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Abstract— Traffic flows with different requirements of quality
of service (QoS requirements) are aggregated into different QoS
classes to provide differentiated services (Diffserv) and better
quality of experience (QoE) for users. The existing aggregation
approaches/QoS mapping methods are based on quantitative QoS
requirements and static QoS classes. However, they are typically
qualitative and time-varying at the edge of the beyond fifth
generation (B5G) networks. Therefore, the artificial intelligence
technology of preference logic is applied in this paper to achieve
an intelligent method for edge computing, called the preference
logic based aggregation model (PLM), which effectively groups
flows with qualitative requirements into dynamic classes. First,
PLM uses preferences to describe QoS requirements of flows,
and thus can deal with both quantitative and qualitative cases.
Next, the potential conflicts in these preferences are eliminated.
According to the preferences, traffic flows are finally mapped into
dynamic QoS classes by logic reasoning. The experimental results
show that PLM presents better performance in terms of QoE
satisfaction compared with the existing aggregation methods.
Utilizing preference logic to group flows, PLM implements a
novel way of edge intelligence to deal with dynamic classes and
improves the Diffserv for massive BSG traffic with quantitative
and qualitative requirements.

Index Terms— Aggregation, differentiated services (Diffserv),
edge intelligence, network traffic, preference logic, quality of
experience (QoE), quality of service (QoS).
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I. INTRODUCTION

ITH the rapid development of the beyond fifth gen-
Weration (B5G) network, Internet of Everything (IoE)
has been widely accepted as one vision of future Internet [2],
where massive number of devices (e.g., vehicles, mobile
phone, and wearable devices) are connected, which result
in complex heterogeneous networks (HNs) at the edge as
shown in Fig. 1. Edge intelligence (EI), powered by artificial
intelligence (AI) techniques, is considered to be crucial and
represents a key enabling factor for future IoE. According
to the 6G white paper [9], EI is to use advanced com-
munication technologies and Al to support ubiquitous data
collection, aggregation, fusion, processing, distribution and
services at the edge. EI includes many issues, such as traffic
management [3], data aggregation [4], resource allocation [5],
differentiated service (Diffserv) [6], scheduling strategy [7],
security issues [8], etc. Traffic aggregation, the prerequisite
and foundation for further Diffserv, scheduling and manage-
ment, is an important research topic in EI, which has aroused
great concern in the field of communications [10]. As shown
in Fig. 1, traffic flows are grouped into different aggregates
(i.e., classes) according to their different requirements for
quality of service (QoS). However, in heterogeneous networks
of IoE, it is challenging for EI to implement data aggregation,
which is due to the following issues.

o Traffic from heterogeneous devices may have quite dif-
ferent requirements [11], e.g., some flows generated by
smartphone apps in B5G systems may have requirement
on extremely low delay (ELD) while some others gen-
erated by sensors may have requirement only on break
(see F3 in Table I). It is difficult for an aggregation
model to cover all aggregation criteria, e.g., break [12],
loss (i.e., packet loss rate) [10], user’s awareness [13],
context [4], etc. It is impossible for a flow to offer all
values. That is, the aggregation criteria are not fixed for
those heterogeneous traffic.

o With the rapid development of B5G network, some
qualitative human-centered [14] and socially-aware met-
rics [15] (e.g., user level: silver) are already involved in
the calculation, so we need effective means to deal with
qualitative information.

o Networks in IoE have different specifications for
classes [16]. For example, 3GPP (3rd Generation
Partnership Project) defines 4 classes: conversation,
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TABLE I
HYBRID QOS REQUIREMENTS OF HETEROGENEOUS TRAFFIC

Flow Bandwidth Delay ELD Loss Jitter  breaks Price Service  User Security
(kbps) (ms) (ms) (ms) ¥/Gb Provider Level Level
R 134 46 3 0.0015 57 — — — — —
Fy — 32 3 — — — — — — —
F3 — — — — — 5 — — — —
Fy — — — — — — 15 CTCC Gold —
F5 102 110 5 0.01 90 1 10 cucc Silver High
Fs 120 70 4 0.001 81 1 Don’t care CMCC Copper Don’t care
streaming, interaction and background. TIPHON similar QoS requirements (e.g., transmission rate) are clus-

(Telecommunication and Internet Protocol Harmonization
Over Networks) specifies 3 classes: wideband,
narrowband and BE. When a flow travels from a
3GPP domain to a TIPHON domain network, the target
classes are totally different.

The existing aggregation models are not directly applicable
to edge intelligence. In these models, the aggregation criteria
are fixed [10], the requirements are quantitative [17] and
the classes are static [16]. We need to explore a generic
aggregation model to deal with such variations. Therefore,
based on the Al technology of logic reasoning, we proposed
a novel preference logic based aggregation model (PLM) to
map massive heterogeneous traffic with different quantitative
and qualitative requirements (i.e., hybrid requirements) into
time-varying classes. The major contributions are summarized
below.

o Based on the preference cognition, a novel description
of QoS requirements is proposed to deal with the hybrid
requirements (see Section III-B), which breaks through
the limitations of the existing aggregation models that
can handle only quantitative requirements.

o Based on the logic reasoning, an innovative edge com-
puting PLM is presented to aggregate traffic flows into
dynamic QoS classes. With the powerful reasoning capa-
bility, PLM shows a wonderful performance to deal with
time-varying aggregation criteria and classes.

o For the scenarios of this paper, we make improvements
on many aspects of the preference logic, e.g., preference
evaluation and preference conflict detection, which would
promote the application of preference logic in other
research fields.

The remainder of the paper is organized as follows.
In Section II, we present some related work and analyze
their limitations. PLM is defined and theoretically verified
in Section III. The datasets and performance metrics are
discussed in Section IV. Section V evaluates the performance.
Section VI concludes this paper.

II. RELATED WORK

There are many aggregation methods proposed to pro-
vide Diffserv for network traffic. Wu et al. [10] exploited
K-Means to aggregate flows across HNs, where flows with

tered together into one macro flow. Considering that different
flows may have different preferences on QoS parameters,
Hijazi et al. [17] presented the class weight based K-nearest
neighbor method (CWK-NN), where a weight-learning algo-
rithm is explored to assign weights to different QoS parameters
according to their importance in aggregation. For example,
in the study of [16], the QoS requirement of flow F} is
{134kbps, 46ms, 0.0015, 57ms} as shown in Table I, and
their weights are {0.5, 0.25, 0.15, 0.1}. With the development
of traffic aggregation, researchers began to realize that user’s
awareness is an important factor that should be considered
in aggregation models [14]. For example, it is somewhat
useless to distinguish flows which have the delay requirements
of 50ms and 60ms, if users are not sensitive to the differ-
ence between them. That is, users usually have their own
sensitivities and preferences [18]. Network resources would
be wasted if more resources are allocated to the users who
cannot perceive much gain due to their cognitive limitations.
Therefore, Chen et al. [12] proposed an efficient aggregation
model based on reinforcement learning (RL) to minimize the
breaks in presence (BIP) and thus improve the quality of
experience (QoE) of different users. Targeting user’s QoE
and energy consumption, He et al. [19] developed a dynamic
Q-learning based aggregation model, where flows with dif-
ferent QoE values are mapped into different networks, e.g.,
UMTS (Universal Mobile Telecommunications System) and
Wi-Fi (wireless fidelity). With the in-depth research, human-
centered [14] and socially-aware [15] networking techniques
are in demand, where quantitative criteria would be widely
involved in. For example, in the specification of RFC2594,
the network flows are divided into four levels: platinum, gold,
silver and copper [22]. Kasgari et al. [14] took into account
qualitative criteria (e.g., user level and gender) in their study
on delay requirement model. Based on the delay requirements,
users are assigned with different network resources.

The differences between the existing works and the pro-
posed PLM are summarized in Table II. Three are three
issues that need to be pointed out here: i) Work [14] is
semi-hybrid since qualitative criteria such as gender are just
used to achieve the delay requirements; the final mapping
is still based on the quantitative delay requirements and
not the qualitative criteria. ii) The source of mapping is
mainly the user or traffic. Note that the user would generate
different types of traffic (e.g., video and email) which may
have different QoS requirements. Therefore, we think traffic
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COMPARISONS BETWEEN DIFFERENT WORKS

TABLE II

Methods Mapping Criteria Type Value Purpose
( Source — Target)

K-Means [10] Traffic — QoS Class  Transmission rate, Fixed Quantitative ~ Reduce delay
(High, Low, etc.) Arrival Time, etc.

K-NN [17] Traffic — Business Server Port, Fixed Quantitative Maximize precision
(Video, Audio, etc. )  Flow Size, etc.

RL [12] User — Base Station  User’s Location, Fixed Quantitative =~ Minimize breaks

User’s Orientation

PCA [20] Traffic — Node Temperature, Voltage Fixed Quantitative ~ Reduce power

Q-learning [19] Business — Network  Throughput, Delay, Fixed Quantitative ~ Optimize energy
(UMTS, WiFi, etc.) Loss and Jitter consumption

Matching [21] User — Network Delay, Loss, etc. Fixed Quantitative =~ Maximize throughput

GMM [14] User — Queue Latency Requirements  Fixed Semi-Hybrid Improve QoE

PLM Traffic — Queue (Unlimited) Variable Hybrid Improve QoE
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HomeKit

Fig. 1. An illustration of aggregation in edge intelligence.

makes more sense than users for Diffserv. iii) The mapping
can be set to User—Queue, Traffic—Queue, Traffic—Node,
User— BS/Networks, etc. Note that the main focus in traffic
transmission under Diffserv framework is resource allocation
at the router queues. Thus, we discuss the mapping Traffic—
Queue in this paper. From Table II, the existing methods show
the following limitations:

i) The aggregation criteria are fixed. For example, when
a flow gives the requirements: {134kkps, 46ms, 57ms},
the aggregation algorithm [23] would calculate the distance
between the flow and the class by ||(f; — Q;)]|. In this algo-
rithm, the aggregation criteria are fixed to {bandwidth, delay,
jitter}. Each flow should provide the precise requirements
for bandwidth, delay, and jitter. When any of these values
is missing, the aggregation algorithm cannot work properly.
However, the requirements of traffic in HNs are quite different,
so we need to explore a generic aggregation model which can
deal with variable criteria for heterogeneous traffic.

ii) The QoS requirements are quantitative. For example,
Alkharasani et al. [24] proposed a scheduling algorithm:
Wq = 1 — e /(BwtDetPl) where Wq denotes the coeffi-
cient of resource allocation; Bw, De, and Pl are bandwidth,
delay and loss, respectively. Their weights are [1, 1, 1], which

Aggregate 1 (0))

Aggregate 2 (0»)

Traffic Scheduling

Aggregation

means the three parameters have absolutely equal importance.
However, in reality, flows usually have different preferences.
Some of them prefer low delay (e.g., telemedicine) and others
prefer high bandwidth (e.g., video on demand) [25]. Such
“preferences” are inappropriate to be quantified with accurate
numbers. Besides, as stated in Section I, some qualitative
metrics are involved in aggregation, so we need effective
means to deal with qualitative information.

iii) The QoS classes are static. For example, Wang and
Hsieh [26] implemented an elastic mapping method in the
long-term evolution (LTE) network, where the QoS classes are
fixed to conversational voice, live streaming, real time gaming,
etc. If a class is changed, which means the cluster center
is varied, the aggregation scheme needs to be completely
re-trained. However, IoE systems contain a lot of HNs such
as Wi-Fi and ZigBee, which have different specifications for
their classes [9]. Aggregation models in IoE should be able to
deal with variable classes.

In summary, based on fixed aggregation criteria, quantitative
requirements, and static target classes, the current aggregation
methods cannot be applied to edge intelligence, where the
aggregation criteria are variable, the requirements of flows are
typically complex, and target classes are dynamic. Therefore,
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(Section III-E)

Fig. 2. Block diagram for the organization of Section III.

the preference logic is explored in this paper to achieve
an innovative aggregation model PLM. Preference logic was
initially proposed by Von Wright in 1963 [27]. It is used to
solve qualitative problems in economics under highly variable
environments [28]. Therefore, based on the Al technology of
preference logic, PLM works well when facing with hybrid
requirements under variable aggregation criteria and dynamic
classes. This novel intelligent edge computing PLM provides
a general aggregation model for better Diffserv/QoE support
in B5G network.

III. THE PROPOSED AGGREGATION MODEL PLM
A. Problem Statement
The proposed aggregation model PLM is described as

Mplm = fpl(Fa Q, Rpl)
S.t. Rpl = fpls(P)

where F' = |J f,,, denotes a group of flows, and f,,, represents
an individual flow (m = 1,2,...,R¢); @ = JQn(n € 2)))
represents the set of dynamic QoS classes, and zj is the set of
natural number greater than 0; P = |Jp, (j € z;) is the set of
variable QoS parameters (e.g., delay and loss); IR, is hybrid
QoS requirements described in preference. PLM groups flows
F with hybrid requirements R,,; into dynamic classes () under
variable parameters P. Here, (Q,, is defined as

Qn = {(pj,d(p;)).j € Z]} 2)

where d(p;) is the demand value of p; for class (),,. As shown
in Table IV, the demand values for class @),, are designated
according to the existing international standards such as IETF
(Internet Engineering Task Force).

Based on (la) and (1b), the proposed aggregation scheme
consists of four main components (see Fig. 2): First, based on
P, the hybrid QoS requirements R, of flows are modeled in
Section III-B, and preference conflicts in R,; are eliminated
in Section III-D; Next, the optimal candidates that best satisfy
Ry, are derived from @) in Section III-C; Finally, Section III-E
makes the final selection from the optimal candidates. The
important symbols are listed in Table III for the ease of
reading. The symbols with capital italic letters represent sets.

(1a)
(1b)

B. Modeling the QoS Requirements in Qualitative Manner
QoS requirements are usually described in quantitative
weight-based models [16], e.g., f1 = {134 kbps, 46ms, 0.0015,
57ms} (the QoS parameters are bandwidth, delay, loss and
jitter, respectively), and their weights are [0.5, 0.25, 0.15, 0.1].

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

Here, the weights are computed according to the relationship
between the QoS parameters and QoE. QoE reflects the
overall experience of QoS in network environment [29]. Thus,
the influence of each QoS parameter on QoE can indicate their
importance [30]. More concretely, the weights are obtained as
follows: 1) First, collect the values of QoS parameters and QoE,
such as {pd(1) = 58ms,pl(1) = 0.001,...,q0e(1) = 3},
{pd(2) = 42ms,pl(2) = 0.001,...,q0e(2) = 4}, where
pd(i), pl(i),qoe(i) (i = 1,2,...,I) represent the ith obser-
vation of delay, loss and QoE, respectively. ii) Next, model
the importance of the QoS parameters by quantitative fitting
methods [16], [31], and thus obtain the precise weights. How-
ever, in reality, it’s hard to determine how much bandwidth is
more important than delay, which is difficult to describe by
an accurate number.

In this paper, we use qualitative R, to
describe the QoS requirements, e.g., R, = {ban
134v>vd6l4GA>vSeCHig},,A>AU86GOld}. Here, Rpl is

also derived based on the above QoS and QoE. Note that
the scales of these data are different, which need to be
normalized:

L pi(i) .

(i) ==——>"= (i=12,...
Zi k(i)

where p,, € P represents the QoS parameter such as delay

and loss. The values of goe(i) are also transformed to the

non-dimensional form by (3). Based on GRA (Grey Relational

Analysis) [32], the correlation between py and QoE is defined

as

1) 3)

- min{Azg (i)} + gmaz{zy (i)}
s.t. Ty, (i) = Lk/\xk(i) n %n}%x}];xk(i)} -
Mei(i) = lgoe(d) — pu(d). @

GRA is used in various research fields (e.g., medicine [33]
and chemistry [34]) to measure the relationship between dif-
ferent factors. It has mainly four steps: i) All the values are to
be normalized as in Eq. (3); ii) Obtain the absolute difference
between the standard sequence and correlation sequences as in
Eq. (4c); iii) Calculate the correlation coefficient between each
column of the standard sequence and correlation sequences as
in Eq. (4b); iv) Calculate the total correlation degree between
the standard sequence and correlation sequences as in Eq. (4a).

The range of 7, is (0,1). The larger the value of rp,,
the greater the influence of parameter p; on QoE. Preference
logic defines four types of preferences. To determine which
preference the relationship between p; and pj belongs to,
we define the distinction index gany,; —p, as

qany, —p, = [k (&)~ )" 5)

where € is a difference vector, specified as (elf(”’i 7T”k)2,
1—(rp, —rp,)?), and k is affine matrix. We expect the range
of gany, —p, to fall into (0, 4), which exactly correspond to the
four preferences. Therefore, we define k as k = 4/(€)*, where
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TABLE III

NOTATIONS
Symbol Definition Symbol Definition
ci(i € z)) A preference description qoe QoE
d(pj) The demand value for p; Ry Set of preferences
E,E(l€z)) Sets in solution space Ray(ci) The right set of ¢;
F, fm(m € z]) Set of flows and a single flow Tp; Correlation degree of p;
Loy(ci) The left set of ¢; sdy,, QOE satisfaction degree for f,
P Set of QoS parameters w,w’ Instances of classes
p;,pk(j, k € 2}) QoS parameters z,y € {V,A} Preference relationships
pb, pd, pj, pl Bandwidth, Delay, Jitter, Loss, zd+ Natural number greater than 0
PP, PS, PU Price, Security, User level V,A Preference marks
osd Overall QoE satisfaction degree v, o Instances of preference relationship
Q,Qn(n € z;) Universal set of classes and a class Ny, N, Ny The number of QoS parameters,
qany; —p, Distinction index between p; and pg classes and flows

(€)* means € is rotated to the polar coordinate, and then moved
to the pole; 4/(€)* means stretching to 4 times its length after
the vector € is transformed by (€)*. Thus, the length of vector
€ after being transformed by k is

4 1—(rp, —7p, )2 )
Pj PR, — 1.
e—1 (e

In (6), if Tp, = Tp, then there is no preference relationship

between p; and py. If rp, < 1, , exchange p; and py. Finally,
the preference between p; and py, is

(6)

qanyp; —p, =

pi*>Ypi : (z,y) étr (L qany; —p, + 1J> (7
where z,y € {V,A}. [qgany, p, + 1] i€ {1,2,3,4},
and tr(i) € {(V,V),(A,V),(V,A), (A, A)}, corresponding
to the four preferences. For example, pdY>% pl means that
delay is “careful” preferred to loss. The preferences for other
parameters can also be deduced by Algorithm 1. These pref-
erences are combined into Rj; to form the QoS requirements

of fi:

Ry = U{CL = cd>ver (8a)
St k= D) (8b)
Ci = Ph—d(py) (8¢)

where d(p;) and d(py) represent the demand value for QoS
parameters p; and pg, which are obtained by fixed observa-
tion [16] as shown in Section V-A.

C. Logic Reasoning

Based on R, optimal candidates can be derived from the
QoS classes: E = {w|Mpjm, w = Ry, w € Q}, where the
logical symbol of - means that it is deducible. The QoS classes
in E can best satisfy R, for flow f,,. In order to obtain E,
two definitions are given below:

Definition 1: The ordered partition of Q. (E1,...,E,) is
the ordered partition of @, if and only if: (i) E; (i
1,2,...,n) is non-empty set; (i) By U E; U ---U E, = Q;
(iii) 3¢, 5, B N Ej = &,© # j. The ordered partition on )
corresponds to a full forward sequence, satisfying Vw, w’ € @,
if we E;,w € Ej, then i < j, if and only if w > w'.

Algorithm 1: Modeling QoS Requirements

1 Input: p; (i), pr (i), and goe(i)(i =1,2,...,1)

2 Output: ijd(pj)m>y Pk_d(py)

3 Observe p;(i), px(i) to obtain d(p;), d(pk) as in [16];
4 Normalize p;, pi and goe by (3);

s for p,(a =j,k) do

6 | Compute Y, (i) and Az, (i) by (4b) and (4c);

7 L Obtain the correlation degree r,, by (4a);

8 Compare 7, and 7, :

9 if r,, = rp, then terminate the algorithm;
10 if r,, < rp, then exchange p; and py;

11 Compute the distinction index gany, —, by (6);
12 Define ¢ = |gan,, p, + 1], and judge:

13 if g=1 then ©=V,y=V""p; 410,,V>" Pr_a(p)*)s
14 if g=2 then z=2A,y=V"*p;_y0,0>>" Pr_a(p)*)s
15 if ¢=3 then x=V,y=Ap; 3,1V > pr_g(py)*)s
16 if g=4 then x=A,y=A/p; 40,0 >>% Pr_g(p)*s

Definition 2: The pairs of Lg,(c;) and Ryy(ci),z,y €
{V, A}. The former is called the left set and the latter is the
right set. Ry = J¢; (i =1,2,...,¢)is the QoS requirements
of flow fr,. U{w|Mpim,wF ¢i;w € Q} is the output of
Ry, which is converted to U (Lay(ci), Rey(ci)). According to

different preferences, the left and right sets are defined below.

V>V Lyv(e) = {w|Mpm,w F ¢t A=clw € QY
Ryv(ci)={w| My, w F —ck A =cl w € QY.
(9a)
ASV . Lav(ci) = {w|Mppm,w c,we Q)
Rav(ci)={w| My, w = =i A=l w € QY.
(9b)
V' Loa(e) = {w|Mpim, w A, we Q)
Ryal(ci) = {w|Mpim,w = =c},w € QF. (9¢)
A8 Laale) = {w| My, w - c,w e Q}
Ran(ci) = {w|Mppm, w - —c,w € Q}. (9d)
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Based on the above L., (c;) and Ry, (c;), the logic rea-
soning is carried out to obtain the ordered partition of Q:
(E1, Es, ..., E,), where the QoS classes in F; are superior
to that in F», and the QoS classes in F, are superior to that
in Fs, and so on. In this paper, f,, is aggregated into the
QoS class that best meets R,;. Therefore, only F; is kept,
while Fs, ---, F, can be ignored. Thus, we reconstructed the
reasoning steps in [35] to form the formula

W[V (Lay(ci) —E, Ryy(ci))

W& Ryy(c;)Fzy:= VV U AV
W[V (Lay(ci), Ray(ci)—E),

W& Lyy(c;)Fey:= AAU VA
W[V (Lay(ci)—E, Ray(ci)—E),

WE Ray(€i) ALy (c;)else.

E= (10)

Eq. (10) contains three cases:

i) When zy:= VV U AV, ie., Ry, contains only {V>V1
or {V>V} U {#>V}, By will be forward reasoned from
L,y (c;). Forward reasoning means: E; that best meets the
requirements is first reasoned out, then suboptimal FE5, then
E5, and so on (see Algorithm 2). We only need E; in this
paper. Therefore, the end condition of Algorithm 2: ) # & is
revised to F; # &, and the reasoning is stopped after Ej is
derived.

ii) When zy:= AA U’ VA, i.e., Ry contains only {#>2}
or {A>21 U {V>A1, B will be backward reasoned from
R.y(ci) (see Algorithm 3). Backward reasoning means: F,
that is most unable to meet the requirements, is reasoned out
first, then F, and so on. We change the order of FE;: E; =
E;_ ;11 to ensure E; is optimal.

iii) R, contains neither VV U AV nor AA U VA,
the forward and backward reasoning are combined: i) first,
the backward reasoning from R, (c;) is carried out; ii) the
classes produced by the backward reasoning will be deleted
from @; iii) for the rest of the classes in (), the forward
reasoning is carried out.

Algorithm 2: Forward Preference Reasoning

1 Input: Ry, Q

2 Output: F

3 for each ¢; € Ry do

4 | Obtain (Luy(ci), Ray(ci)) by (92)~(9d);

50+ 0;

6 while () # @) do

7 l—1+1;

8 | B = {wlV (L), R(c;) € Ryt w & Ruyci)}:

9 | if E; = & then terminate to check the conflicts;

10 | Delete the elements in E; from Q;

1 | if Lyy(c;) = @ then delete (Lyy(c;), Ray(ci));

2 | Replace (Lay(ci), Ray(ci)) by (Lay (e)-Er, Ruy(c:)):

13 F=F;

Here, the following three points need to be emphasized:

i) The number of iterations. As shown in Algorithms 2 and
3, the iteration terminating condition is Lgy(¢c;) — F = @
or Ryy(c;) — E = @. Therefore, even in the worst case,
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Algorithm 3: Backward Preference Reasoning

1 Input: Ry, @

2 Output: F

3 for each c; € Ry do

4 L Obtain (Lyy(ci), Ray(ci)) by (92)—(9d);

5]« 0;

¢ while (@) # @) do

7 l—1+1;

8 | Ei={w[V(Lay(ci), Raoy(ci)) € Rpr,w & Lay(ci) }s
9 | if £} = @ then terminate to check the conflicts;
10 | Delete the elements in E; from Q;

1 Replace (ny(ci)any(ci)) by

(Lay(ci), Ray(ci) — E1);

12 | if Ryy(c;) = @ then delete (Lay(ci), Ray(ci))s

13 E; = El—j—i—l; E = Ei,

the calculation will end up in min(X,, N.) iterations, where
N, and N, refer to the number of parameters and classes.

ii) By (10), we can calculate the QoS parameter that flow
fm is insensitive to. When parameter p; changes, we get set
FE'. If E = E’, and no matter how p; changes, E remains
unchanged, then flow f,, is insensitive to p;. Therefore, when
the network environment changes, our proposed method will
only update the flows which are sensitive to parameter p;.
Thus PLM provides local adjustment, which is a breakthrough
over some of the existing aggregation methods with global
adjustment as shown in Sections V-C and V-D.

iii) In Algorithms 2 and 3, when set E; is empty, it indicates
that there are some preference conflicts in R,;. Conflicts in
R, may cause F; to be empty, and as a result, the logic
reasoning would terminate. Therefore, these conflicts should
be eliminated.

D. Elimination of Preference Conflicts

As shown in Section III-B, the user’s subjective experi-
ence may vary sometime due to the variation of feelings,
surroundings, etc., which would have direct effect on QoE,
and consequently the preferences may be changed. In another
case, when a user moves from one place to another, if there are
new QoS metrics to be taken into account, then the preferences
may also be changed. When the newly generated preferences
are combined into the existing ones as in Egs. (16a)—(16d),
conflicts may possibly be aroused. For example, sup-
pose that the combined set of preferences contains:
Ry = {pdioo¥ >*plo.o1,plo.o2™ > pbioo, Pbso ¥ >=pdaoo }»
where we can find a loop as shown in Fig. 3. Note that the
probability of conflicts is very low. However, conflicts must
be paid enough attention to because they may cause F; to be
empty and consequently the algorithm would be terminated.
Only when conflicts are eliminated, can the system continue
to work. The simplest way to eliminate conflicts is to break
such loops. In practice, we just delete a preference to achieve
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Fig. 3. Distribution of flows for fixed requirements.

this goal, i.e., two preferences are merged into one:

Pia) WPsa(p,) N Pia,) B Pr_an)=Pidwn) 5 BPragn)
(11)

where W and & represent two preference relationships.
For example, the above preferences {pdigoY>*plo.o1,
plo.o2V >pb1oo, pbso > pdago } are  merged  into
{plo.02V>2pb10o, pbso ¥ > pdaoo }-

Here, we prove the rationality of Eq. (11). Certainly, it can
only assure that conflicts are eliminated, but cannot provide
the optimal solution to eliminate conflicts since there is couple
of ways to break the loop as shown in Fig. 3, which will be
further studied in our future work.

Proof of rationality:

Define Hp (U, ) = {w|Mpim,w = ¥, and for any v’ € @,
if Mypm,w' =0, then w = w'}; by (V, =) = {w|Mppm, w -
U, and for any w’ € @, if Mpp,, w' = U, then w’ > w}.

According to the definition, H, (T A @,>) =
{w|Mpim,w F ¥ A @, and for any w' € @,
if Mpim,w' = ¥ A ®, then w' > w. Furthermore, because
>~ is reflexive, complete, and transmitted, there must be
Vwy € Hy (U, =), Yws € Hy (U, ) satisfying ws > ws or
ws = wsz, and, if w3 = ws, then le(\ll/\(I), >—) - le(\lf, >-);
if wo > ws, then le(\lf NP, >—) - le(q), >—).

In the same way, hy (¥ A ©,>-) = {w|Mpm,w F U A
®, and for any w' € Q, if My, w' = ¥ A &, then
w’ = w. Furthermore, because >~ is reflexive, complete,
and transmitted, there must be Yws € hy(U,>), Yws €
hpi (¥, ) satisfying ws = ws or we > ws, and, if wz >
wa, then hp (U A @,>-) C hy(P,>)if wy > ws, then
hpl(\I/ AN, >) - hpl(q), >).

Hence, the result of preference reasoning for ¥ A® is a sub-
set of that of ¥ or ®. That is, the merge of the conflicting pref-
erences pi_d(pi){\lf}pj_d(pj) and pj_d(pj){q’}pk’_d(pk) by (11)
can guarantee the reasoning result of p;_y,.){V; P}pi_g(p,) is
a subset of that of pi_d(pi){\lf}pj_d(pj) or pj_d(pj){(p}pk_d(pk)-
Accordingly, the conflict treatment (11) assures FE; not to
be empty and thus the preference reasoning avoids to be
terminated.

E. Final Selection

When there are several optimal options in FE, we use
the decision theory to implement the final selection [36].

6099
Therefore, we define the matrix as:

A= (aij)Ndedlaij = qaNcrt(i)—crt(j) (12a)

s.t. aij > 0; Qj; = ]-/aij; ay; =1 (12b)

AT = §aa¥ (12¢)

where crt(i) and crt(j) represent decision criteria, e.g., price
and resource utilization. N4 is the number of decision criteria.
The calculation method of distinction index qamn.c,¢(;)—cri(5)
can be found in Section III-B. &4, is the largest character-
istic root of A. ¥ is the characteristic vector. Based on v,
the following decision function is defined to aggregate flow
fm into class Q:

13)

A . -
Qn=arg mln{NQn log vy, (QW,EE)}

where g, is the evaluation vector which includes the com-
ponents of the price, the resource utilization for class @,
etc. Ng, is the number of flows in class @,. If there is
only one criterion (e.g., price) in Eq. (12a) and the prices for
{Qn, € E} are the same, then Eq. (13) can be simplified as

Qn = argmin{Ng, }. In this case, the flow would be grouped
into the queue with the least number of flows.

FE. Complexity Analysis

As shown in Fig. 2, the proposed aggregation scheme
PLM consists of four main components: modeling QoS
requirements (Section III-B), eliminating preference conflicts
(Section III-D), logic reasoning (Section III-C) and final
selection (Section III-E).

In this paper, preferences are used to model the imprecise
QoS requirements of different flows. As shown in Algorithm 2,
the complexity of establishing the preference between p; and
pr is O(Xy), where Ny is the number of the flows. If there are
N, aggregation criteria (e.g., jitter and break), then the time
complexity to achieve preferences is O(X,X¢).

Furthermore, as described in Section III-D, the probability
of preference conflicts is very small. Therefore, the computa-
tion costs of PLM are mainly produced by the part on logic
reasoning. As shown in Algorithms 2 and 3, in some cases
(e.g., the forward preference reasoning), the logic reasoning
would stop just after the first iteration. Even in the worst case,
the logic reasoning would end up in min(X,,, X.) iterations,
where N, is the number of the QoS classes. The complexity
of each iteration is O(X.). Thus, the complexity for logic
reasoning is no more than O(min(X,, X;)X.). When Xy flows
are aggregated, the time complexity is O(min(R,, No)N:Ny).

Note that there may be several QoS classes in set F, so the
final selection is made by Eq. (13). In practice, we usually
select the class with more free resources (i.e., the queue that
has the least flows) from E as shown in Section III-E. Thus,
the complexity for final selection is no more than O(X..), which
can be neglected when compared with that of logic reasoning.

As a result, the total time complexity of PLM is
O(min(X,, V)N R +N,R ). It can be seen that the algorithm
complexity is a linear function of 8, and R ;. The computation
costs of the proposed method are relatively small, which will
continue to be evaluated in subsequent Section V-G.
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TABLE IV
PARAMETERS FOR 6 QOS CLASSES

Code Classes Typical Delay Bandwidth Loss  Jitter
Case (ms) (kbps) (ms)
Q1 Realtime Mikogo 50 128 1072 50
Q2 Streaming Tudou 100 128 1071 100
Qs Interactive ~ Game 100 64 1072 50
Qs Background  FTP 250 64 107 50
Qs Voice VoIP 50 16 1072 10
Qs Text WWW 500 32 107* 100

IV. DATASETS AND PERFORMANCE METRICS
A. Datasets

By analyzing the existing QoS framework adopted by
international standard organizations, such as IETF and NGN,
we summarized the six QoS classes of ITU-T Y.1541 as shown
in Table IV. Besides, there are 3 datasets used in this paper:

o NJUPT dataset [37]. It contains many types of flows,
which were captured by Wireshark in the campus network
of Nanjing University of Posts and Telecommunications
in 2018.

o ISP dataset. It contains some types of flows not available
in NJUPT, such as the monitoring systems, teleconfer-
ence, and e-commerce, which were collected in an ISP
data center located in a southern city of China in 2017
(names are omitted due to privacy reason).

o UNB ISCX Network Traffic (VPN-nonVPN) trace 2016
(short for UNB dataset). We downloaded 28G network
traffic data from the official website [38].

B. Performance Metric

Flows are aggregated into the QoS classes in Table IV.
Under the QoS framework, the aggregation performance is
reflected in whether the QoS requirements of flows are
met. Referring to the preference models in economics [28],
we define the QoE satisfaction degree as

sdr, =, ep W(Pk) - sat(pk) (14)

where sat(py) = {0,1} is a two-value function. If pj of flow
fm 1is within or close to the QoS class (the range is set
within 5% in this paper), then sat(py) = 1, which means
the requirement for pj is met. w(py) is the weight for QoS
parameters py. Therefore, the range of sdy,, is [0, 1]. If there
are Ny flows, then the overall QoE satisfaction degree is

0sd = ﬁ > om Sdy, . (15)

V. EVALUATION

A. Aggregating a Single Flow to QoS Class

In this subsection, the video conferencing flows from the
NJUPT dataset are selected. Four QoS parameters in Table IV
are studied here, including delay, bandwidth, loss and jitter.
The aggregation process is demonstrated as follows.

1) Data Preparation: Traffic flow contains a lot of infor-
mation, such as the arrival time of each packet and packet
size. In fact, all flows in the datasets have such information,
through which we can get the parameters of delay, jitter,
bandwidth, and loss. The values of QoE are recorded with
the method in [31]. According to the work, users’ QoE are
given in 5 levels, i.e., {1, 2, 3, 4, 5}. Here, 5 means users
get the best experience and 1 means the worst experience.
If 9 conferencing flows are sampled, then we have:

pd(i) = {72,59,34,41,65,51, 37,86, 46} (16a)
pl(i) = {0.0025,0.002,0.001,0.001,0.0015,0.002, (16b)
0.0015,0.002,0.001} (16¢)

qoe(i) = {3,4,5,5,4,4,5,3,5}. (16d)

2) Modeling QoS Requirements With Preferences: As
shown in Algorithm 1, the first step of modeling QoS require-
ments is to scan through pd(i) and pl(i) to obtain the demand
value for delay and loss. In this paper, the demand values
for QoS parameters are measured by fixed observation [16],
i.e., selecting the maximum/minimum when QoE reaches the
5th level as the demand value. Therefore, d(pd) = 46ms
and d(pl) = 0.0015. Next, rp, is calculated with (4a) and
thus r,q = 0.892 and r,; = 0.247. Then, compute the
distinction index gan,q—p; to be 0.287. Finally, the preference
is obtained according to Eq. (7) and it is pdss¥ > plo.oo1s.
The preferences for other parameters can be obtained by the
same steps. Thus, the preferences of conferencing flows are
Ry = {1 = pdag™>Ypbisa,ca = pbiza¥ >V plo.oors, c3 =
plo.0o15°>Y pjar}.

3) Logic Reasoning: In this case, there are only >V and
V>Viin R,, so we use Algorithm 2 to identify the most
suitable class from Q@ = {Q1,Q2, Q3,Q4,Q5,Q¢} (f Ry
contains ©>2, then we will use Algorithm 3). The first part
of Algorithm 2 is to convert R to sets Ly, (¢;) and Ry (c;):

- Lav(c1) = {w|Mppm, w F i}, where ¢} = pdys. From
Table IV, find the classes that can satisfy pd,s. Therefore,
Lav(er) ={@1,Qs}-

- Rav(er) = {w|Mpm, w = =i A=ct ), where ¢} = pdys,
and ¢] = pby34. Find the classes that cannot satisfy pdae
and pbiss, yielding Rav(c1) = {Q3, Q4, Qo }-

- Lyv(e2) = {w|Mppm,w F ch A e}, where ¢ = pbyaa,
and c5 = plo.oo15. Find the classes that can satisfy pbiss
and plg.0o15. Therefore, Lyv (c2) are {Q1}.
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- Ryv(c2) = {w|Mppm,w + =y A —ch}. Therefore,
Ryv(c2) are {Q4,Qs}.
- Lav(es) = {w|Mpim, w = c5} = {Q1,Q3, Q6 };

- Rav(es) = {w|Mpim,w = =ch A =ch} = {Q2,Qa}.

The second part of Algorithm 2 is to reason out
the optimal class for the flow with several iterations.
As explained in Section III-F, in the worst case, the logic
reasoning would require min(R,,N.) iterations. There-
fore, with Algorithm 2, we get an ordered partition of
Q : {{Ql}v{QS}a {Q37Q6}; {Q27Q4}}9 where B = {Ql},
E2 = {Q5}, E3 = {Qg,QG}, E4 = {QQ, Q4} The classes
in F; best meet the QoS requirements, the classes in Fy are
suboptimal, and the classes in F, are the worst. Thus the
conferencing flows are aggregated into ();.

Considering two new parameters (e.g., price and even qual-
itative security) are added into aggregation, the preferences
would be obtained in the same way by Algorithm 1 as above.
The mapping from flows to QoS classes is also in the same
way by logic reasoning as above. We do not need to make any
adjustment to the algorithms of PLM. Here, we can see that:

o PLM can effectively handle hybrid requirements consid-
ering both quantitative and qualitative parameters, such as
pbi2g and psprign, While the existing aggregation methods
cannot.

o In PLM, parameters p; can be deleted or added with-
out affecting the reasoning algorithm, which is different
from the existing methods, such as the parametric model
f(6,\,r) by Purwanto et al. [42], in which parameters
{6, \,r} cannot be changed at all.

B. Distribution of Flows After Aggregation

In this subsection, i) 3000 flows are randomly selected, and
each class (from @ to Qg) consists of 500 flows; ii) only
4 QoS parameters and 6 QoS classes are considered as shown
in Table IV; iii) assume the length of the queues for all QoS
classes (see Fig. 1) is infinite.

Several aggregation methods are compared, including
MT [39], UFM [40], DSCM [16], and CHS [41]. In [39],
a flow mapping table (MT) is manually obtained to group
the flows into the classes. Jin er al. [40] developed the
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utility function model (UFM) to control the traffic aggrega-
tion. In [16], Wang et al. proposed a dynamic service class
mapping scheme (DSCM) for transporting traffic over HNs.
Wu et al. [41] presented multi class aggregation structure
called the chain and hierarchical structure (CHS) based on
the near neighbor classifier.

For all methods, the system parameters, thresholds, weights,
etc., are trained and tuned to the optimal state. Therefore,
flows can be aggregated into the right QoS classes as shown
in Fig. 4. However, in reality, the QoS requirements, para-
meters, and classes are often changing at the edge in HNs,
as described in Section II. Therefore, in the following sections,
we will discuss the impact of variable requirements R,
parameters P, and classes ) on flow aggregation.

C. Variable QoS Requirements

In this subsection, some flows with variable QoS require-
ments are selected, such as the Youku videos and SDO
games. For other flows, we add a random quantity to the QoS
requirements to simulate changes. Specifically, for flows of
class (Y2, we increase their QoS requirements by a random
quantity. For that of Y3, we decrease their QoS requirements
by a random quantity. The range of the quantity is set within
5%. 3000 flows (500 flows for each class) are re-aggregated
and the distribution is presented in Fig. 5. We repeat this
experiment 10 times, and the differences among experiments
are also demonstrated in the figure.

It can be seen that when the QoS requirements change,
MT is completely incapable of adaptation. All flows are
aggregated in the same way as before, regardless of whether
QoS requirements are changed or not.

UFM and DSCM are sensitive to changing environment,
but the results are not as good as expected. For UFM and
DSCM, the QoS requirements of flows are represented by
numerical values, which exceed the thresholds of Q2 and Q3,
and happen to fall into the thresholds of @)1 and Q4. Therefore,
the queues Q2 and (3 are almost empty, while ()7 and Q4
are too long. In real networks, long queue or full queue will
cause an increase in delay and packet loss. In general, it is
the sensitivity to threshold that results in imbalance in flow
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aggregation [43]. However, if the value does not fall within
the threshold of any QoS class, the flow would be aggregated
into queue “other”. In real networks, flows in queue “other”
will not be allocated with appropriate system resources.

CHS and PLM present a good adaptability. They can
effectively respond to the changes. For PLM, according
to the algorithms in Sections III-B and III-C, changes
in the QoS requirements will lead to the changes in
;= pj_d(pj)x>ypk_d(pk), and consequently result in changes
in set £ := {w F R, }. PLM can respond to the changes, and
it does not overreact like UFM and DSCM do. According
to (9a)-(9d), the reasoning result of L., (c;) and Rgy(c;)
depends on the relative positions of p; and pj in the QoS
class. In most cases, the absolute variation of p; and py
does not affect these relative positions, and thus the logic
reasoning results remain unchanged. In general, PLM can
effectively respond to the changes of QoS requirements with-
out overreaction. Similarly, for CHS, there is no overreaction
either. When the QoS requirements change, the valid range
min(D7), max(D7) is properly adjusted, where min(D7)
and max(Dj’) are the maximum and minimum Euclidean
distances from sample to cluster point j. Thus it can be
seen that CHS does not depend on thresholds and avoid
overreaction.

D. Variable QoS Classes

In this subsection, we create a new class ()7 and expect
that the flows originally belonging to (g can be partially
re-grouped into queue Q7. Thus: i) Class Qg in Table IV is
properly modified by randomly increasing the values within
the range of 5%. ii) The difference between Qs and Q7 is
less than 10%, and the differences between ()7 and other QoS
classes are more than 30%. The QoS classes exactly refer to
the aggregates in Fig. 1. Therefore, when the QoS classes are
added or deleted, we just increase or decrease the number
of aggregates accordingly. After the QoS classes are revised,
the above 3000 flows in Section V-C are re-aggregated. The
distribution is shown in Fig. 6.

Apparently, MT still cannot respond to changes. UFM and
DSCM can respond to changes, but they do not work very
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well. In theory, we expect that flows originally belonging to Qg
can be partially aggregated into ()7, but in fact, most of them
fall into queue “other”. The reason is that UFM and DSCM
are sensitive to the threshold. Taking UFM as an example,
the threshold is set at D(A) = max L(F,y). Thus flow F,,
would be aggregated into class y if and only if the utility
function L(-) does not exceed the threshold. Note that the
threshold D()) for class @ is 2.53, and it is 0.87 for Q.
The threshold for new class is set as the lowest one in this
system, i.e., D(A) = min, max L(z,y) = 0.87 for Q7. L(-)
would easily exceed the threshold of 0.87, which causes these
flows to fall into queue “other”.

CHS dynamically adjusts the aggregation by the cluster
centers when the QoS classes change. Therefore, CHS is
insensitive to threshold, but sensitive to cluster centers. On the
positive side, flows will not be aggregated into queue “other”.
On the negative side, the changes of Qg and @7 will have
global impact on other queues as shown in Fig. 6. The
reasons are as follows: The model of CHS is described as
A* = [V1,..., V], where V; represents the QoS class. All
flows are aggregated into the QoS classes based on the cluster
center V;. Therefore, CHS would not map the flows into queue
“other”. However, CHS highly depends on the entire sample
population. When a cluster point changes, especially when a
new cluster point is added, all flows need to be recalculated
to adjust the valid range. For CHS, a small change may lead
to global influence on the system. As shown in Fig. 6, @4 and
Q5 are affected by the changes of Q¢ and Q7.

PLM overcomes the shortcomings of the above aggregation
methods which are sensitive to either threshold or cluster cen-
ters. Thus, PLM will not aggregate flows into queue “other”,
and when QoS classes changes locally, it won’t generate
global influence like CHS. The reasons are: i) According
to Definition 1, PLM implements the ordered partition of
Q = {Q1,...,Q7}, resulting in (Ey,...,E,), By U Ey U
---UF, = Q. E; is bound to be a subset of (). Therefore,
flows would not be aggregated into queue “other”. ii) E; is
also a subset of E, where E; is obtained before the QoS
classes change, while Ej is obtained after the QoS classes
change. Taking the QQ flows in Section V-A as an example,
we get 7 = {Q1}, which means that (); can best meet the
QoS requirements of QQ flows, while Qo,...,Qs are not
able to meet the requirements well. When Qs changes and
Q7 is added, apparently, Qs, ..., Q5 are still unable to meet
the requirements. Therefore, we only need to discuss Qg and
Q7, ie., Q = {Q1,Q6,Q7} F Ef. Thus, for PLM, the local
change of classes only has local influence.

E. QoFE Satisfaction Degree

We expect most of the flows to be properly aggregated into
the QoS classes, i.e., the flows’ requirements are maximally
satisfied. Thus, we use the satisfaction degree to evaluate
the performance of aggregation methods. In this subsec-
tion, we obtain the statistics of satisfaction degree based
on the results of Sections V-B, V-C, and V-D, as shown
in Table V. The final result was obtained by averaging the
results of 10 runs.
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TABLE V
OVERALL SATISFACTION DEGREE

Methods  V-B: Fixed V-C: Variable V-D: Variable
requirements  requirements  classes

MT 0.927 0.897 0.860

DSCM 0.927 0.855 0.836

UFM 0.927 0.821 0.843

CHS 0.927 0.919 0914

PLM 0.927 0.913 0.918

Under fixed requirements as in V-B, the system parameters,
thresholds, weights, etc., are trained and tuned to the optimal
state. Therefore, for all methods, including MT, UFM, DSCM,
CHS, and PLM, flows can be aggregated into the right
QoS classes, see Fig. 4. Thus their Osd are all the same.
However, they are not 1, because some requirements of some
flows are not met. For example, a type of video monitoring
flow f; = {25ms, 130kbps, 0.0015, 57ms} is aggregated into
Q1 = {50ms, 128kbps, 0.001,50ms}. Obviously, the require-
ment for delay is not met.

Under variable QoS requirements as in V-C and variable
QoS classes as in V-D, the flows are re-aggregated into dif-
ferent QoS classes as shown in Fig. 5 and Fig. 6 respectively.
For MT, all flows are aggregated in the same way as before,
regardless of whether the QoS requirements or classes have
changed, which results in the drop of osd. As for UFM and
DSCM, The decline of osd is very significant. This is mainly
because some of the flows fall into the “other” class. The
flows in queue “other” will not be allocated with appropriate
system resources. For CHS and PLM, they can effectively
adjust and respond to the changes of QoS requirements and
classes, so they have good performance, as shown in Table V.

Discussions: i) Note that the “other” class is defined by the
average value in Table IV. If it is defined by the minimum or
maximum value, the statistical values of osd will be different
for UFM and DSCM. But we have verified that even the
“other” class is defined by the maximum value, the osd for
UFM turns out to be less than 0.9, which is still lower than
that of CHS and PLM. ii) Aggregation of flows also aims to
enhance the efficiency of scheduling and transmission. Thus,
it is obviously inappropriate to concentrate only on whether
flows’ requirements are met. Therefore, in next subsection,
we use throughput as criteria to further test the performance.

F. Throughput Analysis

In this experiment, the dynamic round robin (DRR) schedul-
ing is exploited to schedule the aggregates [44]. As shown
in Fig. 1, flows with the same QoS requirements are grouped
into one aggregate. The DRR scheduling will allocate different
resources for QoS classes, including the queue length, band-
width, etc. The DRR scheduling model has n aggregates in
total, and each aggregate has m sub-queues to carry m flows.
The total length of queue is set to 8m times the average length
of flows. Here, two issues need to be illustrated.

o Why the need of the average length? Because the lengths

of flows vary significantly. Short flows (e.g., VoIP) have

6103

=
A MT + UFM ¢ DSCM © CHS * PLM
20 40 60 80 100
Simulation Time(s)
Fig. 7. Throughput for the ELD requirements.

only hundreds of Byte. Many text flows are below 1MB.
Long flows are as many as several MB. For longer
flows (e.g., streaming data), we only take 3 minutes of
data volume due to limited hardware conditions in the
experiment.

e Why is it 8m times? There are 6 QoS classes (see
Table IV) and plus the “other” class and ()7, so we have
8 classes in total, corresponding to 8 aggregates in Fig. 1.
Each aggregate accommodates m flows. Thus the total
length is 8m times the average length of flows.

All samples used in this experiment come from Section V-
D. The traffic are generated from the samples according to
Poisson distribution with intensity A, = 90, which are used to
simulate the heavy-load network (in the case of low load, there
is no obvious difference among the methods in throughput).
The throughput here refers to the normalized throughput: tr =
d,/d;, where d; is the input data rate, which is measured when
the flows enter the queues, while d, is the output data rate,
which is measured when the flows leave the queues.

In Fig. 7, MT, UFM and DSCM show poorer performance
in throughput. This is due to: i) For MT, flows are always
aggregated according to the original rules, resulting in a
higher packet loss. What’s more, queue Q7 is empty, and the
scheduling time allocated to ()7 is completely wasted, thus
resulting in low overall throughput. ii) For UFM and DSCM,
the queue “other” is too full, which causes the packet loss,
and thus the performance in throughput is not good.

CHS is slow in the start-up phase, while other methods can
achieve their maximum throughput quickly, which is mainly
attributed to its high computation complexity. When class
Q¢ changes and class ()7 is added, the distances between
all cluster points and flows are reanalyzed to update the
valid range for classes. The complicated computations have
significant impact on the throughput at the start-up phase.

PLM performs well in throughput. This is because: i) For
the changed QoS classes, PLM only makes local adjust-
ment. Taking QQ flows as an example, the optimal class for
QQ is By = {Q1} as shown in Section V-A. When Qg
changes and Q7 is added, we can find the optimal class in
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Q = {Q1,Qs,Q7}. There is no need to update calculation for
all classes, resulting in a relatively smaller computation cost
in comparison with CHS. ii) According to the algorithm in
Section III-D, the final selection of QoS class from E will be

properly balanced by @, = argmin{Ng, }. Therefore, PLM
tends to have a balanced distribution of flows, and there will
be no imbalanced situation like that occurred in the UFM and
DSCM methods. One-sided aggregation in UFM and DSCM
cause the corresponding queue to be full, which leads to
increase of delay and loss, and in turn reduces the throughput.
For flows that need ELD (below 5 ms) in BSG systems,
a minor modification is made on the parameters in Table I.
For example, d(pd) of flow F; changes to 3, where d(pd)
refers to the ELD requirement. There is no need to make any
adjustment on PLM algorithm. These flows are re-aggregated
by PLM and thus new results on throughput are obtained as
shown in Fig. 8. PLM still demonstrates better throughput
performance in comparison with the other methods. The
reasons mainly lie in that PLM is a local adjustment scheme.
Only those sets containing varied d(pd) need to be updated
while others remain the same. Therefore, there is no need to
update all calculations for flows. That is, it only needs a small
computation cost which results in higher throughput.

G. Computational and Space Complexity

In this subsection, we compared the time and space com-
plexities of PLM with the existing works as shown in Table VI.
Note that: i) X, = 6 and 8, = 4 (see Table IV). That is,
R, < R, so the time complexity of PLM is O(X,N:Ny).
i) Some of the methods need to be re-trained (e.g., CHS)
and re-designed (e.g., DSCM) under varied parameters, so the
performance of QoE satisfaction degree and throughput would
not be discussed in this section.

From Table VI, it can be seen that the time and space
complexities of MT are extremely low. MT maps flows
into the target classes according to the flow table, which
is designed based on experience. Therefore, the time and
space complexities of mapping N, flows into N, classes are
O(R.Ry) and O(Xy) respectively. As for the DSCM method,
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Wang et al. proposed the rate-delay model based on a series
of convolution operations to achieve aggregation. The time
complexity of a single convolution operation for rate and delay
is O(X,?). Thus, the total time complexity of R, convolution
operations for s flows is O(X,”R.Xs). Based on the utility
function, UFM requires storage for all training and testing
flows. Therefore, its space complexity is O(R,(R,, + Xy)).
Its time complexity is mainly caused by the calculation of
decision process based on the utility function. CHS adopts the
nearest neighbor rule, which also needs to store all samples,
so the space complexity of CHS is the same as that of
UFM. We know that KNN groups flows with O(R,*R.R,,,Rf)
comparisons. However, CHS combines several KNN classifiers
to implement classification. That is, it divides the sample
flows into N, KNN classifiers, thus reducing the number of
comparisons to O(X,N.log(X,,)Xs). PLM does not need to
store the training flows, and thus its space complexity is the
same as that of DSCM.

In order to verify the theoretical comparisons given
in Table IV, we select 1000, 2000, and 3000 flows to calculate
the aggregation time, respectively. We run the simulation with
MATLAB R2016a on a laptop computer with Win7 profes-
sional (64bit/SP1) operating system, Intel I ColTM i5-4210M
@ 2.60 GHz, 2 GB memory. As shown in Fig. 9, it takes
the proposed PLM method 3.152s to aggregate 1000 flows,
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TABLE VI
COMPARISON OF TIME AND SPACE COMPLEXITY

Time complexity Space complexity

MT [39] O(N:Ny) O(Ny)

DSCM [16]  O(X,2R.Ry) O(RpNy)

UFM [40]  O(Xp2R: (R, + Ry)) ORp(Ryr, + Ry))
CHS [41] O(NpR. log (R, )Ny¢) ORp(Nym, + Ny))
PLM O(RpR:Ny) O(NpRy)
Parameters N,,: no. of parameters N.: no. of classes

N0 no. of sample flows  N¢: no. of testing flows

5.561s for 2000 flows, and 7.947s for 3000 flows. MT has the
smallest time and space complexities. However, as analyzed in
Sections V-E and V-F, MT has the worst performance of QoE
satisfaction and throughput. Among the other four methods,
the proposed PLM has the best performance in terms of the
time and space complexities. The results illustrated in Fig. 9
agree with the theoretical analysis in Table IV.

As analyzed in Section III-F, the total time complexity of
PLM is O(min(R,,, R )RR +8,X¢). The algorithm complex-
ity is a linear function of X, and Ny. Therefore, when R, is
fixed to 4 and N is increased from 1000 to 3000, or N is fixed
to 1000 and R, is increased from 2 to 6, the aggregation time
of PLM grows linearly as shown in Figs. 9 and 10. Compared
with other methods (except MT), The growth rate of PLM is
relatively small.

VI. CONCLUSION

Diffserv for massive heterogeneous traffic in edge comput-
ing is challenging. The existing schemes require quantitative
QoS requirements, fixed QoS parameters, and static QoS
classes, which are typically hybrid, changeable, and dynamic
in B5G. Therefore, a novel aggregation method PLM is pro-
posed in this paper. In PLM, the hybrid requirements of flows
are modeled in preference, and the most suitable QoS class can
be derived by logic reasoning without using a strict threshold.
In the dynamic environment with high variability, when the
QoS requirements change, or the QoS parameters and even the
QoS classes change, PLM can locally adjust the aggregation
with low computational cost and make the best use of limited
system resources. It has better performance in terms of QoE
satisfaction and throughput than the existing hard aggregation
methods. Based on the preference logic, PLM provides a
general solution to aggregate flows in heterogeneous networks
and is expected to improve Diffserv/QoE in B5G.

There is still the need for some potential improvements to
our work, e.g., the granularity of QoS classes. The number
of classes is an important factor in determining the perfor-
mance of aggregation. WiMAX (Worldwide Inter Operability
of Microwave Access) defines 6 classes including unsolicited
grant service, real-time polling service, non-real-time polling
service, etc. Wi-Fi and LTE designate 4 and 9 classes respec-
tively. However, there is no standard on QoS classes in B5G.
The issue of aggregation granularity needs to be studied in
depth along with future B5G technologies.
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