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Abstract

With vast amounts of video content being uploaded to the
Internet every minute, video summarization becomes crit-
ical for efficient browsing, searching, and indexing of vi-
sual content. Nonetheless, the spread of social and ego-
centric cameras creates an abundance of sparse scenarios
captured by several devices, and ultimately required to be
Jjointly summarized. In this paper, we discuss the problem of
summarizing videos recorded independently by several dy-
namic cameras that intermittently share the field of view. We
present a robust framework that (a) identifies a diverse set of
important events among moving cameras that often are not
capturing the same scene, and (b) selects the most repre-
sentative view(s) at each event to be included in a universal
summary. Due to the lack of an applicable alternative, we
collected a new multi-view egocentric dataset, Multi-Ego.
Our dataset is recorded simultaneously by three cameras,
covering a wide variety of real-life scenarios. The footage
is annotated by multiple individuals under various summa-
rization configurations, with a consensus analysis ensuring
a reliable ground truth. We conduct extensive experiments
on the compiled dataset in addition to three other standard
benchmarks that show the robustness and the advantage
of our approach in both supervised and unsupervised set-
tings. Additionally, we show that our approach learns col-
lectively from data of varied number-of-views and orthog-
onal to other summarization methods, deeming it scalable
and generic.

1. Introduction

In a world where nearly everyone has several mo-
bile cameras ranging from smart-phones to body-cameras,
brevity becomes no longer an accessory. It is rather es-
sential to efficiently extract relevant contents from this im-
mense array of static and moving cameras. Video summa-
rization aims at selecting a set of frames from a visual se-
quence that contains the most important and representative
events. Not only is summarization useful for efficiently ex-
tracting the data substance, it also serves many other ap-
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Figure 1: Several views are recorded independently and intermit-
tently overlap their fields-of-view. Our approach dynamically ac-
counts for inter- and intra-view dependencies, providing a com-
prehensive summary of all views.

plications such as video indexing [14], video retrieval [50],
and anomaly detection [7].

We consider a generic setting where multiple users
record egocentric footage that is both spatially and tem-
porally independent. Users are allowed to move freely in
an uncontrolled environment. As such, cameras’ fields-of-
view may or may not overlap through the sequence. Un-
like fixed-camera videos, egocentric footage often displays
rapid changes in illumination, unpredictable camera mo-
tion, unusual composition and viewpoints, and often com-
plex hand-object manipulations. Accordingly, the desired
summary should include a diverse set of events from all
viewpoints and resist the egocentric noise. Specifically,
there are two types of important events to be included in
the universal summary. First, events where multiple views
have a substantial overlap, in which the summary include
the most representative view. Second, events that are spa-
tially independent, in which each view is processed sepa-
rately from the rest.

This setting presents itself in several real-life scenarios
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where many egocentric videos are required to be summa-
rized collectively. For instance, rising claims of police mis-
conduct led to a proliferation of body cameras recordings
[45, 2]. Typical police patrols contain multiple officers
working 10-12 hour shifts. Although it is crucial to thor-
oughly inspect key details, manually going through 10-hour
video content is extremely challenging and prone to human
errors. Multiplying shift lengths by the number of officers
on duty, it is obvious that there are copious amounts of data
to analyze with no guiding index. A similar example occurs
at social events such as concerts, music shows, and sports
games. Those events tend to be recorded by many several
cameras simultaneously that are dynamically changing their
fields-of-view. Nevertheless, the final highlight summary of
such events is likely to contain frames from all cameras.

Despite considerable progress in single-view video sum-
marization for both egocentric and fixed cameras (e.g.,
[55, 38,9, 29]), those techniques are not readily applicable
to summarizing multi-view videos. Single-view summariz-
ers ignore the temporal order by processing simultaneously-
recorded views in a sequential order to fit as a single-view
input. This results in redundant and repetitive summaries
that do not exhibit the multi-stream nature of the footage.
On the other end of spectrum, the literature of multi-view
video summarization mainly focuses on fixed surveillance
camera summarization (e.g., [35, 34]). This enables some
methods to rely on geometric alignment of cameras infer-
ring the relationship between their fields-of-view and uti-
lizing it for a representative summary (e.g., [1, 8]). Thus,
previous work mostly uses unsupervised methods that are
based on heuristic-based objective functions, which are not
suitable to a dynamic change in cameras’ geometric posi-
tioning. A key motivation for our work is to generalize
the multi-stream summarization to accommodate dynamic
cameras and extend the capacity of existing supervised and
unsupervised summarization techniques.

Contributions. We extend single-view and fixed-
cameras methods to be applied on the generalized multi-
stream dynamic-cameras setting. We propose a new adap-
tation of the widely used Determinantal Point Process
(DPP) [55, 29, 9, 42], Multi-DPP, generalizes it to accom-
modate multi-stream setting while maintaining the temporal
order. Our approach is orthogonal to other summarization
approaches and can be embedded with fixed- or moving-
cameras and operating on a supervised or unsupervised set-
ting. Furthermore, our method is shown to be scalable (can
be trained on labels of any available number-of-views in the
supervised setting) and generic (encompasses both single-
view and fixed-cameras settings as special cases). Since
no existing dataset is readily applicable to evaluate such
setting, we collect and annotate a new dataset, Multi-Ego.
With extensive experiments, we show that our method out-
performs state-of-the-art supervised and unsupervised base-

lines on our generic configuration as well as the special case
of fixed-cameras multi-view summarization.

2. Related Work

Single-View Video Summarization Among many ap-
proaches proposed for summarizing single-view videos su-
pervised approaches usually stood out with best perfor-
mances. In such a setting, the purpose is to simulate the pat-
terns that people exhibit when performing the summariza-
tion task, by using human-annotated summaries. There are
two-factor influence the supervised models’ performance:
(a) reliability of annotations, and (b) framework’s modeling
capability. Ensuring the reliability of annotations is evalu-
ated based on a consensus analysis as in several benchmark
datasets [27, 43, 22]. As for the modeling capabilities, su-
pervised approaches vary in their modeling complexity and
effectiveness [9, 12, 54, 11, 53, 6].

Recently, [40] proposed to use convolutional sequences
to summarize videos in both supervised and unsupervised
settings. By formulating the problem as a sequence label-
ing problem, they established a connection between seman-
tic segmentation and video summarization and used net-
works trained on the former to improve the latter. Others
have formulated the summarization problem within a rein-
forcement learning paradigm either with an explicit clas-
sification reward as in [57] or a more subtle diversity-
representativeness reward [58]. Both approaches provided
relatively competitive results on single-view, nonetheless
they suffer from unstable training in the multi-view setting
as we detail in the experiments section.

Recurrent Neural Networks in general, and Long Short-
Term Memory (LSTM) [13] in particular has been widely
used in video processing to obtain the temporal features
in videos [47, 33, 59, 26]. In the recent years, using
LSTMs has been a common practice to solve video sum-
marization problem [15, 44, 51, 56, 52, 25, 4]. For ex-
ample, Zhang et al. [55] use a mixture of Bi-directional
LSTMs (Bi-LSTM) and Multi-Layer Perceptron to summa-
rize single-view videos in a supervised manner. They maxi-
mize the likelihood of Determinantal point processes (DPP)
measure[21, 10, 48] to enforce diversity within the selected
summary. Also, Mahasseni et al. [29] present a framework
that adversarially trains LSTMs, where the discriminator is
used to learn a discrete similarity measure for training the
recurrent encoder/decoder and the frame selector LSTMs.

Multi-view Video Summarization Most multi-view
summarization methods tend to rely on feature selection in
an unsupervised optimization paradigms [32, 34, 35, 39,
30]. Fuetal. [8]introduce the problem of multi-view video
summarization as tailored for fixed surveillance cameras.
They construct a spatiotemporal graph and formulate the
problem as a graph-labeling task. Similarly, in [35, 34, 30]

340



authors assume that cameras in a surveillance camera net-
work have a considerable overlap in their fields-of-view.
Therefore they apply well-crafted objective functions that
learn an embedding space and jointly optimize for a suc-
cinct representative summary. Since those approaches tar-
get fixed surveillance cameras, they rightfully assume a sig-
nificant correlation among the frames along the same view
over time. In our generalized setting, cameras move dy-
namically and contain rapid changes in the field-of-view
rendering the aforementioned assumption weak and make
the problem harder to solve.

Multi-Video Summarization Unlike multi-view, multi-
video [49, 24] focuses on spatio-temporally independent
videos and thus, can be processed individually. The key
challenge is scalling the framework onto a large number of
input videos. [16] formulated the problem into finding the
dominant sets in a hypergraph. Then, refine these keyframe
candidates using the web images of the same query. Re-
cently, [17] proposed a similar method that differs in using
a multi-modal weighted archetypal analysis instead of a hy-
pergraph as a structure of the large number of web videos.

3. Multi-Ego: A new multi-view egocentric
summarization dataset

While a number of multi-view datasets exist (e.g. [8,
32]), none of them are recorded in egocentric perspective.
Therefore, we collect our own data that aligns with the es-
tablished problem setting. We asked three users to indepen-
dently collect a total of 12 hours of egocentric videos while
performing different real-life activities. Data covers various
uncontrolled environments and activities. We also ensured
to present different levels of interactions among the individ-
uals: (a) two views interacting while the third one is inde-
pendent, (b) all views interacting with each other, and (c)
all views independent of each other. Then, we extracted 41
different sequences that vary in length from three to seven
minutes. Each sequence contains three views covering a va-
riety of indoors and outdoors activities. We made the data
more accessible for training and evaluation by grouping the
sequences into 6 different collections.

To put our dataset size (41 videos of 3-7 minutes) in per-
spective, we refer to the most commonly used summariza-
tion benchmarks: SumMe (25 videos of 2-4 minutes), TV-
Sum (50 videos of 2-4 minutes) [43], Office (4 videos of
11 minutes), Lobby (3 videos of 8 minutes) and Campus (4
videos of 15 minutes) [8, 32]. Even though that collecting
larger sizes and longer videos is desirable, nonetheless, an-
notating simultaneously collected views by several annota-
tors is a notoriously hard task. In the following section, we
shed some light on the difficulties encountered in that task
and we propose annotating-in-stages approach to reduce the
annotation uncertainty. More details about data-collection

and a behavioral analysis on the obtained annotations are
provided in supplementary materials.

3.1. Collecting User Annotations

To annotate and process the data for the summarization
task, we sub-sample the videos uniformly to one fps follow-
ing [42]. Then, every three consecutive frames are com-
bined to construct a shot for an easier display to annotators.
The number of frames per shot was chosen empirically to
maintain a consistent activity within one shot.

We asked five human annotators to perform a three-stage
annotation task. In stage one, they were asked to choose the
most interesting and informative shots that represent each
view independently without any consideration towards the
other views. To construct two-view summaries in stage two,
we only displayed the first two views simultaneously, while
asking the users to select the shots from any of the two
views that best represent both cameras. Similar to stage
two, in stage three the users were asked to select shots
from any of the three views that best represent all the cam-
eras. It is worth noting that the annotators were not limited
to choose only one view of a certain shot, and they could
choose as many as they deem important.

The annotating-in-stages procedure explained above
was employed due to the human’s limited capability in
keeping track of unfolding storylines along multiple views
simultaneously. Consequently, using this technique resulted
in a significant improvement in the consensus between user
summaries compared to when we initially collected sum-
maries in an unordered annotation task.

3.2. Analyzing User Annotations

To ensure the reliability and consistency of the obtained
annotations, we perform a consensus analysis using two
metrics: average pairwise fl-measure and selection ratio.
Following [43, 42, 38], we compute the average pairwise
fl-measure to estimate the frame-level overlap and agree-
ment. We calculated the f1-measure for all possible pairs
of users’ annotations and averaged the results across all the
pairs, obtaining an average of 0.803, 0.762, and 0.834 for
the first, second, and third stage respectively.

3.3. Creating Oracle Summaries

Finally, training a supervised method usually requires a
single set of labels. That means in our case, we need to
use only one summary per video, which is often referred
to as Oracle Summary. To create an oracle summary using
multiple human-created summaries, we follow [9, 20] to
greedily choose the shot that results in the largest marginal
gain on the f-score, and iteratively keep repeating the greedy
selection until the length of the summary reaches 15% of the
single-view length.
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4. Approach
4.1. Determinantal Point Process (DPP)

DPP is a probabilistic measure that provides a tractable
and efficient means to capture negative correlation with re-
spect to a similarity measure [28, 21]. Formally, a dis-
crete point process P on a ground set ) is a probabil-
ity measure on the power set 2V, where N = |))| is the
ground set size. A point process P is called determinantal
if Py CY) ocdet(Ly); Yy C Y. Y is the selection ran-
dom variable sampled according to P and L is a symmetric
semi-definite positive matrix representing the kernel.

Kulesza et al. [19] proposed modeling the marginal ker-

nel L as a Gram matrix in the following manner:
Ply=Y) o det(®, @) | [ 4 (1)

When optimizing the DPP kernel, this dgce:%mposition learns
a “quality score" of each item, where ¢; > 0. It also al-
lows learning a feature vector ®, of subset y C ). In
this case, the dot product ®,, = [¢;]...|¢;], where ¢, ¢; €
[—1,1];Vi,j € y is evaluated as a “pair-wise similarity
measure” between the features of item i, ¢; and the features
of item j, ¢;. Thus, the DPP marginal kernel L,, can be used
to quantify the diversity within any subset y selected from
a ground set ). Choosing a diverse subset is equivalent
to a brief representative subset since the redundancy is be-
ing minimized. Hence, it is only natural that a considerable
number of document and video summarization approaches
use this measure to extract representative summaries of doc-
uments and videos [20, 29, 9, 48].

4.2. Adapting DPP to Multi-stream: Multi-DPP

The standard DPP process described above is suitable
for selecting a diverse subset from a single ground set.
However, when presented with several temporally-aligned
ground sets {1, Va, ..., Vs }, the standard process can only
be applied in one of two settings: either (a) merging all
the ground sets into a single ground set Y™<"9¢ = {); U
Y2 U ... U Y} and selecting a diverse subset out of the
merged ground set, or (b) selecting a diverse subset from
each ground set and then merging all the selected subsets
ymerge ={yV, UYoU...UYy}.

Even though that the former setting preserves the infor-
mation of all elements of the ground sets, but it causes the
complexity of the subset selection to exponentially grow. In
practice, this leads to an accumulation of error due to over-
flow and underflow computations as well as substantially
slower running-time. Additionally, latter setting assumes
no-intersection between features of the different ground-
sets. This is essentially inapplicable if the ground-sets have
a significant dynamic feature overlap, leading to redun-
dancy and compromising the very purpose of the DPP. To
address these shortcomings, we propose a new adaptation
of Eq. 1, called Multi-DPP.

In Multi-DPP, ground sets are processed in parallel al-
lowing any potential feature overlap across the ground sets
to be processed temporally-appropriate and keeping a lin-
ear growth with respect to the number of streams. For every
element in the ground sets, we need to represent two joint
quantities: features and quality, such that they follow the
following four characteristics. First, we need a model that
can operate on any number of streams (i.e., generic to any
number of ground sets M). Second, we need a joint rep-
resentation of the features at each index, such that it only
selects the most effective ones (i.e., invariance to noise and
non-important features). Third, we need a joint representa-
tion of the qualities at each index, such that is affected by
the quality of each ground set at a particular index (i.e., vari-
ance to the quality of each ground set). Forth, we need to
ensure that our adaptation follows the DPP decomposition
in Eq. 1, by selecting joint features ¢, ¢; € [—1,1], and
joint qualities ¢; > 0; V4, j € y.

To account for joint features, we apply max-pooling
choosing the most effective features across all ground sets
at every index, which satisfies the feature decomposition in
Eq. 1. Selecting joint qualities -on the other hand- needs
to account for the quality of each ground set in every in-
dex. We use the product of all the qualities at each index.
This deems the joint quality at each index to be dependent
on all ground-sets while also ensuring g™ < 1. Therefore,
we generalize the Determinantal Point Process based on the
decomposition in Eq. 1 as follows:

M
PY =) ocdet(®] @,) [ ] lar?

m=11i€ym, (2)
¢; = max (¢}, ..., 0}") ;Vj €y

where M is the number of the ground sets and y,,, is the
subset selected from ground set m. This decomposition al-
lows both a scalable multi-stream (by constructing a joint
feature representation with max-pooling), and monitoring
the egocentric-introduced noise (by learning an independent
quality measure for each view at each time-step).

Summarizing videos using Multi-DPP. Since Multi-
DPP formulation of Eq. 2 does not require any extra super-
visory signals, it can be adopted to an optimization formula
for both supervised and unsupervised training. In particu-
lar, we follow [21] in defining the similarity measure of su-
pervised summarization approaches based on a Maximum
Likelihood Estimation of the Multi-DPP measure with re-
spect to the ground-truth labels as follows:

0* = argmazxy Zlog{P(Y(i) =y L(i)(ﬂ)} 3)

where 6 is the set of Supervised parameters, y* is the target

subset (i.e., ground-truth) and 7 indexes training examples.
For unsupervised summarization, we define the Multi-

DPP loss based on a diversity regularization introduced in
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Figure 2: Multi-DPP is applied to increase diversity within the
selected time-steps. When view labels are available, we also use
cross-entropy to learn representative view(s) at each time-step.

[29] that aims to only increase diversity since no summary
labels are being provided.

0* = argmazg log{P(Y;L(i) (9)} 4)

where 6 is the set of unsupervised parameters.

Finally we note that our supervised and unsupervised
adaptations are orthogonal to other summarization ap-
proaches and can be embedded to allow any DPP-based ap-
proach (e.g., [55, 29, 3, 41, 5]) to summarize multi-stream
data while preserving the temporal order and monitoring
the quality of a dynamic input. Additionally, Multi-DPP
is equivalent to the standard DPP decomposition in Eq.1
when M = 1 at Eq.2. This renders Multi-DPP summa-
rization approach as a generalization of the standard single-
view summarization DPP approaches as well as orthogonal
to other summarization approaches that allows them to pro-
cess multi-stream data in a proper temporal order. The dis-
cussed theoretical advantage of such generalization will be
further analyzed empirically at Section 5.3.

4.3. Summarization Framework

Figure 2 shows the input as M independent views, with
N frames at each view. We follow [55, 29, 3, 41] in con-
structing features of each frame across the streams. First,
spatial features are extracted from each frame at each view
using a pre-trained CNN. Then, spatial features are tem-
porally processed using a Bidirectional LSTM layer. By
aggregating both spatial and temporal features, we obtain a
comprehensive spatio-temporal feature vector of each frame
at each view. We choose to share the weights of the Bi-
LSTM layer across the views for two reasons: (a) it allows
the system to operate on any number of views without in-
creasing the number of trainable parameters which allevi-
ates overfitting, and (b) learning temporal features is inde-
pendent of the view, thus it utilizes data from all views to
produce better temporal modeling.

We break down our objective into two tasks: selecting
diverse events and identifying the view(s) contributing to

illustrating each selected event in summary. In first task,
to select diverse events, we construct a feature set account-
ing for all the views at each time-step. We do so by max-
pooling the spatio-temporal features from all the views,
resulting in the most prominent feature at each index of
the feature vector. We follow max-pooling by a two-layer
Multi-Layer Perceptron (MLP) that applies non-linear acti-
vation on joint features that are represented as ¢ in Eq. 2.

The second task, however, is used to identify the most
representative view(s) at each event. We use a two-layer
MLP that classifies each view at each time step. Formu-
lating this task as a classification problem serves three pur-
poses. First, it selects the views that are included in the
summary, which is an intrinsic part of the solution. Second,
it regularizes the process of learning the importance of each
event by not selecting any view when the time-step is non-
important. Finally, the classification confidence of view m
can be used to represent the quality (g,') at time-step n.
This is later used to compute the Multi-DPP measure that
determines which time-steps are selected. In the case of
non-overlapping views, the framework may need to select
multiple views at the same time-step. That’s why, we con-
duct an independent view classification by applying binary
classification, which allows classifying each view indepen-
dently from the rest.

Similar to the weights of the Bi-LSTM, the view classi-
fier MLP weights are also shared across the views for two
reasons. First, it uses the same number of trainable parame-
ters for any number-of-views data, resulting in fewer train-
able parameters which limit the problem of overfitting to
training data. Second, it establishes a view-dependent clas-
sification. That is, at any time-step, choosing a represen-
tative view among all the views is affected by the relative
quality of all the views, rather than each one independently.
During training, we start by estimating the quality ¢)* of
each view m at each time-step n, which serves as the view
selection. Then we evaluate Multi-DPP measure by merg-
ing the computed ¢," with the joint-features ® as in Eq. 2.

In our supervised setting, we optimize the view(s) se-
lection procedure by using the binary cross-entropy objec-
tive: — 7 211-\,1/[:1 25:1 ymlog(pl); where y*, pI"* are the
ground truth and model’s prediction for the time-step n in
view m. We jointly optimize the framework by minimizing
the sum of the cross entropy loss as well as Eq. 3 and using
the Oracle summary as the ground-truth in the supervised
setting. In the unsupervised setting, view selection weights
are only learned by learning the quality g;;* from the Multi-
DPP measure and we only optimize the Multi-DPP loss cri-
terion Eq. 4.

Lastly, while input views are not required to be tempo-
rally aligned, they are assumed to have timestamps. This is
a commonly held assumption in previous multi-view liter-
ature (e.g., [8, 18]) due to its default presence in nearly all
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modern recording devices. If given non-aligned views, our
framework can process any number of views at each time-
step since the weights of the Bi-LSTM and the MLPs are
shared among the views.

4.4. Multi-view supervised scalability

Supervised summarization tends to have a superior gen-
eralization performance when compared to unsupervised
ones, e.g., [9, 38, 55, 29]. Relying on human-annotated la-
bels allows learning generic behavioral patterns instead of
customized heuristics as in most unsupervised approaches.
Nonetheless, supervision requires an abundance of labeled
training data. Thus, a crucial concern of a multi-view super-
vised system is to be scalable in order to utilize all available
forms of labels for an improved performance. Obviously,
unsupervised systems do not undergo this challenge since
they do not utilize labels.

In particular, a scalable multi-view video summarizer is
invariant to view order and number-of-views, and therefore
can learn from any data regardless of those properties. First,
invariance to view order implies producing the same sum-
mary for input views (v;, v;, vx) as to (v, v;, vk ); Vi, j, k €
{1,2,.., M}, for all possible permutations of (¢, j, k). Our
approach satisfies this requirement by constructing joint-
features via max-pooling. Thus, summary is only shaped
by the most effective features regardless of view order.

The second condition, invariance to number-of-views,
entails the ability to train on data with varying numbers-
of-views and test on data of any number-of-views. Satis-
fying this condition requires the number of trainable pa-
rameters to be invariant from the number-of-views of the
input. This way the same set of parameters can be used
to train/test on data with any number-of-views. We fol-
lowed two techniques ensuring a fixed number of trainable
parameters: (a) max pooling view-specific features, and
(b) weight-sharing for Bi-LSTM and view selection lay-
ers. Firstly, Applying max-pooling on view-specific fea-
tures produces a fixed-size joint feature vector that is in-
variant from the number-of-views in the input. Addition-
ally, choosing the prominent features across views entails
learning intra-view dependencies. Secondly, weight sharing
across Bi-LSTM view-streams and view selection layers en-
sures our framework has a single set of trainable parameters
for each of those layers regardless number-of-views.

S. Experiments and Results
5.1. Baseline Methods

Since our supervised approach is the first supervised
multi-view summarization method, we could not compare
with other supervised Multi-View approaches. Nonethe-
less, we compare our criterion with supervised and unsu-
pervised single-view, and unsupervised multi-view summa-

rizations. Additionally, we include Reinforcement Learning
baselines that showed competitive performance on single-
view videos.

To apply the single-view configuration on multi-view
videos, we examine two settings:

o Merge-Views: Aggregating views then summarizing
aggregate footage using a single-view summarizer.
Summary is consistent if the views are independent.

o Merge-Summaries: Summarizing each view indepen-
dently and then aggregating the summaries. Comple-
mentary to the former setting, this should result in a
consistent summary if the summaries are independent.

In our experiments, we observed that the supervised ver-
sion of Convolutional Sequences [40] tends to diverge when
using Merge-summaries method in training due to relatively
short videos in their case. Thus, we compare with the more
reliable version of Merge-views. On the contrary, reinforce-
ment learning methods [57, 58] tend to be unstable for the
merge-views due to the long sequential input where the re-
ward is usually far away from the start of the sequence, and
thus it may lead to vanishing the gradients. So, we compare
with the merge-summary concatenation, where the reward
function tends to be more stable. This observed instability
faced in training the baselines establishes a better motive
for developing an objective like ours that is curated to be
independent of number views, making it tractable during
training/testing when the number of views is large, and at
the same time incorporates the information from all views
while preserving temporal ordering.

5.2. Experimental Setup

We use GoogleNet [46] features for all the methods
as an input. For a fair comparison, we train all supervised
baselines [12, 55] and Ours with the same experimental
setup: iterations number, batch size, and optimization. We
note that all neural-network models have the same architec-
ture (same number of trainable parameters) and only differ
in the objective function and their training strategy to ensure
a fair comparison.

The supervised frameworks are trained for twenty itera-
tions with a batch size of 10 sequences. Adam optimizer is
used to optimize the losses with a learning rate of 0.001. Af-
ter each iteration, we calculate the mean validation loss and
only evaluate the model with the best validation loss across
all iterations. We discuss further details of the architecture
and training in the supplementary materials.

As discussed in section 3.1, we categorize our dataset
sequences into six collections to facilitate the training and
evaluation. In our experiments, we follow a round-robin ap-
proach to train-validate-test the supervised/semi-supervised
learning frameworks. We use four collections for training,
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Two-View Three-View

Precision Recall F1-Score Precision Recall F1-Score
Random Baseline Uniform Sampling 9.83 10.65 9.85 5.83 5.16 5.77
Unsupervised feature selection [31] 17.83 19.15 17.46 12.33 16.28 10.70
& Sub-modular joint embedding [34] 18.37 25.20 20.66 13.88 24.85 17.17
Multi-View Unpaired Data [39] 21.26 22.16 21.81 19.62 19.93 19.41
Sub-modular [12] 19.91 25.21 22.71 18.49 22.71 20.19
Adversarial [29]: Merge-Views 21.16 23.42 22.35 20.2 18.94 19.76
Unsupervised Adversarial [29]: Merge-Summaries 20.61 22.05 21.12 19.32 18.24 18.96
Single-View Convolutional [40]: Merge-Views 21.05 22.92 22.26 19.86 20.68 20.13
Convolutional [40]: Merge-Summaries 20.64 22.34 21.87 16.52 20.47 18.91
Ours-unsupervised ‘ Multi-DPP 2391 24.72 24.18 21.96 22.24 22.61
LSTM [55]: Merge-Views 27.87 28.57 27.67 23.25 23.87 22.95
Supervised LSTM [55]: Merge-Summaries 26.61 27.25 26.43 22.86 23.59 22.76
& RL Convolutional [40]: Merge-Views 26.84 26.01 26.38 22.28 23.47 22.92
Single-View RL Diversity [57]: Merge-Summaries 25.02 27.00 25.97 23.78 22.14 23.14
RL Classification [58]: Merge-Summaries 26.01 26.71 26.27 22.74 23.68 23.37
(Ablation Study) Only Cross-Entropy (CE) 27.33 27.83 27.13 21.33 22.03 21.10
Ours-supervised Full: Multi-DPP + CE 28.58 29.05 28.30 25.06 25.79 25.03

Table 1: MultiEgo benchmarking for two-view and three-view settings. Ours consistently outperforms the baselines on all the measures.
We also run an ablation study to show the effect of optimizing the supervised Multi-DPP measure as compared to using only Cross-Entropy.

one for validation, and one for testing across all the 30 dif-
ferent combinations of collections. Since no training is re-
quired for unsupervised approaches, we only test methods
on each collection separately and report their means.

To evaluate the summaries produced by all the methods,
we follow the protocols in [29, 55, 15, 43] to compare
the predictions against the oracle summary. We start by
temporally segmenting all views using the KTS algorithm
[38] to non-overlapping intervals. Then, we repetitively ex-
tract key-shot based summaries using MAP [54] while set-
ting the threshold of summary length to be 15% of a single
view’s length. For each of the selected shots, we consider
all of its frames to be included in the summary.

5.3. Performance Evaluation

We follow [36, 34, 55, 29, 8] in using fl-score, preci-
sion, and recall to evaluate the quality of the produced sum-
maries by comparing frame-level correspondences between
the predicted summary and the ground-truth summary. Ta-
ble 1 shows the mean precision, recall, and F1-score across
all the combinations of training-validation-testing for both
the two-view setting and three-view setting.

In general, supervised frameworks perform better than
unsupervised ones due to learning from human annotations.
For unsupervised methods, [34, 31, 12, 39] obtain the low-
est performance indicating their inability to adapt to visual
changes occurring in egocentric motion due to the lack of
summary labels. However, using adversarial training [29]
seems to improve the results even with a single-view setting
since the learning distribution converges to true data distri-

bution, and it better learns to isolate egocentric-noise. Sim-
ilarly, the supervised single-view BiLSTM [55] and Con-
volutional Sequences [40] reasonably adapt to egocentric
visual noise utilizing the summary labels. Only our model
monitors the egocentric-introduced noise and process data
in a proper temporal order, achieving the best performance
in both unsupervised and supervised comparisons.

To study the impact of enforcing diversity, we run an
ablation study by evaluating our supervised approach with
only optimizing cross-entropy loss(Ours: Cross-Entropy
(CE) in Table 1). This corresponds to training our model
by only selecting representative views, without explicitly
enforcing diversity. Evidently, adding Multi-DPP measure
to the CE loss improves the results, especially in the three-
view setting due to the increase of input footage required to
diversify. It is worth noting that using only Multi-DPP is
equivalent to our unsupervised version.

Generally, it can be noticed that performance in the two-
view setting is higher than that in the three-view setting,
although methods’ ranking remains the same. This is be-
cause of the increase in problem complexity when consider-
ing more views to be summarized, causing the performance
to drop. Additionally, the performance gap increases as we
move from two-view to three-view setting. Theoretically,
we expect approaches such as [40, 55, 29, 57] drop per-
formance as the number of views grows and this is backed
up empirically. Secondly, whether we concatenate views or
concatenate summaries in order to adapt [55, 57, 40, 29],
the complexity of the adaptation is unnecessarily high (ei-
ther a larger DPP kernel in case of view concatenation and
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Method Office Campus Lobby
Graph [37] 41.3 49.1 73.4
RandomWalk [8] 75.8 61.6 86.8
RoughSets [23] 75.8 62.1 84.2
BipartiteOPF [18] 81.8 71.8 88.2
Unpaired Data [39] 91.0 80.5 89.3

Joint embedding [34] 89.4 77.8 92.5
Convolutional [40]-Unsup  90.2 78.6 92.5
Convolutional [40]-Sup 94.0 81.9 93.0

RL Diversity [57] 92.9 80.6 91.4
RL Classification [58] 92.1 82.5 92.2
Ours-unsupervised 90.7 81.2 92.7
Ours-supervised 94.2 86.1 93.4

Table 2: Fixed-cameras multi-view fl-scores. We train our super-
vised model on Multi-Ego and test it on three datasets.

processing each view separately in summary concatenation
scenario). Our proposed approach uses a maxpool opera-
tion as well as view quality multiplication to represent all
views while preserving computational/memory efficiency.
Finally, we investigate the performance of our approach
on fixed-cameras multi-view setting, which is a special case
of our generic configuration. We evaluate our model on
three standard fixed-cameras multi-view benchmarks: Of-
fice, Campus, and Lobby datasets [8, 32]. We train our
supervised model on our Multi-Ego dataset, and evaluate
it on the testing dataset. Table 2 shows a substantial suc-
cess in transferring the learning from one domain (egocen-
tric multi-view) to another domain (static multi-view) with-
out the need to specifically-tailored training data. Thus, we
provide the first supervised multi-view summarization that
significantly outperforms state-of-the-art unsupervised ap-
proaches while only being trained on our data. Addition-
ally, our unsupervised model outperforms them due to ex-
plicitly enforcing diversity and quality constraint. The con-
sistent advantage in the three experimental environments
for both our supervised and unsupervised models demon-
strates the versatility of the proposed approach in handling
static/egocentric videos in a generic summarization setting.

5.4. Supervised Scalability Analysis

In this section, we study our supervised framework’s ca-
pability to learn from a varying number-of-views in a se-
quence by verifying if the training process can exploit any
increase in data regardless of its numbers-of-views. We
start by splitting our data into two categories of nearly the
same number of sequences: (a) three-view (Collections:
Indoors-Outdoors, SeaWorld, Supermarket), and (b) two-
view (Collections: Car-Ride, College-Tour, Library). We
investigate the performance of three train/test configura-
tions where testing data is limited to a single category:

1. Same category training (2xtwo-view& IxXtwo-view):

Test Train Precision Recall F1-Score

= 2 X two-view 29.83 29.77 29.67

.g 3 x three-view 29.77 30.30 30.2

& o

E o 2xWWoview | g a0 3503 34.33
3 xthree-view

2 2 x three-view 18.53 18.80 18.33

-E 2 X two-view 18.23 18.27 17.67

8 3xtwo-view +

$—

£ 2w three-view 21.53 21.87 21.33

Table 3: Scalability Analysis: Our framework can be trained and
tested on data of different number-of-views.

Train on 2 collections from same category as testing.

2. Different category training (3xtwo-view&k 3Xthree-
view): Train on 3 collections from one category, and then
test it on a collection belonging to a different category.

3. Training using Data from the two categories (3Xxtwo-
view + 2Xtwo-view& 2Xtwo-view + 3xtwo-view): Train
on data from different categories, and test it on a collection
from one of the categories in the training data.

As shown in Table 3, training our framework on same
categories or different categories obtain comparable results
when testing on both two-view and three-view settings.
However, increasing training data size by combining both
categories significantly improves the results. This shows
that our model can be trained and tested on data of various
number-of-views and also is able take advantage of any data
increase with no regard to its number-of-views setting.

6. Conclusion

In this work, we proposed the problem of multi-view
video summarization for dynamically moving cameras that
often do not share the same field-of-view. Our formulation
provides the first supervised solution to multi-stream sum-
marization in addition to an unsupervised adaptation. Un-
like previous work in multi-view video summarization, we
presented a generic approach that can be trained in a su-
pervised or unsupervised setting to generate a comprehen-
sive summary for all views with no prior assumptions on
camera placement nor labels. It identifies important events
across all views and selects the view(s) best illustrating each
event. We also introduced a new dataset, recorded in un-
controlled environments including a variety of real-life ac-
tivities. When evaluating our approach on the collected
benchmark and additional three standard mutli-view bench-
mark datasets, our framework outperformed all baselines of
state-of-the-art supervised, reinforcement and unsupervised
single- and multi-view summarization methods.
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