2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

AST-Trans: Code Summarization with Efficient Tree-Structured
Attention

Ze Tang Xiaoyu Shen" Chuanyi Li, Jidong Ge
State Key Laboratory for Novel Alexa Al State Key Laboratory for Novel
Software Technology Amazon Software Technology
Nanjing University Berlin, Germany Nanjing University
Nanjing, China gyouu@amazon.com Nanjing, China
2228291607 @qq.com ley,gjd@nju.edu.cn
Liguo Huang Zhelin Zhu, Bin Luo

Department of Computer Science
Southern Methodist University
Dallas, Texas, USA
Ighuang@lyle.smu.edu

ABSTRACT

Code summarization aims to generate brief natural language de-
scriptions for source codes. The state-of-the-art approaches follow
a transformer-based encoder-decoder architecture. As the source
code is highly structured and follows strict grammars, its Abstract
Syntax Tree (AST) is widely used for encoding structural infor-
mation. However, ASTs are much longer than the corresponding
source code. Existing approaches ignore the size constraint and
simply feed the whole linearized AST into the encoders. We argue
that such a simple process makes it difficult to extract the truly use-
ful dependency relations from the overlong input sequence. It also
incurs significant computational overhead since each node needs
to apply self-attention to all other nodes in the AST. To encode
the AST more effectively and efficiently, we propose AST-Trans
in this paper which exploits two types of node relationships in
the AST: ancestor-descendant and sibling relationships. It applies
the tree-structured attention to dynamically allocate weights for
relevant nodes and exclude irrelevant nodes based on these two
relationships. We further propose an efficient implementation to
support fast parallel computation for tree-structure attention. On
the two code summarization datasets, experimental results show
that AST-Trans significantly outperforms the state-of-the-arts while

being times more efficient than standard transformers *.

“Work done before joining.
! All the codes and data are available at https://github.com/zetang94/ICSE2022_AST
Trans.git

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510224

150

State Key Laboratory for Novel
Software Technology
Nanjing University
Nanjing, China
zzl,luobin@nju.edu.cn

CCS CONCEPTS

« Software and its engineering — Documentation; - Comput-
ing methodologies — Natural language generation.

KEYWORDS

tree-based neural network, source code summarization

ACM Reference Format:

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin
Zhu, Bin Luo. 2022. AST-Trans: Code Summarization with Efficient Tree-
Structured Attention. In 44th International Conference on Software Engineer-
ing (ICSE °22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3510003.3510224

1 INTRODUCTION

The summary of source code is a brief natural language description
explaining the purpose of the code [29]. The code to be summarized
can be with different units. In this work, we focus on summarizing
the subroutines or defined methods in a program.

Previous studies have shown that such a short description can
assist program developers to quickly digest the code without travers-
ing over it themselves [43]. Nonetheless, maintaining high-quality
code summaries requires expensive manual labor in reality. In many
projects, these summaries are often mismatched, missing or out-
dated which slow down the developing progress [18]. Automatic
code summarization can greatly save developers’ time by avoiding
writing such summaries manually for every single code snippet.

The traditional methods utilized handcrafted rules like Software
Word-Usage Model (SWUM) [43] or stereotypes [30] to synthe-
size the code summaries. However, when identifiers or methods
are poorly named, they cannot extract accurate keywords to pro-
duce good summaries. Some used Information Retrieval (IR) tech-
niques [13, 14] to mine summaries from similar existing code banks
which, unfortunately, cannot generalize to unseen code snippets
with different functions.

Recently, with the development of open source platforms such as
Github, more and more data for code summarization can be easily
extracted from online resources. Data-driven strategies based on

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

float relu(float x){
return x < 0 ?2 0 : x

return 0 if x<0, else return x
itself.

} code summary

AST

B Ancestor-descendant

B Sibling
[NameLoad(x) |[Lt]| consvtant(O) |[constant(0) | [NameLoad(x) |

—_—

Figure 1: Example of code-AST-summary triples. We mainly need
to understand the ancestor-descendent and sibling relationships in
the AST to generate a summary.

neural networks start to raise more and more attention [20, 37—
39, 56]. Current state-of-the-arts all follow the Transformer-based
encoder-decoder architecture [5, 8, 45, 48, 49] and can be trained
end-to-end with code-summary pairs. Since the source code is
highly structured and follows strict programming language gram-
mars, a common practice is to also leverage the Abstract Syntax
Tree (AST) to help the encoder digest the structured information.
The AST is usually linearized by different algorithms like pre-order
traversal [21], structure-based traversal (SBT) [18] and path decom-
position [4], then fed into the encoder. Several works also proposed
architectures specific for tree encoding like tree-LSTM [11, 51].

However, the linearized ASTs, as containing additional struc-
tured information, are much longer than their corresponding source
code sequence. Some linearization algorithms can further increase
the length. For example, linearizing with SBT usually makes the
size times longer. This makes the model extremely difficult to accu-
rately detect useful dependency relations from the overlong input
sequence 2. Moreover, it brings significant computational overhead,
especially for state-of-the-art Transformer-based models where
the number of self-attention operations grows quadratically with
the sequence length. Encoding ASTs with tree-based models like
tree-LSTM will incur extra complexity because it needs to traverse
the whole tree to obtain the state of each node.

In this work, we assume that the state of a node in the AST is
affected most by its (1) ancestor-descendent nodes, which represent
the hierarchical relationship across different blocks, and (2) sibling
nodes, which represent the temporal relationship within one block.
We show an example of code summarization in Figure 1. As can be
seen, we need the ancestor-descendent relationship to understand
the high-level procedure, and the sibling relationship to understand
the low-level details within a block. Capturing these two relation-
ships are enough for producing the summary and modelling the
full attention among all nodes is unnecessary.

Based on this intuition, we propose AST-Trans, a simple variant
of the Transformer model to efficiently handle the tree-structured
AST. AST-Trans exploits ancestor-descendant and sibling relation-
ship matrices to represent the tree-structure, and uses these ma-
trices to dynamically exclude irrelevant nodes in different self-
attention layers. The absolute position embedding from the original
Transformer is replaced with relative position embeddings defined

%Indeed, encoding the overlong AST with SBT even underperforms directly encoding
the source code when using Transformer with relative position embeddings [1].

151

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

by the two relationship matrices to better model the dependency.
We further describe several implementations of the proposed AST-
Trans and have a comprehensive analysis of their computational
complexity. In short, the contributions of this paper are as below:

e We propose AST-Trans that can efficiently encode long AST
sequences with linear complexity, in contrast with the qua-
dratic complexity of the standard Transformer.

e We perform a comprehensive analysis, with both theoretical
and empirical evidences, on the computational complexity
of different implementations.

e We validate our proposed model on two datasets of Java and
Python. Experimental results show that AST-Trans outper-
forms the state-of-the-arts by a substantial margin.

e We compare representative methods for AST encoding and
discuss their pros and cons.

Paper Organization The remainder of this paper is organized
as follows. Section 2 presents background knowledge on the Trans-
former and AST. Section 3 elaborates on the details of AST-Trans,
section 4 presents its different implementation and the complexity
is analyzed in section 5. Section 6 explains the experimental setup
and analyzes the results. Section 7 discusses threats to validity. Sec-
tion 8 surveys the related work. Finally, section 9 concludes the
paper and points out future research directions.

2 BACKGROUND

Transformer. The Transformer architecture was initially proposed
for neural machine translation [49]. It consists of multi-head stacked
encoder and decoder layers. In each encoder stack, the inputs first
flow through a self-attention sublayer, and then are fed into a
position-wise feed-forward network followed by a layer normaliza-
tion. The decoder has a set of the cross-attention layers to help the
decoder focus on relevant parts of the input sequence. The Trans-
former architecture removes the recurrence mechanism in favor of
the self-attention. As each word in a sentence simultaneously flows
through the encoder and decoder stack, the model itself does not
have any sense of the word order. Therefore, a position embedding
is added to each word embedding to inform the order information.
Abstract Syntax Tree (AST). An Abstract Syntax Tree (AST)
uniquely represents a source code snippet in a given language
and grammar [4]. The leaves of the tree are terminals, usually re-
ferring to variables, types and method names. The non-leaf nodes
are non-terminals and represent a restricted set of structures in the
programming language, e.g., loops, expressions, and variable decla-
rations. For example, in Figure 1, variables (such as NameLoad(x))
are represented as terminals of AST. Syntactic structures (such as
Compare) are represented as non-terminals. Since the variable and
method names can be rather freely defined, directly processing the
source code can be challenging. Its corresponding AST, due to its
strict structure, often serves as substitute when encoding the source
code.

3 AST-TRANS

This section details our proposed AST-Trans. For an AST, it will
be firstly linearized into a sequence. Then the ancestor-descendent
and sibling relationships among its nodes will be denoted through

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

Table 1: Linearized AST of the tree in Fig 1 with POT,SBT and PD.

Methods Linearized AST sequence

Return IfExp Compare NameLoad(x) Lt constant(0) body constant(0) orelse
POT

NameLoad(x)

(Return (IfExp (Compare (constant(0)) constant(0) (Lt) Lt (NameLoad(x)
SBT) NameLoad(x)) Compare (body (constant(0)) constant(0)) body

(NameLoad(x)) NameLoad(x)) IfExp) Return

Path1: Path1: Lt Compare constant(0)
D Path2: NameLoad(x) Compare constant(0)

Path3: Path3: constant(0) Compare IfExp body constant(0)

two specific matrices. Based on the matrices, we replace the stan-
dard self-attention with tree-structured attention to better model
these two relationships. Irrelevant nodes are dynamically ruled
out to reduce computational cost. We will first introduce different
linearization methods (section 3.1), then explain the construction
of two relationship matrices (section 3.2), and finally present the
tree-structure attention to utilize the matrices(section 3.3).

3.1 AST Linearization

In order to encode the tree-shaped AST, it first needs to be converted
into a sequence with a linearization method. There are the three
most representative linearization methods used in current works:

(1) Pre-order Traversal (POT): It visits the tree nodes with pre-
order traversal. Sequences obtained by pre-order traversal
are lossy since the original ASTs cannot be unambiguously
reconstructed back from them.

(2) Structure-based Traversal (SBT): It adds additional brack-
ets [18] to indicate the parental-descendent relationship such
that each sequence can be unambiguously mapped back to
the AST, but it also doubles the size of the linearized se-
quence.

(3) Path Decomposition (PD): It represents the AST by concate-
nating the path between two random leaf nodes. The total
number of paths can be too large for computing and there-
fore random sampling is needed [4].

Table 1 shows the AST in Figure 1 linearized with the above
three different methods. For POT and SBT, the linearized trees
can be directly fed into the encoder. For PD, the average total
number of paths can be over 200, concatenating them all to train
is infeasible [4]. In practice, mean pooling is run over the states
of each path such that each path has one unique representation.
The decoder only attends to these unique representations of paths
instead of specific nodes within paths. This can affect the model
when copying user-defined names (in leaf nodes) is needed.

We adopt the simplest POT linearization for our model. We
show that it has already achieved SOTA results and more complex
linearization methods like SBT do not help. PD does not apply to our
model since it treats one path as a whole. We will show in section 6.3
that this leads to poor performance in code summarization.

3.2 Relationship Matrices

We define two kinds of relationships between nodes in the tree that
we care about: ancestor-descendant (A) and sibling (S) relationships.
The former represents the hierarchical information across blocks,
and the latter represents the temporal information within one block.

152

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Linear Relationship Tree Structure Relationship

mA
g - -- s

A F S
ADD| X | ¥ ADD| X | v ADD| X | ¥
ADD| 0 | -1]| -2 |Relationship (ADD| 0 | -1]-1 ADD| O [oo|eo
X| 1 |o[-1] Matrices [xT 1 [0]c X[oo lo]-1
y[2]1]o Y[1]<]o Y[=]1]0

Figure 2: Example of generating position matrices for ancestor-
descendent (A) and sibling relationship (S). Position matrix gener-
ated from the linear relationship is used in standard Transformers.

Specifically, two nodes have the ancestor-descendant relationship if
there exists a directed path from root node that can traverse through
them. Two nodes have the sibling relationship if they share the
same parent node.

We use two position matrices Ayxn and Syxn to represent
the ancestor-descendent and sibling relationships respectively. N
is the total number of nodes in AST. We denote the ith node in
the linearized AST as n;. A;; is the distance of the shortest path
between n; and n; in the AST. S;; is horizontal sibling distance
between n; and nj in the AST if they satisfy the sibling relationship.
If one relationship is not satisfied, its value in the matrix will be
infinity. Note that we consider the relative relationship between two
nodes, which means A;; = —Aj; and S;; = —Sj; if a relationship
exists between n; and n;.

Formally, we use SPD(i, j) and SID(i, j) to denote the Shorted
Path Distance and horizontal SIbling Distance between n; and n;
in the AST. The values in the relationship matrices are defined as:

[SPDG) ifISPD()] < P
U= 00 otherwise)
1
o _ [SIDG)) fISIDG)| <P
v o0 otherwise

P is a pre-defined threshold and nodes with relative distance
beyond P will be ignored. We hypothesize that precise relative dis-
tance is not useful beyond a certain range. It can both constrain the
computation complexity within a constant range and save memory
space for storing the relative position embeddings. Figure 2 shows
an example of generating matrix A and S, in comparison with the
position matrix generated from a linear relationship, which is used
in standard Transformers. In the next section, we will introduce
how to use these two matrices to dynamically incorporate such
relationship information through a tree-structured attention.

3.3 Tree-Structured Attention

Tree-structured attention is built on the standard self-attention
with relative position embeddings and disentangled attention. It
replaces the relative position embeddings derived from the linear
relationship into the two matrices derived from the tree structure.

Self-Attention. Standard self-attention transforms the input
sequence X = (x1,...,%p) (xi € R4 which stands for the embedding
of n;) into a sequence of output vectors o = (01, ...,0,) (0; € RY).

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

The single-head self-attention [49] can be formulated as:
O(xi)K(x;)T

Vd

n
0i =) olay)V(x))

=1

J

ij =

@)

where Q, K : RY — R™ are query and key functions respectively,
vV : R? — R? is a value function, ¢ is a scoring function (e.g.
softmax or hardmax).

Relative position embedding. Eq 2 is a content-only attention
without any position information. The initial Transformer model
uses absolute position embeddings to inform about the position.
Shaw et al. [36] proposed replacing them with relative position
embeddings, which has shown more effective in code summariza-
tion tasks [1]. The relative position &(i, j) reflects the pairwise
distance between n; and n;. Denote P as the max relative distance,
d(i, j) € [0, 2P] can be defined as:

0 for i—-j<-P
6(i,j) = 2P for i-j>P 3)
i—j+P others.

In this way, we can map each relative distance into an embedding
representation. The relative position embeddings can be added on
top of Eq 2 to inform the pairwise distance.

Disentangled Attention. Disentangled Attention [16] uses rel-
ative position embedding as bias in self-attention process. Each
word is represented using two vectors that encode its content and
relative position in an disentangled way. The attention computa-
tion is then divided into three parts: content-to-content, content-
to-position and position-to-content, defined as:

dij= QU)K(x)T + QU)K)7 + OF; » K(x)T
e oo
content-to-content

4

content-to-position position-to-content

where QF KF € R(ZPHD)XM pepresent the query and key projec-
tion matrices of relative positions. Kg(ij) is the &(i, j)-th row of

KP and Q(I;(i b is the 8(i, j)-th row of QF respectively. The last two
items, i.e., co’ntent-to-position and position-to-content, are used to
measure the relative positions between a word pair.

Besides, for content-to-position computation, as all possible rel-
ative positions are always in [0, 2P], the scores of query content
Q(x) to all key positions K? can be first computed as Q(x)KPT,
and then gathered into @ with (i, j) as index. In this way, The
relative position embedding can be reused for all query contents
and thus reduce the space complexity to O(2Pm) .

Attention with Tree-Structured Relationships. Our method
essentially replaces (i, j), the relative distance defined under the
linear relationship, with Sg(i, j) where R stands for either the
ancestor-descendent relationship A or the sibling relationship S in
the tree structure. dg (i, j) is defined as:

if Rijé [—P,P]
if Rijj=o0

Rij+P+l

Sr(i,j) = { 0 ®)

R;j refers to either A;j or S;; defined in Eq 1. As there are two kinds
of relationships, we consider only one relationship in each head so

153

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

that it will not add any additional parameter on top of the standard
Transformer. hy heads will use 54 (i, j) and the rest hg heads will
use Js (i, j). Information from the two relationships will be merged
together through multi-head attention. We then replace (i, j) in
Eq 4 with 8g(i, j) in Formula 5, and apply a scaling factor of \/%Ti on

@; j (because it has 3 items). The final output vector is computed as
in Eq (6), where VP represents the value project matrix of relative
distances and VI}Z)-- is the R;j-th row of VP

vy

J€{jl6r(i,j)>0} G »
0; = o(—=)(V(xj) + Vg,)
Note that we only compute the attention weights for node pairs
where 8g(i, j) > 0), which is similar to the idea of sliding win-
dow [7] and can reduce the time and space complexity of the self-
attention process. We will discuss its implementation and analyze
its complexity in sections 4 and 5 respectively.

(6)

4 EFFICIENT IMPLEMENTATION

A limitation of the full attention mechanism in standard Transform-
ers is the computational and memory cost that grows quadratically
with the sequence length. AST-Trans we proposed can alleviate
this problem since the attention scores only need to be computed
for node pairs where g (i, j) > 0. Nevertheless, a memory and
computational efficient implementation of AST-Trans that supports
parallel processing is non-trivial. The essence of AST-Trans is similar
to previous works that apply sliding windows to constrain the at-
tention within a fixed range [7, 54]. With sliding windows, the node
pairs in the sequence data can be planned into a linear distribution
(by ignoring node pairs with §(i, j) = 0 or 2P — 1) and computed
in parallel with matrix partitioning. However, this technique does
not apply to us since the position distribution of relevant nodes
changes with every tree structure, which makes matrix blocking
infeasible. In this section, we present the following 5 alternative
implementations of AST-Trans and discuss the pros and cons:

Mask. Mask out the attention scores where Sg(i, j) = 0 after
computing the full attention among all nodes. It has the same qua-
dratic time and space complexity as in the standard Transformer.

Loop. Loop over node pairs where Sg(i, j) > 0 and compute the
attention scores. It is memory and computational efficient but does
not support parallel processing.

Sparse. We can store O as a sparse tensor ST (Sr) and deep learn-
ing frameworks, such as Pytorch, can automatically skip operations
with zero elements when multiplying a sparse tensor with a normal
tensor. The mask operation can be optimized (for example, content-
to-position attention scores in Eq 4 can be computed by gathering
O(x)KPT with ST(8g)). However, it can only apply to content-to-
position and position-to-content. For content-to-content, we still
have to use the Mask or Loop strategy since the production of two
sparse tensors is not directly supported.

Gather with COO (GC). On the basis of Sparse, the content-
to-content computation can be optimized by additional gather op-
erations. The core idea of GC is to put query-key pairs that need to
be computed into one-to-one correspondence, and store them as
dense matrices. Coordinate format (COO) is a common way to store
sparse tensors, where only non-zero elements are stored as tuples of

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

val=1 val=2
® ®
® @ ® @ ©®
© © ©

val=3 vale[1l,3]
©, @
@ ©® @
©

1] 1 2 AR
1 2 3 _ Bl2[1le
+ 2 + 3 = [e[3]2]0
2 3 3(0/0|2

8,1 85,2 8,3 e

Figure 3: Decompose the relative distance matrix Sg of the tree
“abed” with max relative distance P = 1.

element indices and the corresponding values. Let COOy4+,/COO,.;
denotes the list of row/column indexes, and COO,,,; denotes the
list of values in the COO format of §g. We then use them as indexes
to gather the query and key of content as:

Qrow = Q(x)[COOrow; :]; Keor = K(x)[COO0p31]
Qb 1 = QP [CO0,1::1: Kby = KP[CO0q1:]
By this way, each column in the query content Q¢+ corresponds to

the same column in the key content K_,;. Then we can use matrix
dot production to compute attention scores:

P P
Acoo = Qrow O Keor + Qrow © Kval + Qval O Kol

where © indicates dot production. e, is a vector and corresponds
to the non-zero values in & (Eq. 4), and @[COOyro [i]; COOo1[i]] =
Qcoo | i]. The content-to-position or position-to-content can be com-
puted the same as in Sparse, and the total number of gather opera-
tions in attention computation is 4 times of non-zero elements in
Og: 2 for gathering the content and 2 for gathering the position.
Gather with decomposed COO (GDC). To reduce the number
of gather operations in GC, we can add a matrix decomposition
operation on top of it. First, we decompose dg by COO,,; such that
each sub-matrix &} contains only node-pairs with the same relative
distance s. An example is shown in Figure 3, where the original g
contains 3 distinct values and we decompose it into 3 sub-matrices
accordingly. We transfer each sub-matrix &, into its COO format
and use COO?® to indicates the sub-matrix with val = s. For each
sub-matrix COO®, we gather content embeddings of nodes by:

Qrow, = Q(x)[CO07,,,::]. Keol, = K(x)[COO; 51

where Qyow, indicates the query content ordered by COO3,,,,, and

Keol, represents the key content ordered by COO; ;. The attention
scores can then be computed as:

®coo; = (Qrows + Qf) O (Krow, + KsP) - (QiJ GKSP)

where acoo, corresponds to the attention scores of node pairs in
JOp- Note that acoo, is a vector of the same shape as COO3,,,,. By
padding all COO® to the same length, the attention scores can be
computed in parallel and the final attention scores equal to the sum

of all acoo,:
2P+1

Qcoo = } Qcoog
s=1

Authorized licensed use limited to: Southern Methodist University.

154

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

There are 3 benefits of this approach compared with GC:

o KP and OF can be reused, as each Qrow, and Ky, have the
same relative distance s. The position embeddings of s can be
directly added into the content without gather operations.

e Only a quarter of number of gather operation is needed
(discussed in 5.3).

e Only one dot production is required, as the second QF ® KT
can be reused and only (Qrow, + Qf) O (Krow, + Kf) needs
to be calculated.

See Appendix A for the complete algorithm.

5 COMPLEXITY ANALYSIS

In this section, we will discuss the best, worst and average complex-
ity of 5 implementations mentioned above. We use FLOPs (floating
point operations) to measure the computational complexity. The
considered operations includes: matrix multiplication, matrix dot
production, add and gather operation which are the main operations
involved for the attention computation. FLOPs of these operations
are listed below:
FLOPs(A+ B) = N(m — 1); FLOPS(A[C;:]) = |C| * m

FLOPs(A® B) = Nm? + N(m - 1)
FLOPs(A X BT) = N % FLOPs(A O B)

(7)

where A and B are two matrices with shape [N, m], A[C;:] indicates
gather A with C as the index, |C| is the number of elements in C.

We will focus our analysis on attention heads using the ancestor-
descendent relationship (A), but similar ideas can be used to analyze
the sibling relationship (S) straightforwardly. As the complexity is
related to the number of non-zero elements in 4 (denoted with
|64 > 0]). We first analyze the range of |64 > 0|, then present the
complexity of each implementation.

5.1 Range of [64 > 0]

THEOREM 5.1. For any directed tree T, let E(i) represent the number
of paths in T with length i, L represent the length of the longest path
in G, we have:

E(1) > E(2) >--->E(L)

PROOF. Assuming there are N nodes in the tree, and the root
node is at level 1. Define N; as the number of nodes at level j. For
each node at level j, if j —i > 0, there exists one path of length
i ending with this node, otherwise no such path exists. Hence,
E(i)=N - 25:1 Nj and Nj > 0. Therefore we must have E(i) >
E(i+1). O

THEOREM 5.2. Every tree with N nodes has exactly N — 1 edges.

ProOF. Imagine starting with N isolated nodes and adding edges
one at a time. By adding one edge, we will either (1) connect two
components together, or (2) close a circuit. Since a tree is fully
connected and has no circuit, we must add exactly N — 1 edges. O

Least upper & Greatest lower bound. Let E(0) = N denote
the number of nodes in a tree. We have |64 > 0| = E(0) + 2(E(1) +
E(2) +...E(P)) since we consider both positive and negative dis-
tance in 4. Based on the above two theorems, we can have:

EG) <E(i-1)-1<...E(0)—i=N-—i

Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

30

251

201

151

104 >

5 (5,10.17)
10

—— random trees
2P+1
- P+l

|64 > 0] / O(N)

20 30 40

Max relative distance P

50

Figure 4: |54 > 0| in case of random trees, the abscissa is the max
relative distance P and the ordinate is the non-zero elements in §4
with the unit of O(N). The coeflicient decreases with growing P.

|64 >0 < N+2(N-1+N-2+...N-P)=(N-P)(2P+1)
It is the least upper bound for the ancestor-descendent relationship
and is achieved only when each node has strictly one child node.
The greatest lower bound can be achieved when the tree’s depth is
2. In this situation, E(i) = 0 for i > 2 and |54 > 0| = 3N — 2.

Average. We can use the Priifer sequence [35] to simulate ran-
dom trees so we can estimate the average of |54 > 0| with different
tree structures. The tree size N is set in the range of [50,500] and
the out-degree of each node is randomly selected from 1 to N — 1
(controlled by the max value in Priifer sequence). We did 1,000
simulation experiments and Figure 4 shows the result.

The average |54 > 0| when P is sampled from a uniform distri-
bution in [1,50] is 1.16PN. We can see that the coefficient in Figure 4
gradually decreases. For larger P, the average |54 > 0| will be much
smaller than the upper bound of (2P + 1)(N — P).

5.2 Mask & Loop & Sparse & GC

Mask contains 1 matrix multiplication with [N, m] X [m, N] in
content-to-content, 2 matrix multiplication with [N, m] X [m, 2P+1]
and 2 gather operations with index shape [N, N] for content-to-
position and position-to-content, and 2 add operations are used
for final score computation. The complexity is (N2 + (2P + 1)N) =
(m?>+m-1)+2N?+N —1.

Loop As loop only computes non-zero elements in §4, the com-
plexity includes 1 dot production of |54 > 0|(m?+m —1) and 2 add
operations |54 > 0| * 2(m — 1), and equals to |54 > 0|(m? +3m —3).
Sparse’s complexity is same as Mask apart from the gather opera-
tion with index shape |64 > 0] (the time complexity for gathering
sparse tensor as index equals to the number of non-zero elements in
it), which equals to (N%+(2P+1)N) *(m%+m—1)+2|54 > 0|+ N—1.
GC The complexity in GC is all related to |54 > 0|. It contains 4
gather operations, 3 dot production and 2 add operations, which
leads to the complexity of |54 > 0|(m? + 3m +4) + 2(2P + 1)Nm.

5.3 GDC

There are two implementation details in GDC to optimize the time
and space complexity. Firstly, in a tree, if s > P+ 1, the decomposed
sub-matrix COO® has at most one non-zero value in each row.
(for example, each non-root node has exactly one parent node in
Figure 3.) We can fix COO;,,,, to [0,1,...,N — 1] and only store
the corresponding COO? . When s < P + 1, as the relationship is
symmetric, COO® can be represented with COO%F+2~5, Based on
this, when s > P+1, the query content does not need to be gathered

155

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

Best Worst
—— loop
sparse
—— mask
— GC
15 8- GDC

Avg

1e6

25

2.0

0.5

Complexity / FLOPs

0.0

50 100 150 200 250 O 50

Size of AST

100 150 200 250 O 50 100 150 200 250

Figure 5: Theoretical complexity with P = 5, m = 32. loop has the
lowest complexity but cannot be parallelized in practice.

Table 2: Statistics of Java and Python Datasets

Perspectives Java Python
of Train instances 69,708 55,538
of Validation instances 8,714 18,505
of Test instances 8,714 18,502
Avg. # of tokens in code 120 48
Avg. # of nodes in AST 158 100
Avg. # of tokens in SBT 632 402
Avg. # of tokens in summary 18 9

(as COO;,,,, is the same index of query), and when s < P+1, the key
content does not need to be gathered. Hence, we only need (2P+1)N
gather operations from content. Secondly, padding positions do not
need to be computed in dot production as the padding positions
of both Qro, and Kyow, are the same. After adding the position
bias, all Qrow, and Ky, can be packed before dot production, then
unpacked to their original length afterwards. By this way, we only
need to compute related node pairs with one dot production.

In consequence, the complexity of GDC includes (2P + 1)Nm
gather operations, 1 dot production with shape [|§4 > 0|, m] and
3 add operations with shape [|64 > 0]], which equals to |54 >
0l(m? +m—1) + (6P +3)Nm + (2P + 1)N.

For better comparison, we also show the theoretical complexity
in Figure 5 under the hyper-parameters in our experiments. As can
be seen, loop has the lowest complexity but cannot be parallelized.
mask and sparse grow quadratically with the AST size. GDC
slightly outperforms GC and has a complexity close to loop.

6 EXPERIMENTS

In this section, we first explain the experimental setup, evaluation
metrics and baseline approaches, then report the main results and
perform ablation studies. The runtime speed and memory cost of
different implementations are provided for comparison. Finally, we
present a qualitative analysis and discuss the future directions.

6.1 Experimental Setup

Datasets. Experiments are conducted on the two public code sum-
marization benchmarks, one in Java [19] and the other in Python [51].
To ensure the quality of comments, we filter the comments with
less than 4 words, constructors, setters, getters, and tester methods,
same as in Shido et al. [41]. When the comment has two or more
sentences, only the first sentence is kept as the description of the

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

ICSE *22, May 21-29, 2022, Pittsburgh, PA, USA

Table 3: Comparison of AST-Trans with the baseline methods, categorized based on the input type. * means implemented by ourselves.

Methods Input Java Python
BLEU (%) METEOR (%) ROUGE-L (%) | BLEU (%) METEOR (%) ROUGE-L (%)
CODE-NN[20] 27.6 12.61 41.10 17.36 09.29 37.81
API+CODE[19] 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model[53] Code 42.39 25.77 53.61 21.80 11.14 39.45
BaseTrans*[1] 44.58 29.12 53.63 25.77 16.33 38.95
Code-Transformer*[57] 45.74 29.65 54.96 30.93 18.42 43.67
TreeZSeq[ll] 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq[51] 38.22 22.75 51.91 19.28 09.75 39.34
GCN*[22] AST(Tree) 43.94 28.92 55.45 32.31 19.54 39.67
GAT*[50] 44.63 29.19 55.84 32.16 19.30 39.12
Graph-Transformer*[40] 44.68 29.29 54.98 32.55 19.58 39.66
Code2Seq*[4] AST(PD) 24.42 15.35 33.95 17.54 08.49 20.93
Code2Seq(Transformer)* 35.08 21.69 42.77 29.79 16.73 40.59
DeepCom[18] 39.75 23.06 52.67 20.78 09.98 37.35
Transformer(SBT)* AST(SBT) 43.37 28.36 52.37 31.33 19.02 44.09
AST-Trans(SBT)* 44.15 29.58 54.73 32.86 19.89 45.92
Transformer(POT)* AST(POT) 39.62 26.30 50.63 31.86 19.63 44.73
AST-Trans 48.29 30.94 55.85 34.72 20.71 47.77
166 |6s =p| 166 104 =p| AdamW optimizer [28] with Ir = 1e—3, f1 = 0.9, f2 = 0.999,0 = le—
5 . 6, label smoothing with 0, = 0.1 [46] and dropout probability [44]
Q 2 Python | 51 of 0.2. The patience in the early stopping mechanism [32] is set to
g | | | 20 and we select the model based on the BLEU in the validation set
ZO.I'.'-. — o4 ; III.". E
1 3 5 >7 1 5 10 >11 Evaluation Metrics. We evaluate the performance with corpus

relative distance p

Figure 6: Distribution of relative distance p in training sets

method. Table 2 shows the statistics of the datasets. We also count
the distribution of relative distances in Fig 6. As can be seen, most
ancestor-descendent and sibling relationships are within the range
of 5 and 10 respectively.

Pre-processing. First, we pre-process the summaries by removing
the punctuations. Next, we split multi-words, such as “gettable-
types', in summaries with wordninja 3 since their corresponding
tokens in the source code are split too [53]. We also split the leaf
nodes in ASTs into sub-tokens if they are in form of the CamelCase
or snake_case. The split nodes are treated as new children of the
original parent node. Finally, we reverse the children of the root
node to prevent the important information, such as function names
or parameters, from being cut when the size of input AST exceeds
the maximum size allowed.

Hyper-parameters. If not specified, the maximum size of AST
is set to 200 for all experiments, and the vocabulary sizes of both
ASTs and comments are set to 30, 000. We use 4 layers of stacked
encoder-decoder and set the hidden size d = 256,m = 32. For
each attention layer, we set hy = 1 and hg = 7. The max relative
distance for ancestor-descendant/sibling relationship Py is set to
10/5 respectively. Feed-forward inner-layer dimension is 2048 and
the activation function is gelu [17]. While training, the batch size is
128 and the maximum epochs is 500. Models are trained using the

3https://github.com/keredson/wordninja

156

BLEU [33], METEOR [6], and ROUGE-L [27].

The experiments used the GPUs provided by Aliyun, which use
EFLOPS [9] architecture and ACCL [10]. EFlops architecture im-
proves the scalability and efficiency of commodilty clusters (CoW),
and ACCL bring the performant efficiency of EFlops architecture
to general cluster systems and Cloud scenarios.

6.2 Baselines

We compare the proposed AST-Transformer with 16 baseline meth-
ods. They can be divided into 5 groups based on the input type:

1: Code. Models with the code as input. It treats code as plain
text and does not leverage ASTs. Code-NN [20] used RNN while
BaseTrans [1] used the Transformer. On the basis of Code-NN,
Dual Model[53] used dual learning to train code summarization
and generation together. API+CODE [19] used multi encoders
to encode code along with the API call sequence. To make up
for the lack of structural information, Code-Transformer [57]
additionally adds four structure distances, including two kinds of
distance mentioned in Sec 3.2, to the code tokens and does attention
computation separately for each kind of distance. Differently, it
does not distinguish embeddings of different relations and uses sine
and cosine functions to represent distance embeddings.

2: AST(Tree). Models with the AST as input and encode it with
tree-specific encoders. There are two main types of such encoders.

One uses Tree-LSTM, such as Tree2Seq [11] and RL+Hybrid2Seq [51].

RL+Hybrid2Seq adds the code information and deep reinforce-
ment for training. The other treats the AST as graph and encodes

4We also report the results with best METEOR and ROUGE-L in the validation set in
Appendix B

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

it with graph neural network (GNN) models. We consider three
kinds of GNN models including GCN [22], GAT[50] and Graph-
Transformer [40]. The edges fed to GNN includes the ancestor-
descendant and sibling edges, distinguished by the edge attributes.

3: AST(PD). Models with the AST linearized with path decom-
position as input. Path representation needs to be encoded from
the nodes, then the whole AST representation is encoded from
the path representations. Code2Seq [4] is the first approach us-
ing PD, and it used two LSTM models to encode hierarchical net-
works. For fairness of comparison, we also design a new baseline
Code2Seq(Transformer) by replacing these two LSTM models
with the Transformer.

4: AST(SBT). Models with the AST linearized with Structure-
based Traversal as input. DeepCom [18] is the first work that uses
AST (SBT) as input, which encodes it with LSTM. We design a new
baseline Transformer (SBT) that encodes AST (SBT) with the
Transformer. AST-Trans(SBT) is our proposed model that inputs
SBT with relationship matrices.

5: AST(POT). Models with the AST linearized with pre-order-
traversal as input. Transformer (POT) is the standard Trans-
former architecture with AST (POT) as input and AST-Trans is
our proposed model with tree-structured attention.

All Transformer-based models are based on the relative position
embeddings with disentangled attention mentioned in Section 3.3
with the same number of parameters. The same hype-parameters are
used through the way for a fully fair comparison.

6.3 Main Results

The main result of AST-Trans and the baselines are presented in
Table 3 3. AST-Trans outperforms all the baselines on all the three
metrics. Specifically, it outperforms the best baseline by 3.61, 2.17
in BLEU, 1.65, 1.08 in METEOR and 0.87, 3.04 in ROUGE-L on the
Java and Python datasets respectively.

Code vs AST (Tree) vs AST (linearized). Apart from AST-
Trans, on both two datasets, using GNNs to encode AST (Tree) achieved
the best results. The reason is that the AST has both structural and
semantic information, and the other two input types both lose part
of the structural information. All three variants of GNNs achieve
similar results and outperform the Tree-LSTM in encoding the AST
(Tree). Compared with taking the linearized AST as input, models
only using the code perform better on the Java dataset but worse on
the Python dataset. This could be related to the code length. As code
and corresponding ASTs in Python are relatively shorter, encoding
ASTs is more effective than in the Java dataset. Therefore, mod-
els using linearized ASTs, with the help of additional structural
information, are able to outperform models using only the code.

AST(PD) vs AST(SBT) vs AST(POT). Among three lineariza-
tion methods, when using the Transformer encoder/decoders, AST
(SBT) performs the best on the Java dataset and AST (POT) performs
the best on the Python dataset. AST(SBT) and AST(POT) both have
their own advantages. AST(SBT) maintains more structural infor-
mation than AST(POT) while AST(POT) has the shortest length

5The results of BaseTrans [1] in the Python dataset are lower than reported in the paper
(-6.75 BLEU, -3.44 METEOR and -7.78 ROUGE), then we set max relative distance P to
16 (kept the same as original paper) and get 27.27(-5.25) BLEU, 15.90(-3.87) METEOR,
38.58(-8.15) ROUGE-L. This reduction may be because that we additionally segment
multi-words in comments.

157

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

Table 4: Ablation study on AST-Trans with/without A and S.

Model Dataset | BLEU(%) METEOR (%) ROUGE (%)
AST-Trans w/o A 47.74 30.21 54.56
AST-Trans w/o S Java 48.07 30.62 55.29

AST-Trans 48.29 30.94 55.85
AST-Trans w/o A 34.35 20.15 46.62
AST-Trans w/o S | Python 34.32 20.28 46.87

AST-Trans 34.72 20.71 47.77

Table 5: Ablation study on h4 and hs on Java Dataset.

ha hs | BLEU (%) METEOR (%) ROUGE-L (%)
0 8 4774 30.21 54.56
1 7 48.29 30.94 55.85
2 6 48.28 30.94 55.64
3 5 48.25 30.92 55.66
4 4 4823 30.96 55.68
5 3 48.11 30.93 55.46
6 2 481 30.74 55.22
7 1 48.24 30.91 55.57
8 0 48.07 30.62 55.29

among these three linearization methods. Using the AST (PD) as
input leads to poor performance on both datasets. There are two main
reasons. On the one hand, AST(PD) method was first proposed for
method name completion. Method names are much shorter than the
code summaries, and do not include many details. PD linearization
extracts features from paths, which aggregates high-level charac-
ters but ignores the detailed information in the node. However, code
summarization requires more detailed information in the code such
as the type of the return value, which is stored in the leaf nodes. On
the other hand, Code2Seq(Transformer) uses a hierarchical network
and the amount of trained parameters is much larger. It is thereby
harder to converge than Transformer(SBT) and Transformer(POT).

Impact of relationship matrix R. We compared the perfor-
mance of three kinds of inputs with or without the relation matrix R:
Code-Transformer vs BaseTrans, AST-Trans (SBT) vs Transformer
(SBT) and AST-Trans (POT) vs Transformer(POT). Results show
that adding R improves the performance for all these inputs and AST-
Trans (POT) performs the best. This is because Code-Transformer
ignores non-leaf node information, and AST-Trans (SBT) stores
duplicate information, resulting in too long sequence length. AST-
Trans (POT) maintains a short sequence length without losing
necessary structural or semantic information.

AST-Trans vs GNN. AST-Trans outperforms GNNs, the best-
performed baseline model in both datasets. With the help of rela-
tionship matrix, AST-Trans includes additional relative distance
information. Nodes can perceive information from its p-distance
neighbors at each layer. For GNN, however, each node needs p
hops to propagate information from these neighbors. In addition,
AST-Trans uses multi-head mechanism to compute different rela-
tionships in different heads, while all relationships, distinguished by
edge attribute, are calculated together in GNNs. AST-Trans also uses
extra feed-forward layers and residual connections in the encoder,
which could help improve the model generalization.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

Table 6: Ablation study on P4 and Ps on Java Dataset.

Pa Pg | BLEU(%) METEOR (%) ROUGE-L (%)
0 0 36.34 23.83 4558
1 1 46.95 30.33 54.24
5 1 47.45 30.11 54.28
5 3 47.82 30.29 54.62
5 5 48.14 30.77 55.45
0 5 48.29 30.94 55.85

Table 7: Ablation study on the number of layers on Java Dataset.

num | BLEU (%) METEOR (%) ROUGE-L (%)
1 16.11 29.36 53.07
2 47.68 30.53 54.97
3 47.41 30.04 54.07
4 48.29 30.94 55.85
5 4738 30.39 54.61
6 48.31 30.58 55.09

6.4 Ablation studies

We conducted ablation studies on four hyper-parameters: use of
each relationship, number of heads used for ancestor-descendant
(h4) and sibling relationships (hg), max relative distance P and the
number of layers. In every study, apart from the hype-parameter
that needs to be analyzed, we keep the rest settings unchanged.

Use of two relationships. We verified the impact of using
ancestor-descendant or sibling relationship separately in Table 4.
Results show that the performance is achieved when using them
all. However, using one of the relationships alone can already achieve
close results and outperform all previous baselines.

Number of attention heads. We change the number of heads
used for the ancestor-descendant relationship h4 from 0 to 8 and fix
the total number of heads to 8. As can be seem from Table 5, the best
performance is obtained with hy = 1 and hg = 7, but there is no
significant difference among all combinations of h4 and hg. Even
when one relationship is missing (hy = 0 or hs = 0), the effects
are still marginal. However, when both relationships are removed
ha = hg = 0, the performance drops a lot. We conjecture that this
phenomenon is related to the characteristics of AST. Knowing about
one relationship can help the model “guess" the other relationship
properly. For example, the node “Compare” can be the child node of
“WhileExp”, “IFExp” or “SwitchExp”, etc, but when it is the sibling
of node “Case”, it can only be the child of node “SwitchExp”. The
information about its parent can be “guessed” in attention compu-
tation with its sibling “Case”. Similarly, node “NameStore” can only
appear on the left side of a statement, and nodes with the same
parent as it must be its right siblings. Messages of these siblings can
be passed to “NameStore” through their common parent. However,
there are many cases that the “guess" will not be successful. For
example, statements a > b and b > a have the same child nodes
and can only be distinguished by sibling relationship, while state-
mentsa=b+ab=b—-aandb =b—a;a = b+ aonly differ in
ancestor-descendant relationship. It could be that the testset does
not have enough hard examples that need this fine-grained distinction
or the current metrics are not enough to reflect the difference.

158

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

Time Memory
600 8000 1
—&— loop
500 mask
6000 {1 —*— sparse
ﬁ 400 —— GC
2 o —=— GDC
300 A - 4000 -
el
S =
£ 200
2000 A
100
0 T T T T 0 T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Size of AST

Figure 7: Runtime and memory cost of five implementations with
batch size=16. The cost of the mask implementation is equal to the
standard Transformer, which grows quadratically with the AST size.

Max relative distance We analyze the impact of the max rela-
tive distance P in Table 6 . According to Table 6, the out-degree and
depth of most nodes in AST is in [0, 5] and [0, 10]. Therefore, the
max relative distance of ancestor-descendant (P4) and sibling rela-
tion (Ps) are selected from [1, 5, 10] and [1, 3, 5] respectively. Results
show that as the relative distance grows, the performance improves
too, suggesting a wider view of nodes in AST relationships is help-
ful. However, the improvement is marginal and even with P = 1,
the model performance can already outperform all other baselines.
This might be ascribed to the multi-layer stacked encoders. Even
for P = 1, longer-distance nodes can still be attended to indirectly
on upper layers. In practice, P can be set as a hyperparameter to
balance the performance-efficiency trade-off.

Number of Layers Finally, we perform ablation study by vary-
ing the number of layers, and the results are presented in Table 7.
In our experiments, we observe that a deeper model (more layers)
performs better, but the improvement saturates after 4 layers.

6.5 Complexity analysis

In Fig 7, We analyzed the rum time and memory usage of different
implementations mentioned in section 4. Different from the theoret-
ical complexity which analyze the attention computation in isolate,
operations in GPU can be computed in parallel, and there are other
factors, e.g. decoder parameters, dependent libraries, vocabulary
embeddings that all need memory usage. Therefore, the need for
computing attention scores is only one part of it and leads to the gap
between Fig 7 and 5, where the difference across implementations
in Fig 7 is much larger. Nevertheless, the trend stays the same. Time
and memory usage of GDC and GC both scale linearly with the
AST size, while the cost of Mask and Sparse grows quadratically.
Even with the batched parallelism in GPUs, the implementation
of mask and sparse are still slower than GDC and GC while re-
quiring significantly more memory cost. GDC is faster and with
less memory usage than GC. The main reason is that GDC uses
one quarter of gather operations compared with GC. Loop shows
a linear growth in memory usage with AST size, but its time cost
is much higher as it does not support parallel operations. When
the AST size grows further, we can expect the difference across
implementations will become larger and larger.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE "22, May 21-29, 2022, Pittsburgh, PA, USA

Figure 8: Heatmaps of relative position representations. x-axis is
the relative position representation and the y-axis is the relative
positions. The variance for the sibling relation (S) is much larger
than that for the ancestor-descendent relation (A).

6.6 Visualization and Qualitative Analysis

Visualization. We further visualize the relative position represen-
tations of ancestor-descendant (A) and sibling (S) relationships in
Fig 8. As can be seen, the variance of relative position embeddings
in S is much larger than in A. It implies that our model is not sensi-
tive to the relative distance between ancestor and descendant nodes,
as the embeddings are almost the same regardless of the positions.
In contrast, the variance for sibling nodes is relatively large, and
the model can distinguish the sibling nodes with different relative
distances. In addition, the relative embeddings in A are demarcated
between the upper and lower part, suggesting a clear distinction
between ancestor and descendant nodes. It shows that our model
pays more attention to direction rather than distance in A. It is likely
that the exact distance between sibling nodes are more important
than that between ancestor-descendant nodes in ASTs.

Qualitative analysis. We provide a couple of examples for qualita-
tive analysis in Table 8. It can be observed that AST-Trans generates
the closest summary to the reference, and lack of A or S hurts the
quality of summarization. In the first case, the key information is
the connection between the sibling nodes method call (“addAll”)
and parameter (“actions”). Both AST-Trans and AST-Trans w/o A
generates the summary as a batch add operation, while AST-Trans
w/o S misunderstands it as “adds an action”. On the contrary, the
meaning of the third case is to get job by the tag first then delete
it. The order of execution is controlled by the ancestor-descent
relationship (the method call “get” is the child node of “delete”), and
AST-Trans w/o A just ignores the “get” operation. The summaries of
AST-Trans w/o A and w/o S are both correct in the second case. The
statements of the second case are relatively simple and ignoring
the order of statements will not affect the function comprehension.

7 THREATS TO VALIDITY

There are three main threats to the validity of our evaluation. Firstly,
many public datasets are proposed to explore code summarization.

159

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

Table 8: Qualitative examples.

public QuickActionView addActions(Collection <Action> actions){
checkShown () ;
mActions.addAll(actions);
return this;
}
AST-Trans w/o S: adds a sub - action to the menu
AST-Trans w/o A: adds the given actions to the list of actions
AST-Trans: adds a collection of actions to the quick action view
Human Written: adds a collection of actions to the quick action view

public java.lang.Object newInstance() {
Object o = newInstanceImpl();
if(o == null){
throw new InstantiationException();

3

return o;
}
AST-Trans w/o S: creates a new object initialized to the string object
AST-Trans w/o A: returns a new instance of the object class
AST-Trans: returns a new instance of the object
Human Written: creates a new instance of a class

def job_delete_by_tag(tag):
Job.objects.get(tag=tag).delete()
return (job_get_by_tag(tag) is None)
AST-Trans w/o S: delete a job and return tag
AST-Trans w/o A: delete a job objects
AST-Trans: delete a job based on its tag
Human Written: deletes a job entry based on its tag

We select two widely used ones to evaluate the proposed AST-
Transformer, but they may not be representative of other program-
ming languages. Secondly, to ensure a fair comparison as much as
possible, we build baselines on the top of the same Transformer
architecture. The architecture and hyperparameter choice might be
sub-optimal for certain approaches °. Finally, there will be a certain
gap between the automatic evaluation and the manual evaluation
of the summarization results. We select three different automatic
evaluation methods to avoid bias as much as possible.

8 RELATED WORKS

Code Summarization. Most approaches on code summarization
frame the problem as a sequence generation task and use an encoder-
decoder architecture. The only difference between it and traditional
machine translation is that programming languages are unam-
biguous and follow rigid grammar rules. Most approaches either
treat the source code as natural language (i.e., a sequence of to-
kens without specified structures), or utilize its structural informa-
tion with the help from ASTs or other parsed forms. To encode
the code sequence, there exist many encoder architectures like
CNN [3], RNN [20, 55] and the Transformer [1]. To leverage the
tree-structured AST, tree-based models such as Recursive NN [26],
Tree-LSTM [41, 51] and Tree-Transformer [15, 52], are used to en-
code AST directly. As tree is a special kind of graph, graph-based
approaches [2, 12, 23] can also be used to encode ASTs. Some works
also combine the code token sequence with the AST and observe
improvement [23-25]. Our approach only needs the linearized AST

Nevertheless, AST-Trans performs best among all reported results on both datasets.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

and can be built upon the Transformer architecture. More impor-
tantly, it restricts the attention range and makes it possible to encode
very long AST sequences.

Tree-based Neural Networks. The existing tree-based neural net-
works can be grouped into two categories depending on their inputs:
(1) The models that directly take the tree as input [15, 31, 34, 47].
These models are strongly coupled with the tree structure, and the
calculation process needs to be performed simultaneously with
the tree traversal. Since trees generally have different shapes by
nature, parallization of training these models is non-trivial. (2) The
models that take the sequence(s) extracted from the tree as input,
such as the sampled paths in the tree [4, 21], the traversal sequence
with tree positional embedding [42] or the structure based traver-
sal (SBT) sequence [18]. Taking sampled paths as input is with a
certain degree of randomness and instability, and the method of
tree positional embedding ignores the concept of paths in the tree
(all nodes, even if not related, will participate in the calculation
together). Our method improves from these two methods, which
can be guaranteed that each node exchanges message on and only
on all paths containing it.

9 CONCLUSION

In this paper, we present AST-Trans which can encode ASTs effec-
tively for code summarization. In AST-Trans, each node only pays
attention to nodes which share the ancestor-descendent or sibling
relationships with it. It brings two benefits: (1) the model is given
an inductive bias and will not get lost in the overlong AST sequence,
and (2) it can reduce the computational complexity from quadratic
to linear. The latter makes it possible to encode long code sequence,
e.g., a whole file, which is prohibitively expensive for standard
Transformers. We conduct comprehensive experiments, showing
that AST-Trans achieve SOTA results on two popular benchmarks
while significantly reducing the computational cost.

We believe the basic idea of AST-Trans can also be applied in
other structured data like data dependence and control flow graphs.
The code is made publicly available to benefit the relevant research.
In future work, we plan to improve AST-Trans by incorporating
more features of the code snippet, such as API sequence and node
type, into the self-attention mechanism.

10 ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of
China (61802167,61802095) ,Natural Science Foundation of Jiangsu
Province (No.BK20201250),Cooperation Fund of Huawei-NJU Cre-
ative Laboratory for the Next Programming, and NSF award 2034508.
We thank Alibaba Cloud for its high-efficient Al computing service
from EFlops Cluster. We also thank the reviewers for their help-
ful comments. Chuanyi Li and Jidong Ge are the corresponding
authors.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.
A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4998-5007.
https://doi.org/10.18653/v1/2020.acl-main.449

160

ICSE *22, May 21-29, 2022, Pittsburgh, PA, USA

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48),
Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 2091-2100.
http://proceedings.mlr.press/v48/allamanis16.html

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net. https://openreview.net/forum?id=H1gKYo09tX
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In Proceedings of
the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Transla-
tion and/or Summarization@ACL 2005, Ann Arbor, Michigan, USA, June 29, 2005,
Jade Goldstein, Alon Lavie, Chin-Yew Lin, and Clare R. Voss (Eds.). Association
for Computational Linguistics, 65-72. https://www.aclweb.org/anthology/W05-
0909/

1z Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. CoRR abs/2004.05150 (2020). arXiv:2004.05150 https:
//arxiv.org/abs/2004.05150

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera Demberg. 2021. On Training
Instance Selection for Few-Shot Neural Text Generation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). 8-13.

Jianbo Dong, Zheng Cao, Tao Zhang, Jianxi Ye, Shaochuang Wang, Fei Feng, Li
Zhao, Xiaoyong Liu, Liuyihan Song, Liwei Peng, et al. 2020. Eflops: Algorithm
and system co-design for a high performance distributed training platform. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 610-622.

Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng Cao, Heng Pan, Lingbo Tang,
Pengcheng Li, Hao Li, Qianyuan Ran, Yiqun Guo, et al. 2021. ACCL: Architecting
Highly Scalable Distributed Training Systems with Highly-Efficient Collective
Communication Library. IEEE Micro (2021).

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-
Sequence Attentional Neural Machine Translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August
7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics. https://doi.org/10.18653/v1/p16-1078

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Struc-
tured Neural Summarization. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=H1ersoRqtm

Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program
comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 2, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010, Jeff Kramer, Judith Bishop, Premkumar T.
Devanbu, and Sebastian Uchitel (Eds.). ACM, 223-226. https://doi.org/10.1145/
1810295.1810335

Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In 17th Working Conference on Reverse Engineering, WCRE 2010, 13-16 October
2010, Beverly, MA, USA, Giuliano Antoniol, Martin Pinzger, and Elliot J. Chikofsky
(Eds.). IEEE Computer Society, 35-44. https://doi.org/10.1109/WCRE.2010.13
[15] Jacob Harer, Christopher P. Reale, and Peter Chin. 2019. Tree-Transformer:
A Transformer-Based Method for Correction of Tree-Structured Data. CoRR
abs/1908.00449 (2019). arXiv:1908.00449 http://arxiv.org/abs/1908.00449
Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. Deberta:
decoding-Enhanced Bert with Disentangled Attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net. https://openreview.net/forum?id=XPZIaotutsD

Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415 http://arxiv.org/abs/1606.08415

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension, ICPC
2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and
Janet Siegmund (Eds.). ACM, 200-210. https://doi.org/10.1145/3196321.3196334

3

=

[4

flat

[5

=

(6

=

7

—

[10]

(1]

(12]

[13]

[14]

[16]

(17]

(18]

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

ICSE *22, May 21-29, 2022, Pittsburgh, PA, USA

[19] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, Jérome Lang (Ed.). ijcai.org, 2269-2275. https:
//doi.org/10.24963/ijcai.2018/314

[20] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.

Summarizing Source Code using a Neural Attention Model. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,

August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for

Computer Linguistics. https://doi.org/10.18653/v1/p16-1195

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Predic-

tion by Feeding Trees to Transformers. In 43rd IEEE/ACM International Conference

on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 150-162.

https://doi.org/10.1109/ICSE43902.2021.00026

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[23] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved

Code Summarization via a Graph Neural Network. In ICPC "20: 28th International

Conference on Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020.

ACM, 184-195. https://doi.org/10.1145/3387904.3389268

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for

generating natural language summaries of program subroutines. In Proceedings

of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,

QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle

(Eds.). IEEE / ACM, 795-806. https://doi.org/10.1109/ICSE.2019.00087

[25] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCom-
menter: a deep code comment generation tool with hybrid lexical and syntactical
information. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 1571-1575. https://doi.org/10.1145/3368089.3417926

[26] Yuding Liang and Kenny Qili Zhu. 2018. Automatic Generation of Text Descriptive
Comments for Code Blocks. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, Sheila A. Mcllraith and Kilian Q. Weinberger (Eds.). AAAI Press, 5229-5236.
https://www.aaai.org/ocs/index.php/AAAT/AAAI18/paper/view/16492

[27] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.

In Text Summarization Branches Out. Association for Computational Linguistics,

Barcelona, Spain, 74-81. https://www.aclweb.org/anthology/W04-1013

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

In 7th International Conference on Learning Representations, ICLR 2019, New Or-

leans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?

id=Bkg6RiCqY7

[29] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Sum-

marization of Context for Java Methods. IEEE Trans. Software Eng. 42, 2 (2016),

103-119. https://doi.org/10.1109/TSE.2015.2465386

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori L. Pollock,

and K. Vijay-Shanker. 2013. Automatic generation of natural language summaries

for Java classes. In IEEE 21st International Conference on Program Comprehension,

ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. IEEE Computer Society,

23-32. https://doi.org/10.1109/ICPC.2013.6613830

[31] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural

Networks over Tree Structures for Programming Language Processing. In Pro-

ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,

2016, Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman (Eds.).

AAAI Press, 1287-1293. http://www.aaai.org/ocs/index.php/ AAAI/AAAI16/

paper/view/11775

Genevieve B. Orr and Klaus-Robert Miiller (Eds.). 1998. Neural Networks: Tricks

of the Trade. Lecture Notes in Computer Science, Vol. 1524. Springer. https:

//doi.org/10.1007/3-540-49430-8

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 311-318. https://www.aclweb.org/anthology/
P02-1040/

[34] Jordan B. Pollack. 1990. Recursive Distributed Representations. Artif. Intell. 46,
1-2 (1990), 77-105. https://doi.org/10.1016/0004-3702(90)90005-K

[35] Heinz Priifer. 1918. Neuer beweis eines satzes iiber permutationen. Arch. Math.

Phys 27, 1918 (1918), 742-744.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with

Relative Position Representations. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018,

Volume 2 (Short Papers), Marilyn A. Walker, Heng Ji, and Amanda Stent (Eds.).

[21

[22

[24

[28

[30

%
0

[36

161

Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, and Zhelin Zhu, Bin Luo

[38

[39

(42

[43

[44

[45

[46

[47

(48

(51

]

Association for Computational Linguistics, 464-468. https://doi.org/10.18653/
v1/n18-2074

Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mittul Singh, and Dietrich
Klakow. 2017. Estimation of Gap Between Current Language Models and Human
Performance. Proc. Interspeech 2017 (2017), 553-557.

Xiaoyu Shen, Jun Suzuki, Kentaro Inui, Hui Su, Dietrich Klakow, and Satoshi
Sekine. 2019. Select and Attend: Towards Controllable Content Selection in
Text Generation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). 579-590.

Xiaoyu Shen, Yang Zhao, Hui Su, and Dietrich Klakow. 2019. Improving la-
tent alignment in text summarization by generalizing the pointer generator. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 3753-3764.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and
Yu Sun. 2021. Masked Label Prediction: Unified Message Passing Model for
Semi-Supervised Classification. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, Zhi-Hua Zhou (Ed.). ijcai.org, 1548-1554. https://doi.org/10.
24963/ijcai.2021/214

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto, and
Tadayuki Matsumura. 2019. Automatic Source Code Summarization with Ex-
tended Tree-LSTM. In International Joint Conference on Neural Networks, [JCNN
2019 Budapest, Hungary, July 14-19, 2019. IEEE, 1-8. https://doi.org/10.1109/
IJCNN.2019.8851751

Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel positional encodings to
enable tree-based transformers. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurlIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 12058-12068.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September 20-24, 2010, Charles Pecheur,
Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 43-52. https://doi.org/10.
1145/1858996.1859006

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929-1958. http://dl.acm.org/citation.
cfm?id=2670313

Hui Su, Xiaoyu Shen, Zhou Xiao, Zheng Zhang, Ernie Chang, Cheng Zhang,
Cheng Niu, and Jie Zhou. 2020. Moviechats: Chat like humans in a closed domain.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 6605-6619.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vi-
sion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2818-2826.
https://doi.org/10.1109/CVPR.2016.308

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers. The Association for Computer
Linguistics, 1556-1566. https://doi.org/10.3115/v1/p15-1150

Ze Tang, Chuanyi Li, Jidong Ge, Xiaoyu Shen, Zheling Zhu, and Bin Luo. 2021.
AST-Transformer: Encoding Abstract Syntax Trees Efficiently for Code Summa-
rization. arXiv preprint arXiv:2112.01184 (2021).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998-6008.
http://papers.nips.cc/paper/7181-attention-is-all-you-need

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, Marianne Huchard, Christian Késtner, and Gordon Fraser (Eds.). ACM,

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

397-407. https://doi.org/10.1145/3238147.3238206

Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. 2020. TranS"3:
A Transformer-based Framework for Unifying Code Summarization and Code
Search. CoRR abs/2003.03238 (2020). arXiv:2003.03238 https://arxiv.org/abs/2003.
03238

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a
Dual Task of Code Summarization. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 6559-6569.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontafién, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
¢8512d142a2d849725f31a9a7a361ab9- Abstract.html

Yang Zhao, Xiaoyu Shen, Wei Bi, and Akiko Aizawa. 2019. Unsupervised rewriter
for multi-sentence compression. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. 2235-2240.

Yuxiang Zhu and Minxue Pan. 2019. Automatic Code Summarization: A Sys-
tematic Literature Review. CoRR abs/1909.04352 (2019). arXiv:1909.04352
http://arxiv.org/abs/1909.04352

Daniel Ziigner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan
Giinnemann. 2021. Language-Agnostic Representation Learning of Source Code
from Structure and Context. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
https://openreview.net/forum?id=Xh5eMZVONGF

[52]

[53]

[54]

[55]

[56

[57]

A ALGORITHM OF GDC

Algorithm 1 Self-Attention with Relationship matrix

Input: Hidden state H, COO format of relationship martix COO,
content functions Q, K, V, relative distance projection matrix
OP KP VP

1. Ke = K(H), Q¢ = Q(H), Ve = V(H)

2: fori=0,...,2P+1do

3: forj~:0,...,N—ld0

4 Qcli;j3:] = Qc[COOpp[i % N + j]s:]
5 Ifc[i;j;] = Kc[COOyowli=N+j];:]
6: Velis ji:] = Ve[COOpow(i* N + j];:]
7: end for

8: end for

9 @=(Q:+0P) o (K. +KP) - QP o KP

10: & = exp(\/%)

11: fori=0,...,2P+1do

12: for j=0,...,N-1do

13: @sum[5COO0row[i* N + jl]+ = @[i, j]
14: end for

15: end for

16 & = 5o

17: fori=0,...,2P+1do

18: forj=0,...,N—-1do

19: 8[COO o [i*N+jli:] = (Velis ji:] + VP [is:]) - & [i,]
20: end for

21: end for

Output: o

For better re-implementation, we also show the algorithm of
GDC. line 1-10 describes the attention score computation process.
Qc, K¢ and V. are reshaped to [2P + 1, N, d]. Note that the attention

162

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Table 9: Comparison of AST-Trans with different model selection
strategy on Java Dataset.

Model BLEU METEOR ROUGE-L
AST-Trans(best_eval_BLEU) 48.29 30.94 55.85
AST-Trans(best_eval METEOR) 47.02 31.90 55.72
AST-Trans(best_eval ROUGE-L) 46.92 29.99 57.01

scores @ have a different shape with traditional attention scores,
so we redesigned the softmax function in line 11-16. The atten-
tion scores belonging to the same query vector, distinguished by
COOyrowli* N + j], are added together as @sym. Then the softmax
function can be formed as & divide by @sym. Finally in line 17-21,
relative distance bias V7 is added to the value context, and then is
multiplied with the attention scores a.

B THE INFLUENCE OF MODEL SELECTION
STRATEGY

The results reported in the paper come from the model with best
BLEU score in the validation dataset. We then separately select
two other models with the best METEOR, and ROUGE-L score
in the valid dataset, and then evaluate their performances on test
dataset. Results in Table 9 show that the model selection strategy
indeed influences the performance. This may explain why that the
improvement of AST-Trans is inconsistent in different metrics.

Authorized licensed use limited to: Southern Methodist University. Downloaded on July 27,2022 at 06:23:06 UTC from IEEE Xplore. Restrictions apply.

