
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022 631

The Level Set Kalman Filter for State Estimation
of Continuous-Discrete Systems

Ningyuan Wang and Daniel B. Forger

Abstract—We propose a new extension of Kalman filtering for
continuous-discrete systems with nonlinear state-space models that
we name as the level set Kalman filter (LSKF). The LSKF assumes
the probability distribution can be approximated as a Gaussian and
updates the Gaussian distribution through a time-update step and
a measurement-update step. The LSKF improves the time-update
step compared to existing methods, such as the continuous-discrete
cubature Kalman filter (CD-CKF), by reformulating the under-
lying Fokker-Planck equation as an ordinary differential equa-
tion for the Gaussian, thereby avoiding the need for the explicit
expression of the higher derivatives. Together with a carefully
picked measurement-update method, numerical experiments show
that the LSKF has a consistent performance improvement over
the CD-CKF for a range of parameters. Meanwhile, the LSKF
simplifies implementation, as no user-defined timestep subdivisions
between measurements are required, and the spatial derivatives of
the drift function are not explicitly needed.

Index Terms—Bayesian filter, kalman-filter, level set, nonlinear
filter.

I. INTRODUCTION

KALMAN Filtering methods are used in many applications.
A Bayesian filtering method updates a state estimation of

the target given knowledge of the system and measurements [1].
The goal of these methods is to estimate the state of a target
system where the dynamics are known, using measurements
taken a fixed time intervals, and accounting for noise or uncer-
tainty in the system and measurements. There are two parts to
these methods. First, a new measurement is used to generate the
best possible estimate of the system state. Second, that estimate
is propagated forward using the system’s dynamics until the
subsequent measurement is available. Here, we present a method
for accurately implementing that second step in the presence of
noise.

The general framework for these problems was first described
by Kalman [2]. A Kalman-Bucy type filtering consists of two
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steps: a measurement-update part that updates the estimation us-
ing the measurement and a state estimation from previous steps,
and a time-update step that updates the state estimation between
consecutive measurements. The level set Kalman filter (LSKF)
method focuses on the improvement of the time-update step, and
the discussions that follow are restricted to the time-update part
unless we explicitly mention the measurement-update.

Assuming that the dynamics are linear (in space), and all noise
is Gaussian, Kalman-Bucy filtering [2] gives an optimal way to
estimate the system state for the time-update. However, in many
cases, we would like to generalize this method to a system where
the dynamics of interest are nonlinear. For such a nonlinear
system, a Gaussian probability density function (PDF) is no
longer preserved, even when the dynamics are quadratic [3].
When the dynamics are approximately linear for the region of
state space where most of the PDF lies, Unscented Kalman
filtering (UKF) [4] can provide a useful method. Additionally,
the UKF is easy to implement since it does not require explicit
evaluation of the Jacobian of the velocity field, which is not
readily available in practical problems where, for example, the
velocity field is implicitly defined.

Researchers have improved how the process noise is incorpo-
rated, but so far, methods are significantly more complicated than
the UKF (e.g., requiring the explicit calculation of a Jacobian)
or only work with specific numerical solvers. Good examples
include the continuous-discrete Kalman filter [5] (CDKF) and
the continuous-discrete Cubature Kalman filter [6] (CD-CKF).
(Note the latter uses the Cubature Kalman transformation as
introduced in [7] instead of the unscented Kalman transforma-
tion, however, it can be reformulated to use either, as explained
in [8].) The CDKF in [5] addresses the continuous nature of the
process noise; however, the derivation of their method involves
approximations such that their method is not exact even if the
dynamics are linear. Moreover, the computation of the prediction
is significantly more complicated than the original UKF, erod-
ing its advantage the CDKF offers by removing intermediate
timesteps. The CD-CKF uses a 1.5-order Itô-Taylor expansion
of the stochastic differential equation, which uses the Jacobian
(or approximations of it) that can be difficult to calculate.
Though the explicit Jacobian can be avoided by deriving specific
Runge-Kutta methods as described in [9], this still complicates
programming and limits the type of numerical solvers available.

Here, we propose the LSKF that addresses these issues. Our
method: 1) does not require the Jacobian or any spatial partial
derivative of the drift function explicitly, 2) allows the use
of adaptive ordinary differential equation (ODE) solvers and
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frees the user from choosing the time discretization, and 3)
shows performance improvements over the CD-CKF, even in
the challenging test cases presented in [6]. From a theory point
of view, our derivation of the method is based on the apparent
velocity of the level set of the probability distribution, which
is a novel approach to analyze these problems, and may enable
further developments.

II. PROBLEM STATEMENT AND BACKGROUND

(Note on notation: we distinguish matrix or vector-valued
quantities v versus scalar-valued quantities v1 by using a bold
font. A list of symbols is included in Table I in the appendix.)

A. Problem Formulation

A continuous dynamic discrete measurement system includes
a continuous-time process described by a Fokker-Planck equa-
tion and a discrete measurement process with measurement
noise.

The discrete measurement process is defined by a transfor-
mation h from state space to the observation space, together
with a zero-mean Gaussian observation noise τ ∼ N (0,R).
Suppose at the time of measurement, the state vector is x, then
the measurement y is given by:

y = h(x) + τ , (1)

where τ ∼ N (0,R).
In between the time where two consecutive measurements

are taken, we assume that the process noise is Gaussian, and the
system equations are described by the Itô process [10]:

dx

dt
= v(x) +

√
K

dβ

dt
, (2)

where v is the drift function, or velocity field defined by the
dynamics,β is a standardddimension Brownian process.K is an
d× d positive semi-definite continuous process noise matrix,
and K =

√
K
√
K

T
.

Then, the PDF u is described by the Fokker-Planck equation
of the following form:

du

dt
=

1

2
∇ ·K∇u−∇ · (vu). (3)

B. Brief Review of Existing Time-Update Methods

Under the assumption that the drift functionv is linear in space
and the process noise matrixK is constant, it can be shown that a
Gaussian PDFu is preserved. (A proof of this fact using level sets
is in the next section). In [2], the derivation of the time-update
step is based on this observation.

One often wants to generalize this method to nonlinear models
even when Gaussian distributions are no longer exactly pre-
served. One generalization would be to use the Jacobian of the
drift function at the mean of the distribution, which is a key
part of the Extended Kalman-Bucy Filter (EKF) method. One
disadvantage of the EKF is the need for an explicit formula of
the Jacobian of the drift function. The UKF is also derived based
on the assumption of a local linearization of velocity; however,
the explicit evaluation of the Jacobian is avoided.

In [6], after their comparison between the continuous-discrete
cubature Kalman filter (CD-CKF), continuous-discrete un-
scented Kalman filter (CD-UKF), and continuous-discrete ex-
tended Kalman filter (CD-EKF), they concluded that “the CD-
CKF is the choice for challenging radar problems”. [2, p.4987]
In [8], Kulikov and Kulikova presented a new filtering method
named the accurate continuous-discrete extended Kalman filter
(ACD-EKF), and compared it to the CD-CKF and CD-UKF.
Note the implementation of the CD-UKF in [8] is more so-
phisticated than that in [6] as it uses the IT-1.5 that is the
same as presented in [6] for the CD-CKF. With the improved
implementation of the CD-UKF, Kulikov and Kulikova reported
in [8] that the CD-CKF and the CD-UKF perform similarly. In
addition, while the ACD-EKF requires less tuning than the CD-
CKF, with sufficient timestep subdivision, the CD-CKF seems
to outperform the ACD-EKF, as stated in the conclusion of [8]:
The highest accuracy is provided by the most time-consuming
filters CD-CKF256 and CD-UKF256. Therefore, we conclude
that with sufficient timestep subdivision, the CD-CKF is still a
benchmark method to compare against.

C. The Time-Update of the CD-CKF With Ito-Taylor
Expansion

In [6], the Ito-Taylor expansion of order 1.5 (IT-1.5) is first
introduced to the time-update step of the continuous-discrete
filtering. It is confirmed in [11] that the Unscented Kalman fil-
tering with IT-1.5 achieves similar performance to the CD-CKF.
For the purpose of comparing time-update, the performance of
the CD-CKF should suffice for a benchmark. Additionally, we
noted that while the IT-1.5 should converge to the accurate result
with a weak order of convergence 2, the implementation in [6]
chooses to only discretize noise once between the measurements
and does not converge to this result, presumably as a tradeoff
to improve speed. For the sake of complete comparison, we
also implemented a version with a proper IT-1.5 expansion that
discretizes noise for every timestep subdivision.

Here we restate the square-root form of the CD-CKF, as
derived in [6].

Time-update: For update with a timestep of ∆t, we define the
function

fd(x, t) := x(t) +∆tv(x(t), t) +
1

2
∆t2(L0(v(x, t))), (4)

where the opertor L0 is defined as

L0 :=
d

dt
+

d∑

i=1

vi
∂

∂xi

+
1

2

d∑

j,p,q=1

√
Kp,j

√
Kj,q

∂2

∂xp∂xq
. (5)

We also define the operator L(v) be the square matrix defined
entrywisely with its (i, j)th element being Ljvi, where

Lj :=
d∑

i=1

√
Ki,j

∂

∂xi
. (6)

Then the time-update algorithm is as follows:
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Require: Guess of initial state x0 at time t0, and a
factorization of a guess of covariance matrix M. Drift
velocity v, continuous process noise matrix K.

1: Find the 2 d cubature points
xi = x0 + (M)i,xi+d = x0 − (M)i, where
i = 1, . . . , d, and (M)i denotes the ith column of M.

2: Evaluate the propagated cubature point:
x∗
i = fd(xi, t0), where where i = 1, . . . , 2 d.

3: Estimate the updated mean by the average of the
cubature points:

x∗
0 :=

1

2 d
x∗
i . (7)

4: Estimate the factorization of the covariance matrix by
the triangularization of the concatenated matrix:

M∗ = tria
([

X∗|
√
∆t(

√
K+ ∆t

2 L(v))|
√

∆t3

12 L(v)
])

,

(8)
where tria(·) denotes applying a triangularization
procedure such as the Gram-Schmidt based
QR-decomposition, X∗ is a matrix with ith column being
x∗
i , L(v) = L(v(x∗

0, t0)).
5: return Estimated updated mean x∗

0 and updated
factorization of the covariance matrix M∗ at t0 +∆t.

D. The Square Root Form of Cubature Kalman
Measurement-Update

Here, we discuss the measurement-update method used in
the CD-CKF and the LSKF. Since the operations from the time-
update can causeM to be positive semi-definite, a measurement-
update method that can accommodate a positive semi-definite
matrix is required for reliability, as pointed out in [6]. We used
the measurement-update method from the square root CD-CKF
method, as stated in Appendix B of [6]. Since the notations
used are different, the measurement-update of the square root
CD-CKF is restated here for reference.

III. DERIVATION OF THE TIME-UPDATE OF THE LEVEL SET

KALMAN FILTER

In this section, we focus on deriving the time-update of the
level set Kalman filter (LSKF). In the first subsection, we show
that a Gaussian is preserved by a local linear approximation to
the original Fokker-Planck equation by tracking its level set. In
this process, we observe that the apparent velocity of the level set
is given by the drift function plus an additional term which we
name as the diffusion velocity. In the second subsection, using
the apparent velocity of the level set, we derive a numerical
method that tracks such Gaussian particles for the time-update
step. In the third subsection, we state the averaged velocity
version of the time-update part of the LSKF, which turns out to
give better results numerically.

Require: Factorization of the predicted covariance
matrix before measurement M, predicted mean before
measurement x̄, measurement y, a factorization of the
covariance of the measurement noise matrix

√
R,

measurement function h
1: Find the concatenated cubature points matrix of size

d× 2 d:

N = x̄+
√

2 d
[
M|−M

]
, (9)

where the vector-matrix addition is applied as x̄
added to
each column of the concatenated matrix [M|−M]

2: Evaluated the propagated cubature points

Y = h(N), (10)

where the measurement function h(·) is evaluated on
each
column.

3: Estimate the predicted measurement

ȳ =
1

2 d

2d∑

i=1

Yi. (11)

4: compute matrices T11,T21, and T22 by the following
QR-factorization:

[
T11 O

T21 T22

]
= qr

([
Y

√
R

N O

])
, (12)

where O denotes a zero matrix of appropriate size.
5: Estimate the cubature gain

W = T21/T11, (13)

where / represents solving for W in T21 = WT11

using a
backward stable solver.

6: Estimate the mean of the corrected state

x̂ = x̄+W(y − ȳ). (14)

7: Estimate a factorization of the corrected covariance
matrix

M̂ = T22. (15)

8: return Corrected mean x̂ and a factorization of the
corrected covariance matrix M̂.

A. Preservation of Gaussian for a Local Linear Approximation

Without loss of generality (WLOG), we may assume the parti-
cle of concern is centered at 0. Moreover, since we are interested
in how the dynamics and diffusion deform the distribution, we
may also set the drift function at center v(0) = 0. With these
simplifications in mind, the original Fokker-Planck equation can
be restated as:

du

dt
=

1

2
∇ ·K∇u−∇ · (vu), (16)
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where u = u(x, t) is the PDF, K is a constant matrix-valued
continuous Gaussian process noise, and v = v(x) is the drift
velocity (field), and v(0) = 0 by our WLOG simplification.

Then, we approximate (16) by taking a linear approximation
of v: v(x) ≈ Jx. (J is the Jacobian matrix.) Then:

Claim 1: A Gaussian distribution is preserved by a Fokker-
Planck equation with a linear drift function.

Stated explicitly: For the following equation:

du

dt
=

1

2
∇ ·K∇u−∇ · (Jxu), (17)

if the initial condition u(x, 0) is given by a Gaussian function

u(x, 0) =
1√

(2π)d det(Σ)
exp

(
−xTΣ−1x

2

)
, (18)

then u(x, t) is also a Gaussian distribution.
The rest of this subsection proves this claim.
We define the auxiliary function F by

F (x, t) :=
u(x, t)

u(0, t)
. (19)

Consider a level set of the function F at t defined as

L(t) :=
{
x ∈ Rd|F (x, t) = c

}
, (20)

where0 < c < 1 is some fixed scalar constant.L(t) is (usually) a
surface, and for a Gaussian as defined inu(x, 0), it is an ellipsoid.
As the function F varies in time, the set L propagates in space.
To describe the movement of the setL, we consider the apparent
velocity the traveling surface.

In particular, a velocity of level set vL is defined by a velocity
field satisfying the level-set equation:

dF

dt
+ vL ·∇F = 0. (21)

(Note: this can be understood as the chain rule. For a more
detailed explanation, refer to equations (1) and (2) in [12]. Also,
note the velocity of the level set is uniquely defined up to
tangential directions since tangential movements along the level
set vanish since they preserve the level set.)

To proceed to the proof, we first consider the lemma:
Lemma 1: The velocity field

vL = Jx+
1

2
KΣ−1x (22)

is a velocity of the level set for L(0) defined in (20). Also, this
velocity of the level set is linear in space.

Proof of Lemma 1: First, we note the velocity field is linear
in space. To check that it is a velocity of the level set:

Since F is defined as a quotient of u(x, 0) and u(0, 0), we
may omit the normalizing factor in u, and take

u(x, 0) = exp

(
−xTΣ−1x

2

)
(23)

as the initial condition. Then:

dF

dt
|t=0 =

u′(x, 0)u(0, 0)− u′(0, 0)u(x, 0)

u2(0, 0)
. (24)

By (23), we note that u(0, 0) = 1. We simplify (24) using this
substitution:

dF

dt
|t=0 = u′(x, 0)− exp

(
−1

2
xTΣ−1x

)
u′(0, 0). (25)

Substitute time derivatives u′ with (17):

dF

dt
|t=0 =

(
1

2
∇ ·K∇u−∇ · (Jxu)

)
|t=0,x=x

− exp(. . . )

(
1

2
∇ ·K∇u−∇ · (Jxu)

)
|t=0,x=0,

(26)

where

exp(. . . ) := exp

(
−1

2
xTΣ−1x

)
. (27)

continuing the computation, we find that:

∇ ·K∇u = ∇ ·
(
−K exp(. . . )Σ−1x

)
(28)

= exp(. . . )Σ−1x ·KΣ−1x−exp(. . . ) tr (KΣ−1)
(29)

= exp(. . . )(Σ−1x ·KΣ−1x− tr (KΣ−1)). (30)

And

∇ · ((Jxu)) = ∇u · Jx+ u∇ · Jx (31)

= exp(. . . )(−Σ−1x) · Jx+ exp(. . . ) tr (J)
(32)

= exp(. . . )( tr (J)−Σ−1x · Jx). (33)

Substitute these two terms into (26), we have

dF

dt
= exp(. . . )

(
1

2
Σ−1x ·KΣ−1x− 1

2
tr (KΣ−1) (34)

+ tr (J)−Σ−1x · Jx
)

− exp(. . . )

(
−1

2
tr (KΣ−1) + tr (J)

)

= exp(−1

2
xTΣ−1x)

(
1

2
Σ−1x ·KΣ−1x+Σ−1x · Jx

)
.

(35)

Meanwhile, we check that

vL ·∇F = vL ·∇
(
exp

(
−xTΣ−1x

2

))
(36)

= vL · (−Σ−1x exp(−1

2
xTΣ−1x)). (37)

Substitute the level set velocity term vL from (22), we get that

vL ·∇F = − exp(−1

2
xTΣ−1x)(Jx+

1

2
KΣ−1x) ·Σ−1x.

(38)

Comparing the results from (38) and (35), we conclude that

dF

dt
+ vL ·∇F = 0. (39)
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Therefore vL is a velocity of the level set, as defined in (21).
We now proceed to the proof Claim 1: !
Proof of Claim 1: Lemma 1 shows that every level set is

propagated by a linear velocity field independent of the choice
of level set (in other words, independent of the choice of c.) In
particular, it is propagated by a linear transformation instanta-
neously. Consequently, between any fixed time 0 and ∆t, the
Gaussian is mapped by a linear transformation. Since a linear
transformation maps Gaussians to Gaussians, the velocity field
vL is always well-defined as the covariance term in (22) is
defined, whereas other terms are known.

Before we proceed, we should note that the claim is a corollary
of equation (29) in [2] by Kalman and Bucy that started the
discussion of continuous-discrete Kalman filtering. The signif-
icance of the proof is that by using a square-root factorization,
the transformation is now given by an explicit formula that does
not involve an integral. We also note that while the formula (22)
is restricted to a normal distribution, tracking distribution by
analyzing the propagation of level set as defined in (20) can
potentially be applied to an α-stable distribution introduced
in [13]. This gives a possibility to extend α-stable filtering
methods [14], [15] to a continuous-discrete problem. !

B. Deriving the Time-Update of the LSKF

We now describe the numerical algorithm inspired from the
velocity of level set (22). Tracking the movement of the Gaussian
is equivalent to tracking one of its ellipsoid level sets (as defined
in (20)). If the mean of the Gaussian remains at 0, then a
factorization of the covariance matrix Σ = MMT can be used
to represent the Gaussian. This factorization also represents
the unique level set ellipsoid spanned by the columns of the
factorization M. More specifically, set

M(0) =
[
x1(0) · · · xd(0)

]
(40)

as initial conditions, and let xi(t) be the solutions of (22). (One
may interpret xi(t) as a point on the level set, which travels at
the apparent speed defined by a velocity of level set.)

Then Σ(t) defined as

Σ(t) := M(t)M(t)T (41)

is the covariance matrix for the Gaussian at time t since it is a
similarity transformation. SupposeA is the linear transformation
from time 0 to t, then xi(t) = Axi(0), and

Σ(t) = M(t)M(t)T

= AM(0)M(0)TA

= AΣ(0)AT .

Therefore applying linear transformation A to the ellipse is
equivalent to applying it to all column vectors in M.

The Jacobian of the velocity field J that appears in (22) is not
explicitly needed. Instead of direct evaluation of the Jacobian,
we approximate the effect of the drift velocity by applying a
quadrature rule. In this section, we use the forward difference
in space to derive the method. Specifically, we notice Σ−1 =
M−TM−1, (where M−T indicates the inverse transpose) and

the xis are columns of M. Therefore for all xis on the level set
ellipsoid, by substituting the terms in (22), we find the apparent
velocity of the level set is approximated by

dxi

dt
= v(x̄+ xi)− v(x̄) +

1

2
K(MT )−1ei, (42)

where x̄ is the mean of the Gaussian. In the case the Gaussian
is centered at 0, x̄ = 0. ei is the ith unit vector with all entries
0 except that ith entry is 1.

Recall that the xis are columns of M. In a matrix short-hand
(where the matrix-vector additions are defined entry-wise, and
recall vectors are column vectors):

dM

dt
= v(x̄+M)− v(x̄) +

1

2
K(MT )−1. (43)

Whereas the velocity for center is given by

dx̄

dt
= v(x̄). (44)

Based on the form of the equations, the assumptions x̄ = 0 and
v(x̄) = 0 can be dropped.

Concatenating x̄ and M as a variable (x̄|M) of dimension
d× (d+ 1), we obtained a nonlinear ODE in this space. Any
standard ODE solver can be applied to this ODE to complete
the time-update between the measurements.

Note that to evaluate the velocity of one point xi on the
level set, both the mean x̄ and all other points xj for this
Gaussian kernel are needed, hence the points on a level set cannot
be updated independently (in contrast to the time-update step
for both the UKF and the CD-CKF). This provides intuition
about the difference between our method and others: while
other methods looks at the past covariance information and
rely on an expansion in time, our method uses only the current
information about the covariance matrix. Except for the purpose
of numerically solving the ODE, our method does not need
time-discretization.

C. Motivating Example: Linear Drift Function

As an illustration for the time-update method, we consider the
following Fokker-Planck equation with a linear drift function:

du

dt
= ∇ ·K∇u−∇ · (Jxu) (45)

with parameters

K =

[
1
2

1
4

1
4

3
2

]
J =

[
0 0.1

0 0

]
.

We consider the solution of the initial value problem with initial
condition

u(x, 0) =
1√

(2π)d det(Σ0)
exp

(
−xTΣ−1

0 x

2

)
, (46)

where the initial covariance is given by

Σ0 =

[
2 1

1 2

]
. (47)
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Fig. 1. Log-log graph of the error of covariance matrix in the infinity norm
with linear Fokker-Planck equation. This shows that our method preserves the
order of accuracy of the ODE solver.

In Section III, we proved that propagating level sets by (22),
and consequently (43) exactly solves (45). To give a concrete
numerical example of this property, we check the convergence
of numerical ODE solvers for the initial value problem and find
the error of the density function at t = 10 with ODE solvers
of different order. We factor Σ0 = M0MT

0 , and set the ODE
(43) with the initial condition M(0) := M0. To verify that our
method is accurate for the linear Fokker-Planck equation (45),
we check that when using different numerical ODE solvers, the
solution converges to the same value, with the rate of conver-
gence coinciding with the order of the ODE solver.

In Fig. 1, we verify that for the Runge-Kutta methods of
order 1, 2, and 4, the error of u(·, 10) measured in infinity
norm converges at the same order of the ODE solvers, which
is expected if the reformulation (43) is exact for (45).

D. The Averaged Velocity Level Set Time-Update

Here we state the averaged velocity level set time-update
method, which uses central difference instead of forward differ-
ence, and shows better accuracy in numerical experiments (See
Appendix A for an example) when compared versus the version
in Section III-B.

We set the velocity of the mean (dx̄)/dt by the averaged
velocity:

dx̄

dt
= va(x̄,M) :=

1

2 d

d∑

i=1

(v(x̄+ xi) + v(x̄− xi)) . (48)

(Recall that xi are columns of the matrix M) and the velocity
of the matrix M:

dM

dt
= v(x̄+M)− va +

1

2
K(MT )−1. (49)

It can be easily seen that when the drift velocity field v is linear
in space, equations (49) and (43) are identical, and va(x̄,M) =
v(x̄).

Using this averaged velocity, here we summarize the LSKF:

Require: Guess of initial state x̂0 at time t0, and a
factorization of a guess of covariance matrix M̂0,
measurements y1 . . . ,yn at time t1, . . . , tn.

Drift velocity v, continuous process noise matrix K,
measurement function h, a factorization of the
covariance matrix R of a zero-mean Gaussian
measurement noise.

1: for j = 1,..., n do
2: Set the problem of x̄(t) and M(t) given by:

dx̄

dt
=

1

2 d

d∑

i=1

(v(x̄+ xi) + v(x̄− xi)) (50)

dM

dt
= v(x̄+M)− va +

1

2
K(MT )−1, (51)

with initial condition x̄(tj−1) = x̂j−1, and
M(tj−1) = M̂j−1 (Recall: va is defined in (48), also
recall that xi are columns of M.)

3: Time-update: solve the above equation from tj−1 to
tj using a numerical ODE solver, and approximate
x̄j = x̄(tj), Mj = M(tj) with the numerical
solution.

4: Measurement-update: Find the corrected mean x̂j

and corrected covariance matrix M̂j at time tj by
applying the measurement-update algorithm defined
in subsection II-D, with input x̄j , Mj , and R.

5: end for
6: return Predicted corrected state x̂1, x̂n, at t1, . . . , tn,

with a factorization of the predicted corrected
covariance matrix M̂1, . . . , M̂n.

E. Comparing Convergence: Achieving Beyond IT-1.5 Without
Explicit Higher Derivatives

In Section II-C, we introduced the CD-CKF with IT-1.5. Here,
we compare the convergence rate of the time-update of the CD-
CKF (as implemented in [6], and with proper IT-1.5) with that
of the LSKF.

Consider a simple harmonic oscillator:

x(t) := [ε(t) ε̇(t) ε̈(t)]T , (52)

where ε, ε̇, and ε̈ are the position, velocity, and acceleration of
the oscillator. Its time derivative is given by

v(x) = [ε̇ ε̈ − ε]T . (53)

This oscillator is also subject to a continuous process noise,
defined by the diagonal diffusion matrix:

K = diag[0.012 0.012 0.022]. (54)

Since the dynamics are linear, the Gaussian is preserved, and
we expect the result from the LSKF and the proper IT-1.5 to
converge to the exact solution.
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Fig. 2. Convergence of the mean x and covariance matrix with the CD-CKF
and the LSKF. The left panel shows the error (measured in L2 norm) in mean
value as a function of the timestep, whereas the right panel shows error (measured
in Frobenius norm) in the covariance matrix. In each panel, CD-CKF (blue)
denotes the time-update implemented in [6], IT-1.5 (red) denotes the CD-CKF
with the proper IT-1.5 expansion, LSKF-RK2 (yellow), and LSKF-RK4 (purple)
denotes time-update of the LSKF with Runge-Kutta solvers of order 2 and 4
respectively. The Runge-Kutta 4 version is cut short due to finite precision linear
algebra.

To find the order of convergence, and compare the methods,
we consider the following initial condition problem. Given initial
condition

x(0) = [1 0 0]T (55)

and initial covariance matrix

Σ(0) = diag[0.012 0.012 0.032], (56)

we would like to find the end state at t = 0.2 using the above
mentioned methods. By subdividing the timesteps, we arrive
at the following convergence result: Similar to Fig. 1, Fig. 2
shows that the time-update of the LSKF converges the same
order as the underlying ODE solver. Importantly, note the proper
IT-1.5 and the LSKF-RK2 converge to the same limit mean and
covariance matrix at a weak order of convergence 2, validating
the correctness of both methods. (Note: they do not converge
to the same square root of the covariance matrix, which is not
surprising given that the matrix square roots are not unique.)
The time-update of the CD-CKF as implemented in [6] does not
converge to the same limit. Comparing the LSKF-RK4 versus
the proper IT-1.5, it can be noted that much fewer timestep
subdivisions can achieve similar truncation errors. As pointed
out in [11], the IT-1.5 already requires explicit first and second
derivatives ofv(x), and any higher-order Ito-Taylor expansion is
necessarily more complicated. On the contrary, the time-update
of the LSKF, as defined in (49) does not require the explicit
expression of the derivatives of v(x), and can achieve a higher
order of convergence with the freedom to choose any ODE
solver.

IV. NUMERICAL EXAMPLE: THE RADAR TRACKING

COORDINATED TURN TEST CASE

A. Problem Description

Here, we follow the test case presented in [6], considering
the scenario where a radar station tracks an aircraft making
a coordinated turn. Since the CD-CKF in [6] is claimed to
be the choice for challenging radar problems, we compare
LSKF against CD-CKF in the most challenging scenario they
considered with ω = 6◦/s with sampling intervals T = 2 s,
T = 4 s, and T = 6 s. (Note: conversion to radians per second
is required) Additionally, we consider the more challenging
scenario with ω = 12◦/s and ω = 24◦/s. We implemented the
CD-CKF based on the square root form formulated in [6], using
their implementation presented at [16]. The details of the test
case are as follows:

The aircraft is described by a 7-dimensional state vector

x(t) := [ε(t) ε̇(t) η(t) η̇(t) ζ(t) ζ̇(t) ω(t)]T , (57)

where ε(t), η(t), ζ(t) describes the position, in meters,
ε̇(t), η̇(t), ζ̇(t) describes the velocity of the aircraft, in meters
per second, and the ω(t) describes the turn rate of the aircraft,
in radians per second. The dynamics of the aircraft are defined
by the following drift equation:

v(x(t)) = [ε̇ − ωη̇ η̇ ωε̇ ζ̇ 0 0]T . (58)

The noise term is defined by the following diagonal diffusion
matrix:

K = diag([0 σ2
1 0 σ2

1 0 σ2
1 σ2

2 ]), (59)

where σ1 =
√
0.2, and σ2 = 7× 10−4. (Note: in [6], they sug-

gested σ2 = 7× 10−3. However, the accompanied code pro-
vided by Arasaratnam on his webpage [16] used the parameter
σ2
2 = 5× 10−7, which matches closely with σ2 = 7× 10−4.

Our calculated RMSE also turns to be similar as shown in Figs. 2,
3 and 4 in [6] if7× 10−4 is chosen, whereasσ2 = 7× 10−3 does
not give similar results.)

The measurement is from a single radar station located at
s = [1500 10 0]. The radar station measures the distance r,
azimuth angle θ and elevation angleφ relative to the radar station.
The measurement function is therefore given by:




r

θ

φ



 =





√
(ε− 1500)2 + (η − 10)2 + ζ2

arctan( η−10
ε−1500 )

arctan

(
ζ√

(ε−1500)2+(η−10)2

)



+w. (60)

where the measurement noise τ ∼ N (0,R), with measurement
noise matrix R = diag([σ2

r ,σ
2
θ ,σ

2
φ]), where σr = 50,σθ =

0.1◦,σφ = 0.1◦ (Note: the standard deviations σθ and σφ are
measured in degrees, and a unit conversion is needed).

For the test scenario, the aircraft starts with the initial state

x0 = [1000 0 2650 150 200 0 ω0]
T , (61)

where ω0 is the initial turn rate, and the measurement is taken
with a constant time interval T . The total time for simulation
is chosen to be 120 seconds. The turn rate and measurement
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Fig. 3. RMSE and count of divergence results, for a fixed measurement interval T = 6 s varying m and ω0, where m is the number of timestep subdivisions
between measurements, and ω0 is the initial turn rate. Each row gives the performance metrics for the same initial turn rate, whereas each column contrasts the
same performance measurement across different initual turn rates. Note for ω0 = 24◦/s and m = 1, all results from the CD-CKF are divergent.

interval vary across test cases to examine the performance of
the filters. The initial covariance is taken as

Σ = diag([100 1 100 1 100 1 0.01]), (62)

based on a physically realistic assumption: from an observer
on the ground, one would have a reasonably good guess about
its position with standard deviation σ = 10 meters, and a good
guess about its velocity through differentiation with σ = 1 me-
ters per second, but a rather bad guess for the turn rate with
σ = 0.1 radian per second, or approximately 5.73 degrees per
second.

B. Numerical Results

With the problem description complete, we now turn
to present our numerical results. N = 100 experiments are

executed for each set of parameters, and the same set of experi-
ments is applied to all candidate filters. The main performance
metric used is the Root-mean square error (RMSE) for position,
velocity and turn rate. For example, RMSE for position is defined
as:

√
1

NK

∑N

n=1

∑K

k=1

(
(εnk − ε̂nk )

2+(ηnk − η̂nk )
2+(ζnk −ζ̂nk )

2
)
,

(63)
where N is the number of experiments, and K is the number of
measurements in each experiment.

Another metric we consider is the number of divergent re-
sults, which we define as any result that has an error larger
than 500 or ends prematurely due to a not a number error.
Following [6], we evaluate the performance of each method
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Fig. 4. RMSE with varying the measurement interval from 1 through 7 seconds, and varying the initial turn rate ω0. For the CD-CKF, a timestep subdivision of
m = 64 is chosen to ensure that the CD-CKF is performing optimally. For the LSKF, an adaptive ODE solver is used and no timestep subdivisions are manually
inserted. All results from the CD-CKF and the LSKF are convergent.

at different subdivisions, m, of the timestep between mea-
surements. Since our method is defined purely as a refor-
mulated ODE, the subdivision of the timestep is the same
as a timestep in a fixed timestep ODE solver, such as the
widely-used Runge-Kutta 4 method. Additionally, to verify our
claim that the choice of timestep subdivision can be completely
passed to the ODE solver, we also use an adaptive solver,
ode113, which is integrated into the MATLAB software pack-
age. In this sense, we introduced 2 implementations of the
LSKF, which we call the LKSF-RK4 and LSKF-adaptive re-
spectively. In the following examples, we will verify that the ad-
ditional subdivisions do not affect the numerical results from the
LSKF-adaptive.

Our numerical results in Fig. 3 show that our methods consis-
tently outperform the CD-CKF in this test case, across all choices
of angular velocity and timestep subdivisions. Importantly, note
that the performance of the CD-CKF cannot match that of
the LSKF-adaptive even if sufficient timestep subdivisions are
introduced. We suspect this is due to the fact that the CD-CKF as
introduced in [6] only uses the IT-1.5 expansion at the beginning

of each time-update step but not at the subdivided timesteps,
whereas our method is defined using instantaneous information
and is not subject to this limitation.

Equally importantly, note that the LSKF-adaptive version
of our method gives the same result independent of the sub-
divisions introduced. Additionally, the fixed-timestep LSKF-
RK4 converges to the LSKF-adaptive result, as expected for
a consistent ODE solver. In practice, a user can always use the
LSKF-adaptive version with the choice of adaptive ODE solvers
that gives the best performance without needing to consider
timestep subdivisions manually. In Fig. 4, we verify that even
with sufficient timestep subdivision for the CD-CKF, the LSKF
still outperforms the CD-CKF over all the parameters chosen,
even when no intermediate timesteps are manually inserted. Ad-
ditionally, the difference in performance between the CD-CKF
and the LSKF is more significant when the measurement interval
T is large, whereas the results are similar when T = 1 s. With
this in mind, we proceed further into the numerical experiments,
using sufficient timestep subdivisions (m = 64) for the CD-
CKF, whereas no additional pre-defined timestep subdivisions
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(m = 1) for the LSKF-adaptive, and vary the measurement
interval T from 1 s to 7 seconds with an increment of 1 s.

In conclusion, for the test case picked by [6], our LSKF
method consistently outperforms the CD-CKF across the chal-
lenging scenarios introduced by them. In addition, our method
requires less input from an end-user, as our method only requires
knowledge of the drift function explicitly, whereas the CD-CKF
also requires the first and second spatial derivatives of the
drift function, as well as a user-defined timestep subdivision
parameter m. Finally, the elegance of reforming the system as
an ODE without introducing expansion in time gives more room
for possible future improvement.

V. CONCLUSION

In this paper, we derived a novel Level Set Kalman Filter
method for nonlinear continuous-discrete systems. From a the-
ory standpoint, our derivation is based on the movement of a
level set instead of the moments of a distribution. Our method
reformulates the time-update of the filtering as an ODE. As
a consequence of this formulation, our description is instanta-
neous, in contrast to existing methods that use some expansion
in time to approximate the continuous process noise.

From a practical point, for the radar tracking coordinated turn
test case, our method consistently outperforms the CD-CKF
over a range of challenging scenarios. Additionally, our method
requires less explicit information about the model, and our
instantaneous formulation allows a user to easily pass the task
of choosing a timestep to the well-established field of adaptive
ODE solvers. The numerical results indicate that our method is
a good candidate for challenging tracking problems, especially
if an appropriate timestep cannot be determined a priori.

APPENDIX A
COMPARISON OF THE STANDARD, AVERAGED AND PARTIALLY

AVERAGED TIME-UPDATE OF THE LSKF

In equations (43) and (49), we defined the (standard) time-
update and the averaged velocity time-update equations. Here
we use a numerical example to illustrate the difference in be-
havior between these methods. Additionally, we introduce the
partially averaged velocity time-update equations as a trade-off
option between the standard and the averaged velocity version.
Using the same notations as in (43) and (49), the partially
averaged velocity is defined as

vp :=
1

2 d

(
d∑

i=1

(v(x+ xi)) + d× v(x− x1)

)
. (64)

Correspondingly, in matrix form, the time-update ODE using
partially averaged velocity is defined by

dM

dt
= v(x+M)− va +

1

2
K(MT )−1. (65)

As an illustrative example to show the effects of using an aver-
aged velocity or partially averaged velocity versus evaluating the
velocity at the center when a nonlinear drift velocity is present,

we consider the following system:

du

dt
= −∇ · (vu),

where a, b are positive constants, and

v(x, y, 0) = (0, x2)

u(x, y, 0) =
1

2πab
exp

(
−

x2

a2 + y2

b2

2

)
.

(Note x, y in the following equation are not in bold, and are
scalars) The analytic solution to this transport equation is given
by

u(x, y, 0) =
1

2πab
exp

(
−

x2

a2 + (y−xt)2

b2

2

)
.

To compare the performance of the three LSKF methods, we
compute the averaged L2 error of the results with the analytical
result, with randomly chosen matrix square root MMT = Σ.
As can be observed from Fig. 5, the partially averaged velocity
and averaged velocity version has less RMSE than the standard
method. The averaged velocity method is less sensitive than the
partially averaged method in that the covariance entries are less
dependent on the choice of matrix square root. However, since
the partially averaged method requires d+ 1 evaluations of the
drift velocity whereas averaged method requires 2 d evaluations,
the partially averaged method is still useful as it can be consid-
ered as an efficient improvement from the standard version.

APPENDIX B
COMPUTATIONAL COST OF THE LSKF

A count of FLOPs would be misleading for this method,
as the main function reformulates the function as an ordinary
differential equation, and the number of steps used is highly
dependent on the choice of the numerical ODE solver and the
numerical properties of the problem when an adaptive solver is
used. When using an ODE solver, most of the computational
cost is associated with evaluating the derivative. Therefore,
we find the number of evaluation of the drift velocity v, and
FLOPs needed for a single derivative evaluation in (49). The
computation cost for the time-update is then mainly decided by
the number of derivative evaluations needed and the length of
the timestep. The measurement-update is identical to that of the
CD-CKF, which is listed in Table V of [6] and is omitted here.

Computations needed for (49) are:
1) Evaluate the averaged velocity:

dx̄

dt
= va(x̄,M) :=

1

2 d

d∑

i=1

(v(x̄+ xi) + v(x̄− xi)).

(66)
2 d drift velocity evaluations and O(d2) FLOPs.

2) Find K(MT )−1: if solved by LU factorization, forward
substitution, and back substitution: 8

3d
3 +O(d2) FLOPs.

3) Evaluate (49): O(d2) FLOPs.
In total, 2 d drift velocity evaluations and 8

3d
3 +O(d2)

FLOPs are needed for evaluating (49). When using a fixed
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Fig. 5. A comparison between the partially averaged (blue), averaged (red), and primitive (yellow) LSKF applied to a nonlinear system. (a) shows the trajectories
of the center and level set. (b) shows the averaged L2-norm of error over 1024 trials. (c) shows the averaged standard deviation of the covariance matrix.

Runge-Kutta 4 method, 4 such evaluations are needed per
timestep, which results in 8 d drift velocity evaluations and
32
3 d3 +O(d2) FLOPs per time-update. If the measurement

interval is short, then a fixed Runge-Kutta 2 method can be
used, with half evaluations needed. For most scenarios, we
suggest using an adaptive solver to automatically determine the
appropriate timestep given a target error bound.

APPENDIX C
LIST OF SYMBOLS AND NOTATIONS

All symbols and notations used in more than one locations
are listed in Table I.

TABLE I
LIST OF SYMBOLS AND NOTATIONS
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