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Abstract—This work proposes a novel design automation
(DA) technique that uses a multifaceted approach combining
Multivariate Regression with Geometric Programming (GP) to
design analog circuits. Previous DA methods employing GP have
typically used analytical derivations of the various design equa-
tions representing an analog circuit. The proposed DA method
eliminates the need for analytical derivations by using simulation
data and multivariate regression to generate statistical models
combined with GP to solve these statistical expressions with
respect to optimum circuit design parameters. This presented
statistical GP method has been applied to successfully design
a five-transistor two-stage operational amplifier and a folded
cascode amplifier in a TSMC 65nm CMOS technology. The
presented statistical GP DA results are comparable to the design
results obtained from both analytical GP and manual design by
an experienced analog design engineer.

Index Terms—CMOS Op-Amps, Design Automation, Geomet-
ric Programming, Linear Regression, Statistical GP

I. INTRODUCTION

Complex analog circuits remain a design automation chal-
lenge that have most commonly been synthesized with either
simulation or model-based methods [1]. Within model-based
approaches, Geometric Programming (GP) has a variety of
advantages, as large-scale GP’s can be efficiently solved using
simple mathematical toolboxes within a few seconds to come
to an optimum solution after only a few iterations. Analytical
GP methods can therefore be executed with little compu-
tational power and time [2]. Circuit design problems have
historically been well formulated using GP [3], and various
low transistor count analog circuits have been successfully
designed using analytical-based GP [4]. Unfortunately, it’s
more difficult to derive equations for complex analog circuits,
and performing such a systematic process would render costly
and require high designer effort to derive the analytical ex-
pressions, thus defeating the intent of automation.

On the other hand, simulation-based DA methods are
currently most popular with access to large computational
power and machine learning (ML) algorithms as optimiza-
tion tools. Some notable simulation methodologies include
DELIGHT.SPICE, FRIDGE, FASY, ANACONDA, MAEL-
STROM and DARWIN [5], [6]. Additionally, recent works
employ simulation based methodologies along with machine
learning algorithms for analog synthesis [1], [7]-[9]. Batch
Bayesian Optimization is used in [1], [7] with small number
of data samples, but requires multiple iterations/runs to reduce
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Fig. 1. Overview of Proposed Design Automation

random fluctuations in output results. Reinforcement learning
has been used to size circuits and meet target specifications
on 96.3% of the design goals tested, however, this method
requires large number of data samples [8]. Problems with
prediction error and machine learning costs are addressed in
[9] using an artificial neural network with a small dataset, but
this approach requires large computational time. The Prism
tool uses automatic generation of posynomial response models
to describe performance characteristics of ASICs [10]. While
this method also eliminates the need for analytical derivations,
it does so using various mathematical techniques rather than
ML algorithms.

This work presents a simulation-based method using multi-
variate regression to form design expressions that statistical GP
uses to optimize an analog circuit’s performance. The overall
algorithm is described in Fig. 1, where design constraints,
target performance, and circuit topologies are fed into the algo-
rithm that outputs optimum design variables and corresponding
performance parameters. The setup time when compared with
analytical GP is significantly reduced by using simulation data.
Additionally, the proposed statistical GP method presents with
low computational power comparable to other state-of-the-art
simulation-based methods.

The presented statistical GP collects data through simulation
only one time and doesn’t require multiple iterations. The work
presented here can later be expanded to include other ML
algorithms that decrease computational power by collecting
smaller number of data samples more iteratively to create the
statistical models. Section II presents the design automation
methodology, detailing the combination of regression and
statistical GP for DA. Section III uses the presented algorithm
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Fig. 2. Proposed Design Automation Procedure

to automate a 2-stage CMOS operational amplifier (op-amp) in
a 65nm TSMC process and compares the presented statistical
GP with analytical GP results. Finally, Section IV presents the
experimental results on a folded cascode amplifier to validate
the presented DA method and compare to other simulation-
based approaches. Section V concludes this work.

II. PROPOSED DESIGN AUTOMATION FLOW

Fig. 2 details the proposed design automation flow, where
design and performance parameter constraints are inputs that
are filtered through specific knowledge based models built
from basic analog circuit knowledge. This allows for smart
sampled data collection. The important data is then checked
against the circuit’s DC constraints, for instance, checking
that all devices are operating in saturation. If DC constraints
are met, heatmaps are then drawn to check for correlation
strengths between design variables and performance param-
eters. If linear relationships are found, then a multi-variate
regression (MVR) model is created. The extracted MVR model
is then formatted to fit a GP optimization problem. The
GP solves for an optimum solution and a tradeoff analysis
is performed between the various performance parameters.
If the input performance specifications are achieved, then
an optimum circuit design has been reached. Otherwise, the
automation loops back to collect more data that will expand
the design space to a potential region where the performance
specifications can be met.

Creating analytical, equation based models for larger cir-
cuits when using analytical GP can be time consuming and
complicated. In this work, analytical derivations are bypassed
by drawing relations between circuit design variables and
circuit performance parameters using simulation data. These
relationships are determined by feeding the collected simula-
tion data to ML algorithms, namely regression for this work,
and fitting the data using trend lines predicted by the regression
algorithm.

A. Linear and Multi-Variate Regression

Linear Regression assumes a linear relationship between the
input variable X and output variable Y, and it has the lowest
mean-squared error compared with other ML methodologies
and allows for interpolation of the relationship, which means
that design predictions can be made in regions where simula-
tion data has not been collected.

While a linear relationship draws a line to compare a single
independent variable with a single dependent, MVR describes
the relationship between multiple independent variables to a
single dependent variable [X,Y]. Once linear relationships be-
tween certain design variables and performance parameters in
the circuit are confirmed, MVR is performed on those design
variables to link them to each single performance parameter.
Heatmaps are first created in MVR to determine the correlation
coefficients between each of these design variables and the
performance parameters. The strongest correlations become
the features, or design variables, used in the MVR model. The
collected data is divided into test samples and training samples
for the regression model. A cost function is selected and a
minimization algorithm, such as a Gradient Descent algorithm
in this work, is used to find the most accurate expressions de-
scribing the relationships between the performance parameters
and the design variables. A Regression Score parameter (R?)
is also output to judge the correlation strength between design
parameters and performance parameters.

B. Geometric Programming

GP is an optimization problem that is able to output
the optimal circuit solution given a set of design parameter
constraints [3]. The presented statistical GP uses the weighted
equations derived from the MVR algorithm that links the
design parameters/variables with the performance parameters.
The objective function needs to be in the form of posynomials
(positive polynomials) for GP; and therefore, the weighted
functions extracted from MVR are an excellent fit for the
optimization problem. The few MVR curve fit equations that
are not suitable for GP are fitted mathematically to suit the
GP format. This formatting includes transformations such as
drawing inverse relationships between a design variable and
a performance parameter. Using statistical GP, the circuit’s
performance parameters are optimized within its design con-
straints. In this work, the GP algorithm was also performed
using analytical derivations (equations) that describe the circuit
to compare the results and prove the validity of statistical GP
with MVR.



ITII. BASIC OpP-AMP DESIGN USING PROPOSED METHOD
A. Design Automation Procedure

The presented algorithm was used to design a basic 2-stage
CMOS op-amp driving a load capacitor (Cr) of 100 fF, as
shown in Fig. 3. The op-amp was designed in the TSMC 65nm
process technology, where the number of fingers for each of
the transistors (M;-My) is varied with fixed width (W) per
finger of 1.2 pum and fixed Length (L) of 100 nm. A fixed
width per finger and length were chosen for this test case,
but the designer may also include varying width per finger
and length in this automation algorithm. The input transistors
(M;-My) were varied together to maintain differential op-amp
behavior. The op-amp’s bias current I;,s was also varied.
Simulation data was collected for 7 performance parameters
using Cadence Spectre: DC Gain (dB), Unity-Gain Bandwidth
(UGB), Phase Margin (PM), Power Consumption (Power),
Common Mode Rejection Ratio (CMRR), Positive Power
Supply Rejection Ratio (PSRR+), and Negative Power Supply
Rejection Ratio (PSRR-). A Heatmap was then created to
understand the correlation factors between design variables
and these performance parameters, as given in Fig. 4. This
information was used to reduce the number of variables in
the MVR models. The Heatmap suggested that correlation of
the performance parameters with transistor fingers fass4 and
fave was weak, and hence while creating the MVR models,
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Fig. 3. Schematic diagram of the 2-stage CMOS Op-Amp
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Fig. 4. Correlation Heatmap for the CMOS Op-Amp

TABLE I
REGRESSION SCORE (R2) FOR VARIOUS PERFORMANCE PARAMETERS
VERSUS DESIGN VARIABLES

Tyias | fmi,m2 | fms | far | MVR
DC Gain (dB) 0.44 0.79 0.70 0.02 0.95
UGB (MHz) 0.22 0.48 0.72 0.05 0.67
Power (uW) 0.63 0.21 0.49 0.80 0.93
Phase Margin (°) 0.01 0.18 0.14 0.92 0.51
Pos. PSRR (dB) 0.05 0.49 0.11 0.77 0.60
Neg. PSRR (dB) 0.53 0.58 0.50 0.65 0.82
CMRR (dB) 0.55 0.60 0.60 0.58 0.95

TABLE II

COMPARISON OF DESIGN SPECIFICATIONS, ANALYTICAL GP AND
STATISTICAL GP RESULTS

Constraint | Specification Analytical GP | Statistical GP
ICMR [0,11Vpbp [0,11Vpp [0,11Vpp
OCMR [0.1,09]Vpp | [0.1,091VpDp [0.08,0.8751Vpp
Power < 500 uW < 168 uW < 132.6 uW
DC Gain >35dB 39.79 dB 40.26 dB

UGB > 500 MHz 655.32 MHz 647.37 MHz

PM > 45° 60° 54.27°

CMRR > 30dB 45.08 dB 45.02 dB

PSRR- > 40 dB 58.44 dB 55.94 dB
PSRR+ > 40 dB 46.89 dB 46.75 dB

these were removed. The R? results of each relationship are
presented in Table I, and show strong correlation between
design variables and performance parameters, with R? scores
above 40% in many cases. The optimum point for each
performance parameter was then solved using GP on the seven
extracted weighted equations from MVR that describe the
seven performance parameters. The final design results results
from the proposed statistical GP algorithm are compared with
design results obtained from an analytical GP [4] in Table II.
The final results are very similar, but statistical GP requires
minimal designer effort.

B. Tradeoff Analysis

Once each performance parameter is individually optimized
against the design variables, a tradeoff analysis is performed
such that designers may decide upon the optimum overall
circuit performance. A sample set of plots are shown in Fig. 5
and 6 for the 2-stage op-amp, where the performance data is

10 H H d @ Power (W) : Range [200,1400]
H S @ UGB (MHz) : Range [500,2500]
@ PM (degree) : Range [75,115]
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Fig. 5. Tradeoff Analysis for Power, UGB and PM against Bias Current
(Ipiqs), and Number of tail transistor Fingers (fs5)



TABLE III
PERFORMANCE SUMMARY AND COMPARISON WITH STATE-OF-THE-ART SIMULATION-BASED DA

[1] [7]

[8] [9]

Parameters (DAC 2020) (TCAD 2021) (DATE 2020) (TCAD 2021) This Work
AutoCkt: Deep . Statistical GP

Methodology Easy-BO MACE Reinforcement Learning ESSAB using ANN using MVR
Op-Amp Design 2-Stage 2-Stage 2-Stage Folded Cascode Folded Cascode
No. of Performance
Parameters Optimized 3 3 4 9 7
Training Samples 150 (20 times) 270 (20 times) 17 x 104 500 2700

. . 2 Intel Xeon X5650 CPUs 2 Intel Xeon CPUs . Intel Xeon CPU Intel Xeon(R) E5-2650
CPU Specification and 128 GB memory and 128 GB memory 8 Core CPU machine and 128 GB memory and 256 GB memory
Process 180 nm SMIC 180 nm 45 nm BSIM 180 nm TSMC 65 nm
Computation Time 1 Hr 36 mins — 1 Hr 18 mins 2 Hrs 30 mins 40 mins
Simulation Platform HSPICE HSPICE AutoCkt interfaced with Cadence Spectre Cadence Spectre

Cadence Spectre & BAG

@ DC Gain (dB): Range [34,40]
@UGB (MHz) : Range [300,900]
@ PM (degree) : Range [0,90]

Normalized Value

Fig. 6. Tradeoff Analysis for DC Gain, UGB and PM against Number of
Fingers of transistors, fyr1,2 & farz

Vins

Fig. 7. Schematic diagram of the Folded Cascode CMOS Op-Amp

normalized in the plot to fit to a single scale. For instance,
in Fig. 5, if the designer wants to save static power by
dissipating less bias current, then the UGB of the op-amp
needs to be sacrificed in order to achieve a particular PM.
Furthermore, optimum sizing of input and tail transistors can
be chosen based on tradeoffs amongst DC Gain, UGB and
PM, as depicted in Fig. 6.

IV. EXPERIMENTAL RESULTS WITH TEST CIRCUIT

The presented DA algorithm was validated through design
of a folded cascode CMOS op-amp with a C, of 1 pF, as

TABLE IV
COMPARISON OF SPECIFICATIONS, DESIGNER RESULTS, AND
STATISTICAL GP RESULTS

Constraint | Specification | Designer’s Result | Statistical GP
ICMR [0,1.01Vpp [0,1.01Vpp [0,1.01Vpbp
OCMR [0.2,0.81Vpbp | [0.2,0.81Vpp [0.15,0.851Vpp
Power < 1000 pW < 609.6 uW < 598.73 uW
DC Gain > 40 dB 43.56 dB 44.16 dB

UGB > 100 MHz 109.8 MHz 119.01 MHz
PM > 60° 67.23 °© 68.62°

CMRR > 60 dB 85.29 dB 87.76 dB
PSRR- > 40 dB 47.78 dB 48.02 dB
PSRR+ > 40 dB 48.42 dB 49.76 dB

shown in Fig. 7. The automated design results were compara-
ble to results obtained from manual design by an experienced
analog circuit designer, as summarized in Table IV. Instead
of varying the widths of all transistors, the simulation data
was collected using analytical techniques such as those in
[11] to reduce simulation time. Cadence Spectre was used
to collect the simulation data. The regression models were
created using Scikit Learn libraries in Python, which produced
models within seconds. Finally, the GP took approximately
2-3 seconds to output the optimized results for all perfor-
mance parameters. An overall comparison of the presented
DA methodology with other simulation-based methods that use
machine learning algorithms is given in Table III. Although the
presented method collects higher number of initial samples,
it does not require iterations and therefore has comparable
simulation times and performance to other state-of-the-art
simulation-based techniques.

V. CONCLUSION

This work presents a statistical GP DA approach that uses
a combination of simulation data, MVR, and GP to design
analog op-amps. Statistical GP is a better alternative to analyt-
ical GP when designing more commonly used complex analog
circuits. The presented approach was successfully verified
through design of two test circuits in a 65nm TSMC process: a
2-stage basic op-amp and a more complex folded cascode op-
amp. The proposed method may be applied to any arbitrary
analog circuit using the presented looping design flow as a
streamlined step-based automation approach.
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