
AST-Trans: Code Summarization with Efficient Tree-Structured

Attention

Ze Tang
State Key Laboratory for Novel

Software Technology

Nanjing University

Nanjing, China

2228291607@qq.com

Xiaoyu Shen∗

Alexa AI

Amazon

Berlin, Germany

gyouu@amazon.com

Chuanyi Li, Jidong Ge
State Key Laboratory for Novel

Software Technology

Nanjing University

Nanjing, China

lcy,gjd@nju.edu.cn

Liguo Huang
Department of Computer Science

Southern Methodist University

Dallas, Texas, USA

lghuang@lyle.smu.edu

Zhelin Zhu, Bin Luo
State Key Laboratory for Novel

Software Technology

Nanjing University

Nanjing, China

zzl,luobin@nju.edu.cn

ABSTRACT

Code summarization aims to generate brief natural language de-

scriptions for source codes. The state-of-the-art approaches follow

a transformer-based encoder-decoder architecture. As the source

code is highly structured and follows strict grammars, its Abstract

Syntax Tree (AST) is widely used for encoding structural infor-

mation. However, ASTs are much longer than the corresponding

source code. Existing approaches ignore the size constraint and

simply feed the whole linearized AST into the encoders. We argue

that such a simple process makes it difficult to extract the truly use-

ful dependency relations from the overlong input sequence. It also

incurs significant computational overhead since each node needs

to apply self-attention to all other nodes in the AST. To encode

the AST more effectively and efficiently, we propose AST-Trans

in this paper which exploits two types of node relationships in

the AST: ancestor-descendant and sibling relationships. It applies

the tree-structured attention to dynamically allocate weights for

relevant nodes and exclude irrelevant nodes based on these two

relationships. We further propose an efficient implementation to

support fast parallel computation for tree-structure attention. On

the two code summarization datasets, experimental results show

that AST-Trans significantly outperforms the state-of-the-arts while

being times more efficient than standard transformers 1.

∗Work done before joining.
1All the codes and data are available at https://github.com/zetang94/ICSE2022_AST_
Trans.git

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510224

CCS CONCEPTS

• Software and its engineering→Documentation; •Comput-

ing methodologies→ Natural language generation.

KEYWORDS

tree-based neural network, source code summarization

ACM Reference Format:

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin

Zhu, Bin Luo. 2022. AST-Trans: Code Summarization with Efficient Tree-

Structured Attention. In 44th International Conference on Software Engineer-

ing (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3510003.3510224

1 INTRODUCTION

The summary of source code is a brief natural language description

explaining the purpose of the code [29]. The code to be summarized

can be with different units. In this work, we focus on summarizing

the subroutines or defined methods in a program.

Previous studies have shown that such a short description can

assist program developers to quickly digest the codewithout travers-

ing over it themselves [43]. Nonetheless, maintaining high-quality

code summaries requires expensive manual labor in reality. In many

projects, these summaries are often mismatched, missing or out-

dated which slow down the developing progress [18]. Automatic

code summarization can greatly save developers’ time by avoiding

writing such summaries manually for every single code snippet.

The traditional methods utilized handcrafted rules like Software

Word-Usage Model (SWUM) [43] or stereotypes [30] to synthe-

size the code summaries. However, when identifiers or methods

are poorly named, they cannot extract accurate keywords to pro-

duce good summaries. Some used Information Retrieval (IR) tech-

niques [13, 14] to mine summaries from similar existing code banks

which, unfortunately, cannot generalize to unseen code snippets

with different functions.

Recently, with the development of open source platforms such as

Github, more and more data for code summarization can be easily

extracted from online resources. Data-driven strategies based on

150

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

AST
code

return 0 if x<0, else return x
itself.

orelse

NameLoad(x)

body

constant(0)

Compare

constant(0)LtNameLoad(x)

IfExp

Return

summary

Figure 1: Example of code-AST-summary triples. We mainly need

to understand the ancestor-descendent and sibling relationships in

the AST to generate a summary.

neural networks start to raise more and more attention [20, 37–

39, 56]. Current state-of-the-arts all follow the Transformer-based

encoder-decoder architecture [5, 8, 45, 48, 49] and can be trained

end-to-end with code-summary pairs. Since the source code is

highly structured and follows strict programming language gram-

mars, a common practice is to also leverage the Abstract Syntax

Tree (AST) to help the encoder digest the structured information.

The AST is usually linearized by different algorithms like pre-order

traversal [21], structure-based traversal (SBT) [18] and path decom-

position [4], then fed into the encoder. Several works also proposed

architectures specific for tree encoding like tree-LSTM [11, 51].

However, the linearized ASTs, as containing additional struc-

tured information, are much longer than their corresponding source

code sequence. Some linearization algorithms can further increase

the length. For example, linearizing with SBT usually makes the

size times longer. This makes the model extremely difficult to accu-

rately detect useful dependency relations from the overlong input

sequence 2. Moreover, it brings significant computational overhead,

especially for state-of-the-art Transformer-based models where

the number of self-attention operations grows quadratically with

the sequence length. Encoding ASTs with tree-based models like

tree-LSTM will incur extra complexity because it needs to traverse

the whole tree to obtain the state of each node.

In this work, we assume that the state of a node in the AST is

affected most by its (1) ancestor-descendent nodes, which represent

the hierarchical relationship across different blocks, and (2) sibling

nodes, which represent the temporal relationship within one block.

We show an example of code summarization in Figure 1. As can be

seen, we need the ancestor-descendent relationship to understand

the high-level procedure, and the sibling relationship to understand

the low-level details within a block. Capturing these two relation-

ships are enough for producing the summary and modelling the

full attention among all nodes is unnecessary.

Based on this intuition, we propose AST-Trans, a simple variant

of the Transformer model to efficiently handle the tree-structured

AST. AST-Trans exploits ancestor-descendant and sibling relation-

ship matrices to represent the tree-structure, and uses these ma-

trices to dynamically exclude irrelevant nodes in different self-

attention layers. The absolute position embedding from the original

Transformer is replaced with relative position embeddings defined

2Indeed, encoding the overlong AST with SBT even underperforms directly encoding
the source code when using Transformer with relative position embeddings [1].

by the two relationship matrices to better model the dependency.

We further describe several implementations of the proposed AST-

Trans and have a comprehensive analysis of their computational

complexity. In short, the contributions of this paper are as below:

• We propose AST-Trans that can efficiently encode long AST
sequences with linear complexity, in contrast with the qua-

dratic complexity of the standard Transformer.

• We perform a comprehensive analysis, with both theoretical
and empirical evidences, on the computational complexity

of different implementations.

• We validate our proposed model on two datasets of Java and
Python. Experimental results show that AST-Trans outper-

forms the state-of-the-arts by a substantial margin.

• We compare representative methods for AST encoding and
discuss their pros and cons.

Paper Organization The remainder of this paper is organized

as follows. Section 2 presents background knowledge on the Trans-

former and AST. Section 3 elaborates on the details of AST-Trans,

section 4 presents its different implementation and the complexity

is analyzed in section 5. Section 6 explains the experimental setup

and analyzes the results. Section 7 discusses threats to validity. Sec-

tion 8 surveys the related work. Finally, section 9 concludes the

paper and points out future research directions.

2 BACKGROUND

Transformer. The Transformer architecture was initially proposed

for neural machine translation [49]. It consists of multi-head stacked

encoder and decoder layers. In each encoder stack, the inputs first

flow through a self-attention sublayer, and then are fed into a

position-wise feed-forward network followed by a layer normaliza-

tion. The decoder has a set of the cross-attention layers to help the

decoder focus on relevant parts of the input sequence. The Trans-

former architecture removes the recurrence mechanism in favor of

the self-attention. As each word in a sentence simultaneously flows

through the encoder and decoder stack, the model itself does not

have any sense of the word order. Therefore, a position embedding

is added to each word embedding to inform the order information.

Abstract Syntax Tree (AST). An Abstract Syntax Tree (AST)

uniquely represents a source code snippet in a given language

and grammar [4]. The leaves of the tree are terminals, usually re-

ferring to variables, types and method names. The non-leaf nodes

are non-terminals and represent a restricted set of structures in the

programming language, e.g., loops, expressions, and variable decla-

rations. For example, in Figure 1, variables (such as NameLoad(x))

are represented as terminals of AST. Syntactic structures (such as

Compare) are represented as non-terminals. Since the variable and

method names can be rather freely defined, directly processing the

source code can be challenging. Its corresponding AST, due to its

strict structure, often serves as substitute when encoding the source

code.

3 AST-TRANS

This section details our proposed AST-Trans. For an AST, it will

be firstly linearized into a sequence. Then the ancestor-descendent

and sibling relationships among its nodes will be denoted through

151

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Linearized AST of the tree in Fig 1 with POT,SBT and PD.

Methods Linearized AST sequence

POT
Return IfExp Compare NameLoad(x) Lt constant(0) body constant(0) orelse
NameLoad(x)

SBT

(Return (IfExp (Compare (constant(0)) constant(0) (Lt) Lt (NameLoad(x)
) NameLoad(x)) Compare (body (constant(0)) constant(0)) body (orelse
(NameLoad(x)) NameLoad(x)) orelse) IfExp) Return

PD

Path1: Path1: Lt Compare constant(0)
Path2: NameLoad(x) Compare constant(0)
Path3: Path3: constant(0) Compare IfExp body constant(0)
...

two specific matrices. Based on the matrices, we replace the stan-

dard self-attention with tree-structured attention to better model

these two relationships. Irrelevant nodes are dynamically ruled

out to reduce computational cost. We will first introduce different

linearization methods (section 3.1), then explain the construction

of two relationship matrices (section 3.2), and finally present the

tree-structure attention to utilize the matrices(section 3.3).

3.1 AST Linearization

In order to encode the tree-shaped AST, it first needs to be converted

into a sequence with a linearization method. There are the three

most representative linearization methods used in current works:

(1) Pre-order Traversal (POT): It visits the tree nodes with pre-

order traversal. Sequences obtained by pre-order traversal

are lossy since the original ASTs cannot be unambiguously

reconstructed back from them.

(2) Structure-based Traversal (SBT): It adds additional brack-

ets [18] to indicate the parental-descendent relationship such

that each sequence can be unambiguously mapped back to

the AST, but it also doubles the size of the linearized se-

quence.

(3) Path Decomposition (PD): It represents the AST by concate-

nating the path between two random leaf nodes. The total

number of paths can be too large for computing and there-

fore random sampling is needed [4].

Table 1 shows the AST in Figure 1 linearized with the above

three different methods. For POT and SBT, the linearized trees

can be directly fed into the encoder. For PD, the average total

number of paths can be over 200, concatenating them all to train

is infeasible [4]. In practice, mean pooling is run over the states

of each path such that each path has one unique representation.

The decoder only attends to these unique representations of paths

instead of specific nodes within paths. This can affect the model

when copying user-defined names (in leaf nodes) is needed.

We adopt the simplest POT linearization for our model. We

show that it has already achieved SOTA results and more complex

linearizationmethods like SBT do not help. PD does not apply to our

model since it treats one path as a whole.Wewill show in section 6.3

that this leads to poor performance in code summarization.

3.2 Relationship Matrices

We define two kinds of relationships between nodes in the tree that

we care about: ancestor-descendant (𝐴) and sibling (𝑆) relationships.
The former represents the hierarchical information across blocks,

and the latter represents the temporal information within one block.

Figure 2: Example of generating position matrices for ancestor-

descendent (A) and sibling relationship (S). Position matrix gener-

ated from the linear relationship is used in standard Transformers.

Specifically, two nodes have the ancestor-descendant relationship if

there exists a directed path from root node that can traverse through

them. Two nodes have the sibling relationship if they share the

same parent node.

We use two position matrices 𝐴𝑁×𝑁 and 𝑆𝑁×𝑁 to represent
the ancestor-descendent and sibling relationships respectively. 𝑁
is the total number of nodes in AST. We denote the 𝑖th node in
the linearized AST as 𝑛𝑖 . 𝐴𝑖 𝑗 is the distance of the shortest path

between 𝑛𝑖 and 𝑛 𝑗 in the AST. 𝑆𝑖 𝑗 is horizontal sibling distance
between 𝑛𝑖 and 𝑛 𝑗 in the AST if they satisfy the sibling relationship.
If one relationship is not satisfied, its value in the matrix will be

infinity. Note that we consider the relative relationship between two

nodes, which means 𝐴𝑖 𝑗 = −𝐴 𝑗𝑖 and 𝑆𝑖 𝑗 = −𝑆 𝑗𝑖 if a relationship
exists between 𝑛𝑖 and 𝑛 𝑗 .
Formally, we use SPD(𝑖, 𝑗) and SID(𝑖, 𝑗) to denote the Shorted

Path Distance and horizontal SIbling Distance between 𝑛𝑖 and 𝑛 𝑗
in the AST. The values in the relationship matrices are defined as:

𝐴𝑖 𝑗 =

{
SPD(𝑖, 𝑗) if |SPD(𝑖, 𝑗) | ≤ 𝑃

∞ otherwise

𝑆𝑖 𝑗 =

{
SID(𝑖, 𝑗) if |SID(𝑖, 𝑗) | ≤ 𝑃

∞ otherwise

(1)

𝑃 is a pre-defined threshold and nodes with relative distance
beyond 𝑃 will be ignored. We hypothesize that precise relative dis-
tance is not useful beyond a certain range. It can both constrain the

computation complexity within a constant range and save memory

space for storing the relative position embeddings. Figure 2 shows

an example of generating matrix 𝐴 and 𝑆 , in comparison with the
position matrix generated from a linear relationship, which is used

in standard Transformers. In the next section, we will introduce

how to use these two matrices to dynamically incorporate such

relationship information through a tree-structured attention.

3.3 Tree-Structured Attention

Tree-structured attention is built on the standard self-attention

with relative position embeddings and disentangled attention. It

replaces the relative position embeddings derived from the linear

relationship into the two matrices derived from the tree structure.

Self-Attention. Standard self-attention transforms the input

sequence x = (𝑥1, . . . , 𝑥𝑛) (𝑥𝑖 ∈ R𝑑 which stands for the embedding
of 𝑛𝑖) into a sequence of output vectors o = (𝑜1, . . . , 𝑜𝑛) (𝑜𝑖 ∈ R𝑑).

152

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

The single-head self-attention [49] can be formulated as:

𝜶 𝒊𝒋 =
𝑸 (𝑥𝑖)𝑲 (𝑥 𝑗)ᵀ√

𝑑

𝑜𝑖 =
𝑛∑
𝑗=1

𝜎 (𝜶 𝒊𝒋)𝑽 (𝑥 𝑗)
(2)

where 𝑸,𝑲 : R𝑑 → R𝑚 are query and key functions respectively,
𝑽 : R𝑑 → R

𝑑 is a value function, 𝜎 is a scoring function (e.g.
softmax or hardmax).

Relative position embedding. Eq 2 is a content-only attention

without any position information. The initial Transformer model

uses absolute position embeddings to inform about the position.

Shaw et al. [36] proposed replacing them with relative position

embeddings, which has shown more effective in code summariza-

tion tasks [1]. The relative position 𝛿 (𝑖, 𝑗) reflects the pairwise
distance between 𝑛𝑖 and 𝑛 𝑗 . Denote 𝑃 as the max relative distance,
𝛿 (𝑖, 𝑗) ∈ [0, 2𝑃] can be defined as:

𝛿 (𝑖, 𝑗) =
⎧⎪⎪⎨
⎪⎪⎩

0 for 𝑖 − 𝑗 ≤ −𝑃
2𝑃 for 𝑖 − 𝑗 ≥ 𝑃

𝑖 − 𝑗 + 𝑃 others.
(3)

In this way, we can map each relative distance into an embedding

representation. The relative position embeddings can be added on

top of Eq 2 to inform the pairwise distance.

Disentangled Attention. Disentangled Attention [16] uses rel-

ative position embedding as bias in self-attention process. Each

word is represented using two vectors that encode its content and

relative position in an disentangled way. The attention computa-

tion is then divided into three parts: content-to-content, content-

to-position and position-to-content, defined as:

𝛼̃𝑖, 𝑗 = 𝑸 (𝑥𝑖)𝑲 (𝑥 𝑗)ᵀ︸�����������︷︷�����������︸
content-to-content

+ 𝑸 (𝑥𝑖)𝑲𝑷
𝛿 (𝑖, 𝑗)

ᵀ

︸�����������︷︷�����������︸
content-to-position

+ 𝑸𝑷
𝜹 (𝒋,𝒊)𝑲 (𝑥 𝑗)ᵀ︸������������︷︷������������︸

position-to-content

(4)

where 𝑸𝑷 ,𝑲𝑷 ∈ R(2𝑃+1)×𝑚 represent the query and key projec-
tion matrices of relative positions. 𝑲𝑷

𝛿 (𝑖, 𝑗) is the 𝛿 (𝑖, 𝑗)-th row of
𝑲𝑷 and 𝑸𝑷

𝛿 (𝑖, 𝑗) is the 𝛿 (𝑖, 𝑗)-th row of 𝑸𝑷 respectively. The last two

items, i.e., content-to-position and position-to-content, are used to

measure the relative positions between a word pair.

Besides, for content-to-position computation, as all possible rel-

ative positions are always in [0, 2𝑃], the scores of query content
𝑸 (𝑥) to all key positions 𝑲𝑷 can be first computed as 𝑸 (𝑥)𝑲𝑷 ᵀ ,

and then gathered into 𝛼̃ with 𝛿 (𝑖, 𝑗) as index. In this way, The
relative position embedding can be reused for all query contents

and thus reduce the space complexity to 𝑂 (2𝑃𝑚) .
Attentionwith Tree-StructuredRelationships.Ourmethod

essentially replaces 𝛿 (𝑖, 𝑗), the relative distance defined under the
linear relationship, with 𝛿𝑅 (𝑖, 𝑗) where 𝑅 stands for either the
ancestor-descendent relationship 𝐴 or the sibling relationship 𝑆 in
the tree structure. 𝛿𝑅 (𝑖, 𝑗) is defined as:

𝛿𝑅 (𝑖, 𝑗) =
{

𝑅𝑖 𝑗 + 𝑃 + 1 if 𝑅𝑖 𝑗 ∈ [−𝑃, 𝑃]
0 if 𝑅𝑖 𝑗 = ∞ (5)

𝑅𝑖 𝑗 refers to either𝐴𝑖 𝑗 or 𝑆𝑖 𝑗 defined in Eq 1. As there are two kinds
of relationships, we consider only one relationship in each head so

that it will not add any additional parameter on top of the standard

Transformer. ℎ𝐴 heads will use 𝛿𝐴 (𝑖, 𝑗) and the rest ℎ𝑆 heads will
use 𝛿𝑆 (𝑖, 𝑗). Information from the two relationships will be merged
together through multi-head attention. We then replace 𝛿 (𝑖, 𝑗) in
Eq 4 with 𝛿𝑅 (𝑖, 𝑗) in Formula 5, and apply a scaling factor of 1√

3𝑑
on

𝛼̃𝑖, 𝑗 (because it has 3 items). The final output vector is computed as

in Eq (6), where 𝑽 𝑷 represents the value project matrix of relative

distances and 𝑽 𝑷
𝑹𝒊𝒋
is the 𝑅𝑖 𝑗 -th row of 𝑽 𝑷 .

𝑜𝑖 =
𝑗 ∈{ 𝑗 |𝛿𝑅 (𝑖, 𝑗)>0}∑

𝑗

𝜎 (𝛼̃𝑖, 𝑗√
3𝑑
) (𝑽 (𝑥 𝑗) + 𝑽 𝑷

𝑹𝒊𝒋
) (6)

Note that we only compute the attention weights for node pairs

where 𝛿𝑅 (𝑖, 𝑗) > 0), which is similar to the idea of sliding win-
dow [7] and can reduce the time and space complexity of the self-

attention process. We will discuss its implementation and analyze

its complexity in sections 4 and 5 respectively.

4 EFFICIENT IMPLEMENTATION

A limitation of the full attention mechanism in standard Transform-

ers is the computational and memory cost that grows quadratically

with the sequence length. AST-Trans we proposed can alleviate

this problem since the attention scores only need to be computed

for node pairs where 𝛿𝑅 (𝑖, 𝑗) > 0. Nevertheless, a memory and
computational efficient implementation of AST-Trans that supports

parallel processing is non-trivial. The essence of AST-Trans is similar

to previous works that apply sliding windows to constrain the at-

tention within a fixed range [7, 54]. With sliding windows, the node

pairs in the sequence data can be planned into a linear distribution

(by ignoring node pairs with 𝛿 (𝑖, 𝑗) = 0 or 2𝑃 − 1) and computed
in parallel with matrix partitioning. However, this technique does

not apply to us since the position distribution of relevant nodes

changes with every tree structure, which makes matrix blocking

infeasible. In this section, we present the following 5 alternative

implementations of AST-Trans and discuss the pros and cons:

Mask. Mask out the attention scores where 𝛿𝑅 (𝑖, 𝑗) = 0 after
computing the full attention among all nodes. It has the same qua-

dratic time and space complexity as in the standard Transformer.

Loop. Loop over node pairs where 𝛿𝑅 (𝑖, 𝑗) > 0 and compute the
attention scores. It is memory and computational efficient but does

not support parallel processing.

Sparse.We can store𝛿𝑅 as a sparse tensor 𝑆𝑇 (𝛿𝑅) and deep learn-
ing frameworks, such as Pytorch, can automatically skip operations

with zero elements when multiplying a sparse tensor with a normal

tensor. The mask operation can be optimized (for example, content-

to-position attention scores in Eq 4 can be computed by gathering

𝑄 (𝑥)𝐾𝑃 ᵀ with 𝑆𝑇 (𝛿𝑅)). However, it can only apply to content-to-
position and position-to-content. For content-to-content, we still

have to use theMask or Loop strategy since the production of two

sparse tensors is not directly supported.

Gather with COO (GC). On the basis of Sparse, the content-

to-content computation can be optimized by additional gather op-

erations. The core idea of GC is to put query-key pairs that need to

be computed into one-to-one correspondence, and store them as

dense matrices. Coordinate format (COO) is a common way to store

sparse tensors, where only non-zero elements are stored as tuples of

153

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: Decompose the relative distance matrix 𝛿𝑅 of the tree

“abcd" with max relative distance 𝑃 = 1.

element indices and the corresponding values. Let𝐶𝑂𝑂𝑟𝑜𝑤 /𝐶𝑂𝑂𝑐𝑜𝑙
denotes the list of row/column indexes, and 𝐶𝑂𝑂𝑣𝑎𝑙 denotes the

list of values in the COO format of 𝛿𝑅 . We then use them as indexes
to gather the query and key of content as:

𝑄𝑟𝑜𝑤 = 𝑄 (𝑥) [𝐶𝑂𝑂𝑟𝑜𝑤 ; :];𝐾𝑐𝑜𝑙 = 𝐾 (𝑥) [𝐶𝑂𝑂𝑐𝑜𝑙 ; :]
𝑄𝑃
𝑣𝑎𝑙 = 𝑄𝑃 [𝐶𝑂𝑂𝑣𝑎𝑙 ; :];𝐾𝑃

𝑣𝑎𝑙 = 𝐾𝑃 [𝐶𝑂𝑂𝑣𝑎𝑙 ; :]
By this way, each column in the query content𝑄𝑟𝑜𝑤 corresponds to

the same column in the key content 𝐾𝑐𝑜𝑙 . Then we can use matrix
dot production to compute attention scores:

𝛼𝑐𝑜𝑜 = 𝑄𝑟𝑜𝑤 � 𝐾𝑐𝑜𝑙 +𝑄𝑟𝑜𝑤 � 𝐾𝑃
𝑣𝑎𝑙 +𝑄𝑃

𝑣𝑎𝑙 � 𝐾𝑐𝑜𝑙

where � indicates dot production. 𝛼𝑐𝑜𝑜 is a vector and corresponds
to the non-zero values in 𝛼̃ (Eq. 4), and 𝛼̃ [𝐶𝑂𝑂𝑟𝑜𝑤 [𝑖];𝐶𝑂𝑂𝑐𝑜𝑙 [𝑖]] =
𝛼𝑐𝑜𝑜 [𝑖]. The content-to-position or position-to-content can be com-
puted the same as in Sparse, and the total number of gather opera-

tions in attention computation is 4 times of non-zero elements in

𝛿𝑅 : 2 for gathering the content and 2 for gathering the position.
Gather with decomposed COO (GDC). To reduce the number

of gather operations in GC, we can add a matrix decomposition

operation on top of it. First, we decompose 𝛿𝑅 by𝐶𝑂𝑂𝑣𝑎𝑙 such that

each sub-matrix 𝛿𝑠𝑅 contains only node-pairs with the same relative
distance 𝑠 . An example is shown in Figure 3, where the original 𝛿𝑅
contains 3 distinct values and we decompose it into 3 sub-matrices

accordingly. We transfer each sub-matrix 𝛿𝑠𝑅 into its COO format
and use 𝐶𝑂𝑂𝑠 to indicates the sub-matrix with 𝑣𝑎𝑙 = 𝑠 . For each
sub-matrix 𝐶𝑂𝑂𝑠 , we gather content embeddings of nodes by:

𝑄𝑟𝑜𝑤𝑠 = 𝑄 (𝑥) [𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 ; :], 𝐾𝑐𝑜𝑙𝑠 = 𝐾 (𝑥) [𝐶𝑂𝑂𝑠

𝑐𝑜𝑙 ; :]
where 𝑄𝑟𝑜𝑤𝑠 indicates the query content ordered by 𝐶𝑂𝑂

𝑠
𝑟𝑜𝑤 , and

𝐾𝑐𝑜𝑙𝑠 represents the key content ordered by 𝐶𝑂𝑂
𝑠
𝑐𝑜𝑙
. The attention

scores can then be computed as:

𝛼𝑐𝑜𝑜𝑠 = (𝑄𝑟𝑜𝑤𝑠 +𝑄𝑃
𝑠) � (𝐾𝑟𝑜𝑤𝑠 + 𝐾𝑃

𝑠) − (𝑄𝑃
𝑠 � 𝐾𝑃

𝑠)
where 𝛼𝑐𝑜𝑜𝑠 corresponds to the attention scores of node pairs in
𝛿𝑠𝑅 . Note that 𝛼𝑐𝑜𝑜𝑠 is a vector of the same shape as 𝐶𝑂𝑂

𝑠
𝑟𝑜𝑤 . By

padding all 𝐶𝑂𝑂𝑠 to the same length, the attention scores can be

computed in parallel and the final attention scores equal to the sum

of all 𝛼𝑐𝑜𝑜𝑠 :

𝛼𝑐𝑜𝑜 =
2𝑃+1∑
𝑠=1

𝛼𝑐𝑜𝑜𝑠

There are 3 benefits of this approach compared with GC:

• 𝐾𝑃 and𝑄𝑃 can be reused, as each𝑄𝑟𝑜𝑤𝑠 and 𝐾𝑟𝑜𝑤𝑠 have the

same relative distance 𝑠 . The position embeddings of 𝑠 can be
directly added into the content without gather operations.

• Only a quarter of number of gather operation is needed
(discussed in 5.3).

• Only one dot production is required, as the second 𝑄𝑃
𝑠 � 𝐾𝑃

𝑠
can be reused and only (𝑄𝑟𝑜𝑤𝑠 +𝑄𝑃

𝑠) � (𝐾𝑟𝑜𝑤𝑠 +𝐾𝑃
𝑠) needs

to be calculated.

See Appendix A for the complete algorithm.

5 COMPLEXITY ANALYSIS

In this section, we will discuss the best, worst and average complex-

ity of 5 implementations mentioned above. We use FLOPs (floating

point operations) to measure the computational complexity. The

considered operations includes: matrix multiplication, matrix dot

production, add and gather operationwhich are themain operations

involved for the attention computation. FLOPs of these operations

are listed below:

𝐹𝐿𝑂𝑃𝑠 (𝐴 + 𝐵) = 𝑁 (𝑚 − 1); 𝐹𝐿𝑂𝑃𝑆 (𝐴[𝐶 ; :]) = |𝐶 | ∗𝑚
𝐹𝐿𝑂𝑃𝑠 (𝐴 � 𝐵) = 𝑁𝑚2 + 𝑁 (𝑚 − 1)
𝐹𝐿𝑂𝑃𝑠 (𝐴 × 𝐵ᵀ) = 𝑁 ∗ 𝐹𝐿𝑂𝑃𝑠 (𝐴 � 𝐵)

(7)

where𝐴 and 𝐵 are twomatrices with shape [𝑁,𝑚],𝐴[𝐶 ; :] indicates
gather 𝐴 with 𝐶 as the index, |𝐶 | is the number of elements in 𝐶 .
We will focus our analysis on attention heads using the ancestor-

descendent relationship (𝐴), but similar ideas can be used to analyze
the sibling relationship (𝑆) straightforwardly. As the complexity is
related to the number of non-zero elements in 𝛿𝐴 (denoted with
|𝛿𝐴 > 0|). We first analyze the range of |𝛿𝐴 > 0|, then present the
complexity of each implementation.

5.1 Range of |𝛿𝐴 > 0|
Theorem 5.1. For any directed tree𝑇 , let E(i) represent the number

of paths in 𝑇 with length 𝑖 , 𝐿 represent the length of the longest path
in 𝐺 , we have:

𝐸 (1) > 𝐸 (2) > · · · > 𝐸 (𝐿)
Proof. Assuming there are 𝑁 nodes in the tree, and the root

node is at level 1. Define 𝑁 𝑗 as the number of nodes at level 𝑗 . For
each node at level 𝑗 , if 𝑗 − 𝑖 > 0, there exists one path of length
𝑖 ending with this node, otherwise no such path exists. Hence,
𝐸 (𝑖) = 𝑁 −∑𝑖

𝑗=1 𝑁 𝑗 and 𝑁 𝑗 > 0. Therefore we must have 𝐸 (𝑖) >
𝐸 (𝑖 + 1). �

Theorem 5.2. Every tree with 𝑁 nodes has exactly 𝑁 − 1 edges.
Proof. Imagine starting with𝑁 isolated nodes and adding edges

one at a time. By adding one edge, we will either (1) connect two

components together, or (2) close a circuit. Since a tree is fully

connected and has no circuit, we must add exactly 𝑁 − 1 edges. �
Least upper & Greatest lower bound. Let 𝐸 (0) = 𝑁 denote

the number of nodes in a tree. We have |𝛿𝐴 > 0| = 𝐸 (0) + 2(𝐸 (1) +
𝐸 (2) + . . . 𝐸 (𝑃)) since we consider both positive and negative dis-
tance in 𝛿𝐴 . Based on the above two theorems, we can have:

𝐸 (𝑖) ≤ 𝐸 (𝑖 − 1) − 1 ≤ . . . 𝐸 (0) − 𝑖 = 𝑁 − 𝑖

154

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

Figure 4: |𝛿𝐴 > 0 | in case of random trees, the abscissa is the max

relative distance 𝑃 and the ordinate is the non-zero elements in 𝛿𝐴
with the unit of𝑂 (𝑁) . The coefficient decreases with growing 𝑃 .

|𝛿𝐴 > 0| ≤ 𝑁 + 2(𝑁 − 1 + 𝑁 − 2 + . . . 𝑁 − 𝑃) = (𝑁 − 𝑃) (2𝑃 + 1)
It is the least upper bound for the ancestor-descendent relationship

and is achieved only when each node has strictly one child node.

The greatest lower bound can be achieved when the tree’s depth is

2. In this situation, 𝐸 (𝑖) = 0 for 𝑖 ≥ 2 and |𝛿𝐴 > 0| = 3𝑁 − 2.
Average.We can use the Prüfer sequence [35] to simulate ran-

dom trees so we can estimate the average of |𝛿𝐴 > 0| with different
tree structures. The tree size 𝑁 is set in the range of [50, 500] and
the out-degree of each node is randomly selected from 1 to 𝑁 − 1
(controlled by the max value in Prüfer sequence). We did 1,000

simulation experiments and Figure 4 shows the result.

The average |𝛿𝐴 > 0| when 𝑃 is sampled from a uniform distri-
bution in [1, 50] is 1.16𝑃𝑁 . We can see that the coefficient in Figure 4
gradually decreases. For larger 𝑃 , the average |𝛿𝐴 > 0| will be much
smaller than the upper bound of (2𝑃 + 1) (𝑁 − 𝑃).

5.2 Mask & Loop & Sparse & GC

Mask contains 1 matrix multiplication with [𝑁,𝑚] × [𝑚, 𝑁] in
content-to-content, 2 matrix multiplication with [𝑁,𝑚]×[𝑚, 2𝑃+1]
and 2 gather operations with index shape [𝑁, 𝑁] for content-to-
position and position-to-content, and 2 add operations are used

for final score computation. The complexity is (𝑁 2 + (2𝑃 + 1)𝑁) ∗
(𝑚2 +𝑚 − 1) + 2𝑁 2 + 𝑁 − 1.
Loop As loop only computes non-zero elements in 𝛿𝐴 , the com-
plexity includes 1 dot production of |𝛿𝐴 > 0| (𝑚2 +𝑚 − 1) and 2 add
operations |𝛿𝐴 > 0| ∗ 2(𝑚 − 1), and equals to |𝛿𝐴 > 0| (𝑚2 + 3𝑚 − 3).
Sparse’s complexity is same asMask apart from the gather opera-

tion with index shape |𝛿𝐴 > 0| (the time complexity for gathering
sparse tensor as index equals to the number of non-zero elements in

it), which equals to (𝑁 2+(2𝑃+1)𝑁)∗ (𝑚2+𝑚−1)+2|𝛿𝐴 > 0|+𝑁 −1.
GC The complexity in GC is all related to |𝛿𝐴 > 0|. It contains 4
gather operations, 3 dot production and 2 add operations, which

leads to the complexity of |𝛿𝐴 > 0| (𝑚2 + 3𝑚 + 4) + 2(2𝑃 + 1)𝑁𝑚.

5.3 GDC

There are two implementation details in GDC to optimize the time

and space complexity. Firstly, in a tree, if 𝑠 ≥ 𝑃 + 1, the decomposed
sub-matrix 𝐶𝑂𝑂𝑠 has at most one non-zero value in each row.

(for example, each non-root node has exactly one parent node in

Figure 3.) We can fix 𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 to [0, 1, . . . , 𝑁 − 1] and only store

the corresponding 𝐶𝑂𝑂𝑠
𝑐𝑜𝑙
. When 𝑠 < 𝑃 + 1, as the relationship is

symmetric, 𝐶𝑂𝑂𝑠 can be represented with 𝐶𝑂𝑂2𝑃+2−𝑠 . Based on
this, when 𝑠 ≥ 𝑃 +1, the query content does not need to be gathered

Figure 5: Theoretical complexity with 𝑃 = 5,𝑚 = 32. loop has the

lowest complexity but cannot be parallelized in practice.

Table 2: Statistics of Java and Python Datasets

Perspectives Java Python

of Train instances 69,708 55,538

of Validation instances 8,714 18,505

of Test instances 8,714 18,502

Avg. # of tokens in code 120 48

Avg. # of nodes in AST 158 100

Avg. # of tokens in SBT 632 402

Avg. # of tokens in summary 18 9

(as𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 is the same index of query), and when 𝑠 < 𝑃 +1, the key

content does not need to be gathered. Hence, we only need (2𝑃+1)𝑁
gather operations from content. Secondly, padding positions do not

need to be computed in dot production as the padding positions

of both 𝑄𝑟𝑜𝑤𝑠 and 𝐾𝑟𝑜𝑤𝑠 are the same. After adding the position

bias, all𝑄𝑟𝑜𝑤𝑠 and𝐾𝑟𝑜𝑤𝑠 can be packed before dot production, then

unpacked to their original length afterwards. By this way, we only

need to compute related node pairs with one dot production.

In consequence, the complexity of GDC includes (2𝑃 + 1)𝑁𝑚
gather operations, 1 dot production with shape [|𝛿𝐴 > 0|,𝑚] and
3 add operations with shape [|𝛿𝐴 > 0|], which equals to |𝛿𝐴 >
0| (𝑚2 +𝑚 − 1) + (6𝑃 + 3)𝑁𝑚 + (2𝑃 + 1)𝑁 .
For better comparison, we also show the theoretical complexity

in Figure 5 under the hyper-parameters in our experiments. As can

be seen, loop has the lowest complexity but cannot be parallelized.

mask and sparse grow quadratically with the AST size. GDC

slightly outperforms GC and has a complexity close to loop.

6 EXPERIMENTS

In this section, we first explain the experimental setup, evaluation

metrics and baseline approaches, then report the main results and

perform ablation studies. The runtime speed and memory cost of

different implementations are provided for comparison. Finally, we

present a qualitative analysis and discuss the future directions.

6.1 Experimental Setup

Datasets. Experiments are conducted on the two public code sum-

marization benchmarks, one in Java [19] and the other in Python [51].

To ensure the quality of comments, we filter the comments with

less than 4 words, constructors, setters, getters, and tester methods,

same as in Shido et al. [41]. When the comment has two or more

sentences, only the first sentence is kept as the description of the

155

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Comparison of AST-Trans with the baseline methods, categorized based on the input type. * means implemented by ourselves.

Methods Input
Java Python

BLEU (%) METEOR (%) ROUGE-L (%) BLEU (%) METEOR (%) ROUGE-L (%)

CODE-NN[20]

Code

27.6 12.61 41.10 17.36 09.29 37.81
API+CODE[19] 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model[53] 42.39 25.77 53.61 21.80 11.14 39.45
BaseTrans*[1] 44.58 29.12 53.63 25.77 16.33 38.95
Code-Transformer*[57] 45.74 29.65 54.96 30.93 18.42 43.67

Tree2Seq[11]

AST(Tree)

37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq[51] 38.22 22.75 51.91 19.28 09.75 39.34
GCN*[22] 43.94 28.92 55.45 32.31 19.54 39.67
GAT*[50] 44.63 29.19 55.84 32.16 19.30 39.12
Graph-Transformer*[40] 44.68 29.29 54.98 32.55 19.58 39.66

Code2Seq*[4]
AST(PD)

24.42 15.35 33.95 17.54 08.49 20.93
Code2Seq(Transformer)* 35.08 21.69 42.77 29.79 16.73 40.59

DeepCom[18]
AST(SBT)

39.75 23.06 52.67 20.78 09.98 37.35
Transformer(SBT)* 43.37 28.36 52.37 31.33 19.02 44.09
AST-Trans(SBT)* 44.15 29.58 54.73 32.86 19.89 45.92

Transformer(POT)*
AST(POT)

39.62 26.30 50.63 31.86 19.63 44.73
AST-Trans 48.29 30.94 55.85 34.72 20.71 47.77

Figure 6: Distribution of relative distance 𝑝 in training sets

method. Table 2 shows the statistics of the datasets. We also count

the distribution of relative distances in Fig 6. As can be seen, most

ancestor-descendent and sibling relationships are within the range

of 5 and 10 respectively.

Pre-processing. First, we pre-process the summaries by removing

the punctuations. Next, we split multi-words, such as “gettable-

types", in summaries with wordninja 3 since their corresponding

tokens in the source code are split too [53]. We also split the leaf

nodes in ASTs into sub-tokens if they are in form of the CamelCase

or snake_case. The split nodes are treated as new children of the

original parent node. Finally, we reverse the children of the root

node to prevent the important information, such as function names

or parameters, from being cut when the size of input AST exceeds

the maximum size allowed.

Hyper-parameters. If not specified, the maximum size of AST

is set to 200 for all experiments, and the vocabulary sizes of both

ASTs and comments are set to 30, 000. We use 4 layers of stacked

encoder-decoder and set the hidden size 𝑑 = 256,𝑚 = 32. For
each attention layer, we set ℎ𝐴 = 1 and ℎ𝑆 = 7. The max relative
distance for ancestor-descendant/sibling relationship 𝑃𝐴 is set to
10/5 respectively. Feed-forward inner-layer dimension is 2048 and

the activation function is gelu [17]. While training, the batch size is

128 and the maximum epochs is 500. Models are trained using the

3https://github.com/keredson/wordninja

AdamWoptimizer [28] with 𝑙𝑟 = 1𝑒−3, 𝛽1 = 0.9, 𝛽2 = 0.999,𝜃 = 1𝑒−
6, label smoothing with 𝜃𝑙𝑠 = 0.1 [46] and dropout probability [44]
of 0.2. The patience in the early stopping mechanism [32] is set to

20 and we select the model based on the BLEU in the validation set
4.

Evaluation Metrics. We evaluate the performance with corpus

BLEU [33], METEOR [6], and ROUGE-L [27].

The experiments used the GPUs provided by Aliyun, which use

EFLOPS [9] architecture and ACCL [10]. EFlops architecture im-

proves the scalability and efficiency of commodilty clusters (CoW),

and ACCL bring the performant efficiency of EFlops architecture

to general cluster systems and Cloud scenarios.

6.2 Baselines

We compare the proposed AST-Transformer with 16 baseline meth-

ods. They can be divided into 5 groups based on the input type:

1: Code.Models with the code as input. It treats code as plain

text and does not leverage ASTs. Code-NN [20] used RNN while

BaseTrans [1] used the Transformer. On the basis of Code-NN,

Dual Model[53] used dual learning to train code summarization

and generation together. API+CODE [19] used multi encoders

to encode code along with the API call sequence. To make up

for the lack of structural information, Code-Transformer [57]

additionally adds four structure distances, including two kinds of

distance mentioned in Sec 3.2, to the code tokens and does attention

computation separately for each kind of distance. Differently, it

does not distinguish embeddings of different relations and uses sine

and cosine functions to represent distance embeddings.

2: AST(Tree).Models with the AST as input and encode it with

tree-specific encoders. There are two main types of such encoders.

One uses Tree-LSTM, such asTree2Seq [11] andRL+Hybrid2Seq [51].

RL+Hybrid2Seq adds the code information and deep reinforce-

ment for training. The other treats the AST as graph and encodes

4We also report the results with best METEOR and ROUGE-L in the validation set in
Appendix B

156

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

it with graph neural network (GNN) models. We consider three

kinds of GNN models including GCN [22], GAT[50] and Graph-

Transformer [40]. The edges fed to GNN includes the ancestor-

descendant and sibling edges, distinguished by the edge attributes.

3: AST(PD).Models with the AST linearized with path decom-

position as input. Path representation needs to be encoded from

the nodes, then the whole AST representation is encoded from

the path representations. Code2Seq [4] is the first approach us-

ing PD, and it used two LSTM models to encode hierarchical net-

works. For fairness of comparison, we also design a new baseline

Code2Seq(Transformer) by replacing these two LSTM models

with the Transformer.

4: AST(SBT). Models with the AST linearized with Structure-

based Traversal as input. DeepCom [18] is the first work that uses

AST (SBT) as input, which encodes it with LSTM. We design a new

baseline Transformer (SBT) that encodes AST (SBT) with the

Transformer. AST-Trans(SBT) is our proposed model that inputs

SBT with relationship matrices.

5: AST(POT).Models with the AST linearized with pre-order-

traversal as input. Transformer (POT) is the standard Trans-

former architecture with AST (POT) as input and AST-Trans is

our proposed model with tree-structured attention.

All Transformer-based models are based on the relative position

embeddings with disentangled attention mentioned in Section 3.3

with the same number of parameters. The same hype-parameters are

used through the way for a fully fair comparison.

6.3 Main Results

The main result of AST-Trans and the baselines are presented in

Table 3 5. AST-Trans outperforms all the baselines on all the three

metrics. Specifically, it outperforms the best baseline by 3.61, 2.17

in BLEU, 1.65, 1.08 in METEOR and 0.87, 3.04 in ROUGE-L on the

Java and Python datasets respectively.

Code vs AST (Tree) vs AST (linearized). Apart from AST-

Trans, on both two datasets, using GNNs to encode AST (Tree) achieved

the best results. The reason is that the AST has both structural and

semantic information, and the other two input types both lose part

of the structural information. All three variants of GNNs achieve

similar results and outperform the Tree-LSTM in encoding the AST

(Tree). Compared with taking the linearized AST as input, models

only using the code perform better on the Java dataset but worse on

the Python dataset. This could be related to the code length. As code

and corresponding ASTs in Python are relatively shorter, encoding

ASTs is more effective than in the Java dataset. Therefore, mod-

els using linearized ASTs, with the help of additional structural

information, are able to outperform models using only the code.

AST(PD) vs AST(SBT) vs AST(POT). Among three lineariza-

tion methods, when using the Transformer encoder/decoders, AST

(SBT) performs the best on the Java dataset and AST (POT) performs

the best on the Python dataset. AST(SBT) and AST(POT) both have

their own advantages. AST(SBT) maintains more structural infor-

mation than AST(POT) while AST(POT) has the shortest length

5The results of BaseTrans [1] in the Python dataset are lower than reported in the paper
(-6.75 BLEU, -3.44 METEOR and -7.78 ROUGE), then we set max relative distance 𝑃 to
16 (kept the same as original paper) and get 27.27(-5.25) BLEU, 15.90(-3.87) METEOR,
38.58(-8.15) ROUGE-L. This reduction may be because that we additionally segment
multi-words in comments.

Table 4: Ablation study on AST-Trans with/without 𝐴 and 𝑆 .

Model Dataset BLEU (%) METEOR (%) ROUGE (%)

AST-Trans w/o A
Java

47.74 30.21 54.56
AST-Trans w/o S 48.07 30.62 55.29
AST-Trans 48.29 30.94 55.85

AST-Trans w/o A
Python

34.35 20.15 46.62
AST-Trans w/o S 34.32 20.28 46.87
AST-Trans 34.72 20.71 47.77

Table 5: Ablation study on ℎ𝐴 and ℎ𝑆 on Java Dataset.

ℎ𝐴 ℎ𝑆 BLEU (%) METEOR (%) ROUGE-L (%)

0 8 47.74 30.21 54.56
1 7 48.29 30.94 55.85
2 6 48.28 30.94 55.64
3 5 48.25 30.92 55.66
4 4 48.23 30.96 55.68
5 3 48.11 30.93 55.46
6 2 48.1 30.74 55.22
7 1 48.24 30.91 55.57
8 0 48.07 30.62 55.29

among these three linearization methods. Using the AST (PD) as

input leads to poor performance on both datasets. There are two main

reasons. On the one hand, AST(PD) method was first proposed for

method name completion. Method names are much shorter than the

code summaries, and do not include many details. PD linearization

extracts features from paths, which aggregates high-level charac-

ters but ignores the detailed information in the node. However, code

summarization requires more detailed information in the code such

as the type of the return value, which is stored in the leaf nodes. On

the other hand, Code2Seq(Transformer) uses a hierarchical network

and the amount of trained parameters is much larger. It is thereby

harder to converge than Transformer(SBT) and Transformer(POT).

Impact of relationship matrix 𝑅. We compared the perfor-
mance of three kinds of inputs with or without the relation matrix 𝑅:
Code-Transformer vs BaseTrans, AST-Trans (SBT) vs Transformer

(SBT) and AST-Trans (POT) vs Transformer(POT). Results show

that adding 𝑅 improves the performance for all these inputs and AST-
Trans (POT) performs the best. This is because Code-Transformer

ignores non-leaf node information, and AST-Trans (SBT) stores

duplicate information, resulting in too long sequence length. AST-

Trans (POT) maintains a short sequence length without losing

necessary structural or semantic information.

AST-Trans vs GNN. AST-Trans outperforms GNNs, the best-

performed baseline model in both datasets. With the help of rela-

tionship matrix, AST-Trans includes additional relative distance

information. Nodes can perceive information from its 𝑝-distance
neighbors at each layer. For GNN, however, each node needs 𝑝
hops to propagate information from these neighbors. In addition,

AST-Trans uses multi-head mechanism to compute different rela-

tionships in different heads, while all relationships, distinguished by

edge attribute, are calculated together in GNNs. AST-Trans also uses

extra feed-forward layers and residual connections in the encoder,

which could help improve the model generalization.

157

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Ablation study on 𝑃𝐴 and 𝑃𝑆 on Java Dataset.

𝑃𝐴 𝑃𝑆 BLEU (%) METEOR (%) ROUGE-L (%)

0 0 36.34 23.83 45.58
1 1 46.95 30.33 54.24
5 1 47.45 30.11 54.28
5 3 47.82 30.29 54.62
5 5 48.14 30.77 55.45
10 5 48.29 30.94 55.85

Table 7: Ablation study on the number of layers on Java Dataset.

𝑛𝑢𝑚 BLEU (%) METEOR (%) ROUGE-L (%)

1 46.11 29.36 53.07
2 47.68 30.53 54.97
3 47.41 30.04 54.07
4 48.29 30.94 55.85
5 47.8 30.39 54.61
6 48.31 30.58 55.09

6.4 Ablation studies

We conducted ablation studies on four hyper-parameters: use of

each relationship, number of heads used for ancestor-descendant

(ℎ𝐴) and sibling relationships (ℎ𝑆), max relative distance 𝑃 and the
number of layers. In every study, apart from the hype-parameter

that needs to be analyzed, we keep the rest settings unchanged.

Use of two relationships. We verified the impact of using

ancestor-descendant or sibling relationship separately in Table 4.

Results show that the performance is achieved when using them

all. However, using one of the relationships alone can already achieve

close results and outperform all previous baselines.

Number of attention heads. We change the number of heads

used for the ancestor-descendant relationship ℎ𝐴 from 0 to 8 and fix
the total number of heads to 8. As can be seem from Table 5, the best

performance is obtained with ℎ𝐴 = 1 and ℎ𝑆 = 7, but there is no
significant difference among all combinations of ℎ𝐴 and ℎ𝑆 . Even
when one relationship is missing (ℎ𝐴 = 0 or ℎ𝑆 = 0), the effects
are still marginal. However, when both relationships are removed

ℎ𝐴 = ℎ𝑆 = 0, the performance drops a lot. We conjecture that this
phenomenon is related to the characteristics of AST. Knowing about

one relationship can help the model “guess" the other relationship

properly. For example, the node “Compare" can be the child node of

“WhileExp”, “IFExp” or “SwitchExp”, etc, but when it is the sibling

of node “Case”, it can only be the child of node “SwitchExp”. The

information about its parent can be “guessed" in attention compu-

tation with its sibling “Case”. Similarly, node “NameStore” can only

appear on the left side of a statement, and nodes with the same

parent as it must be its right siblings. Messages of these siblings can

be passed to “NameStore” through their common parent. However,

there are many cases that the “guess" will not be successful. For

example, statements 𝑎 > 𝑏 and 𝑏 > 𝑎 have the same child nodes
and can only be distinguished by sibling relationship, while state-

ments 𝑎 = 𝑏 + 𝑎;𝑏 = 𝑏 − 𝑎 and 𝑏 = 𝑏 − 𝑎;𝑎 = 𝑏 + 𝑎 only differ in
ancestor-descendant relationship. It could be that the testset does

not have enough hard examples that need this fine-grained distinction

or the current metrics are not enough to reflect the difference.

Figure 7: Runtime and memory cost of five implementations with

batch size=16. The cost of the mask implementation is equal to the

standardTransformer,which grows quadraticallywith theAST size.

Max relative distanceWe analyze the impact of the max rela-

tive distance 𝑃 in Table 6 . According to Table 6, the out-degree and
depth of most nodes in AST is in [0, 5] and [0, 10]. Therefore, the

max relative distance of ancestor-descendant (𝑃𝐴) and sibling rela-
tion (𝑃𝑆) are selected from [1, 5, 10] and [1, 3, 5] respectively. Results
show that as the relative distance grows, the performance improves

too, suggesting a wider view of nodes in AST relationships is help-

ful. However, the improvement is marginal and even with 𝑃 = 1,
the model performance can already outperform all other baselines.

This might be ascribed to the multi-layer stacked encoders. Even

for 𝑃 = 1, longer-distance nodes can still be attended to indirectly
on upper layers. In practice, 𝑃 can be set as a hyperparameter to
balance the performance-efficiency trade-off.

Number of Layers Finally, we perform ablation study by vary-

ing the number of layers, and the results are presented in Table 7.

In our experiments, we observe that a deeper model (more layers)

performs better, but the improvement saturates after 4 layers.

6.5 Complexity analysis

In Fig 7, We analyzed the rum time and memory usage of different

implementations mentioned in section 4. Different from the theoret-

ical complexity which analyze the attention computation in isolate,

operations in GPU can be computed in parallel, and there are other

factors, e.g. decoder parameters, dependent libraries, vocabulary

embeddings that all need memory usage. Therefore, the need for

computing attention scores is only one part of it and leads to the gap

between Fig 7 and 5, where the difference across implementations

in Fig 7 is much larger. Nevertheless, the trend stays the same. Time

and memory usage of GDC and GC both scale linearly with the

AST size, while the cost of Mask and Sparse grows quadratically.

Even with the batched parallelism in GPUs, the implementation

of mask and sparse are still slower than GDC and GC while re-

quiring significantly more memory cost. GDC is faster and with

less memory usage than GC. The main reason is that GDC uses

one quarter of gather operations compared with GC. Loop shows

a linear growth in memory usage with AST size, but its time cost

is much higher as it does not support parallel operations. When

the AST size grows further, we can expect the difference across

implementations will become larger and larger.

158

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

Figure 8: Heatmaps of relative position representations. x-axis is

the relative position representation and the y-axis is the relative

positions. The variance for the sibling relation (𝑆) is much larger

than that for the ancestor-descendent relation (𝐴).

6.6 Visualization and Qualitative Analysis

Visualization.We further visualize the relative position represen-

tations of ancestor-descendant (𝐴) and sibling (𝑆) relationships in
Fig 8. As can be seen, the variance of relative position embeddings

in 𝑆 is much larger than in 𝐴. It implies that our model is not sensi-
tive to the relative distance between ancestor and descendant nodes,

as the embeddings are almost the same regardless of the positions.

In contrast, the variance for sibling nodes is relatively large, and

the model can distinguish the sibling nodes with different relative

distances. In addition, the relative embeddings in 𝐴 are demarcated
between the upper and lower part, suggesting a clear distinction

between ancestor and descendant nodes. It shows that our model

pays more attention to direction rather than distance in 𝐴. It is likely
that the exact distance between sibling nodes are more important

than that between ancestor-descendant nodes in ASTs.

Qualitative analysis.We provide a couple of examples for qualita-

tive analysis in Table 8. It can be observed that AST-Trans generates

the closest summary to the reference, and lack of 𝐴 or 𝑆 hurts the
quality of summarization. In the first case, the key information is

the connection between the sibling nodes method call (“addAll”)

and parameter (“actions”). Both AST-Trans and AST-Trans w/o 𝐴
generates the summary as a batch add operation, while AST-Trans

w/o 𝑆 misunderstands it as “adds an action”. On the contrary, the
meaning of the third case is to get job by the tag first then delete

it. The order of execution is controlled by the ancestor-descent

relationship (the method call “get” is the child node of “delete”), and

AST-Trans w/o𝐴 just ignores the “get” operation. The summaries of
AST-Trans w/o𝐴 and w/o 𝑆 are both correct in the second case. The
statements of the second case are relatively simple and ignoring

the order of statements will not affect the function comprehension.

7 THREATS TO VALIDITY

There are three main threats to the validity of our evaluation. Firstly,

many public datasets are proposed to explore code summarization.

Table 8: Qualitative examples.

public QuickActionView addActions(Collection <Action> actions){
checkShown();
mActions.addAll(actions);
return this;

}

AST-Trans w/o S: adds a sub - action to the menu

AST-Trans w/o A: adds the given actions to the list of actions

AST-Trans: adds a collection of actions to the quick action view

Human Written: adds a collection of actions to the quick action view

public java.lang.Object newInstance() {
Object o = newInstanceImpl();
if(o == null){

throw new InstantiationException();
}
return o;

}

AST-Trans w/o S: creates a new object initialized to the string object

AST-Trans w/o A: returns a new instance of the object class

AST-Trans: returns a new instance of the object

Human Written: creates a new instance of a class

def job_delete_by_tag(tag):
Job.objects.get(tag=tag).delete()
return (job_get_by_tag(tag) is None)

AST-Trans w/o S: delete a job and return tag

AST-Trans w/o A: delete a job objects

AST-Trans: delete a job based on its tag

Human Written: deletes a job entry based on its tag

We select two widely used ones to evaluate the proposed AST-

Transformer, but they may not be representative of other program-

ming languages. Secondly, to ensure a fair comparison as much as

possible, we build baselines on the top of the same Transformer

architecture. The architecture and hyperparameter choice might be

sub-optimal for certain approaches 6. Finally, there will be a certain

gap between the automatic evaluation and the manual evaluation

of the summarization results. We select three different automatic

evaluation methods to avoid bias as much as possible.

8 RELATEDWORKS

Code Summarization.Most approaches on code summarization

frame the problem as a sequence generation task and use an encoder-

decoder architecture. The only difference between it and traditional

machine translation is that programming languages are unam-

biguous and follow rigid grammar rules. Most approaches either

treat the source code as natural language (i.e., a sequence of to-

kens without specified structures), or utilize its structural informa-

tion with the help from ASTs or other parsed forms. To encode

the code sequence, there exist many encoder architectures like

CNN [3], RNN [20, 55] and the Transformer [1]. To leverage the

tree-structured AST, tree-based models such as Recursive NN [26],

Tree-LSTM [41, 51] and Tree-Transformer [15, 52], are used to en-

code AST directly. As tree is a special kind of graph, graph-based

approaches [2, 12, 23] can also be used to encode ASTs. Some works

also combine the code token sequence with the AST and observe

improvement [23–25]. Our approach only needs the linearized AST

6Nevertheless, AST-Trans performs best among all reported results on both datasets.

159

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

and can be built upon the Transformer architecture. More impor-

tantly, it restricts the attention range andmakes it possible to encode

very long AST sequences.

Tree-based Neural Networks. The existing tree-based neural net-

works can be grouped into two categories depending on their inputs:

(1) The models that directly take the tree as input [15, 31, 34, 47].

These models are strongly coupled with the tree structure, and the

calculation process needs to be performed simultaneously with

the tree traversal. Since trees generally have different shapes by

nature, parallization of training these models is non-trivial. (2) The

models that take the sequence(s) extracted from the tree as input,

such as the sampled paths in the tree [4, 21], the traversal sequence

with tree positional embedding [42] or the structure based traver-

sal (SBT) sequence [18]. Taking sampled paths as input is with a

certain degree of randomness and instability, and the method of

tree positional embedding ignores the concept of paths in the tree

(all nodes, even if not related, will participate in the calculation

together). Our method improves from these two methods, which

can be guaranteed that each node exchanges message on and only

on all paths containing it.

9 CONCLUSION

In this paper, we present AST-Trans which can encode ASTs effec-

tively for code summarization. In AST-Trans, each node only pays

attention to nodes which share the ancestor-descendent or sibling

relationships with it. It brings two benefits: (1) the model is given

an inductive bias and will not get lost in the overlong AST sequence,

and (2) it can reduce the computational complexity from quadratic

to linear. The latter makes it possible to encode long code sequence,

e.g., a whole file, which is prohibitively expensive for standard

Transformers. We conduct comprehensive experiments, showing

that AST-Trans achieve SOTA results on two popular benchmarks

while significantly reducing the computational cost.

We believe the basic idea of AST-Trans can also be applied in

other structured data like data dependence and control flow graphs.

The code is made publicly available to benefit the relevant research.

In future work, we plan to improve AST-Trans by incorporating

more features of the code snippet, such as API sequence and node

type, into the self-attention mechanism.

10 ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of

China (61802167,61802095) ,Natural Science Foundation of Jiangsu

Province (No.BK20201250),Cooperation Fund of Huawei-NJU Cre-

ative Laboratory for theNext Programming, andNSF award 2034508.

We thank Alibaba Cloud for its high-efficient AI computing service

from EFlops Cluster. We also thank the reviewers for their help-

ful comments. Chuanyi Li and Jidong Ge are the corresponding

authors.

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4998–5007.
https://doi.org/10.18653/v1/2020.acl-main.449

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48),
Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2091–2100.
http://proceedings.mlr.press/v48/allamanis16.html

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net. https://openreview.net/forum?id=H1gKYo09tX

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

[6] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In Proceedings of
the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Transla-
tion and/or Summarization@ACL 2005, Ann Arbor, Michigan, USA, June 29, 2005,
Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare R. Voss (Eds.). Association
for Computational Linguistics, 65–72. https://www.aclweb.org/anthology/W05-
0909/

[7] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. CoRR abs/2004.05150 (2020). arXiv:2004.05150 https:
//arxiv.org/abs/2004.05150

[8] Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera Demberg. 2021. On Training
Instance Selection for Few-Shot Neural Text Generation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). 8–13.

[9] Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye, Shaochuang Wang, Fei Feng, Li
Zhao, Xiaoyong Liu, Liuyihan Song, Liwei Peng, et al. 2020. Eflops: Algorithm
and system co-design for a high performance distributed training platform. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 610–622.

[10] Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao, Heng Pan, Lingbo Tang,
Pengcheng Li, Hao Li, Qianyuan Ran, Yiqun Guo, et al. 2021. ACCL: Architecting
Highly Scalable Distributed Training Systems with Highly-Efficient Collective
Communication Library. IEEE Micro (2021).

[11] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-
Sequence Attentional Neural Machine Translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August
7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics. https://doi.org/10.18653/v1/p16-1078

[12] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Struc-
tured Neural Summarization. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=H1ersoRqtm

[13] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program
comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010, Jeff Kramer, Judith Bishop, Premkumar T.
Devanbu, and Sebastián Uchitel (Eds.). ACM, 223–226. https://doi.org/10.1145/
1810295.1810335

[14] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In 17th Working Conference on Reverse Engineering, WCRE 2010, 13-16 October
2010, Beverly, MA, USA, Giuliano Antoniol, Martin Pinzger, and Elliot J. Chikofsky
(Eds.). IEEE Computer Society, 35–44. https://doi.org/10.1109/WCRE.2010.13

[15] Jacob Harer, Christopher P. Reale, and Peter Chin. 2019. Tree-Transformer:
A Transformer-Based Method for Correction of Tree-Structured Data. CoRR
abs/1908.00449 (2019). arXiv:1908.00449 http://arxiv.org/abs/1908.00449

[16] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. Deberta:
decoding-Enhanced Bert with Disentangled Attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net. https://openreview.net/forum?id=XPZIaotutsD

[17] Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415 http://arxiv.org/abs/1606.08415

[18] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension, ICPC
2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and
Janet Siegmund (Eds.). ACM, 200–210. https://doi.org/10.1145/3196321.3196334

160

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

[19] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 2269–2275. https:
//doi.org/10.24963/ijcai.2018/314

[20] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for
Computer Linguistics. https://doi.org/10.18653/v1/p16-1195

[21] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Predic-
tion by Feeding Trees to Transformers. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 150–162.
https://doi.org/10.1109/ICSE43902.2021.00026

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[23] Alexander LeClair, SakibHaque, LingfeiWu, and CollinMcMillan. 2020. Improved
Code Summarization via a Graph Neural Network. In ICPC ’20: 28th International
Conference on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020.
ACM, 184–195. https://doi.org/10.1145/3387904.3389268

[24] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle
(Eds.). IEEE / ACM, 795–806. https://doi.org/10.1109/ICSE.2019.00087

[25] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCom-
menter: a deep code comment generation tool with hybrid lexical and syntactical
information. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 1571–1575. https://doi.org/10.1145/3368089.3417926

[26] Yuding Liang and KennyQili Zhu. 2018. Automatic Generation of Text Descriptive
Comments for Code Blocks. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 5229–5236.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492

[27] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://www.aclweb.org/anthology/W04-1013

[28] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?
id=Bkg6RiCqY7

[29] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Sum-
marization of Context for Java Methods. IEEE Trans. Software Eng. 42, 2 (2016),
103–119. https://doi.org/10.1109/TSE.2015.2465386

[30] LauraMoreno, Jairo Aponte, Giriprasad Sridhara, AndrianMarcus, Lori L. Pollock,
and K. Vijay-Shanker. 2013. Automatic generation of natural language summaries
for Java classes. In IEEE 21st International Conference on Program Comprehension,
ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. IEEE Computer Society,
23–32. https://doi.org/10.1109/ICPC.2013.6613830

[31] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman (Eds.).
AAAI Press, 1287–1293. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/11775

[32] Genevieve B. Orr and Klaus-Robert Müller (Eds.). 1998. Neural Networks: Tricks
of the Trade. Lecture Notes in Computer Science, Vol. 1524. Springer. https:
//doi.org/10.1007/3-540-49430-8

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 311–318. https://www.aclweb.org/anthology/
P02-1040/

[34] Jordan B. Pollack. 1990. Recursive Distributed Representations. Artif. Intell. 46,
1-2 (1990), 77–105. https://doi.org/10.1016/0004-3702(90)90005-K

[35] Heinz Prüfer. 1918. Neuer beweis eines satzes über permutationen. Arch. Math.
Phys 27, 1918 (1918), 742–744.

[36] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018,
Volume 2 (Short Papers), Marilyn A. Walker, Heng Ji, and Amanda Stent (Eds.).

Association for Computational Linguistics, 464–468. https://doi.org/10.18653/
v1/n18-2074

[37] Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mittul Singh, and Dietrich
Klakow. 2017. Estimation of Gap Between Current Language Models and Human
Performance. Proc. Interspeech 2017 (2017), 553–557.

[38] Xiaoyu Shen, Jun Suzuki, Kentaro Inui, Hui Su, Dietrich Klakow, and Satoshi
Sekine. 2019. Select and Attend: Towards Controllable Content Selection in
Text Generation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). 579–590.

[39] Xiaoyu Shen, Yang Zhao, Hui Su, and Dietrich Klakow. 2019. Improving la-
tent alignment in text summarization by generalizing the pointer generator. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 3753–3764.

[40] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, Zhi-Hua Zhou (Ed.). ijcai.org, 1548–1554. https://doi.org/10.
24963/ijcai.2021/214

[41] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto, and
Tadayuki Matsumura. 2019. Automatic Source Code Summarization with Ex-
tended Tree-LSTM. In International Joint Conference on Neural Networks, IJCNN
2019 Budapest, Hungary, July 14-19, 2019. IEEE, 1–8. https://doi.org/10.1109/
IJCNN.2019.8851751

[42] Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel positional encodings to
enable tree-based transformers. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 12058–12068.

[43] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, Charles Pecheur,
Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43–52. https://doi.org/10.
1145/1858996.1859006

[44] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958. http://dl.acm.org/citation.
cfm?id=2670313

[45] Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie Chang, Cheng Zhang,
Cheng Niu, and Jie Zhou. 2020. Moviechats: Chat like humans in a closed domain.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 6605–6619.

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vi-
sion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

[47] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers. The Association for Computer
Linguistics, 1556–1566. https://doi.org/10.3115/v1/p15-1150

[48] Ze Tang, Chuanyi Li, Jidong Ge, Xiaoyu Shen, Zheling Zhu, and Bin Luo. 2021.
AST-Transformer: Encoding Abstract Syntax Trees Efficiently for Code Summa-
rization. arXiv preprint arXiv:2112.01184 (2021).

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and RomanGarnett (Eds.). 5998–6008.
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[50] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

[51] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM,

161

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

397–407. https://doi.org/10.1145/3238147.3238206
[52] Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. 2020. TranSˆ3:

A Transformer-based Framework for Unifying Code Summarization and Code
Search. CoRR abs/2003.03238 (2020). arXiv:2003.03238 https://arxiv.org/abs/2003.
03238

[53] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a
Dual Task of Code Summarization. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 6559–6569.

[54] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html

[55] Yang Zhao, Xiaoyu Shen, Wei Bi, and Akiko Aizawa. 2019. Unsupervised rewriter
for multi-sentence compression. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2235–2240.

[56] Yuxiang Zhu and Minxue Pan. 2019. Automatic Code Summarization: A Sys-
tematic Literature Review. CoRR abs/1909.04352 (2019). arXiv:1909.04352
http://arxiv.org/abs/1909.04352

[57] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan
Günnemann. 2021. Language-Agnostic Representation Learning of Source Code
from Structure and Context. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=Xh5eMZVONGF

A ALGORITHM OF GDC

Algorithm 1 Self-Attention with Relationship matrix

Input: Hidden state 𝑯 , COO format of relationship martix 𝐶𝑂𝑂 ,
content functions 𝑸,𝑲 , 𝑽 , relative distance projection matrix
𝑸𝑷 ,𝑲𝑷 , 𝑽 𝑷 .

1: 𝑲𝒄 = 𝑲 (𝐻), 𝑸𝒄 = 𝑸 (𝐻), 𝑽𝒄 = 𝑽 (𝐻)
2: for 𝑖 = 0, . . . , 2𝑃 + 1 do
3: for 𝑗 = 0, . . . , 𝑁 − 1 do
4: 𝑸𝒄 [𝑖; 𝑗 ; :] = 𝑸𝒄 [𝑪𝑶𝑶𝒄𝒐𝒍 [𝑖 ∗ 𝑁 + 𝑗]; :]
5: 𝑲𝒄 [𝑖; 𝑗 ; :] = 𝑲𝒄 [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]; :]
6: 𝑽𝒄 [𝑖; 𝑗 ; :] = 𝑽𝒄 [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]; :]
7: end for

8: end for

9: 𝜶̃ = (𝑸𝒄 + 𝑸𝑷) � (𝑲𝒄 + 𝑲𝑷) − 𝑸𝑷 � 𝑲𝑷

10: 𝜶̃ = exp(𝜶̃√
3𝑑
)

11: for 𝑖 = 0, . . . , 2𝑃 + 1 do
12: for 𝑗 = 0, . . . , 𝑁 − 1 do
13: 𝜶̃𝒔𝒖𝒎 [:; 𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]]+ = 𝜶̃ [𝑖, 𝑗]
14: end for

15: end for

16: 𝜶̃ = 𝜶̃
𝜶̃𝒔𝒖𝒎

17: for 𝑖 = 0, . . . , 2𝑃 + 1 do
18: for 𝑗 = 0, . . . , 𝑁 − 1 do
19: 𝒐̃ [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗𝑁 + 𝑗]; :] = (𝑽𝒄 [𝑖; 𝑗 ; :] +𝑽 𝑷 [𝑖; :]) · 𝜶̃ [𝑖, 𝑗]
20: end for

21: end for

Output: 𝒐̃

For better re-implementation, we also show the algorithm of

GDC. line 1-10 describes the attention score computation process.

𝑄𝑐 , 𝐾𝑐 and𝑉𝑐 are reshaped to [2𝑃 + 1, 𝑁 , 𝑑]. Note that the attention

Table 9: Comparison of AST-Trans with different model selection

strategy on Java Dataset.

Model BLEU METEOR ROUGE-L

AST-Trans(best_eval_BLEU) 48.29 30.94 55.85
AST-Trans(best_eval_METEOR) 47.02 31.90 55.72
AST-Trans(best_eval_ROUGE-L) 46.92 29.99 57.01

scores 𝛼̃ have a different shape with traditional attention scores,
so we redesigned the softmax function in line 11-16. The atten-

tion scores belonging to the same query vector, distinguished by

𝐶𝑂𝑂𝑟𝑜𝑤 [𝑖 ∗ 𝑁 + 𝑗], are added together as 𝛼̃𝑠𝑢𝑚 . Then the softmax
function can be formed as 𝛼̃ divide by 𝛼̃𝑠𝑢𝑚 . Finally in line 17-21,
relative distance bias 𝑉 𝑃 is added to the value context, and then is

multiplied with the attention scores 𝛼̃ .

B THE INFLUENCE OF MODEL SELECTION
STRATEGY

The results reported in the paper come from the model with best

BLEU score in the validation dataset. We then separately select

two other models with the best METEOR, and ROUGE-L score

in the valid dataset, and then evaluate their performances on test

dataset. Results in Table 9 show that the model selection strategy

indeed influences the performance. This may explain why that the

improvement of AST-Trans is inconsistent in different metrics.

162

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

