Un-

like previous work in multi-view video summarization, we

presented a generic approach that can be trained in a su-

pervised or unsupervised setting to generate a comprehen-

sive summary for all views with no prior assumptions on

camera placement nor labels. It identifies important events

across all views and selects the view(s) best illustrating each

event. We also introduced a new dataset, recorded in un-

controlled environments including a variety of real-life ac-

tivities. When evaluating our approach on the collected

benchmark and additional three standard mutli-view bench-

mark datasets, our framework outperformed all baselines of

state-of-the-art supervised, reinforcement and unsupervised

single- and multi-view summarization methods.
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