
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021 6093

QoE-Aware Traffic Aggregation Using Preference

Logic for Edge Intelligence

Pingping Tang , Member, IEEE, Yuning Dong , Member, IEEE, Yin Chen , Member, IEEE,

Shiwen Mao , Fellow, IEEE, and Saman Halgamuge , Fellow, IEEE

Abstract— Traffic flows with different requirements of quality
of service (QoS requirements) are aggregated into different QoS
classes to provide differentiated services (Diffserv) and better
quality of experience (QoE) for users. The existing aggregation
approaches/QoS mapping methods are based on quantitative QoS
requirements and static QoS classes. However, they are typically
qualitative and time-varying at the edge of the beyond fifth
generation (B5G) networks. Therefore, the artificial intelligence
technology of preference logic is applied in this paper to achieve
an intelligent method for edge computing, called the preference
logic based aggregation model (PLM), which effectively groups
flows with qualitative requirements into dynamic classes. First,
PLM uses preferences to describe QoS requirements of flows,
and thus can deal with both quantitative and qualitative cases.
Next, the potential conflicts in these preferences are eliminated.
According to the preferences, traffic flows are finally mapped into
dynamic QoS classes by logic reasoning. The experimental results
show that PLM presents better performance in terms of QoE
satisfaction compared with the existing aggregation methods.
Utilizing preference logic to group flows, PLM implements a
novel way of edge intelligence to deal with dynamic classes and
improves the Diffserv for massive B5G traffic with quantitative
and qualitative requirements.
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I. INTRODUCTION

W
ITH the rapid development of the beyond fifth gen-

eration (B5G) network, Internet of Everything (IoE)

has been widely accepted as one vision of future Internet [2],

where massive number of devices (e.g., vehicles, mobile

phone, and wearable devices) are connected, which result

in complex heterogeneous networks (HNs) at the edge as

shown in Fig. 1. Edge intelligence (EI), powered by artificial

intelligence (AI) techniques, is considered to be crucial and

represents a key enabling factor for future IoE. According

to the 6G white paper [9], EI is to use advanced com-

munication technologies and AI to support ubiquitous data

collection, aggregation, fusion, processing, distribution and

services at the edge. EI includes many issues, such as traffic

management [3], data aggregation [4], resource allocation [5],

differentiated service (Diffserv) [6], scheduling strategy [7],

security issues [8], etc. Traffic aggregation, the prerequisite

and foundation for further Diffserv, scheduling and manage-

ment, is an important research topic in EI, which has aroused

great concern in the field of communications [10]. As shown

in Fig. 1, traffic flows are grouped into different aggregates

(i.e., classes) according to their different requirements for

quality of service (QoS). However, in heterogeneous networks

of IoE, it is challenging for EI to implement data aggregation,

which is due to the following issues.

• Traffic from heterogeneous devices may have quite dif-

ferent requirements [11], e.g., some flows generated by

smartphone apps in B5G systems may have requirement

on extremely low delay (ELD) while some others gen-

erated by sensors may have requirement only on break

(see F3 in Table I). It is difficult for an aggregation

model to cover all aggregation criteria, e.g., break [12],

loss (i.e., packet loss rate) [10], user’s awareness [13],

context [4], etc. It is impossible for a flow to offer all

values. That is, the aggregation criteria are not fixed for

those heterogeneous traffic.

• With the rapid development of B5G network, some

qualitative human-centered [14] and socially-aware met-

rics [15] (e.g., user level: silver) are already involved in

the calculation, so we need effective means to deal with

qualitative information.

• Networks in IoE have different specifications for

classes [16]. For example, 3GPP (3rd Generation

Partnership Project) defines 4 classes: conversation,
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TABLE I

HYBRID QOS REQUIREMENTS OF HETEROGENEOUS TRAFFIC

streaming, interaction and background. TIPHON

(Telecommunication and Internet Protocol Harmonization

Over Networks) specifies 3 classes: wideband,

narrowband and BE. When a flow travels from a

3GPP domain to a TIPHON domain network, the target

classes are totally different.

The existing aggregation models are not directly applicable

to edge intelligence. In these models, the aggregation criteria

are fixed [10], the requirements are quantitative [17] and

the classes are static [16]. We need to explore a generic

aggregation model to deal with such variations. Therefore,

based on the AI technology of logic reasoning, we proposed

a novel preference logic based aggregation model (PLM) to

map massive heterogeneous traffic with different quantitative

and qualitative requirements (i.e., hybrid requirements) into

time-varying classes. The major contributions are summarized

below.

• Based on the preference cognition, a novel description

of QoS requirements is proposed to deal with the hybrid

requirements (see Section III-B), which breaks through

the limitations of the existing aggregation models that

can handle only quantitative requirements.

• Based on the logic reasoning, an innovative edge com-

puting PLM is presented to aggregate traffic flows into

dynamic QoS classes. With the powerful reasoning capa-

bility, PLM shows a wonderful performance to deal with

time-varying aggregation criteria and classes.

• For the scenarios of this paper, we make improvements

on many aspects of the preference logic, e.g., preference

evaluation and preference conflict detection, which would

promote the application of preference logic in other

research fields.

The remainder of the paper is organized as follows.

In Section II, we present some related work and analyze

their limitations. PLM is defined and theoretically verified

in Section III. The datasets and performance metrics are

discussed in Section IV. Section V evaluates the performance.

Section VI concludes this paper.

II. RELATED WORK

There are many aggregation methods proposed to pro-

vide Diffserv for network traffic. Wu et al. [10] exploited

K-Means to aggregate flows across HNs, where flows with

similar QoS requirements (e.g., transmission rate) are clus-

tered together into one macro flow. Considering that different

flows may have different preferences on QoS parameters,

Hijazi et al. [17] presented the class weight based K-nearest

neighbor method (CWK-NN), where a weight-learning algo-

rithm is explored to assign weights to different QoS parameters

according to their importance in aggregation. For example,

in the study of [16], the QoS requirement of flow F1 is

{134kbps, 46ms, 0.0015, 57ms} as shown in Table I, and

their weights are {0.5, 0.25, 0.15, 0.1}. With the development

of traffic aggregation, researchers began to realize that user’s

awareness is an important factor that should be considered

in aggregation models [14]. For example, it is somewhat

useless to distinguish flows which have the delay requirements

of 50ms and 60ms, if users are not sensitive to the differ-

ence between them. That is, users usually have their own

sensitivities and preferences [18]. Network resources would

be wasted if more resources are allocated to the users who

cannot perceive much gain due to their cognitive limitations.

Therefore, Chen et al. [12] proposed an efficient aggregation

model based on reinforcement learning (RL) to minimize the

breaks in presence (BIP) and thus improve the quality of

experience (QoE) of different users. Targeting user’s QoE

and energy consumption, He et al. [19] developed a dynamic

Q-learning based aggregation model, where flows with dif-

ferent QoE values are mapped into different networks, e.g.,

UMTS (Universal Mobile Telecommunications System) and

Wi-Fi (wireless fidelity). With the in-depth research, human-

centered [14] and socially-aware [15] networking techniques

are in demand, where quantitative criteria would be widely

involved in. For example, in the specification of RFC2594,

the network flows are divided into four levels: platinum, gold,

silver and copper [22]. Kasgari et al. [14] took into account

qualitative criteria (e.g., user level and gender) in their study

on delay requirement model. Based on the delay requirements,

users are assigned with different network resources.

The differences between the existing works and the pro-

posed PLM are summarized in Table II. Three are three

issues that need to be pointed out here: i) Work [14] is

semi-hybrid since qualitative criteria such as gender are just

used to achieve the delay requirements; the final mapping

is still based on the quantitative delay requirements and

not the qualitative criteria. ii) The source of mapping is

mainly the user or traffic. Note that the user would generate

different types of traffic (e.g., video and email) which may

have different QoS requirements. Therefore, we think traffic
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TABLE II

COMPARISONS BETWEEN DIFFERENT WORKS

Fig. 1. An illustration of aggregation in edge intelligence.

makes more sense than users for Diffserv. iii) The mapping

can be set to User→Queue, Traffic→Queue, Traffic→Node,

User→ BS/Networks, etc. Note that the main focus in traffic

transmission under Diffserv framework is resource allocation

at the router queues. Thus, we discuss the mapping Traffic→
Queue in this paper. From Table II, the existing methods show

the following limitations:

i) The aggregation criteria are fixed. For example, when

a flow gives the requirements: {134kkps, 46ms, 57ms},

the aggregation algorithm [23] would calculate the distance

between the flow and the class by ||(fi − Qi)||. In this algo-

rithm, the aggregation criteria are fixed to {bandwidth, delay,

jitter}. Each flow should provide the precise requirements

for bandwidth, delay, and jitter. When any of these values

is missing, the aggregation algorithm cannot work properly.

However, the requirements of traffic in HNs are quite different,

so we need to explore a generic aggregation model which can

deal with variable criteria for heterogeneous traffic.

ii) The QoS requirements are quantitative. For example,

Alkharasani et al. [24] proposed a scheduling algorithm:

Wq = 1 − e−1/(Bw+De+Pl) where Wq denotes the coeffi-

cient of resource allocation; Bw, De, and Pl are bandwidth,

delay and loss, respectively. Their weights are [1, 1, 1], which

means the three parameters have absolutely equal importance.

However, in reality, flows usually have different preferences.

Some of them prefer low delay (e.g., telemedicine) and others

prefer high bandwidth (e.g., video on demand) [25]. Such

“preferences” are inappropriate to be quantified with accurate

numbers. Besides, as stated in Section I, some qualitative

metrics are involved in aggregation, so we need effective

means to deal with qualitative information.

iii) The QoS classes are static. For example, Wang and

Hsieh [26] implemented an elastic mapping method in the

long-term evolution (LTE) network, where the QoS classes are

fixed to conversational voice, live streaming, real time gaming,

etc. If a class is changed, which means the cluster center

is varied, the aggregation scheme needs to be completely

re-trained. However, IoE systems contain a lot of HNs such

as Wi-Fi and ZigBee, which have different specifications for

their classes [9]. Aggregation models in IoE should be able to

deal with variable classes.

In summary, based on fixed aggregation criteria, quantitative

requirements, and static target classes, the current aggregation

methods cannot be applied to edge intelligence, where the

aggregation criteria are variable, the requirements of flows are

typically complex, and target classes are dynamic. Therefore,
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Fig. 2. Block diagram for the organization of Section III.

the preference logic is explored in this paper to achieve

an innovative aggregation model PLM. Preference logic was

initially proposed by Von Wright in 1963 [27]. It is used to

solve qualitative problems in economics under highly variable

environments [28]. Therefore, based on the AI technology of

preference logic, PLM works well when facing with hybrid

requirements under variable aggregation criteria and dynamic

classes. This novel intelligent edge computing PLM provides

a general aggregation model for better Diffserv/QoE support

in B5G network.

III. THE PROPOSED AGGREGATION MODEL PLM

A. Problem Statement

The proposed aggregation model PLM is described as

Mplm = fpl(F, Q, Rpl) (1a)

s.t. Rpl = fpls(P ) (1b)

where F =
S

fm denotes a group of flows, and fm represents

an individual flow (m = 1, 2, . . . ,ℵf ); Q =
S

Qn(n ∈ z+
d )

represents the set of dynamic QoS classes, and z+
d is the set of

natural number greater than 0; P =
S

pj (j ∈ z+
d ) is the set of

variable QoS parameters (e.g., delay and loss); Rpl is hybrid

QoS requirements described in preference. PLM groups flows

F with hybrid requirements Rpl into dynamic classes Q under

variable parameters P . Here, Qn is defined as

Qn := {(pj , d(pj)), j ∈ Z+
d } (2)

where d(pj) is the demand value of pj for class Qn. As shown

in Table IV, the demand values for class Qn are designated

according to the existing international standards such as IETF

(Internet Engineering Task Force).

Based on (1a) and (1b), the proposed aggregation scheme

consists of four main components (see Fig. 2): First, based on

P , the hybrid QoS requirements Rpl of flows are modeled in

Section III-B, and preference conflicts in Rpl are eliminated

in Section III-D; Next, the optimal candidates that best satisfy

Rpl are derived from Q in Section III-C; Finally, Section III-E

makes the final selection from the optimal candidates. The

important symbols are listed in Table III for the ease of

reading. The symbols with capital italic letters represent sets.

B. Modeling the QoS Requirements in Qualitative Manner

QoS requirements are usually described in quantitative

weight-based models [16], e.g., f1 = {134 kbps, 46ms, 0.0015,

57ms} (the QoS parameters are bandwidth, delay, loss and

jitter, respectively), and their weights are [0.5, 0.25, 0.15, 0.1].

Here, the weights are computed according to the relationship

between the QoS parameters and QoE. QoE reflects the

overall experience of QoS in network environment [29]. Thus,

the influence of each QoS parameter on QoE can indicate their

importance [30]. More concretely, the weights are obtained as

follows: i) First, collect the values of QoS parameters and QoE,

such as {pd(1) = 58ms, pl(1) = 0.001, . . . , qoe(1) = 3},

{pd(2) = 42ms, pl(2) = 0.001, . . . , qoe(2) = 4}, where

pd(i), pl(i), qoe(i) (i = 1, 2, . . . , I) represent the ith obser-

vation of delay, loss and QoE, respectively. ii) Next, model

the importance of the QoS parameters by quantitative fitting

methods [16], [31], and thus obtain the precise weights. How-

ever, in reality, it’s hard to determine how much bandwidth is

more important than delay, which is difficult to describe by

an accurate number.

In this paper, we use qualitative Rpl to

describe the QoS requirements, e.g., Rpl = {ban

134
∇>∇del46

∆>∇SecHigh
∆>∆UseGold}. Here, Rpl is

also derived based on the above QoS and QoE. Note that

the scales of these data are different, which need to be

normalized:

p̄k(i) =
pk(i)

P

i pk(i)
(i = 1, 2, . . . , I) (3)

where pk ∈ P represents the QoS parameter such as delay

and loss. The values of qoe(i) are also transformed to the

non-dimensional form by (3). Based on GRA (Grey Relational

Analysis) [32], the correlation between pk and QoE is defined

as

rpk
=

"

1

I

I
X

i=1

Υpk
(i)

#

(4a)

s.t. Υpk
(i) =

min
i,k

{λxk(i)} + 1
2max

i,k
{λxk(i)}

λxk(i) + 1
2max

i,k
{λxk(i)}

, (4b)

λxk(i) = |qoe(i) − p̄k(i)|. (4c)

GRA is used in various research fields (e.g., medicine [33]

and chemistry [34]) to measure the relationship between dif-

ferent factors. It has mainly four steps: i) All the values are to

be normalized as in Eq. (3); ii) Obtain the absolute difference

between the standard sequence and correlation sequences as in

Eq. (4c); iii) Calculate the correlation coefficient between each

column of the standard sequence and correlation sequences as

in Eq. (4b); iv) Calculate the total correlation degree between

the standard sequence and correlation sequences as in Eq. (4a).

The range of rpk
is (0, 1). The larger the value of rpk

,

the greater the influence of parameter pk on QoE. Preference

logic defines four types of preferences. To determine which

preference the relationship between pj and pk belongs to,

we define the distinction index qanpj−pk
as

qanpj−pk
=

�

�

�
k ∗ (~e)1−(rpj

−rpk
)2

�

�

�
(5)

where ~e is a difference vector, specified as (e1−(rpj
−rpk

)2
,

1− (rpj
− rpk

)2), and k is affine matrix. We expect the range

of qanpj−pk
to fall into (0, 4), which exactly correspond to the

four preferences. Therefore, we define k as k = 4/(~e)∗, where
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TABLE III

NOTATIONS

(~e)∗ means ~e is rotated to the polar coordinate, and then moved

to the pole; 4/(~e)∗ means stretching to 4 times its length after

the vector ~e is transformed by (~e)∗. Thus, the length of vector

~e after being transformed by k is

qanpj−pk
=

4

e − 1

�

e1−(rpj
−rpk

)2 − 1
	

. (6)

In (6), if rpj
= rpk

, then there is no preference relationship

between pj and pk. If rpj
< rpk

, exchange pj and pk. Finally,

the preference between pj and pk is

pj
x>y pk : (x, y)

∆
= tr


�

qanpj−pk
+ 1

��

(7)

where x, y ∈ {∇, ∆}. bqanpj−pk
+ 1c = i ∈ {1, 2, 3, 4},

and tr(i) ∈ {(∇,∇), (∆,∇), (∇, ∆), (∆, ∆)}, corresponding

to the four preferences. For example, pd∇>∆ pl means that

delay is “careful” preferred to loss. The preferences for other

parameters can also be deduced by Algorithm 1. These pref-

erences are combined into Rpl to form the QoS requirements

of fm:

Rpl =
[

{ci = cl
i
x>ycr

i } (8a)

s.t. cl
i = pj−d(pj) (8b)

cr
i = pk−d(pk) (8c)

where d(pj) and d(pk) represent the demand value for QoS

parameters pj and pk, which are obtained by fixed observa-

tion [16] as shown in Section V-A.

C. Logic Reasoning

Based on Rpl, optimal candidates can be derived from the

QoS classes: E = {w|Mplm, w ` Rpl, w ∈ Q}, where the

logical symbol of ` means that it is deducible. The QoS classes

in E can best satisfy Rpl for flow fm. In order to obtain E,

two definitions are given below:

Definition 1: The ordered partition of Q. (E1, . . . , En) is

the ordered partition of Q, if and only if: (i) Ei (i =
1, 2, . . . , n) is non-empty set; (ii) E1 ∪ E2 ∪ · · · ∪ En = Q;

(iii) ∃i, j, Ei ∩ Ej = ∅, i 6= j. The ordered partition on Q
corresponds to a full forward sequence, satisfying ∀w, w0 ∈ Q,

if w ∈ Ei, w
0 ∈ Ej , then i ≤ j, if and only if w � w0.

Algorithm 1: Modeling QoS Requirements

1 Input: pj(i), pk(i), and qoe(i)(i = 1, 2, . . . , I)
2 Output: pj_d(pj)

x>y pk_d(pk)

3 Observe pj(i), pk(i) to obtain d(pj), d(pk) as in [16];

4 Normalize pj , pk and qoe by (3);

5 for pa(a = j, k) do

6 Compute Υpa
(i) and λxa(i) by (4b) and (4c);

7 Obtain the correlation degree rpa
by (4a);

8 Compare rpi
and rpk

:

9 if rpi
= rpk

then terminate the algorithm;

10 if rpi
< rpk

then exchange pj and pk;

11 Compute the distinction index qanpj−pk
by (6);

12 Define q = bqanpi−pj
+ 1c, and judge:

13 if q=1 then x=∇, y=∇/*pi_d(pi)
∇>∇ pk_d(pk)*/;

14 if q=2 then x=∆, y=∇/*pi_d(pi)
∆>∇ pk_d(pk)*/;

15 if q=3 then x=∇, y=∆/*pi_d(pi)
∇>∆ pk_d(pk)*/;

16 if q=4 then x=∆, y=∆/*pi_d(pi)
∆>∆ pk_d(pk)*/;

Definition 2: The pairs of Lxy(ci) and Rxy(ci), x, y ∈
{∇, ∆}. The former is called the left set and the latter is the

right set. Rpl =
S

ci (i = 1, 2, . . . , c) is the QoS requirements

of flow fm.
S

i

{w|Mplm, w ` ci, w ∈ Q} is the output of

Rpl, which is converted to
S

i

(Lxy(ci), Rxy(ci)). According to

different preferences, the left and right sets are defined below.

∇>∇ : L∇∇(ci)={w|Mplm, w ` cl
i ∧ ¬cr

i , w ∈ Q}

R∇∇(ci)={w|Mplm, w ` ¬cl
i ∧ ¬cr

i , w ∈ Q}.

(9a)
∆>∇ : L∆∇(ci) = {w|Mplm, w ` cl

i, w ∈ Q}

R∆∇(ci)={w|Mplm, w ` ¬cl
i ∧ ¬cr

i , w ∈ Q}.

(9b)
∇>r : L∇∆(ci) = {w|Mplm, w ` cl

i ∧ cr
i , w ∈ Q}

R∇∆(ci) = {w|Mplm, w ` ¬cr
i , w ∈ Q}. (9c)

∆>∆ : L∆∆(ci) = {w|Mplm, w ` cl
i, w ∈ Q}

R∆∆(ci) = {w|Mplm, w ` ¬cr
i , w ∈ Q}. (9d)
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Based on the above Lxy(ci) and Rxy(ci), the logic rea-

soning is carried out to obtain the ordered partition of Q:

(E1, E2, . . . , En), where the QoS classes in E1 are superior

to that in E2, and the QoS classes in E2 are superior to that

in E3, and so on. In this paper, fm is aggregated into the

QoS class that best meets Rpl. Therefore, only E1 is kept,

while E2, · · · , En can be ignored. Thus, we reconstructed the

reasoning steps in [35] to form the formula

E=































w|∀ (Lxy(ci)−E, Rxy(ci)) ,
w 6∈Rxy(ci)`xy := ∇∇∪0 ∆∇

w|∀ (Lxy(ci), Rxy(ci)−E) ,
w 6∈Lxy(ci)`xy := ∆∆ ∪0 ∇∆

w|∀ (Lxy(ci)−E, Rxy(ci)−E) ,
w 6∈Rxy(ci)∧Lxy(ci)`else.

(10)

Eq. (10) contains three cases:

i) When xy := ∇∇ ∪0 ∆∇, i.e., Rpl contains only {∇>∇}
or {∇>∇} ∪ {∆>∇}, E1 will be forward reasoned from

Lxy(ci). Forward reasoning means: E1 that best meets the

requirements is first reasoned out, then suboptimal E2, then

E3, and so on (see Algorithm 2). We only need E1 in this

paper. Therefore, the end condition of Algorithm 2: Q 6= ∅ is

revised to E1 6= ∅, and the reasoning is stopped after E1 is

derived.

ii) When xy := ∆∆∪0 ∇∆, i.e., Rpl contains only {∆>∆}
or {∆>∆} ∪ {∇>∆}, E1 will be backward reasoned from

Rxy(ci) (see Algorithm 3). Backward reasoning means: E1,

that is most unable to meet the requirements, is reasoned out

first, then E2, and so on. We change the order of Ei: E0
j =

Ei−j+1 to ensure E1 is optimal.

iii) Rpl contains neither ∇∇ ∪0 ∆∇ nor ∆∆ ∪0 ∇∆,

the forward and backward reasoning are combined: i) first,

the backward reasoning from Rxy(ci) is carried out; ii) the

classes produced by the backward reasoning will be deleted

from Q; iii) for the rest of the classes in Q, the forward

reasoning is carried out.

Algorithm 2: Forward Preference Reasoning

1 Input: Rpl, Q
2 Output: E
3 for each ci ∈ Rpl do

4 Obtain (Lxy(ci), Rxy(ci)) by (9a)–(9d);

5 l ← 0;

6 while (Q 6= ∅) do

7 l ← l + 1;

8 El = {w|∀ (L(ci), R(ci)) ∈ Rpl, w 6∈ Rxy(ci)};

9 if El = ∅ then terminate to check the conflicts;

10 Delete the elements in El from Q;

11 if Lxy(ci) = ∅ then delete (Lxy(ci), Rxy(ci));
12 Replace (Lxy(ci), Rxy(ci)) by (Lxy(ci)-El, Rxy(ci));

13 E = E1;

Here, the following three points need to be emphasized:

i) The number of iterations. As shown in Algorithms 2 and

3, the iteration terminating condition is Lxy(ci) − E = ∅

or Rxy(ci) − E = ∅. Therefore, even in the worst case,

Algorithm 3: Backward Preference Reasoning

1 Input: Rpl, Q
2 Output: E
3 for each ci ∈ Rpl do

4 Obtain (Lxy(ci), Rxy(ci)) by (9a)–(9d);

5 l ← 0;

6 while (Q 6= ∅) do

7 l ← l + 1;

8 El = {w|∀ (Lxy(ci), Rxy(ci)) ∈ Rpl, w 6∈ Lxy(ci)};

9 if El = ∅ then terminate to check the conflicts;

10 Delete the elements in El from Q;

11 Replace (Lxy(ci), Rxy(ci)) by

(Lxy(ci), Rxy(ci) − El);
12 if Rxy(ci) = ∅ then delete (Lxy(ci), Rxy(ci));

13 E0
j = El−j+1; E = E0

1;

the calculation will end up in min(ℵp,ℵc) iterations, where

ℵp and ℵc refer to the number of parameters and classes.

ii) By (10), we can calculate the QoS parameter that flow

fm is insensitive to. When parameter pj changes, we get set

E0. If E = E0, and no matter how pj changes, E remains

unchanged, then flow fm is insensitive to pj . Therefore, when

the network environment changes, our proposed method will

only update the flows which are sensitive to parameter pj .

Thus PLM provides local adjustment, which is a breakthrough

over some of the existing aggregation methods with global

adjustment as shown in Sections V-C and V-D.

iii) In Algorithms 2 and 3, when set Ei is empty, it indicates

that there are some preference conflicts in Rpl. Conflicts in

Rpl may cause Ei to be empty, and as a result, the logic

reasoning would terminate. Therefore, these conflicts should

be eliminated.

D. Elimination of Preference Conflicts

As shown in Section III-B, the user’s subjective experi-

ence may vary sometime due to the variation of feelings,

surroundings, etc., which would have direct effect on QoE,

and consequently the preferences may be changed. In another

case, when a user moves from one place to another, if there are

new QoS metrics to be taken into account, then the preferences

may also be changed. When the newly generated preferences

are combined into the existing ones as in Eqs. (16a)–(16d),

conflicts may possibly be aroused. For example, sup-

pose that the combined set of preferences contains:

Rpl = {pd100
∇>∆pl0.01, pl0.02

∇>∆pb100, pb50
∇>∆pd200},

where we can find a loop as shown in Fig. 3. Note that the

probability of conflicts is very low. However, conflicts must

be paid enough attention to because they may cause Ei to be

empty and consequently the algorithm would be terminated.

Only when conflicts are eliminated, can the system continue

to work. The simplest way to eliminate conflicts is to break

such loops. In practice, we just delete a preference to achieve
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Fig. 3. Distribution of flows for fixed requirements.

this goal, i.e., two preferences are merged into one:

pi_d(pi){Ψ}pj_d(pj)
∧ pj_d(pj)

{Φ}pk_d(pk)→pi_d(pi){Ψ; Φ}pk_d(pk)

(11)

where Ψ and Φ represent two preference relationships.

For example, the above preferences {pd100
∇>∆pl0.01,

pl0.02
∇>∆pb100, pb50

R>∆pd200} are merged into

{pl0.02
∇>∆pb100, pb50

∇>∆pd200}.

Here, we prove the rationality of Eq. (11). Certainly, it can

only assure that conflicts are eliminated, but cannot provide

the optimal solution to eliminate conflicts since there is couple

of ways to break the loop as shown in Fig. 3, which will be

further studied in our future work.

Proof of rationality:

Define Hpl(Ψ,�) = {w|Mplm, w ` Ψ, and for any w0 ∈ Q,

if Mplm, w0 ` Ψ, then w � w0}; hpl(Ψ,�) = {w|Mplm, w `
Ψ, and for any w0 ∈ Q, if Mplm, w0 ` Ψ, then w0 � w}.

According to the definition, Hpl(Ψ ∧ Φ,�) =
{w|Mplm, w ` Ψ ∧ Φ, and for any w0 ∈ Q,

if Mplm, w0 ` Ψ ∧ Φ, then w0 � w. Furthermore, because

� is reflexive, complete, and transmitted, there must be

∀w2 ∈ Hpl(Ψ,�), ∀w3 ∈ Hpl(Ψ,�) satisfying w3 � w2 or

w2 � w3, and, if w3 � w2, then Hpl(Ψ∧Φ,�) ⊆ Hpl(Ψ,�);
if w2 � w3, then Hpl(Ψ ∧ Φ,�) ⊆ Hpl(Φ,�).

In the same way, hpl(Ψ ∧ Φ,�) = {w|Mplm, w ` Ψ ∧
Φ, and for any w0 ∈ Q, if Mplm, w0 ` Ψ ∧ Φ, then

w0 � w. Furthermore, because � is reflexive, complete,

and transmitted, there must be ∀w2 ∈ hpl(Ψ,�), ∀w3 ∈
hpl(Ψ,�) satisfying w3 � w2 or w2 � w3, and, if w3 �
w2, then hpl(Ψ ∧ Φ,�) ⊆ hpl(Ψ,�);if w2 � w3, then

hpl(Ψ ∧ Φ,�) ⊆ hpl(Φ,�).
Hence, the result of preference reasoning for Ψ∧Φ is a sub-

set of that of Ψ or Φ. That is, the merge of the conflicting pref-

erences pi_d(pi){Ψ}pj_d(pj)
and pj_d(pj)

{Φ}pk_d(pk) by (11)

can guarantee the reasoning result of pi_d(pi){Ψ; Φ}pk_d(pk) is

a subset of that of pi_d(pi){Ψ}pj_d(pj)
or pj_d(pj)

{Φ}pk_d(pk).

Accordingly, the conflict treatment (11) assures Ei not to

be empty and thus the preference reasoning avoids to be

terminated.

E. Final Selection

When there are several optimal options in E, we use

the decision theory to implement the final selection [36].

Therefore, we define the matrix as:

A = (aij)ℵd×ℵd
|aij = qancrt(i)−crt(j) (12a)

s.t. aij > 0; aji = 1/aij; aii = 1 (12b)

A~v = ξmax~v (12c)

where crt(i) and crt(j) represent decision criteria, e.g., price

and resource utilization. ℵd is the number of decision criteria.

The calculation method of distinction index qancrt(i)−crt(j)

can be found in Section III-B. ξmax is the largest character-

istic root of A. ~v is the characteristic vector. Based on ~v,

the following decision function is defined to aggregate flow

fm into class Qn:

Qn
∆
= argmin{NQn

log~v~yQn
|(Qn∈E)} (13)

where ~yQn
is the evaluation vector which includes the com-

ponents of the price, the resource utilization for class Qn,

etc. NQn
is the number of flows in class Qn. If there is

only one criterion (e.g., price) in Eq. (12a) and the prices for

{Qn ∈ E} are the same, then Eq. (13) can be simplified as

Qn
∆
= argmin{NQn

}. In this case, the flow would be grouped

into the queue with the least number of flows.

F. Complexity Analysis

As shown in Fig. 2, the proposed aggregation scheme

PLM consists of four main components: modeling QoS

requirements (Section III-B), eliminating preference conflicts

(Section III-D), logic reasoning (Section III-C) and final

selection (Section III-E).

In this paper, preferences are used to model the imprecise

QoS requirements of different flows. As shown in Algorithm 2,

the complexity of establishing the preference between pj and

pk is O(ℵf ), where ℵf is the number of the flows. If there are

ℵp aggregation criteria (e.g., jitter and break), then the time

complexity to achieve preferences is O(ℵpℵf).
Furthermore, as described in Section III-D, the probability

of preference conflicts is very small. Therefore, the computa-

tion costs of PLM are mainly produced by the part on logic

reasoning. As shown in Algorithms 2 and 3, in some cases

(e.g., the forward preference reasoning), the logic reasoning

would stop just after the first iteration. Even in the worst case,

the logic reasoning would end up in min(ℵp,ℵc) iterations,

where ℵc is the number of the QoS classes. The complexity

of each iteration is O(ℵc). Thus, the complexity for logic

reasoning is no more than O(min(ℵp,ℵc)ℵc). When ℵf flows

are aggregated, the time complexity is O(min(ℵp,ℵc)ℵcℵf ).
Note that there may be several QoS classes in set E, so the

final selection is made by Eq. (13). In practice, we usually

select the class with more free resources (i.e., the queue that

has the least flows) from E as shown in Section III-E. Thus,

the complexity for final selection is no more than O(ℵc), which

can be neglected when compared with that of logic reasoning.

As a result, the total time complexity of PLM is

O(min(ℵp,ℵc)ℵcℵf +ℵpℵf ). It can be seen that the algorithm

complexity is a linear function of ℵp and ℵf . The computation

costs of the proposed method are relatively small, which will

continue to be evaluated in subsequent Section V-G.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 06:15:52 UTC from IEEE Xplore.  Restrictions apply. 



6100 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

TABLE IV

PARAMETERS FOR 6 QOS CLASSES

IV. DATASETS AND PERFORMANCE METRICS

A. Datasets

By analyzing the existing QoS framework adopted by

international standard organizations, such as IETF and NGN,

we summarized the six QoS classes of ITU-T Y.1541 as shown

in Table IV. Besides, there are 3 datasets used in this paper:

• NJUPT dataset [37]. It contains many types of flows,

which were captured by Wireshark in the campus network

of Nanjing University of Posts and Telecommunications

in 2018.

• ISP dataset. It contains some types of flows not available

in NJUPT, such as the monitoring systems, teleconfer-

ence, and e-commerce, which were collected in an ISP

data center located in a southern city of China in 2017

(names are omitted due to privacy reason).

• UNB ISCX Network Traffic (VPN-nonVPN) trace 2016

(short for UNB dataset). We downloaded 28G network

traffic data from the official website [38].

B. Performance Metric

Flows are aggregated into the QoS classes in Table IV.

Under the QoS framework, the aggregation performance is

reflected in whether the QoS requirements of flows are

met. Referring to the preference models in economics [28],

we define the QoE satisfaction degree as

sdFm
=

P

pk∈P w(pk) · sat(pk) (14)

where sat(pk) = {0,1} is a two-value function. If pk of flow

fm is within or close to the QoS class (the range is set

within 5% in this paper), then sat(pk) = 1, which means

the requirement for pk is met. w(pk) is the weight for QoS

parameters pk. Therefore, the range of sdfm
is [0, 1]. If there

are ℵf flows, then the overall QoE satisfaction degree is

osd = 1
ℵf

P

m sdfm
. (15)

V. EVALUATION

A. Aggregating a Single Flow to QoS Class

In this subsection, the video conferencing flows from the

NJUPT dataset are selected. Four QoS parameters in Table IV

are studied here, including delay, bandwidth, loss and jitter.

The aggregation process is demonstrated as follows.

1) Data Preparation: Traffic flow contains a lot of infor-

mation, such as the arrival time of each packet and packet

size. In fact, all flows in the datasets have such information,

through which we can get the parameters of delay, jitter,

bandwidth, and loss. The values of QoE are recorded with

the method in [31]. According to the work, users’ QoE are

given in 5 levels, i.e., {1, 2, 3, 4, 5}. Here, 5 means users

get the best experience and 1 means the worst experience.

If 9 conferencing flows are sampled, then we have:

pd(i) = {72, 59, 34, 41, 65, 51, 37, 86, 46} (16a)

pl(i) = {0.0025, 0.002, 0.001, 0.001, 0.0015, 0.002, (16b)

0.0015, 0.002, 0.001} (16c)

qoe(i) = {3, 4, 5, 5, 4, 4, 5, 3, 5}. (16d)

2) Modeling QoS Requirements With Preferences: As

shown in Algorithm 1, the first step of modeling QoS require-

ments is to scan through pd(i) and pl(i) to obtain the demand

value for delay and loss. In this paper, the demand values

for QoS parameters are measured by fixed observation [16],

i.e., selecting the maximum/minimum when QoE reaches the

5th level as the demand value. Therefore, d(pd) = 46ms
and d(pl) = 0.0015. Next, rpk

is calculated with (4a) and

thus rpd = 0.892 and rpl = 0.247. Then, compute the

distinction index qanpd−pl to be 0.287. Finally, the preference

is obtained according to Eq. (7) and it is pd46
∇>∇pl0.0015.

The preferences for other parameters can be obtained by the

same steps. Thus, the preferences of conferencing flows are

Rpl = {c1 = pd46
∆>∇pb134, c2 = pb134

∇>∇pl0.0015, c3 =
pl0.0015

∆>∇pj47}.

3) Logic Reasoning: In this case, there are only ∆>∇ and
∇>∇ in Rpl, so we use Algorithm 2 to identify the most

suitable class from Q = {Q1, Q2, Q3, Q4, Q5, Q6} (if Rpl

contains ∆>∆, then we will use Algorithm 3). The first part

of Algorithm 2 is to convert Rpl to sets Lxy(ci) and Rxy(ci):

- L∆∇(c1) = {w|Mplm, w ` cl
1}, where cl

1 = pd46. From

Table IV, find the classes that can satisfy pd46. Therefore,

L∆∇(c1) = {Q1, Q5}.

- R∆∇(c1) = {w|Mplm, w ` ¬cl
1∧¬cr

1}, where cl
1 = pd46,

and cr
1 = pb134. Find the classes that cannot satisfy pd46

and pb134, yielding R∆∇(c1) = {Q3, Q4, Q6}.

- L∇∇(c2) = {w|Mplm, w ` cl
2 ∧ cr

1}, where cl
2 = pb134,

and cr
2 = pl0.0015. Find the classes that can satisfy pb134

and pl0.0015. Therefore, L∇∇(c2) are {Q1}.
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Fig. 4. Distribution of flows for fixed requirements.

- R∇∇(c2) = {w|Mplm, w ` ¬cl
2 ∧ ¬cr

2}. Therefore,

R∇∇(c2) are {Q4, Q5}.

- L∆∇(c3) = {w|Mplm, w ` cl
3} = {Q1, Q3, Q6};

- R∆∇(c3) = {w|Mplm, w ` ¬cl
3 ∧ ¬cr

3} = {Q2, Q4}.

The second part of Algorithm 2 is to reason out

the optimal class for the flow with several iterations.

As explained in Section III-F, in the worst case, the logic

reasoning would require min(ℵp,ℵc) iterations. There-

fore, with Algorithm 2, we get an ordered partition of

Q : {{Q1}, {Q5}, {Q3, Q6}, {Q2, Q4}}, where E1 = {Q1},

E2 = {Q5}, E3 = {Q3, Q6}, E4 = {Q2, Q4}. The classes

in E1 best meet the QoS requirements, the classes in E2 are

suboptimal, and the classes in E4 are the worst. Thus the

conferencing flows are aggregated into Q1.

Considering two new parameters (e.g., price and even qual-

itative security) are added into aggregation, the preferences

would be obtained in the same way by Algorithm 1 as above.

The mapping from flows to QoS classes is also in the same

way by logic reasoning as above. We do not need to make any

adjustment to the algorithms of PLM. Here, we can see that:

• PLM can effectively handle hybrid requirements consid-

ering both quantitative and qualitative parameters, such as

pb128 and psHigh, while the existing aggregation methods

cannot.

• In PLM, parameters pk can be deleted or added with-

out affecting the reasoning algorithm, which is different

from the existing methods, such as the parametric model

f(θ, λ, r) by Purwanto et al. [42], in which parameters

{θ, λ, r} cannot be changed at all.

B. Distribution of Flows After Aggregation

In this subsection, i) 3000 flows are randomly selected, and

each class (from Q1 to Q6) consists of 500 flows; ii) only

4 QoS parameters and 6 QoS classes are considered as shown

in Table IV; iii) assume the length of the queues for all QoS

classes (see Fig. 1) is infinite.

Several aggregation methods are compared, including

MT [39], UFM [40], DSCM [16], and CHS [41]. In [39],

a flow mapping table (MT) is manually obtained to group

the flows into the classes. Jin et al. [40] developed the

Fig. 5. Distribution of flows for variable requirements.

utility function model (UFM) to control the traffic aggrega-

tion. In [16], Wang et al. proposed a dynamic service class

mapping scheme (DSCM) for transporting traffic over HNs.

Wu et al. [41] presented multi class aggregation structure

called the chain and hierarchical structure (CHS) based on

the near neighbor classifier.

For all methods, the system parameters, thresholds, weights,

etc., are trained and tuned to the optimal state. Therefore,

flows can be aggregated into the right QoS classes as shown

in Fig. 4. However, in reality, the QoS requirements, para-

meters, and classes are often changing at the edge in HNs,

as described in Section II. Therefore, in the following sections,

we will discuss the impact of variable requirements Rpl,

parameters P , and classes Q on flow aggregation.

C. Variable QoS Requirements

In this subsection, some flows with variable QoS require-

ments are selected, such as the Youku videos and SDO

games. For other flows, we add a random quantity to the QoS

requirements to simulate changes. Specifically, for flows of

class Q2, we increase their QoS requirements by a random

quantity. For that of Q3, we decrease their QoS requirements

by a random quantity. The range of the quantity is set within

5%. 3000 flows (500 flows for each class) are re-aggregated

and the distribution is presented in Fig. 5. We repeat this

experiment 10 times, and the differences among experiments

are also demonstrated in the figure.

It can be seen that when the QoS requirements change,

MT is completely incapable of adaptation. All flows are

aggregated in the same way as before, regardless of whether

QoS requirements are changed or not.

UFM and DSCM are sensitive to changing environment,

but the results are not as good as expected. For UFM and

DSCM, the QoS requirements of flows are represented by

numerical values, which exceed the thresholds of Q2 and Q3,

and happen to fall into the thresholds of Q1 and Q4. Therefore,

the queues Q2 and Q3 are almost empty, while Q1 and Q4

are too long. In real networks, long queue or full queue will

cause an increase in delay and packet loss. In general, it is

the sensitivity to threshold that results in imbalance in flow
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Fig. 6. Distribution of flows for changing classes.

aggregation [43]. However, if the value does not fall within

the threshold of any QoS class, the flow would be aggregated

into queue “other”. In real networks, flows in queue “other”

will not be allocated with appropriate system resources.

CHS and PLM present a good adaptability. They can

effectively respond to the changes. For PLM, according

to the algorithms in Sections III-B and III-C, changes

in the QoS requirements will lead to the changes in

ci = pj_d(pj)
x>ypk_d(pk), and consequently result in changes

in set E := {w ` Rpl}. PLM can respond to the changes, and

it does not overreact like UFM and DSCM do. According

to (9a)-(9d), the reasoning result of Lxy(ci) and Rxy(ci)
depends on the relative positions of pj and pk in the QoS

class. In most cases, the absolute variation of pj and pk

does not affect these relative positions, and thus the logic

reasoning results remain unchanged. In general, PLM can

effectively respond to the changes of QoS requirements with-

out overreaction. Similarly, for CHS, there is no overreaction

either. When the QoS requirements change, the valid range

min(D∗
j ), max(D∼

j ) is properly adjusted, where min(D∗
j )

and max(D∼
j ) are the maximum and minimum Euclidean

distances from sample to cluster point j. Thus it can be

seen that CHS does not depend on thresholds and avoid

overreaction.

D. Variable QoS Classes

In this subsection, we create a new class Q7 and expect

that the flows originally belonging to Q6 can be partially

re-grouped into queue Q7. Thus: i) Class Q6 in Table IV is

properly modified by randomly increasing the values within

the range of 5%. ii) The difference between Q6 and Q7 is

less than 10%, and the differences between Q7 and other QoS

classes are more than 30%. The QoS classes exactly refer to

the aggregates in Fig. 1. Therefore, when the QoS classes are

added or deleted, we just increase or decrease the number

of aggregates accordingly. After the QoS classes are revised,

the above 3000 flows in Section V-C are re-aggregated. The

distribution is shown in Fig. 6.

Apparently, MT still cannot respond to changes. UFM and

DSCM can respond to changes, but they do not work very

well. In theory, we expect that flows originally belonging to Q6

can be partially aggregated into Q7, but in fact, most of them

fall into queue “other”. The reason is that UFM and DSCM

are sensitive to the threshold. Taking UFM as an example,

the threshold is set at D(λ) = maxL(F, y). Thus flow Fm

would be aggregated into class y if and only if the utility

function L(·) does not exceed the threshold. Note that the

threshold D(λ) for class Q1 is 2.53, and it is 0.87 for Q6.

The threshold for new class is set as the lowest one in this

system, i.e., D(λ) = minx maxL(x, y) = 0.87 for Q7. L(·)
would easily exceed the threshold of 0.87, which causes these

flows to fall into queue “other”.

CHS dynamically adjusts the aggregation by the cluster

centers when the QoS classes change. Therefore, CHS is

insensitive to threshold, but sensitive to cluster centers. On the

positive side, flows will not be aggregated into queue “other”.

On the negative side, the changes of Q6 and Q7 will have

global impact on other queues as shown in Fig. 6. The

reasons are as follows: The model of CHS is described as

A∗ = [V1, . . . , Vm], where Vi represents the QoS class. All

flows are aggregated into the QoS classes based on the cluster

center Vi. Therefore, CHS would not map the flows into queue

“other”. However, CHS highly depends on the entire sample

population. When a cluster point changes, especially when a

new cluster point is added, all flows need to be recalculated

to adjust the valid range. For CHS, a small change may lead

to global influence on the system. As shown in Fig. 6, Q4 and

Q5 are affected by the changes of Q6 and Q7.

PLM overcomes the shortcomings of the above aggregation

methods which are sensitive to either threshold or cluster cen-

ters. Thus, PLM will not aggregate flows into queue “other”,

and when QoS classes changes locally, it won’t generate

global influence like CHS. The reasons are: i) According

to Definition 1, PLM implements the ordered partition of

Q = {Q1, . . . , Q7}, resulting in (E1, . . . , En), E1 ∪ E2 ∪
· · · ∪ En = Q. E1 is bound to be a subset of Q. Therefore,

flows would not be aggregated into queue “other”. ii) E1 is

also a subset of E∗
1 , where E1 is obtained before the QoS

classes change, while E∗
1 is obtained after the QoS classes

change. Taking the QQ flows in Section V-A as an example,

we get E1 = {Q1}, which means that Q1 can best meet the

QoS requirements of QQ flows, while Q2, . . . , Q6 are not

able to meet the requirements well. When Q6 changes and

Q7 is added, apparently, Q2, . . . , Q5 are still unable to meet

the requirements. Therefore, we only need to discuss Q6 and

Q7, i.e., Q = {Q1, Q6, Q7} ` E∗
1 . Thus, for PLM, the local

change of classes only has local influence.

E. QoE Satisfaction Degree

We expect most of the flows to be properly aggregated into

the QoS classes, i.e., the flows’ requirements are maximally

satisfied. Thus, we use the satisfaction degree to evaluate

the performance of aggregation methods. In this subsec-

tion, we obtain the statistics of satisfaction degree based

on the results of Sections V-B, V-C, and V-D, as shown

in Table V. The final result was obtained by averaging the

results of 10 runs.
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TABLE V

OVERALL SATISFACTION DEGREE

Under fixed requirements as in V-B, the system parameters,

thresholds, weights, etc., are trained and tuned to the optimal

state. Therefore, for all methods, including MT, UFM, DSCM,

CHS, and PLM, flows can be aggregated into the right

QoS classes, see Fig. 4. Thus their Osd are all the same.

However, they are not 1, because some requirements of some

flows are not met. For example, a type of video monitoring

flow f1 = {25ms, 130kbps, 0.0015, 57ms} is aggregated into

Q1 = {50ms, 128kbps, 0.001, 50ms}. Obviously, the require-

ment for delay is not met.

Under variable QoS requirements as in V-C and variable

QoS classes as in V-D, the flows are re-aggregated into dif-

ferent QoS classes as shown in Fig. 5 and Fig. 6 respectively.

For MT, all flows are aggregated in the same way as before,

regardless of whether the QoS requirements or classes have

changed, which results in the drop of osd. As for UFM and

DSCM, The decline of osd is very significant. This is mainly

because some of the flows fall into the “other” class. The

flows in queue “other” will not be allocated with appropriate

system resources. For CHS and PLM, they can effectively

adjust and respond to the changes of QoS requirements and

classes, so they have good performance, as shown in Table V.

Discussions: i) Note that the “other” class is defined by the

average value in Table IV. If it is defined by the minimum or

maximum value, the statistical values of osd will be different

for UFM and DSCM. But we have verified that even the

“other” class is defined by the maximum value, the osd for

UFM turns out to be less than 0.9, which is still lower than

that of CHS and PLM. ii) Aggregation of flows also aims to

enhance the efficiency of scheduling and transmission. Thus,

it is obviously inappropriate to concentrate only on whether

flows’ requirements are met. Therefore, in next subsection,

we use throughput as criteria to further test the performance.

F. Throughput Analysis

In this experiment, the dynamic round robin (DRR) schedul-

ing is exploited to schedule the aggregates [44]. As shown

in Fig. 1, flows with the same QoS requirements are grouped

into one aggregate. The DRR scheduling will allocate different

resources for QoS classes, including the queue length, band-

width, etc. The DRR scheduling model has n aggregates in

total, and each aggregate has m sub-queues to carry m flows.

The total length of queue is set to 8m times the average length

of flows. Here, two issues need to be illustrated.

• Why the need of the average length? Because the lengths

of flows vary significantly. Short flows (e.g., VoIP) have

Fig. 7. Throughput for the ELD requirements.

only hundreds of Byte. Many text flows are below 1MB.

Long flows are as many as several MB. For longer

flows (e.g., streaming data), we only take 3 minutes of

data volume due to limited hardware conditions in the

experiment.

• Why is it 8m times? There are 6 QoS classes (see

Table IV) and plus the “other” class and Q7, so we have

8 classes in total, corresponding to 8 aggregates in Fig. 1.

Each aggregate accommodates m flows. Thus the total

length is 8m times the average length of flows.

All samples used in this experiment come from Section V-

D. The traffic are generated from the samples according to

Poisson distribution with intensity λp = 90, which are used to

simulate the heavy-load network (in the case of low load, there

is no obvious difference among the methods in throughput).

The throughput here refers to the normalized throughput: tr =
do/di, where di is the input data rate, which is measured when

the flows enter the queues, while do is the output data rate,

which is measured when the flows leave the queues.

In Fig. 7, MT, UFM and DSCM show poorer performance

in throughput. This is due to: i) For MT, flows are always

aggregated according to the original rules, resulting in a

higher packet loss. What’s more, queue Q7 is empty, and the

scheduling time allocated to Q7 is completely wasted, thus

resulting in low overall throughput. ii) For UFM and DSCM,

the queue “other” is too full, which causes the packet loss,

and thus the performance in throughput is not good.

CHS is slow in the start-up phase, while other methods can

achieve their maximum throughput quickly, which is mainly

attributed to its high computation complexity. When class

Q6 changes and class Q7 is added, the distances between

all cluster points and flows are reanalyzed to update the

valid range for classes. The complicated computations have

significant impact on the throughput at the start-up phase.

PLM performs well in throughput. This is because: i) For

the changed QoS classes, PLM only makes local adjust-

ment. Taking QQ flows as an example, the optimal class for

QQ is E1 = {Q1} as shown in Section V-A. When Q6

changes and Q7 is added, we can find the optimal class in
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Fig. 8. Throughput for the ELD requirements.

Q = {Q1, Q6, Q7}. There is no need to update calculation for

all classes, resulting in a relatively smaller computation cost

in comparison with CHS. ii) According to the algorithm in

Section III-D, the final selection of QoS class from E will be

properly balanced by Qn
∆
=arg min{NQn

}. Therefore, PLM

tends to have a balanced distribution of flows, and there will

be no imbalanced situation like that occurred in the UFM and

DSCM methods. One-sided aggregation in UFM and DSCM

cause the corresponding queue to be full, which leads to

increase of delay and loss, and in turn reduces the throughput.

For flows that need ELD (below 5 ms) in B5G systems,

a minor modification is made on the parameters in Table I.

For example, d(pd) of flow F1 changes to 3, where d(pd)
refers to the ELD requirement. There is no need to make any

adjustment on PLM algorithm. These flows are re-aggregated

by PLM and thus new results on throughput are obtained as

shown in Fig. 8. PLM still demonstrates better throughput

performance in comparison with the other methods. The

reasons mainly lie in that PLM is a local adjustment scheme.

Only those sets containing varied d(pd) need to be updated

while others remain the same. Therefore, there is no need to

update all calculations for flows. That is, it only needs a small

computation cost which results in higher throughput.

G. Computational and Space Complexity

In this subsection, we compared the time and space com-

plexities of PLM with the existing works as shown in Table VI.

Note that: i) ℵc = 6 and ℵp = 4 (see Table IV). That is,

ℵp < ℵc, so the time complexity of PLM is O(ℵpℵcℵf ).
ii) Some of the methods need to be re-trained (e.g., CHS)

and re-designed (e.g., DSCM) under varied parameters, so the

performance of QoE satisfaction degree and throughput would

not be discussed in this section.

From Table VI, it can be seen that the time and space

complexities of MT are extremely low. MT maps flows

into the target classes according to the flow table, which

is designed based on experience. Therefore, the time and

space complexities of mapping ℵf flows into ℵc classes are

O(ℵcℵf ) and O(ℵf ) respectively. As for the DSCM method,

Fig. 9. Time complexity under ℵp = 4.

Fig. 10. Time complexity under ℵf = 1000.

Wang et al. proposed the rate-delay model based on a series

of convolution operations to achieve aggregation. The time

complexity of a single convolution operation for rate and delay

is O(ℵp
2). Thus, the total time complexity of ℵc convolution

operations for ℵf flows is O(ℵp
2ℵcℵf ). Based on the utility

function, UFM requires storage for all training and testing

flows. Therefore, its space complexity is O(ℵp(ℵm + ℵf )).
Its time complexity is mainly caused by the calculation of

decision process based on the utility function. CHS adopts the

nearest neighbor rule, which also needs to store all samples,

so the space complexity of CHS is the same as that of

UFM. We know that KNN groups flows with O(ℵp
2ℵcℵmℵf )

comparisons. However, CHS combines several KNN classifiers

to implement classification. That is, it divides the sample

flows into ℵc KNN classifiers, thus reducing the number of

comparisons to O(ℵpℵc log(ℵm)ℵf ). PLM does not need to

store the training flows, and thus its space complexity is the

same as that of DSCM.

In order to verify the theoretical comparisons given

in Table IV, we select 1000, 2000, and 3000 flows to calculate

the aggregation time, respectively. We run the simulation with

MATLAB R2016a on a laptop computer with Win7 profes-

sional (64bit/SP1) operating system, Intel I CoITM i5-4210M

@ 2.60 GHz, 2 GB memory. As shown in Fig. 9, it takes

the proposed PLM method 3.152s to aggregate 1000 flows,
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TABLE VI

COMPARISON OF TIME AND SPACE COMPLEXITY

5.561s for 2000 flows, and 7.947s for 3000 flows. MT has the

smallest time and space complexities. However, as analyzed in

Sections V-E and V-F, MT has the worst performance of QoE

satisfaction and throughput. Among the other four methods,

the proposed PLM has the best performance in terms of the

time and space complexities. The results illustrated in Fig. 9

agree with the theoretical analysis in Table IV.

As analyzed in Section III-F, the total time complexity of

PLM is O(min(ℵp,ℵc)ℵcℵf +ℵpℵf ). The algorithm complex-

ity is a linear function of ℵp and ℵf . Therefore, when ℵp is

fixed to 4 and ℵf is increased from 1000 to 3000, or ℵf is fixed

to 1000 and ℵp is increased from 2 to 6, the aggregation time

of PLM grows linearly as shown in Figs. 9 and 10. Compared

with other methods (except MT), The growth rate of PLM is

relatively small.

VI. CONCLUSION

Diffserv for massive heterogeneous traffic in edge comput-

ing is challenging. The existing schemes require quantitative

QoS requirements, fixed QoS parameters, and static QoS

classes, which are typically hybrid, changeable, and dynamic

in B5G. Therefore, a novel aggregation method PLM is pro-

posed in this paper. In PLM, the hybrid requirements of flows

are modeled in preference, and the most suitable QoS class can

be derived by logic reasoning without using a strict threshold.

In the dynamic environment with high variability, when the

QoS requirements change, or the QoS parameters and even the

QoS classes change, PLM can locally adjust the aggregation

with low computational cost and make the best use of limited

system resources. It has better performance in terms of QoE

satisfaction and throughput than the existing hard aggregation

methods. Based on the preference logic, PLM provides a

general solution to aggregate flows in heterogeneous networks

and is expected to improve Diffserv/QoE in B5G.

There is still the need for some potential improvements to

our work, e.g., the granularity of QoS classes. The number

of classes is an important factor in determining the perfor-

mance of aggregation. WiMAX (Worldwide Inter Operability

of Microwave Access) defines 6 classes including unsolicited

grant service, real-time polling service, non-real-time polling

service, etc. Wi-Fi and LTE designate 4 and 9 classes respec-

tively. However, there is no standard on QoS classes in B5G.

The issue of aggregation granularity needs to be studied in

depth along with future B5G technologies.

REFERENCES

[1] P. Tang, Y. Dong, and S. Mao, “Soft aggregation of multimedia flows
based on QoS classes,” in Proc. IEEE 4th Int. Conf. Comput. Commun.

Syst. (ICCCS), Singapore, Feb. 2019, pp. 599–603.

[2] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[3] Y. He et al., “Deep-reinforcement-learning-based optimization for
cache-enabled opportunistic interference alignment wireless networks,”
IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445,
Nov. 2017.

[4] E. Fitzgerald, M. Pióro, and A. Tomaszwski, “Energy-optimal data
aggregation and dissemination for the Internet of Things,” IEEE Internet

Things J., vol. 5, no. 2, pp. 955–969, Apr. 2018.

[5] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55,
Jan. 2018.

[6] P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container character-
istics,” IEEE Access, vol. 7, pp. 139746–139758, Sep. 2019.

[7] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelligence and
blockchain empowered 5G beyond for the industrial Internet of Things,”
IEEE Netw., vol. 33, no. 5, pp. 12–19, Sep. 2019.

[8] A. Libri, A. Bartolini, and L. Benini, “PAElla: Edge AI-based real-time
malware detection in data centers,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9589–9599, Oct. 2020.

[9] E. Peltonen et al., “6G white paper on edge intelligence,” Apr. 2020,
arXiv:2004.14850. [Online]. Available: http://arxiv.org/abs/2004.14850

[10] Z. Wu, Y. Dong, W. Tian, and J. Jin, “Enhanced rough K-means
based flow aggregation for QoS mapping in heterogeneous network
environments,” IEEE Trans. Netw. Service Manage., vol. 17, no. 2,
pp. 1197–1210, Jun. 2020.

[11] K. Wang, W. Zhou, and S. Mao, “On joint BBU/RRH resource allocation
in heterogeneous cloud-RANs,” IEEE Internet Things J., vol. 4, no. 3,
pp. 749–759, Jun. 2017.

[12] M. Chen, O. Semiari, W. Saad, X. Liu, and C. Yin, “Federated echo state
learning for minimizing breaks in presence in wireless virtual reality
networks,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 177–191,
Jan. 2020.

[13] L. Yao, A. Chen, J. Deng, J. Wang, and G. Wu, “A cooperative
caching scheme based on mobility prediction in vehicular content centric
networks,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 5435–5444,
Jun. 2018.

[14] A. T. Z. Kasgari, W. Saad, and M. Debbah, “Human-in-the-loop
wireless communications: Machine learning and brain-aware resource
management,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7727–7743,
Nov. 2019.

[15] Z. Zhou, C. Gao, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez,
“Social big-data-based content dissemination in Internet of vehicles,”
IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 768–777, Feb. 2018.

[16] Z. J. Wang, Y. N. Dong, and X. H. Wang, “A dynamic service class
mapping scheme for different QoS domains using flow aggregation,”
IEEE Syst. J., vol. 9, no. 4, pp. 1299–1310, Dec. 2015.

[17] M. Hijazi et al., “Network traffic classification based on class weight
based K-NN classifier (CWK-NN),” in Proc. BDCSIntell, Versailles,
France, Dec. 2019, pp. 105–112.

[18] Q. Wu, Z. Du, P. Yang, Y.-D. Yao, and J. Wang, “Traffic-aware online
network selection in heterogeneous wireless networks,” IEEE Trans. Veh.
Technol., vol. 65, no. 1, pp. 381–397, Jan. 2016.

[19] L. He, D. Jiang, and C. Wei, “A QoE-based dynamic energy-
efficient network selection algorithm,” Wireless Netw., Jan. 2020, doi:
10.1007/s11276-019-02231-z.

[20] A. Morell, A. Correa, M. Barceló, and J. L. Vicario, “Data aggregation
and principal component analysis in WSNs,” IEEE Trans. Wireless

Commun., vol. 15, no. 6, pp. 3908–3919, Jun. 2016.

[21] Q. Si, Z. Cheng, Y. Lin, L. Huang, and Y. Tang, “Network selec-
tion in heterogeneous vehicular network: A one-to-many matching
approach,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring),
Antwerp, Belgium, May 2020, pp. 1–5.

[22] N. Ghosh, S. K. Ghosh, and S. K. Das, “SelCSP: A framework to
facilitate selection of cloud service providers,” IEEE Trans. Cloud

Comput., vol. 3, no. 1, pp. 66–79, Jan. 2015.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 06:15:52 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/s11276-019-02231-z


6106 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 9, SEPTEMBER 2021

[23] W. Gao, J. Cao, and Y. Xiong, “A novel QoS mapping mechanism in
integrated UMTS/WLANs,” Wireless Pers. Commun., vol. 81, no. 3,
pp. 1101–1116, Apr. 2015.

[24] A. M. Alkharasani, M. Othman, A. Abdullah, and K. Y. Lun,
“An improved quality of service performance using RED’s active queue
management flow control in classifying networks,” IEEE Access, vol. 5,
pp. 24467–24478, 2017.

[25] M. Levorato, “Cognitive networking with dynamic traffic classification
and QoS constraints,” in Proc. IEEE WCNC, San Francisco, CA, USA,
Mar. 2017, pp. 1–6.

[26] Y. C. Wang and S. Y. Hsieh, “Service-differentiated downlink flow
scheduling to support QoS in long term evolution,” Comput. Netw.,
vol. 94, pp. 344–359, Nov. 2016.

[27] G. H. Von Wright, “The logic of preference reconsidered,” Theory
Decis., vol. 3, no. 2, pp. 140–169, Dec. 1972.

[28] Q. Xu, J. Xiong, X. Cao, Q. Huang, and Y. Yao, “From social to
individuals: A parsimonious path of multi-level models for crowd-
sourced preference aggregation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 41, no. 4, pp. 844–856, Apr. 2019.
[29] K. Xiao, S. Mao, and J. K. Tugnait, “Robust QoE-driven DASH

over OFDMA networks,” IEEE Trans. Multimedia, vol. 22, no. 2,
pp. 474–486, Feb. 2020.

[30] J. Song, F. Yang, Y. Zhou, S. Wan, and H. R. Wu, “QoE evaluation
of multimedia services based on audiovisual quality and user interest,”
IEEE Trans. Multimedia, vol. 18, no. 3, pp. 444–457, Mar. 2016.

[31] L. Yang, Y. Dong, M. S. Rana, and Z. Wang, “Fine-grained video traffic
classification based on QoE values,” Wireless Pers. Commun., vol. 103,
no. 2, pp. 1481–1498, May 2018.

[32] M. Han, R. Zhang, T. Qiu, M. Xu, and W. Ren, “Multivariate chaotic
time series prediction based on improved grey relational analysis,”
IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 10, pp. 2144–2154,
Oct. 2019.

[33] T.-C. Chang, “Detection of exercise fatigue using neural network
with grey relational analysis from HRV signal,” in Proc. IEEE Int.

Conf. Comput., Commun. Eng. (ICCCE), Fujian, China, Nov. 2019,
pp. 87–90.

[34] L.-W. Hourng, C.-Y. Hsieh, and Z.-W. Fen, “The choice of optional
working condition in electrochemical machining by grey relational
analysis,” in Proc. IEEE Int. Conf. Appl. Syst. Invention (ICASI), Chiba,
Japan, Apr. 2018, pp. 366–369.

[35] S. Kaci and L. V. Torre, “Algorithms for a nonmonotonic logic of
preferences,” Comput. Sci., vol. 3571, pp. 281–292, Jul. 2005.

[36] H. Liao, X. Wu, X. Liang, J. Xu, and F. Herrera, “A new hesitant
fuzzy linguistic ORESTE method for hybrid multicriteria decision
making,” IEEE Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3793–3807,
Dec. 2018.

[37] NJUPT Dataset. Accessed: Feb. 2019. [Online]. Available:
https://pan.baidu.com/disk/home#/all?path=%2F&vmode=list

[38] UNB ISCX VPN-nonVPN Traffic Dataset. Accessed: Apr. 2018. [Online].
Available: http://www.unb.ca/cic/research/datasets/vpn.html

[39] J. Domzal, P. Jurkiewicz, P. Gawlowicz, and R. Wojcik, “Flow aggrega-
tion mechanism for flow-aware multi-topology adaptive routing,” IEEE

Commun. Lett., vol. 21, no. 12, pp. 2582–2585, Dec. 2017.
[40] J. Jin, M. Palaniswami, D. Yuan, Y.-N. Dong, and K. Moessner, “Pri-

ority service provisioning and max–min fairness: A utility-based flow
control approach,” J. Netw. Syst. Manage., vol. 25, no. 2, pp. 397–415,
Oct. 2016.

[41] Z. Wu, Y. Dong, L. Yang, and P. Tang, “A new structure for Internet
video traffic classification using machine learning,” in Proc. 4th IEEE

CBD, Lanzhou, China, Aug. 2018, pp. 322–327.
[42] Y. Purwanto, Kuspriyanto, Hendrawan, and B. Rahardjo, “Time based

anomaly detection using residual polynomial fitting on aggregate traffic
statistic,” in Proc. 2nd IEEE ICWT, Manado, Indonesia, Apr. 2016,
pp. 1–5.

[43] O. B. Rhaiem and L. C. Fourati, “QoS improvement for multicast
video streaming: A new cross-layer scheme-based mapping, scheduling
and dynamic arbitration algorithms for multicast scalable video coding
(CMSAA-MSVC),” in Proc. 4th IEEE WINCOM, Marrakech, Morocco,
Jan. 2016, pp. 1–6.

[44] H. H. Yang, Y. Wang, and T. Q. S. Quek, “Delay analysis of random
scheduling and round robin in small cell networks,” IEEE Wireless
Commun. Lett., vol. 7, no. 6, pp. 978–981, Dec. 2018.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 06:15:52 UTC from IEEE Xplore.  Restrictions apply. 


