


to optimize for a task up to many steps and moves only once

after that.

Our approach improves the gradient-based meta-learning

framework rather than a single algorithm. Hence, we eval-

uate it on different methods and tasks, including MAML

and Reptile [32] for few-shot learning, a two-component

weighting algorithm [20] for long-tailed classification, and

meta-attack [13]. Extensive results provide an affirmative

answer to the first question above: long-horizon exploration

in the inner loop improves a meta-learner’s performance. We

expect our approach, along with the compelling experimen-

tal results, can facilitate future work to address the second

question above.

2. Related Work

Meta-learning has been a long-standing sub-field in ma-

chine learning [40, 45, 31]. Early approaches update a

model’s parameters by training a meta-learner [4, 5, 41].

This has been well studied in optimizing neural networks,

and one such family of meta-learning learns an optimizer [36,

26, 2]. A specialized neural network takes gradients as input

and outputs an update rule for the learner. In addition to the

update rule, [36] also learn the weight initialization for few-

shot learning. Finally, there are several approaches [29, 52]

for training generic optimizers that can be applied broadly

to different neural networks and datasets.

Under the context of few-shot learning, another fam-

ily of meta-learning involves metric-learning based meth-

ods [49, 43, 30, 22, 33], which learn a metric space to benefit

different few-shot learning tasks. The goal is to find the

similarity between two samples regardless of their classes

using some distance metric so that the similarity function

can be used to classify the unseen classes at the test stage.

Some recent studies along this line include Matching Net-

works [49], which employs the cosine similarity, Prototyp-

ical Networks [43], which uses the Euclidean distance to

compute the similarity, Relation Network [44], which uses

a relation module as the similarity function, ridge regres-

sion [6], and graph neural networks [39].

More recently, gradient-based meta-learning gains its

momentum, and a variety of methods have been proposed

in this vein. The most notable one among them might

be MAML [14], where the goal is to learn the network

weight initialization so that it can adapt to unseen tasks

rapidly. There have been extensions to improve MAML.

Meta-SGD [27] learns the learning rates along with the

weight initialization. Regularization techniques [54, 21]

are introduced to MAML to mitigate over-fitting. [34] pre-

conditions on the gradients in the inner loop by learning a

curvature. Despite MAML’s popularity, it is still computa-

tionally expensive and consumes large memory due to the

computation of high-order derivatives. The authors show

that the first-order approximation, which neglects the gradi-

ents of the inner loop during meta-optimization, performs

about the same as the original MAML. Another first-order

meta-learning method is Reptile [32], which decouples the

inner and outer optimization steps. iMAML [35] provides

an approximate solution for meta-gradients by using an al-

gorithm based on conjugate gradients, and its low-level op-

timization is similar to Meta-MinibatchProx [56]. The idea

is to add an `2 regularizer in the inner loop, allowing the

updated parameters close to the initial parameters. Similar to

iMAML, [28, 3] provide approximate solutions for optimiz-

ing hyperparameters and simulator parameters respectively.

3. “Greedy” Gradient-Based Meta-Learning

We first review gradient-based meta-learning from the

perspective of “search space carving”.

Notations. Let PT denote a task distribution. For each

task drawn from the distribution T ∼ PT , we have a train-

ing set Dtr and a validation set Dval, both in the form of

{(x1, y1), (x2, y2), · · · } where xm and ym are respectively

an input and a label. We learn a predictive model for a task

by minimizing the empirical loss LT
Dtr

(φ) over the training

set while using the validation set to choose hyper-parameters

(e.g., early stopping), where φ collects all trainable parame-

ters of the model. Similarly, we denote by LT
Dval

(φ) the loss

calculated over the validation set.

Meta-learning as “space carving”. Instead of focusing

on an isolated task, meta-learning takes a global view and in-

troduces a meta-model, parameterized by θ, that can improve

the learning efficiency for all individual tasks drawn from

the task distribution PT . The underlying idea is to derive

a task-specific model φ from not only the training set Dtr

but also the meta-model θ, i.e., φ ∈M(θ,Dtr). We refer to

M(θ,Dtr) the “carved” search space for the task-specific

model φ, where the “carving” function is realized as an at-

tention module in [49, 30], as a conditional neural process

in [17, 18], as a gradient-based update rule in [14, 34, 27, 32],

and as a regularized optimization problem in [35, 56].

An optimal meta-model θ∗ is supposed to yield the best

task-specific models in expectation,

θ∗ ← argmin
θ

ET ∼PT ,Dval∼T L
T
Dval

(φ∗(θ))

subject to φ∗(θ)← arg min
φ∈M(θ,Dtr)

LT
Dtr

(φ).
(1)

One can estimate the optimal meta-model θ∗ from some

tasks and then use it to “carve” the search space,M(θ∗,Dtr),
for novel tasks’ models.

Gradient-based meta-learning. One of the notable

meta-learning methods is MAML [14], which uses a

gradient-based update rule to “carve” the search space for a

task-specific model,

MMAML(θ,Dtr) := {φ0 ← θ} ∪ {φj |φj ← φj−1

−α∇φL
T
Dtr

(φj−1), j = 1, 2, · · · , k}
(2)
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where the meta-model θ becomes an initialization to the task-

specific model φ0, the other candidate models φ1, · · · , φk

are obtained by gradient descent, and α > 0 is a learning rate.

Substituting it into equation (1), φk ∈ MMAML(θ,Dtr) is

naturally a solution to the lower-level optimization problem,

and MAML solves the upper-level optimization problem by

meta-gradient descent,

θ ← θ − βET ∼PT ,Dval∼T∇θL
T
Dval

(φk(θ)), (3)

where β is a learning rate, and φk(θ) indicates the depen-

dency on the meta-model θ. The meta-gradient must back-

propagate through the chain of updates in eq. (2), which

has to be short (e.g., k = 1) to avoid big memory footprints,

high-order derivatives, and the risk of vanishing or exploding

gradients.

We say MAML is “greedy” in that it descends meta-

gradients for the meta-model θ before it runs adequate up-

dates to the task-specific model φ. As an increasing number

of works adopt the gradient-based “search space carving”

for task-specific models [27, 35, 34, 16, 53], they also bear

greedy algorithms. Relaxing the greedy strategy may benefit

not one, but a variety of, high-order meta-learning methods.

4. A “Lazy” Approach to Gradient-Based

Meta-Learning

In this section, we describe a “lazy” meta-learning ap-

proach, which is readily applicable to different gradient-

based meta-learning algorithms. We first describe the general

approach as an improvement to MAML and then customize

it for few-shot learning, long-tailed classification, and meta-

attack.

4.1. General Approach

Given a meta-model θ, we “carve” the search space for

task-specific models φ ∈ M(θ,Dtr) by a teacher-student

scheme. The key idea is to let a student explore the search

space adequately using the training set of a task-specific

model without worrying the length of the update chain be-

cause a teacher will examine the explored regions by the

student, followed by a one-step “leap”. Hence, one can

update the meta-model by backpropagating meta-gradients

through the teacher’s “leap”, not the student’s update chain

(ignoring that the chain starts from the meta-model). Figure 1

illustrates the main idea.

An exploratory student acts exactly the same as the

gradient-based updates in MAML except that it explores

the feasible space by a large number of steps (k > 10),

resulting in k + 1 checkpoints of a task-specific model φ ∈
MMAML(θ,Dtr) = {φj , j = 0, · · · , k}. It is clear from

Section 3 that we cannot backpropagate the meta-gradients

through the long chain of checkpoints, φ0, · · · , φk, made by

the exploratory student.

A lazy teacher sits at the initialization φ0 = θ until the

student stops. It then takes a “leap” towards the region

explored by the student. The teacher essentially defines

another “carved search space” for the task-specific model φ,

MLAZY(θ,Dtr) := γθ + (1− γ)Rk−b+1,··· ,k (4)

where γ ∈ [0, 1]. The region Rk−b+1,··· ,k is a convex hull

of the last b checkpoints the student visited:

Rk−b+1,··· ,k := αk−b+1φk−b+1 + αk−b+2φk−b+2+

· · ·+ αkφk,
(5)

where the coefficients {α} are non-negative and their sum

equals 1, i.e., αk−b+1+ · · ·+αk = 1. The last b checkpoints

presumably cover a high-quality task-specific model φ by

a better chance than the first few checkpoints. We shall

experiment with b = 3 and b = 1.

Any task-specific model φ in this “lazy” space

MLAZY(θ,Dtr) is determined by the hyper-parameters γ

and αk−b+1, · · · , αk, over which we conduct a grid search

to minimize the validation loss LT
Dval

(φ). This is similar in

spirit to meta-SGD [27], which uses the validation data to

search for the learning rates.

Denote by γ̂θ+(1−γ̂)φ̂ the task-specific model as a result

of the grid search. Notably, it is only one hop away from

the meta-model θ, making it easy to compute meta-gradients.

Concretely, the meta-gradient descent for the meta model θ

becomes θ ← θ−βET ∼PT ,Dval∼T∇θL
T
Dval

(γ̂θ+(1−γ̂)φ̂),
which is apparently more manageable than the gradients in

eq. (3) when k > 1.

Algorithm 1 “Lazy” Meta-Learning

Require: A distribution over tasks PT

Require: Learning rates η, β

Ensure: The meta model θ

1: Randomly initialize the meta-model θ

2: while not done do

3: Sample a batch of tasks {T i ∼ PT }
4: for all {T i} do

5: Sample data Dtr and Dval for Ti
6: φi,0 ← θ

7: for j = 1, 2, · · · , k do //student

8: φi,j ← φi,j−1 − η∇φL
Ti

Dtr
(φi,j−1)

9: end for

10: Grid-search MLAZY(θ,Dtr) such that LTi

Dval
is

minimized at γ̂iθ + (1− γ̂i)φ̂i //teacher

11: φi(θ)← γ̂iθ + (1− γ̂i)φ̂i //teacher

12: end for

13: θ ← θ − β∇θ

∑
i L

Ti

Dval
(φi(θ))

14: end while

Algorithm 1 presents our “lazy” approach in detail. In

the outer while-loop, we sample a batch of tasks {Ti} (Line
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lenge as object recognition makes progress toward large-

scale, fine-grained classes [47, 51], which often exhibit a

long-tailed distribution. To uplift infrequent classes, [20]

propose to weigh each training example by two components,

a fixed component wy to balance different classes [11] and a

trainable component εi. We improve their learning method

by a “lazy” teacher, as described in Algorithm 2. It alterna-

tively optimizes the per-example weight εi (using a balanced

validation set) and a recognition network θ (using the long-

tailed training set), in the same spirit as meta learning (cf.

Algorithm 1 vs. L5-12 in Algorithm 2). We insert a “lazy”

teacher model to L6, let it take a “leap” in L12, and then

backpropagate the gradient with respect to the per-example

weight εi through the “leap”.

Algorithm 2 “Lazy” Two-Component Weighting for Long-

Tailed Recognition

Require: A training set Dtr whose class frequency is long-

tailed, a balanced validation set Dval

Require: Class-wise weights {wy} estimated by using [11]

Require: Learning rates η, τ , pre-training steps t1, fine-

tuning steps t2
1: Train a recognition network, parameterized by θ, for t1

steps by a standard cross-entropy loss

2: for t = t1 + 1, · · · , t1 + t2 do

3: Sample a mini-batch B from the training set Dtr

4: Set εi ← 0, ∀i ∈ B, and denote by ε := {εi, i ∈ B}
5: Compute LB(θ, ε) := 1

|B|

∑
i∈B(wyi

+ εi)Li(θ)

//Li is a cross-entropy over the i-th input

6: Update θ̃(ε)← θ − η∇θLB(θ, ε) // The “lazy”

teacher, which depends on ε

7: Initialize a student model by setting φ0 ← θ̃(ε)
8: for j = 1, 2, ..., k do

9: Update the student model by gradient descent

φj ← φj−1 − η∇φLB(φj−1, ε)
10: end for

11: Grid search for γ s.t. the teacher’s “leap”, γθ̃(ε) +
(1− γ)φk, yields high accuracy on Dval

12: Update ε← ε− τ∇εLDval
(γθ̃(ε) + (1− γ)φk)

13: Compute LB(θ, ε) (cf. Line 5) and update θ ← θ −
η∇θLB(θ, ε)

14: end for

Meta-attack [13] is a query-efficient blackbox attack al-

gorithm on deep neural networks. Recent work has shown

that one can manipulate an image recognition network’s pre-

dictions by adding very small perturbations to benign inputs.

However, if the network’s architecture and weights are un-

known (blackbox), it takes a large number of queries into the

network to find a valid adversarial example. To improve the

query efficiency, [13] propose to learn a meta-model from

many whitebox neural networks and then generalize it to

blackbox attacks. They train this meta-model by using the

same meta-learning framework as Algorithm 1. Therefore,

it is straightforward to improve their inner loop by our “lazy”

teacher; we postpone the detailed algorithm to supplemen-

tary materials.

5. Experiments

We evaluate the “lazy”, long-horizon meta-learning ap-

proach by plugging it into different algorithms with appli-

cations to few-shot learning, long-tailed recognition, and

meta-attack.

5.1. Few-Shot Learning

We experiment with four datasets for few-shot learning:

Omniglot [24], MiniImageNet [50], TieredImageNet [37],

and CIFAR-FS [6]. The experiment protocols and implemen-

tation details largely follow MAML [14] and Reptile [32].

Please refer to supplementary materials for more details.

Table 1. Our approach applied to MAML and Reptile for five-

way few-shot classification on MiniImageNet (Accuracy ± 95%

confidence interval over 2000 runs)

Method
MiniImageNet

1-shot 5-shot

MAML [14] 48.70 ± 1.84 63.11 ± 0.92

“Lazy” MAML (b = 1) 48.26 ± 1.78 64.13 ± 1.90

“Lazy” MAML (b = 3) 48.17 ± 1.84 63.73 ± 1.10

Reptile [32] 49.97 ± 0.32 65.99 ± 0.58

“Lazy” Reptile (b = 1) 51.50 ± 1.00 67.22 ± 0.97

“Lazy” Reptile (b = 3) 52.67 ± 1.01 68.77 ± 0.98

Our approach permits long-horizon inner updates and in-

volves a convex hull of the last few checkpoints. In Table 1,

we first experiment with the last b=3 and b=1 checkpoints.

We test them with two representative meta-learning algo-

rithms: MAML (cf. Algorithm 1) and Reptile (replacing

Line 13 (L13) in Algorithm 1 with θ ← θ−β
∑

i(θ−φi(θ))).
The intervals are 0.05 in the grid search (L10), and the search

range for the learning rate γ is between 0.75 and 0.95.

Table 1 shows that there is no significant difference be-

tween b = 3 and b = 1, so we shall employ b = 1 for the

remaining experiments. Moreover, the “lazy” variation im-

proves the vanilla Reptile, but not MAML, probably because

the five-way one/five-shot learning is too simple for MAML

to take advantage of the long-horizon inner updates. We next

study many-way few-shot learning tasks, which are arguably

more complex.

5.1.1 MAML vs. “Lazy” MAML for many-way few-

shot learning

We switch to the TieredImageNet dataset since there are only

20 classes in MiniImageNet’s meta-test set. The left panel of

Figure 2 shows the results of MAML, FOMAML and “Lazy”

MAML for N -way-five-shot learning, where N varies in
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Figure 2. Left: Mean Accuracy (%) for N -way-five-shot classification on TieredImageNet. Right: Mean Accuracy (%) for 20-way-one-shot

non-i.i.d. [53] classification tasks on Omniglot.

{5, 20, 30, 50}, and the student runs for k = 10, 15, 20, 20
inner steps, respectively. The “lazy” variation is on par with

MAML for the five-way classification, and it outperforms

MAML, and FOMAML for 20-way, 30-way, and 50-way

five-shot classifications. This trend indicates that the many-

way few-shot learning problems desire more inner updates to

the task-specific models, amplifying the benefit of the “lazy”

teacher.

5.1.2 Many-shot Classification

The Figure 3 shows the results of MAML and “Lazy”

MAML for five-way-K-shot learning on MiniImageNet.

We vary K in {1, 5, 20, 50} and let the student run for

k = 10, 15, 15, 20 steps, respectively. Under the 1-shot

and 5-shot settings, our approach is comparable to MAML,

but it significantly outperforms MAML for 20-shot and 50-

shot classifications. This trend indicates that more training

data desires more steps of exploration for a task-specific

model and hence magnifies the benefit of our teacher-student

scheme introduced to MAML.
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Figure 3. Mean Accuracy (%) for five-way K-shot classification

on MiniImageNet.

5.1.3 “Lazy” MAML is less prone to over-fitting by

memorization than MAML

The right panel of Figure 2 shows some 20-way-one-shot

classification results on Omniglot when we learn from

non-i.id. tasks, i.e., by maintaining a global order of all

training classes. This global order creates a shortcut for

meta-learning methods; they may memorize the order from

the meta-training tasks and fail to generalize to meta-test

tasks [53]. We can see that the “lazy” teacher boosts MAML

by a large margin and outperforms TAML [21], indicating

that it is less prone to over-fitting by memorization. A plau-

sible reason is that the k = 15 steps taken by the exploratory

student make it harder to memorize than the one-step update

in MAML or TAML.

5.1.4 Five-way-few-shot learning

We compare our approach with state-of-the-art meta-learning

methods for five-way few-shot learning problems on four

datasets. The results are shown in Tables 2 for MiniIma-

geNet and TieredImageNet . For our own approach, we

study both the MAML-style update to the meta-model (ours

(MAML), L13 in Algorithm 1) and the Reptile-style [32] up-

date (ours (Reptile), replacing Line 13 (L13) in Algorithm 1

with θ ← θ − β
∑

i(θ − φi(θ))) for MiniImageNet and

TieredImageNet. Batch normalization with test data yields

about 2% improvement over the normalization with the train-

ing data only, and we report the results of both scenarios.

It can be seen that our results are better than or compa-

rable with those of the competing methods. In general, the

improvements by our teacher-student scheme are more sig-

nificant on 5-shot settings than on 1-shot settings, verifying

the trend in Section 5.1.1 that more training data can better

leverage the exploratory student in our method. Besides,

ours (Reptile) outperforms ours (MAML) probably for two

reasons. One is that ours (Reptile) uses more than k shots

of training examples per class for a k-shot learning problem

during meta-training, following the experiment setup of Rep-

tile [32]. The other is that the second-order gradients in ours

(MAML) make the training procedure less stable than Rep-

tile. We hypothesize that a many-shot setting would be less

sensitive to both factors. Indeed, we verified this hypothesis

by another five-way-50-shot learning experiment with ours

(Reptile), which yields 76.17 ± 0.32% on MiniImageNet

and is lower than 78.54± 0.70 by ours (MAML).
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Table 2. Five-way few-shot classification accuracies (%) on MiniImageNet and TieredImageNet. The ± shows 95% confidence intervals

computed over 2000 tasks.

Method
BN w/ Mini-ImageNet TieredImageNet

Test 1-shot 5-shot 1-shot 5-shot

MAML [14] 7 46.21 ± 1.76 61.12 ± 1.01 49.60 ± 1.83 66.58 ± 1.78

MAML [14] 3 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 69.60 ± 1.73

Meta-Curvature [34] 3 48.83 ± 1.80 62.63 ± 0.93 50.30 ± 1.99 66.14 ± 0.95

iMAML [35] 3 49.30 ± 1.88 63.47 ± 0.90 51.51 ± 1.80 69.92 ± 1.70

Ours (MAML) 3 48.26 ± 1.78 64.13 ± 1.90 51.03 ± 1.70 70.67 ± 1.72

FOMAML [14] 7 45.53 ± 1.58 61.02 ± 1.12 48.01 ± 1.74 64.07 ± 1.72

Reptile [32] 7 47.07 ± 0.26 62.74 ± 0.37 49.12 ± 0.43 65.99 ± 0.42

Meta-MinibatchProx [56] 7 47.81 ± 1.00 63.18 ± 1.00 49.97 ± 0.93 66.60 ± 0.91

Ours (Reptile) 7 48.14 ± 0.94 64.64 ± 0.92 51.15 ± 0.95 68.84 ± 0.90

FOMAML [14] 3 48.07 ± 1.75 63.15 ± 0.91 50.12 ± 1.82 67.43 ± 1.80

Reptile [32] 3 49.97 ± 0.32 65.99 ± 0.58 51.34 ± 0.4 68.73 ± 0.40

Meta-MinibatchProx [56] 3 50.08 ± 1.00 66.28 ± 0.98 53.71 ± 1.04 69.78 ± 0.95

Ours (Reptile) 3 51.50 ± 1.00 67.22 ± 0.97 54.41 ± 1.00 72.21 ± 0.94

Table 3. Five-way few-shot classification accuracies (%) on Omniglot and CIFAR-FS. The ± shows 95% confidence intervals computed

over 1000 tasks.

Method
BN w/ Omniglot CIFAR-FS

Test 1-shot 5-shot 1-shot 5-shot

MAML [14] 3 98.70 ± 0.40 99.90 ± 0.10 56.50 ± 1.90 70.50 ± 0.90

iMAML [35] 3 99.16 ± 0.35 99.67 ± 0.12 - -

Reptile [32] 7 95.39 ± 0.09 98.90 ± 0.10 53.12 ± 1.34 69.40 ± 1.30

Ours (Reptile) 7 95.44 ± 0.57 98.92 ± 0.29 54.64 ± 1.30 70.56 ± 1.20

FOMAML [14] 3 98.30 ± 0.50 99.20 ± 0.20 55.6 ± 1.88 69.52 ± 0.91

Reptile [32] 3 97.68 ± 0.04 99.48 ± 0.06 57.50 ± 0.45 71.88 ± 0.42

Ours (Reptile) 3 98.20 ± 0.38 99.70 ± 0.16 59.36 ± 1.44 74.90 ± 1.28

The results on Omniglot and CIFAR-FS are reported in

Table 3. We only report ours (Reptile) due to its low compu-

tation cost. It can be seen that our results are better than or

comparable with those of the competing methods.

In Appendix A, we present more results of the few-shot

learning. Section A.5 investigates the proposed “lazy” ap-

proach with Reptile-style update for N -way-five-shot learn-

ing on TieredImageNet. Section A.4 further compares

MAML and “lazy” MAML by their computation memory

costs.

5.2. Long-Tailed Classification

Following the experiment setup in [11] and [20], we use

the CIFAR-LT-100 dataset [11] to compare our Algorithm 2

with several long-tailed recognition methods. [11] created

multiple long-tailed datasets by removing training exam-

ples from CIFAR-100 [23] according to different power law

distributions. In each version, we compute an imbalance

factor as the ratio between the sizes of the head class and

the tail class. We run k = 5 steps in the innermost loop of

Algorithm 2.

Table 4 shows the test errors (%) under different imbal-

ance factors. We can see that our teacher-student scheme

boosts the original two-component weighting approach [20]

under all the imbalance factors. The results are especially

interesting in that Algorithm 2 is not exactly a meta-learning

method, though it shares the same framework as the gradient-

based meta-learning due to the two nested optimization loops.

Besides, compared with the other competing methods, our

results establish a new state of the art for the long-tailed

object recognition.

5.3. Meta-Attack

We evaluate the “lazy” meta-attack on MNIST [25] and

CIFAR-10 [23]. We follow [13] for the experiment setup

and all training details, including the network architectures

used to generate gradients for input images, the attack mod-

els, meta-attack models, and evaluation metrics for both the
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Table 4. Test top-1 errors (%) of ResNet-32 on CIFAR-LT-100 under different imbalance settings.

Method ↓ Imbalance factor→ 200 100 50 20

Standard cross-entropy training 65.16 61.68 56.15 48.86

Class-balanced cross-entropy training [11] 64.30 61.44 55.45 48.47

Class-balanced fine-tuning [12] 61.78 58.17 53.60 47.89

Learning to reweight [38] 67.00 61.10 56.83 49.25

Meta-weight [42] 63.38 58.39 54.34 46.96

Two-component weighting [20] 60.69 56.65 51.47 44.38

Lazy two-component weighting (ours) 58.67 53.46 48.24 43.68

Table 5. Untargeted adversarial attack results on MNIST and CIFAR10. We achieve comparable success rates and average `2 distortions

with other methods by using a smaller number of queries.

Dataset / Target model Method Success Rate Avg. `2 Avg. Queries

MNIST / Net4

Zoo [8] 1.00 1.61 21,760

Decision boundary [1] 1.00 1.85 13,630

Opt-attack [9] 1.00 1.85 12,925

AutoZoom [46], 1.00 1.86 2,412

Bandits [19] 0.73 1.99 3,771

Meta-attack [13] 1.00 1.77 749

Lazy meta-attack (ours) 1.00 1.65 566

CIFAR10 / Resnet18

Zoo [8] 1.00 0.30 8,192

Decision boundary [1] 1.00 0.30 17,010

Opt-attack [9] 1.00 0.33 20,407

AutoZoom [46] 1.00 0.28 3,112

Bandits [19] 0.91 0.33 4,491

FW-black [7] 1.00 0.43 5,021

Meta-attack [13] 0.94 0.34 1,583

Lazy meta-attack (ours) 0.98 0.45 1,061

datasets, to name a few. The learning rates in the inner and

outer loops are both 0.01. We let the student run k = 8
and k = 10 steps in the innermost loop for MNIST and

CIFAR-10, respectively. Table 5 shows the results of un-

targeted attack, namely, the attack is considered successful

once it alters the recognition network’s prediction to any

incorrect class. Appendix B includes the results of targeted

attack. In addition to the original meta-attack [13], Table 5

also presents several existing blackbox attack methods for

comparison. We can see that meta-attack and our “lazy”

meta-attack yield about the same success rates as the other

blackbox attacks. The second-to-the-right column is about

the average `2 distortion an attacker makes to an input, the

lower the better. The rightmost column is about the number

of queries an attacker makes into the recognition network, the

lower the better. The “lazy” meta-attack is able to achieve

comparable success rates and `2 distortion rates with the

other methods yet by using a smaller number of queries.

Both meta-attack and its “lazy” version significantly out-

perform the other methods in terms of the query efficiency,

indicating the generalization capability of the meta-attack

model from known whitebox neural networks to unknown

blackbox networks.

6. Conclusion

We propose a teacher-student scheme for the gradient-

based meta-learning algorithms to allow them run more steps

of inner updates to task-specific models while being immune

to the risk of vanishing or exploding gradients. The student

explores the tasks-specific model’s feasible space up to many

steps, and the “lazy” teacher takes a one-step “leap” towards

the region explored by the student. As a result, the teacher

defines a lightweight computation graph and yet it takes

advantage of the adequately explored checkpoints by the

student. This approach is generic; we apply it to different

problems, include few-shot learning, long-tail recognition,

and meta-attack and various meta-learning methods. Exper-

iments verify the benefit of long-horizon inner updates in

gradient-based meta-learning.
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