L3BOU: Low Latency, Low Bandwidth, Optimized
Super-Resolution Backhaul for 360-Degree Video
Streaming

Ayush Sarkar*, John MurrayT, Mallesham Dasarit, Michael Zink', Klara Nahrstedt*
*University of Illinois Urbana-Champaign, TUniversity of Massachusetts Ambherst, ¢St0ny Brook University
*{ayushs2, klara} @illinois.edu Tjomurray@umass.edu, zink @ecs.umass.edu J:mdasari@cs.stonybrook.edu

Abstract—In recent years, streamed 360° videos have gained
popularity within Virtual Reality (VR) and Augmented Reality
(AR) applications. However, they are of much higher resolutions
than 2D videos, causing greater bandwidth consumption when
streamed. This increased bandwidth utilization puts tremendous
strain on the network capacity of the cloud providers streaming
these videos. In this paper, we introduce L3BOU, a novel, three-
tier distributed software framework that reduces cloud-edge
bandwidth in the backhaul network and lowers average end-to-
end latency for 360° video streaming applications. The L3BOU
framework achieves low bandwidth and low latency by leveraging
edge-based, optimized upscaling techniques. L3BOU accom-
plishes this by utilizing down-scaled MPEG-DASH-encoded 360°
video data, known as Ultra Low Resolution (ULR) data, that the
L3BOU edge applies distributed super-resolution (SR) techniques
on, providing a high quality video to the client. L3BOU is able
to reduce the cloud-edge backhaul bandwidth by up to a factor
of 24, and the optimized super-resolution multi-processing of
ULR data provides a 10-fold latency decrease in super resolution
upscaling at the edge.

Index Terms—360° video, video streaming, super-resolution,
edge computing, bandwidth, latency

I. INTRODUCTION

360° videos achieve unique visual immersions temporally
and spatially, allowing users to view panoramic content by
seamlessly altering the locations of their viewports through
Head-Mounted Displays (HMDs) and players amenable to
360° media. 360° video content is currently on the rise with
the proliferation of devices that facilitate Virtual Reality (VR)
and Augmented Reality (AR) video traffic, which is expected
to reach 4.02 exabytes per month by 2022 [16]. Streaming
panoramic videos does not come without added challenges;
even the most lax Quality of Experience (QoE) benchmarks
pertinent to 360° use cases necessitate demanding data re-
quirements. 360° videos require significantly higher network
bandwidth and bitrates than those of conventional videos
to achieve similar perceived quality levels. Furthermore, the
proximities of HMD displays that enable 360° content viewing
to users’ faces dictate an even greater emphasis on low
latency requirements. Similar to 2D videos, 360° videos can
be streamed via Dynamic Adaptive Streaming over HTTP
(DASH) [7], with each video being segmented temporally
on the server side. Since significant portions of 360° frames
are not viewed due to the user’s limited viewing angle,
the intensive network bandwidth requirement can be curbed

through viewport adaptive streaming approaches (e.g., [6],
[7]) that utilize viewport prediction algorithms to only down-
load content restricted to the user’s viewport. Each temporal
segment is partitioned spatially into tiles to enable viewport
adaptive streaming.

Mass delivery of 360° content presents tremendous band-
width and latency challenges for cloud providers. Typical
streaming solutions rely on cache servers located at net-
work edges. These edge caching systems aim to alleviate
backhaul network congestion while achieving low latency by
providing data storage geographically closer to clients. The
network load will further increase in the future, and thus
cloud providers need to find innovative strategies to lessen core
network bandwidth consumption and facilitate the delivery of
low latency content, tackling the additional video streaming
growth resultant from the influx of new users. However,
the solutions for conventional videos face difficulties when
applied to 360° streaming scenarios. 360° video frames are
of much higher resolutions and only a small portion of the
available scene (the viewport) is delivered to the client at a
time. These challenges for 360° content streaming are further
exacerbated by DASH-based video caching, where multiple
quality versions (expressed in bitrates) of each segment need
to be stored to enable Adaptive Bit Rate (ABR) streaming
with different quality levels. Existing solutions propose that
clients utilize their own compute capability to help reduce
network bandwidth [13] [18]. However, these solutions do not
perform well on client devices with lower compute capacities.
A content-aware approach is thus needed in order to explicitly
consider the content semantics of each video for efficient data
transfer, decreasing network bandwidth while also supporting
resource-constrained client devices.

We approach this problem by exploring the benefits of a
classical image problem, super resolution (SR), for lowering
backhaul bandwidth and minimizing playback latency. SR
techniques look to generate or recover a high resolution (HR)
version of low resolution (LR) inputs, typically through deep-
learning based frameworks. NAS [25] was the first to leverage
super resolution for streaming scenarios involving conven-
tional videos by trading off network bandwidth for client-side
compute, fetching downscaled, low resolution content over the
network and reconstructing the high resolution content at the
client. PARSEC [4] expanded on this idea for 360° content,

handling challenges stemming from the large sizes of 360°
videos by training smaller SR micro-models for each segment
that would focus only on upscaling tiles rather than entire
frames to reduce computational overhead. However, these
approaches operate under the assumption that the network is
a simplistic client-server architecture, ignoring popular DASH
streaming scenarios that involve edge nodes with greater com-
pute. By restricting the problem scope, previous frameworks
incur greater energy overheads on the client-side due to GPU
usage for SR upscaling, leading to increased heat dissipation.
PARSEC, for example, only focuses on using SR to upscale
missed tiles to correct for viewport prediction inaccuracies;
this does not fully take advantage of all of the possible benefits
of SR with regards to saving network bandwidth.

In this paper, we present L3BOU, a novel, distributed
architecture for 360° video streaming. In contrast with existing
approaches, the super-resolution process is distributed over the
server, edge, and client. The inclusion of edge compute in
the distribution process allows for high-quality streaming of
360° videos to resource constrained clients. L3BOU reorients
the problem towards alleviating backhaul network conges-
tion while also minimizing client-side computation, yielding
low bandwidth for backhaul cloud-edge networks and low
latency for resource-constrained clients. L3BOU leverages
the increased compute capacity of edge nodes to request
downscaled, Ultra Low Resolution (ULR) tiled segments from
the cloud and run upscaling SR algorithms on all edge-
present ULR tiles, relying on pre-trained SR micro-models
[4]. To achieve low latency and fulfill video quality goals
despite the increased computational complexity, we further
utilize (a) a viewport prediction algorithm based on historical
viewing patterns and represented as a Navigation Graph (NG)
construct [17], (b) an NG-based prefetching mechanism, and
(c) multi-processing of SR tasks across edge server processors
to achieve parallelism. The main contributions of this paper are
as follows:

1) We develop L3BOU, a three-tier distributed framework
where the cloud serves ULR and full quality tiles to the
edge. The edge node serves as a cache layer to store
trained SR micro-models, performs viewport prediction,
and super-resolves ULR tiles. This approach achieves
significant cloud-edge network bandwidth optimization
and ensures that the resource-constrained client is not
involved in the SR computations but still receives high-
quality tiled segments within its playback time, avoiding
re-buffering events.

2) We perform multiprocessing of SR deep learning infer-
ence tasks during playback at the edge, further speeding
up the inference rate; this happens while leveraging the
powerful GPUs present on edge nodes.

3) We mask latency overheads through (a) a unique us-
age of the Cross-User Navigation Graph viewport pre-
diction algorithm [17], (b) the prefetching of heavily
compressed, downscaled ULR tile segments, and (c)
taking into account encoding, decoding and SR inference

timings.

4) Our evaluation results show that the back-haul band-
width between cloud and edge can be reduced by upto
a factor of 24, and that the upscaling time of ULR tiles
at the edge can be reduced by factor of 10 while the
resulting QoE is comparable to the one achieved by
existing approaches that do not incorporate the presented
optimizations at the edge.

The paper is organized as follows: In Section II we discuss
models, assumptions and other related work utilized in our
L3BOU framework, giving brief introductions to DASH, the
Navigation Graph construct and its associated viewport predic-
tion, and content-aware super-resolution approaches. Section
III presents the offline phase with super-resolution training
algorithms to facilitate the creation of ULR tile segments and
micro-models, the online phase of L3BOU with its individual
service components across the three-tier architecture to deliver
high quality desired tiles to clients, and the performance opti-
mization approaches involved. Extensive performance evalua-
tion results are presented in Section IV. Section V summarizes
L3BOU’s key architectural points and results.

II. MODELS, ASSUMPTIONS, AND RELATED WORK
A. 360° Video Streaming Model

We use the DASH standard for 360° video streaming.
DASH videos are segmented temporally at the server-side,
with each of these temporal segments representing a few
seconds of media playback. These segments are then encoded
at different quality levels/bitrates, and a manifest file that
consists of the necessary metadata and ordering of these
segments is generated. The client typically utilizes an adaptive
bitrate (ABR) algorithm that dynamically adjusts the band-
width transmitted between server and client at run-time in
response to network throughput variations, using the manifest
file to automatically request segments of the highest possible
bitrates without incurring re-buffering events.

Viewing clients of 360° videos cannot view all portions of
the panoramic scene simultaneously. Hence 360° streaming
systems conduct viewport predictions to deliver desired view-
ports to clients, decreasing the network bandwidth demand.
Each temporal segment of the 360° video is partitioned spa-
tially into tiles, and only tiles of the user’s current viewport are
transmitted to the client device. The client’s ABR algorithm
determines the bitrate for each tile.

System Assumption: We assume that our 360° videos
follow an equirectangular projection [27] and are encoded for
DASH streaming. We also assume that DASH segments are
of a one second duration.

B. Navigation Graph

The Navigation Graph [17] concept models clients’ viewing
patterns of a 360° video. The Navigation Graph model is
defined as follows: a set s is the union of all visible tiles
in a particular segment of the 360° video such that s € S,
where S is the set of all possible combinations of tiles. A
“view” is a tuple delineating the union of all visible tiles of a

viewport within a particular segment. Hence, "view” v = (I, s)
represents a set of visible tiles s in a segment with index [.
The Navigation Graph G = (V, E) is then a directed graph
that models the union of all clients’ past viewing behaviors
per 360° video. The vertices of the graph are defined as

V={vjv={(,s),l€{1,2,..,L}and s € S}, (1)

where L is the total number of segments in the video. An
edge in G is created between vertices when at least one view
transition occurs. F can be expressed as:

E = {(Uia vj)|vi,j € V7 w(via Uj) = p(vjh)i)? Za] €]-7 <ty N}a

2)
where w(v;,v;) is a weight function, N is the total number
of vertices visited at least once, and p(v;|v;) is the probability
of a viewer transitioning to v; from v;. We also denote matrix
E = RNV which stores the transition probabilities between
all vertices in G. A Navigation Graph G is constructed for
each 360° video, and it continues to gain viewing pattern
information as new clients watch the video. A new vertex
in G is created when a new view v,, is encountered, and
the transition probabilities p(v,,|v.) (with v, being the current
view) are updated on the server based on the influx of viewing
data from new clients.

System Assumption: In L3BOU, we assume that a Navi-
gation Graph is created and available on the cloud server side
for each 360° video, based on prior viewing patterns of each
360° video, executing the Cross-User Navigation Graph View
Prediction (CU) approach. In the CU approach, the graph is
updated by the view transitions from all prior viewers. Each
transition probability in matrix E is updated according to

of clients moving their view from v, to v

Ve|vp) = - —
P(velvy) number of clients visiting v,

3)
The probability that a client viewer will change from view v,
to v, is provided by the column vector of matrix E, denoted
as by, which contains elements p(v,|v.) for 1 <n < N. The
k" transition vector, by, can be expressed as

b = EF—Dyp, 4)

to represent the probabilities from the current vertex to vertices
in a segment with index [+ k. The probability of needing a
tile ¢ can then be given as

pk= Y, b)
Vn,tEv,
L3BOU then prefetches the Navigation Graph from the
cloud, and utilizes the Navigation Graph on the edge node.

C. Data Distribution Model

We assume a three-tier distributed architecture, consisting
of a cloud server, an edge server with available computing
resources such as GPUs or TPUs and a resource-constrained
client device (e.g., Head-Mounted Device or Smartphone). The
client device runs a DASH-based 360° media player, with the
edge serving DASH segments. 360° videos are segmented,

tiled and processed based on the MPEG-DASH SRD standard
and transmitted between the cloud server and edge over HTTP.

D. Content-Aware Super Resolution

In addition to traditional compression of 360° videos (e.g.,
using HEVC), we consider using Super Resolution [11], [12],
[23] (SR) for further content-aware compression. Using SR,
the 360° video is compressed significantly, and an appropri-
ately trained neural SR model can generate a high resolution
video from the compressed video. Recent developments in
computer vision literature have seen tremendous success in
super-resolving low quality videos using convolutional neural
networks (CNNs) [12], [25].

Note that video applications already encode/compress
videos to reduce bandwidth demand using compression meth-
ods such as HEVC. However, traditional compression methods
use fixed configuration parameters such as the search space of
redundant pixels in a given image. They also use excessive
quantization under low encoding rates [20]. SR, however, has
complete search space of an image, automatically determines
the high level features of image objects, stores the latent infor-
mation in model weights, and then enhances particular regions
to high resolution from the low resolution. The combination of
both SR model weights and the pixel level information from
the low resolution image creates a high quality image [19].
Recent work in this space already demonstrated the superiority
of SR along with traditional compression mechanisms [4],
[25].

However, the key challenges in leveraging SR for DASH-
based 360° video streaming are large model sizes and infer-
ence times. To address these challenges, we use the concepts of
micro-models and Ultra Low Resolution (ULR) tiles introduced
by PARSEC [4]. To perform a super-resolution task for 360°
streaming scenarios, the video is initially downscaled from its
original high resolution to a lower resolution. The downscaled
video is then further segmented, tiled, and packetized for
DASH delivery - we refer to each of these heavily compressed,
encoded tiled segments as a ULR tile. During the streaming
process, these ULR tiles are decoded and sent to specific SR
micro-models, which are small neural network architectures
that are specifically over-fitted to the target content beforehand
in order to reconstruct the high resolution content from the
decoded low resolution input before re-encoding for DASH re-
delivery. Each micro-model is trained to upscale frames only
corresponding to a particular segment of the video. Since each
micro-model is trained for a segment (e.g., 30 video frames
for 1 second segment), the model is extremely lightweight,
resulting in faster inference as well as smaller model size.
Another key benefit of this approach is that we do not need
large-scale datasets for the SR model, as the model is over-
fitted with just the segment data.

III. L3BOU SYSTEM ARCHITECTURE

The L3BOU three-tier distributed software architecture and
framework extends super-resolution 360° video streaming ap-
proaches to achieve low bandwidth and low latency for 360°

Pre-Upload Training Server

360 Camera

Send Recorded
360 Camera 360 video File

Central
Video Server

Image Extracior
;’2 LT

360 Video Frames

i

Video Downscaling
f 3]

—

DASH Tile ang | Downscaled Video
Segmenter
Sample Images Tile Reference File
Populator

Images Sampled Dictionary

Image Converter

Frame Count

v

Tile Manager

Downscaled & Standard
DASH Video

Pseudo-Random
Image Generator
Function

Micro-Model Creator

Build Micro-model

Model for Training

Edge Server

Return Random|
Image's

Sampled Data)
Train Micro-model
E Request New
Image’s Sampled Data
T Trained Micro-models

Fig. 1. L3BOU Offline Phase Architecture

video traffic over backhaul cloud-edge networks. The L3BOU
framework consists of two phases: an offline phase and an on-
line phase. During the offline phase, shown in Fig. 1, the pre-
upload training server performs DASH segmentation, tiling
of 360° videos, downscaling of tiles towards ULR tiles, and
trains super-resolution micro-models for ULR tile upscaling.
The DASH-based ULR tiled segments are then placed on the
cloud and the trained micro-models are placed on the edge.
A detailed discussion of L3BOU’s offline phase is presented
in section III.B. L3BOU’s online phase is shown in Fig. 2.
During this phase, the cloud server relies on a DASH-based
360° video representation consisting of downscaled segmented
tiles and on the Navigation Graph to provide context assistance
for viewport prediction. The online phase of L3BOU also
responds to DASH requests from the edge server. The L3BOU
edge server then performs upscaling tasks via a parallelized
super-resolution approach and communicates with a viewing
client to deliver a high quality viewport. We present detailed
algorithms of the L3BOU online phase in Section III.C.

A. L3BOU Offline Phase

The L3BOU offline 360° video processing phase is handled
by a pre-upload training server. In a real world scenario,
such processing can occur at the cloud data center or at
the edge, but for simplicity, we illustrate this framework by
assuming the existence of a training server managed by cloud
providers. The core component of the pre-upload training
server is the Micro-Model Creator module, which trains and
prepares micro-models for each ULR tiled segment so that
the edge servers can then upscale each tile, i.e., apply super-
resolution algorithms, bringing each video segment’s tiles to
a high video quality.

Super Resolution Micro-model Architecture: Our SR
DNN (Deep Neural Network) architecture is similar to that
of PARSEC and NAS. The SR DNN’s number of layers
depends on the length of the video segment and the desired

quality of the generated video. We use a deep convolutional
neural network (CNN) to capture high level features in the
video segment. Each convolutional layer is followed by a
LeakyRelu activation function [14] and Batch normalization
for faster learning [8]. The neural network first extracts the
high level features from low-level pixels and uses a non-linear
mapping function to learn the original missing content details.
Finally, the network uses a deconvolution layer to map the
high resolution directly from the low resolution without image
interpolation. The Adam optimizer [9] is used for training with
a learning rate of 0.0002. We adopt smaller filter sizes (3 x 3)
to minimize the model parameters as much as possible and
use more mapping layers at the expense of more computation.

The pre-upload training server processes the 360° videos
as follows: it first divides the video into 1sec long seg-
ments. Each segment is divided spatially into tiles. Each tile
(128 x 120 pixels, with the tiling scheme selected to avoid
excluding any pixel data) is downscaled to a lower resolution
through ffinpeg [1] (such as 24 x 24 pixels) and then further
encoded to produce ULR tiles. For training, these ULR tiles
are decoded into sets of frames. Each low resolution frame is
attached to its respective ground truth high resolution frame
to form a training pair, and these training pairs are input into
the micro-model specifically responsible for the segment of
the video that the original ULR tile is from. The training of
each micro-model takes less than 10 minutes (on our platform
as described in Section IV) because we train the model with
very little data (i.e., a segment). Each model is trained for
one video segment (with 30 fps). Therefore, the total number
of ULR and ground-truth high resolution images is 30 for
each model (assuming 30 fps video). While training, we use
the MSE metric as the loss function to directly optimize for
PSNR. The Adam optimizer aims to optimize the PSNR for
every frame of the video segment. We manually fine-tune the
number of layers and filter size to achieve a desired median
quality (about 30dB PSNR) [21] when mapped from ULR
tiles to high resolution, which is considered the minimum
quality necessary for a good quality of experience. To facilitate
ABR streaming at different quality levels, we construct a
micromodel for each segment-bitrate combination, meaning
that different micromodels attached to the same segment index
are responsible for upscaling at different quality levels.

Offline Phase Workflow: Initially, the 360° videos are
recorded through omnidirectional cameras and uploaded to
the training server as mp4 files in equirectangular format. The
video files are then sent to the Frame Extractor, which takes
each frame in the video file, saves it to a local hard drive,
and partitions the input frames by segment index. The frames
corresponding to each segment are then sent to the Image
Converter, which spatially tiles each frame and encodes the
frame data into a lower level format, capturing the RGB values
of each pixel. The encoded frame representations are saved
to a file on the local system and compiled tile metadata is
passed to the Tile Manager, which generates a local file used
to reference the encoded frames.

This file is subsequently referenced to populate a dictionary

Pre-Upload Training Trained Micro-models—)
Server

Edge Server

Daownscaled & Standard DASH Video

Central Video Server

Local
Storage

Pre-Trained Micro-models

Local
Storage

Navigation Graph

Prediction Fles | petagata & Prefetched

Downscaled Tiles

Metadata &
Video Files

Central Video HTTP
Server

[\

Request Tiles = |
al & Metadata ||

Prefeich Manager

Downscaled_|

Prefetching Client T

Metad atag
v

les

Tiles To Prefetch

Prediction File PE[SEYV

| S

Multi-Processed SR
Upscaling Service

Client

DASH Requester

Upscaled Prefeiched Tiles

Client Tile
Regquests

Service

Video Tiles & Manifest

Full Quality Clint_)—"ereich Miss
Y iles

Edge HTTP Server

/

Full Quality Tiles on Prediction Miss

Fig. 2. L3BOU Online Phase Architecture

with the low level frame data. The dictionary is then utilized
by the generator, which returns a set of pseudo-random image
data obtained from the dictionary. A SR micro-model for each
segment-bitrate combination is constructed, and each micro-
model uses the generator to obtain image data for training.
Once each micro-model is fully trained, it is pushed to the
edge server.

Optimization - Edge Node Cache Utilization: The func-
tion of the edge cache in the L3BOU framework fundamen-
tally deviates from that of a typical edge-native, static CDN
(Content Delivery Network).The edge node is not used as
a simple cache layer for all of the media content from the
cloud. Instead, the edge node only caches the requisite micro-
models after offline training. This is a network bandwidth
optimization, relieving the cloud server from having to send
the corresponding micro-models for each segment during
video playback. Once all micro-models are trained offline, they
need to be offloaded to the edge server one time. Once they
are deployed, the edge server is now aware of the content
and only needs to retrieve the necessary ULR tiles from the
cloud during playback for all subsequent streaming scenarios
facilitated by L3BOU.

B. L3BOU Online Phase

Once the micro-models for each segment/tile are trained
offline and deployed to the cache storage of the edge server,
L3BOU is amenable to SR-enhanced video streaming and
playback. We assume that prior to the L3BOU’s online phase,
360° video segments/tiles are present in two forms at the
cloud server: (a) full quality segment/tiles and (b) downscaled
segments/tiles to the ULR representations, and both full quality
and the ULR segment tiles of the 360° videos are present in
its local storage. In addition, a DASH manifest file (MPD) is
generated for each 360° video. Furthermore, the cloud server
stores the Navigation Graph (as a JSON file) for each 360°
video, having the information about prior viewers’ viewing
patterns of 360° videos, i.e., the Navigation Graph provides
the percent chance (probability) of each ULR tile being viewed

for a specific segment. These files, including segments with
ULR tiles to be viewed with high probability, are then served
through a threaded HTTP server from the cloud to the edge
server during playback.

Online Phase Workflow: When the client requests a video
through DASH, the request is forwarded via edge server to
the cloud, which initially returns the manifest file and the
video’s corresponding Navigation Graph JSON to the edge.
The Navigation Graph matrix, discussed in Section ILB, is
then utilized by the HTTP Prefetching client on the edge
to commence prefetching ULR tiles to upscale, while the
manifest is forwarded to the client for use. The client proceeds
to request video tiles corresponding to the current viewport
as the edge server upscales tiles that are anticipated to be
delivered. When the edge server receives a request from the
client, two possible cases can occur:

Case 1: The client requests a tile accurately predicted by the
Navigation Graph. In this case, the ULR tile was prefetched,
decoded, upscaled by the micro-model corresponding to the
current segment index, and re-encoded for delivery to the
client. This leads to the upscaled, full-quality tile being de-
livered at or ahead of its playout deadline.

Case 2: When a tile is requested by the client that was
not prefetched and upscaled, indicating a tile miss, the edge
server forwards the request to the cloud server. The cloud
server then delivers the full-quality tile to the client without
any SR processing involved to minimize latency overhead.

The Online Phase consists of the following five software
components:

1) Central Video HTTP Server (Cloud Server): The central
video server caches ULR tiles and full quality tiles in its local
storage. The central video HTTP server references these tiles
to serve them to the edge server upon receiving an HTTP
request.

2) Prefetch Manager (Edge Server): The Prefetch Manager
first utilizes a Prefetching Client to request the metadata of
the video, which consists of the Navigation Graph file and the
manifest file. The Navigation Graph is passed to the Prediction

File Parser, which decodes the graph and extrapolates which
ULR tiles to prefetch during that prefetching cycle. As stated
before, the Navigation Graph prediction file consists of a set
of tile probabilities for each view v. However, each view
is the union of all visible tiles within a segment. Since the
Navigation Graph learns the historical viewing patterns of
many users in order to learn tile probabilities, in most cases
there are a myriad of visible tiles with a very low, but nonzero
probability of occurrence. Therefore, we define the set of ULR
tiles si to be prefetched for a segment as

sk = {t € slprx > a}, (6)

pruning all tiles ¢ with a probability below a cutoff threshold of
a. The Prediction File Parser then lets the Prefetching Client
know which tiles to prefetch from the cloud. The Prefetching
Client, in response, proceeds to request the ULR tiles in sy,
and once they are received, they are then forwarded to the
Upscaling Service. In cases where a tile miss occurs, the Full
Quality Client requests the respective full quality tile so that
it can be forwarded to the client.

3) Upscaling Service: The Upscaling Service on the edge
server executes the SR techniques and leverages the increased
number of CPU cores in tandem with the powerful GPUs
present on the edge server for task parallelism during video
playback. After all ULR tiles in sj are decoded serially, each
decoded low resolution tiled segment is viewed as a series of
frames.

Each frame is indexed from 1 to NN, with N being the
total number of frames per decoded segment (e.g., if each
viewport includes 6 ULR tiles in the spatial view, and the
overall segment is 1 second with N = 30, then we will have
6 tile-sized videos of 1 second length for a total of 180 tile-
sized frames).

Each segment is 1 second long for a 30 fps video, so
our L3BOU software architecture assumes N = 30 for
each prefetching cycle. Multiprocessing is then employed to
distribute ULR frames between GPU-accelerated processes,
such that each worker performs SR deep learning inference
tasks only on frames with indices within an allocated frame
partition.

4) Edge HTTP Server: The Edge HTTP Server receives
requests from the client and first checks if the requested ULR
tiles have been super-resolved in a previous or the current
prefetching cycle and are available to be distributed. If the
super-resolved tile is ready, the Edge HTTP Server forwards
it to the client. If the tile has not been super-resolved and
is unavailable, then a tile miss has occurred. A tile miss
can occur from two situations: either the Navigation Graph
failed to accurately predict the tile, leading to a viewport
prediction inaccuracy, or the tile was accurately predicted
but the available compute is not sufficient to perform super
resolution on the prefetched tile fast enough before playback
time. In both cases, the Full Quality Client will request the
full quality tile needed from the Central Video HTTP Server
and return the result back to the client.

5) Client DASH Requester Service: The Client DASH Re-
quester Service initially requests the manifest file of the video
from the edge server. Upon reception of the manifest, the client
proceeds to request DASH tiled segments based on the user’s
viewport position.

C. Achieving Computational Feasibility

In this section, we demonstrate how optimized super-
resolution during video playback can facilitate the function-
ality of L3BOU.

We denote a function ¢ : s — @ to illustrate the rate
selection algorithm for ABR streaming, mapping ULR tiles
t € s, to selected quality levels @ (Q is expressed in bitrates).
Instead of parallelizing the super-resolution inferences, we first
assume that all prefetched ULR tiles ¢ € sj, are super-resolved
in a serial manner. Thus, we can define the processing time for
all ULR tiles on the edge during a single prefetching cycle,
T,, as

T, = ZteSk (SR(t, qr(t)) + B: + 71 ,)

where (; and ~; represent the decoding and re-encoding times
for tile ¢, respectively. SR(t, qx(t)) represents the time taken
to upscale ULR tile ¢ to a selected quality level of g (t).
The playback constraint is a constraint that illustrates that the
fetching and super-resolution of all tiles in s; must complete
before the designated playout time of the segment. This is
modeled by

sk +To+ D, Dt a() +0<& (®)

where A represents the time it takes to fetch an individual ULR
tile from the cloud server, D(t, g (t)) represents the time taken
to deliver a tile ¢ upscaled to its selected quality level from
the edge to the client device, ¢ represents the computational
time taken by the client for decoding and stitching once the
upscaled tile has been received, and & represents the time
until playback. This constraint represents the scenario where
all ULR tiles, prefetched based on the Navigation Graph
predictions, are super-resolved before the client requests them
- if this constraint is not satisfied, then even if the tiles are
accurately predicted by the Navigation Graph, they will still
be considered as tile misses.

With the previous formulation of 7 in which all super-
resolution tasks are conducted sequentially, the playback con-
straint is still not satisfied and the solution still remains infea-
sible despite the artificial increase of ¢ through prefetching.
Despite the increased compute capacity of the edge server,
the time taken for each SR task on an entire segment takes
multiple seconds, leading to unacceptable latency overheads
that cancel out the buffer time provided by prefetching. The
benefits provided by prefetching are not significant enough
by themselves to outweigh the computational overhead from
Ts. Therefore, L3BOU relies on task parallelism (multi-
processing) during video playback to reduce Ty, which is
incorporated within the Upscaling Service. We denote the
processing time for all ULR tiles on the edge during a single
prefetching cycle with parallel processing as T},. We find that

with enough GPU-accelerated processes running, T, << T,
and thus, we see that by substituting T, for T in (8), the
playback constraint is satisfied with the artificial increase of £
through prefetching. Through the reduction of T to 7}, with
SR task parallelism along with the latency cushion provided
by prefetching, L3BOU achieves two fundamental latency
relaxations regarding the backhaul links: we can afford to use
a significantly lower bandwidth link and/or handle increased
delays from the link between the cloud and edge.

IV. PERFORMANCE EVALUATION

Our testing was performed with two different systems repre-
senting the edge server with different levels of computational
power. The first system, which will be referred to as Testbed
1, consisted of an enthusiast grade desktop with a twenty
core CPU and an NVIDIA 2080 super for Tensorflow [5]
acceleration. The second system, which will be referred to
as Testbed 2, was a nl-standard-32 Google cloud instance
with 32 vCPUs and dual NVIDIA T4 Teslas for Tensorflow
acceleration. Both of these systems were used for testing
the Online and Offline phases as described in Sect. III at
separate times for measurement of training metrics and SR
timings. When performing certain tests involving the video
server and/or client, a laptop was used to act as the cloud
server or a simulated DASH client. The cloud server was
facilitated by running a Python-based multi-threaded HTTP
server. However, the simulated DASH client fetched video
files using the standard Python HTTP client and a section
of specialized code that decided which and how many tiles
to prefetch. For our evaluation, we used a publicly available
dataset [24], containing 8 videos in equirectangular format,
each with a resolution of 2560x1440. This decision was made
specifically because of its inclusion of previous user head-
traces, where the viewing pattern data for all users was already
available for the use of a Navigation Graph.

During our testing, we measured the overall amount of data
transferred between our L3BOU cloud and edge servers at
various prefetch success rates. These prefetch success rates
were based on the total tiles that were successfully predicted,
upscaled and sent to the client while also taking into account
any prediction misses involving the streaming of full quality
tiles with a resolution of 128x120 pixels. These tiles were
created using the Kvazaar [22] encoder paired with GPAC’s
MP4Box [10] for DASHing. Changing the model settings of
our micromodels was also considered, ensuring that our output
video’s PSNR value was acceptable at 30 dB or above. Finally,
to further decrease the system latency resultant from the super
resolution tasks, multi-processing was employed. Our testing
included running the super resolution tasks with a varying
number of processes available and modifying the number of
convolutional layers for our micromodels.

A. Impact of Changes in Pre-trained Model

Table 1

Edge Testbed 1 Model Results

Model | Epoch 24x24 Tile 24x24 Tile |48x48 Tile Model 48x48 Tile
Layer | Count | Model Training Model Model Training |Model Training
Count Time (mm:ss)* [PSNR (dB)* | Time (mm:ss)* PSNR(dB)*

1 6000 06:20 29.32 05:58 3047

5 6000 07:49 30.01 07:48 30.89

12 6000 11:28 30.37 11:29 31.71

* Results displayed are the average of 5 test runs.
Table 2
Edge Testbed 2 Model Results

Model | Epoch 24x24 Tile 24x24 Tile |48x48 Tile Model 48x48 Tile
Layer | Count | Model Training Model Model Training | Model Training
Count Time (mm:ss)* [PSNR (dB)*| Time (mm:ss)* PSNR(dB)*

1 6000 07:00 29.36 06:55 30.11

5 6000 12:21 30.33 12:31 31.14

12 6000 30:06 30.69 29:30 31.26

* Results displayed are the average of 5 test runs.

L3BOU’s SR models were created using Keras [3] and
Tensorflow 2.2.0, and changes made to creation and training
resulted in the following system inputs being taken into
consideration: convolutional layer count, downscaled tile size,
number of training epochs, and the batch size. The output
metrics were the overall model training time and the PSNR
test output values.

Starting with the number of epochs to train for, we began
our testing scenarios by evaluating performance with a low
number of only one hundred epochs. However, we found that
this number of epochs returned inconsistent results. Therefore,
we continuously increased this count by one hundred and
ran new rounds of model training until our tests showed
little increase in performance. Stable performance occurred at
around six thousand epochs. We attempted even higher epoch
counts (between twenty-thousand and one-hundred thousand
epochs), but the improvements in micromodel performance
were negligible. Training the models with a significantly
higher number of epochs also took exponentially longer than
the training time for the six thousand epoch models. The
overall model training timing performance analysis is reflected
in Table 1 and Table 2.

The convolutional layer count experiments showed that,
while one convolutional layer was feasible, models required
a higher quality Ultra-Low-Resolution (ULR) tile for the
PSNR result to remain above the acceptable value of 30 dB.
As a result, the model, using one convolutional layer, only
functioned with tile sizes of 48x48 pixels and above. Lower
resolutions resulted in an unacceptable PSNR as seen in Table
1 and Table 2. Further investigation involved increasing the
number of convolutional layers and testing with smaller ULR
tile sizes until an acceptable PSNR of 30 dB could be achieved.
This testing resulted in finding that five convolutional layers
gave acceptable PSNR results for the 24x24 tiles. This was
the lowest successful tile size we were able to achieve with
our defined micromodel range. A test was also conducted at
twelve convolutional layers. A twelve layer model represented
the highest threshold of the number of layers we were willing
to consider as an acceptable model. This was our limit because
after exceeding this threshold, the model files became very
large with sizes in tens of megabytes, sizes no longer feasible

for our system. In addition, the twelve layer model trained for
six thousand epochs failed to upscale the 12x12 and 6x6 tiles
in an acceptable fashion, with a sub-30 dB PSNR. While we
still included these results, the altered tile size surprisingly had
little effect on the model training time and only affected the
overall PSNR rating shown in the bottom rows of Table 1 and
Table 2. This issue may have been solved with extra training
time, however our model training time already increased as
more convolutional layers were added. Hence, it would have
been impractical to train all of the models required to work
with a 12x12 or 6x6 tile size.

Finally, our batch training size was set to one third of the
count of our frames to upscale. This was achieved experimen-
tally by starting at one and incrementally increasing the count
to see the batch size’s effect on the PSNR and the training
time. While not as drastic as increasing convolutional layers,
increasing the sample size increased the training time, and
after a certain point, the sample size became detrimental to
the PNSR value. Hence, we chose our best performing result
at one third the frame count (in our case a batch size of ten).
As a result of our experimentations, we chose to focus on
models with one and five convolutions, since they returned
the best results while keeping a smaller stored model size due
to their low number of convolution layers.

B. Multi-Process Upscaling Analysis

To decrease the overall system latency, we chose to multi-
process the upscaling of our tiles at the L3BOU edge server.
Our testing system consisted of a worker program that ran the
upscaling tasks and a manager program, based on the Python
multiprocessing library, that handled all of our processes. The
processes started as part of a multiprocessing pool using the
map function. There was an initial run to gauge the speed
of a single process on the system, where all upscaling was
done sequentially. However, the testing process then differed
in implementation between Testbed 1 and Testbed 2.

In Testbed 1, we were limited to a single GPU with eight
gigabytes of memory. As a result, the number of parallel
instances we could run was limited. The testing first partitioned
the upscaling tasks to every process evenly. The running pro-
cesses then started simultaneously using the map function and
the results were gathered through a console output. Testbed
1 was evaluated using the following numbers of processes in
parallel across a single GPU: two, three, five, and six. The next
possible even split of ten processes would not run on Testbed
1 due to previously stated GPU memory size limitations.

Testbed 2 had a more powerful edge server. With two
NVIDIA Tesla T4s, the system had 32 gigabytes of video
memory to utilize, and it had double the physical compute
power when tasks were shared between GPUs. The testbed as
a result was also able to run further tests with ten and fifteen
parallel processes.

Fig. 3 shows the results of the single convolutional layer
testing on both systems with as little as five SR processes fin-
ishing in less than one second (the overall latency threshold).
However, this does not take into account the overall utilization

Multi-Processed SR timings, 1 Convolutional Layer

Testbed timings

48x48 Tile Testbed 1
48x48 Tile Testbed 2

1 2 3 5 6 10 15
Number of Simultaneous SR Processes

Fig. 3. Single Convolutional Layer SR Graph Comparing Testbeds 1 and 2,
Testbed 1 limited to 6 processes due to GPU memory constraints

of the edge server, and as such the 200 ms latency for video
processing (breaking segments down to individual frames and
reassembling after computation) with 15 running SR processes
is much more favorable when such edge compute resources
are available. The models in this system setup are also smaller,
saving space on the edge - however, the downside to this form
of our model is that it requires the use of ULR tiles of 48x48
pixels or 96x96 pixels. This means that more data must be sent
over the backhaul network between the L3BOU cloud video
server and its edge server.

Multi-Processed SR timings, 5 Convolutional Layer

4 Testbed timings
m— 24x24 Tile Testbed 1
3.6 24x24 Tile Testbed 2
CEY 48x48 Tile Testbed 1
&2 48x48 Tile Testbed 2
v 2.8
£
=24
5
= 2
a
[=%
216
=]
0 1.2
0.8
0.4
0
1 2 3 5 6 10 15

Number of Simultanecus SR Processes

Fig. 4. Five Convolutional Layer SR Graph Comparing Testbeds 1 and 2,
Testbed 1 limited to 6 processes due to GPU memory constraints

Fig. 4 displays the further decrease in backhaul network
utilization through our use of the five convolutional layer
model. This increase in convolutional layers resulted in an
improved PSNR rating for tiles with sizes one step lower,
indicating that instead of having to use tiles of size 48x48
pixels, our system could use tiles of size 24x24 pixels. This
reduces the overall data sent when streaming a video while
maintaining the user’s QoE. Figures 3 and 4 also demonstrate
a 10 times decrease in completion time as shown between 1
and 15 processes.

Data Transferred in 6x6 ULR tile stream pata Transferred in 12x12 ULR tile stream

@
=]

30

[
[

25

20

Megabytes Transferred
o o
w (=3

Megabytes Transferred

-
=)
o

A P P P R L T P 1Y
S S S S
Percent ULR Tiles Streamed

Fig. 6. 12x12 Bandwidth Results

e sie slo oo sle s sie oo s sl de
PSS
Percent ULR Tiles Streamed

Fig. 5. 6x6 Bandwidth Results

Data Transferred in 24x24 ULR tile stream Data Transferred in 48x48 ULR tile stream

30 30

[
L

25

20

Megabytes Transferred
o o
o S

Megabytes Transferred

=}
o

de ol g gl sie do sle oo e oo sle
S S S
Percent ULR Tiles Streamed

Fig. 8. 48x48 Bandwidth Results

o o g gle oo do sle gl e oo sle
S S S
Percent of ULR Tiles Streamed

Fig. 7. 24x24 Bandwidth Results

Data Transferred in 96x96 ULR tile stream

30

[¥)
&

Megabytes Transferred
o s

=

do oo g oo oo do ol ol dle ol oo
S S S S S
Percent ULR Tiles Streamed

Fig. 9. 96x96 Bandwidth Results

C. Cloud to Edge Bandwidth Savings

Our bandwidth testing consisted of creating five sets of
downscaled and tiled DASH streams; each set with a different
tile size. These DASH streams were requested by a simulated
client via the video’s DASH manifest. The request from the
client was passed through the L3BOU edge server and for-
warded to the video server which then returned the downscaled
ULR tiles of our choosing. Upon return, the number of bytes
counter was added. Bandwidth data measurements are shown
in Figures 5, 6, 7, 8, and 9. The bandwidth results include the
bytes transferred for metadata such as the DASH manifest.

The results in Figures 5, 6, 7, 8, and 9 show the effect
of different ULR tile resolutions at different ratios to the full
quality tiles during streaming. The left-most bars of the graphs
represent the scenario in which no ULR tiles were streamed
(the NO-SR use case), while the right-most sides of the graphs
represent the amount of data transferred when only ULR tiles
are sent (the ALL-SR case). As stated in previous sections, the

chosen tile sizes for our testing scenarios are 24x24 and 48x48
pixels. In addition, their file sizes are significantly reduced
when compared to those of 96x96 tiles. This decreased file
size results in a nearly two-thirds or 20 megabyte drop in
transmitted data per video when using 24x24 tiles at a 100
percent tile prediction success rate, as shown in Figure 7.
For the 48x48 tile selection case, the results show that the
video has decreased in size by half of its original size, or 15
megabytes at a 100 percent tile prediction success rate.

In other non-ideal scenarios, where not all of the tiles are
predicted correctly by the prefetching service, there is still the
possibility of significant savings with regards to the streamed
data. In the 24x24 tile size case, our system decreases the data
transferred by 10 megabytes, or one third of the total video
size at a 50 percent successful prediction rate. This decreased
size is similar to the savings attained when using the 48x48 tile
at a 60 percent success rate. This data can also be leveraged
to estimate the needed network bandwidth required for the
connection between the video server and edge server.

Using the experimental results found from our testing, we
make two fundamental assumptions about our network. We
assume that the edge to client connection has sufficient band-
width to support the stream and maintains a sub-50 ms network
latency, which was found to be the highest supportable latency
for Virtual Reality 360°-like streams [26]. The total data,
transferred when no tiles are of ULR format, results in 32.66
MB of network traffic. Our sample video has a playtime of
165 seconds and we will assume a worst case cloud to edge
latency of 102 ms along with a best case latency of 13 ms
[15].

Discussion: As each segment is one second long, we deter-
mine that 197.9 KB of data must be transferred per segment.
We are already limited by the cloud to edge server’s network
latency range, so assuming a best case scenario from cloud to
edge, our network latency would be 13ms. Next, we assume
the edge to client connection has a bandwidth of 15 MB/s and
a network latency of 10 ms [2] to the edge server. With these
constraints, this leaves only 13.8 ms for data transfer between
the cloud and edge, and as a result the required cloud to edge
bandwidth would be 14.34 MB/s. In this case, as little as
seventy viewers can saturate a gigabit connection. When these
same metrics are applied to our L3BOU system, the following
considerations can be taken into account. First, since we are
prefetching and then upscaling, we have a buffer period of one
segment length to perform operations on the data and fetch it.
From the sections above, we found that our lowest acceptable
upscaling time was 200ms, and through our experiments, the
parsing, stitching, encoding and decoding per task took an
additional 425ms. When the previous network latency is taken
into account, this leaves over a third of a second, 338.8 ms to
fetch the segment tiles from the cloud server. This means that
the required bandwidth for L3BOU in this situation would be
as low as 584.3 KB/s. This extra latency buffer could also be
used to connect from the L3BOU edge to further cloud servers
at the price of higher required bandwidth.

V. CONCLUSION

In this paper, we introduce L3BOU, a novel three-tier soft-
ware architecture that significantly alleviates backhaul network
congestion for cloud to edge 360° streaming scenarios. To
accomplish this goal, L3BOU leverages Navigation Graph-
based prefetching of downscaled video tiles packaged for
DASH to decrease transmitted data size. Utilizing edge com-
puting resources, L3BOU performs optimized super resolution
algorithms on segmented tiles in a multi-processed fashion
to be sent to the client. Our results show that with L3BOU,
the bandwidth of the backhaul network decreases by up to
a factor of 24, and we are able to connect to cloud servers
that have a much larger inherent network latency. Furthermore,
our study shows that the utilization of edge-based optimized
super resolution expands the effective range of cloud-edge
connections.

VI. ACKNOWLEDGEMENT

This work was funded by National Science Foundation
(NSF) grants CNS 19-00875 and CNS 19-01137. All opinions
and statements in the above publication are of the authors and
do not represent NSF positions.

REFERENCES

[1] FFMPEG. https://www.ffmpeg.org/, 2019.

[2] Batyr Charyyev, Engin Arslan, and Mehmet Gunes. Latency comparison
of cloud datacenters and edge servers. 12 2020.

[3] Francois Chollet et al. Keras. https://keras.io, 2015.

[4] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu,
Aruna Balasubramanian, and Samir R Das. Streaming 360-degree videos
using super-resolution. In IEEE INFOCOM 2020-1EEE Conference on
Computer Communications, pages 1977-1986. IEEE, 2020.

[5] Martin Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems. 2015. Software available from tensorflow.org.

[6] Mohammad Hosseini. View-aware tile-based adaptations in 360 virtual
reality video streaming. In Virtual Reality (VR), 2017 IEEE, pages 423—
424. IEEE, 2017.

[7]1 Mohammad Hosseini and Viswanathan Swaminathan. Adaptive 360 vr
video streaming based on mpeg-dash srd. In 2016 IEEE International
Symposium on Multimedia (ISM), pages 407-408. IEEE, 2016.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Jean Le Feuvre. Gpac filters. In Proceedings of the 11th ACM

Multimedia Systems Conference, page 249-254, New York, NY, USA,

2020. Association for Computing Machinery.

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew

Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-

hannes Totz, Zehan Wang, et al. Photo-realistic single image super-

resolution using a generative adversarial network. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages

4681-4690, 2017.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung

Mu Lee. Enhanced deep residual networks for single image super-

resolution. In Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, pages 136-144, 2017.

Zhenxiao Luo, Zelong Wang, Jinyu Chen, Miao Hu, Yipeng Zhou, Tom

Z.J. Fu, and Di Wu. Crowdsr: Enabling high-quality video ingest in

crowdsourced livecast via super-resolution. In Proceedings of the 31st

ACM Workshop on Network and Operating Systems Support for Digital

Audio and Video, page 90-97, New York, NY, USA, 2021. Association

for Computing Machinery.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In Proc. icml,
volume 30, page 3, 2013.

Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco
Bronzino. Scalability and performance evaluation of edge cloud systems
for latency constrained applications. 10 2018.

Pantelis Maniotis, Eirina Bourtsoulatze, and Nikolaos Thomos. Tile-
based joint caching and delivery of 360 videos in heterogeneous net-
works. IEEE Transactions on Multimedia, 22(9):2382-2395, 2019.
Jounsup Park and Klara Nahrstedt. Navigation graph for tiled media
streaming. In Proceedings of the 27th ACM International Conference
on Multimedia, pages 447-455, 2019.

Jounsup Park, Mingyuan Wu, Kuan-Ying Lee, Bo Chen, Klara Nahrst-
edt, Michael Zink, and Ramesh Sitaraman. Seaware: Semantic aware
view prediction system for 360-degree video streaming. In 2020 IEEE
International Symposium on Multimedia (ISM), pages 5764, 2020.
Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution
image reconstruction: a technical overview. [EEE signal processing
magazine, 20(3):21-36, 2003.

Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (HEVC) standard. IEEE
Transactions on circuits and systems for video technology, 22(12):1649—
1668, 2012.

Nikolaos Thomos, Nikolaos V Boulgouris, and Michael G Strintzis.
Optimized transmission of jpeg2000 streams over wireless channels.
IEEE Transactions on image processing, 15(1):54-67, 2005.

Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Y1d-Outinen, Jarno
Vanne, and Timo D. Himildinen. Kvazaar: Open-source hevc/h.265
encoder. In Proceedings of the 24th ACM International Conference on
Multimedia, 2016.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,
Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution
generative adversarial networks. In Proceedings of the European
conference on computer vision (ECCV) workshops, pages 0-0, 2018.
Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. A dataset for
exploring user behaviors in vr spherical video streaming. In Proceedings
of the 8th International Conference on Multimedia Systems, MMSys *17,
Taipei, Taiwan, 2017. ACM.

Hyunho Yeo, Youngmok Jung, Jachong Kim, Jinwoo Shin, and Dongsu
Han. Neural adaptive content-aware internet video delivery. In /3th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 18), pages 645-661, 2018.

Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Ray-
chaudhuri. Towards efficient edge cloud augmentation for virtual reality
mmogs. 10 2017.

Michael Zink, Ramesh Sitaraman, and Klara Nahrstedt. Scalable 360°
video stream delivery: Challenges, solutions, and opportunities. volume
107, pages 639-650, 2019.

