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1 Introduction

Studies of higher derivative supergravities in lower than ten dimensions with no known
string theory origin have uses in exploring whether they may provide effective field theo-
ries that may possibly have a consistent UV completion [1]. Matter coupled N = (1,0),6D
supergravities [2-4] provide a rich landscape to investigate this question (see, for exam-
ple, [5, 6]). In particular, R-symmetry gauged and remarkably anomaly free such super-
gravities exist [7-10] that are not embedded in string theory, and as such their higher
derivative corrections are of great interest. At the level of two derivatives, such supergrav-
ities have been known for sometime [2—-4] and one of their salient features is the occurrence
of quaternionic Kahler sigma models that describe the hypermultiplet scalars. Their higher
derivative extensions, on the other hand, have not been investigated so far, with the ex-
ception of [11], where, however, the hypermultiplet couplings were not considered. One
of the motivations for the current work is to initiate this program. We shall not consider



R-symmetry gauging and Yang-Mills coupling in this paper but we shall study the higher
derivative couplings of the hypermultiplets as a first step. We will work on-shell.

One approach to study of higher derivative extension of matter coupled supergravities
is to employ Noether procedure. However, already at the four-derivative level, even with the
assumption that the quaternionic Kahler structure is preserved in the case of N = (1,0),6D
supergravity, one finds that an appropriate ansatz contains a large number of terms, and
their variations under supersymmetry gives even larger set of structures that need to vanish.
Furthermore, it is not guaranteed that the quaternionic Kahler structure can be maintained.
One exception is the case of Grassmannian coset Gr(n,4) = SO(n,4)/(SO(n) x SO(4)).
It has been proven by Sen [19] that the dimensional reduction of heterotic supergravity
with gauge fields truncated to the Cartan subalgebra must exhibit at string tree level, and
therefore to all orders in o, a continuous O(d,d + 16; R) global symmetry, related to the
O(d, d+16; Z) T-duality of heterotic strings on a d-torus. See also [20] where the symmetries
of S-matrix elements of massless states were used to explain this symmetry. At the two-
derivative level, and in the bosonic sector, sometime ago Maharana and Schwarz [21] showed
that reduction on T¢ does give an O(d,d + 16; R) invariant result. In a relatively recent
work, it was shown that the effective action for the bosonic string, as well as the bosonic
sector of the heterotic string at the four-derivative level, in the absence of Yang-Mills fields,
do yield O(d, d; R) invariant action upon reduction on 7% [22]. Soon after, the Yang-Mills
were taken into account to obtain O(d,d + 16; R) invariant result [23], where, however,
the fermionic sector was not considered. For an earlier work where only the scalar fields
are kept, see [24]. As for the reduction of Type II string effective actions on K3 in which
only the NS-NS sector fields (g, By, ) are kept at the four-derivative level in 6D, see
for example [25]. Another approach to obtaining the higher derivative extended O(d,d)
invariant supergravities, or their bosonic sector thereof, is to employ the o/ extended double
field theories [26-30]. The reduction of double field theory in the bosonic sector has been
carried out in [29], and we shall comment further on this in section 6.

Inclusion of the fermionic sector in the reduction requires that the dimension of the
torus is specified. In this paper we will work out the dimensional reduction of full het-
erotic supergravity to six-dimensions, including its fermionic sector, with its order o/ four-
derivative corrections a la Bergshoeff and de Roo [31], but leaving out the Yang-Mills
multiplets, and consistently truncating to (1,0) supersymmetry. While the 7* reduction
gives (1, 1) supergravity multiplet coupled to four (1,1) vector multiplets, the truncation
sets to zero the vector fields, and appropriate fermions, resulting in (reducible) (1,0) super-
gravity, consisting of pure (1, 0) supergravity plus a single tensor multiplet, coupled to four
(1,0) hypermultiplets. As expected, we do find an O(4,4) invariant result in 6D. More
specifically, the hyperscalars parametrize the coset space SO(4,4)/(SO(4)4+ x SO(4)-). In
arriving at this result, we shall see that there are several terms that naively arise which are

Four-derivative N = (1,0) invariants have been constructed off-shell [12-17] but they do not include
hypermultiplets. Moreover, the elimination auxiliary fields gives rise to infinitely many terms whose relation
to Noether procedure construction of higher derivative couplings, or string theory low energy effective action,
is not entirely clear. The role of highly nonlinear field redefinitions is another complicating factor. For an
earlier preliminary work on on-shell 6D higher derivative supergravity see [18].



invariant only under the SO(4) diagonal subgroup of SO(4)4 x SO(4)_, and that the re-
quired cancellation of all of these terms is nontrivial, requiring elaborate field redefinitions
of hyperscalars and hyperfermions. In the computation of the O(a’) terms in the action
and supertransformations, we work from the outset with the Lorentz Chern-Simons modi-
fied field strength in which the spin connection has bosonic torsion furnished by the 3-form
field strength itself. This approach is shown to simplify the calculations considerably. In
particular the extension of the Lorentz Chern-Simons term modified 3-form field strength
to include a Chern-Simons form built out of the composite connection arises readily.

Given the motivation for the higher derivative extension of supergravities with no
known string origin, the reasons for studying the reduction of heterotic supergravity are
two-folds. Firstly, once we get a handle on the structure of the higher derivative couplings
for the Grassmannian coset Gr(4,4), we expect that it can be extended readily to Gr(n,4)
and more to the point, we can deform the theory by R-symmetry gauging in an anomaly free
fashion. Such extensions typically do not follow from string theory. Second, the lessons
learned from the Gr(n,4) case may be utilized in the direct 6D construction of higher
derivative couplings of the other quaternionic Kahler spaces [32-35]. Such couplings, unlike
the case of Gr(n,4), are not guaranteed, and they will be treated elsewhere.

The paper is organized as follows. In section 2 we present the heterotic supergravity
action with its four-derivative extension a la Bergshoeff and de Roo. In section 3, we
provide the set up and useful results in working out the dimensional reduction. In section
4 we obtain the reduction at the two-derivative level, and in section 5 we carry out the
reduction at O(a/). In section 6, the field redefinitions as well as the resulting SO(4,4)
invariant action, and the reduction of the supertransformations at O(«’) are given. In
section 6, the bosonic sector of our results are examined more closely, and are shown to
agree completely with those of [22]. Our results are summarized and future directions are
pointed out in section 7. Our notations and conventions are given in appendix A, the field
redefinitions are described in appendix B, and the 6D action and supertransformations are
summarized in their simplest form in appendix C.

2 Higher derivative heterotic supergravity

The heterotic supergravity multiplet consists of the fields

(e,ura Yy Buv, X, ©), (2.1)

where the spinors are Majorana-Weyl with chiralities v11%, = %, and y11x = —X, and
w,r=0,1,...,9. The Bergshoeff-de Roo extended heterotic supergravity Lagrangian, in
the absence of Yang-Mills multiplets, and in string frame and up to quartic fermion terms,
takes the form [31]

£:£0+£O,O(a’)+£a’(R2)a (22)
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where I" = {} refers to the Christoffel symbol, and
Qi,urs = Wyrs T Hurs ) Huup = 36[HBVp] . (2'6)

The spin connection wy,s is the standard torsion-free one, following from D,(w,I")e,” =0,

L

.ivp 18 the Lorentz Chern-Simons form

sometimes denoted by w,s(€). On the other hand, w

2
L _
w,ul/p(Q—) = tr (Q—[uallﬂ—p] + SQ—[MQ_VQ—P]> . (27)
The Lagrangian Ly o(q) can be absorbed to the H-dependent terms in Lo by letting

Hywp = 30y,Byp — HA/WP =30, By, — 60‘/wﬁup(9(jc)) ) (2.8)
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where () is the supercovariantized €_,,; given as

Q(,sﬁzns = Qf,urs + Tm"s )

_ 1_ 3 _ _
Tyrs = (7/}u’7[r¢5] + 2¢r’7,u¢s) - §¢[M'Yr7wbs} = ¢r’7u¢s . (2.9)

The second term in Lo/ (R?) arises from Riem? term through the fermionic torsion depen-
(sc)

dence in 2 ;. Further definitions are
wrs = 26r”€SVD[M(Q+)’l/JV] , (2.10)

1
D0, = (0 Jehmt™) s+ P+ Oy (211

The covariant derivative D, (w,§2_)1,s requires extreme care, due to its unusual form in
which the spinor indices are rotated by torsion free connection w, while the Lorentz vector

2Supercovariantized objects are usually denoted by hatted symbols. Here we use the unusual notation
(sc) to indicate supercovariantizations instead, because we save the hatting for the 10D objects, when we
consider the dimensional reduction.



indices are rotated by the torsionful connection . This asymmetric occurrence of the

(SC))

spin connection arises because the construction of L, (R?) relies on treating R,.,s($
as Lorentz algebra valued Yang-Mills curvature [12, 31].

The action of the Lagrangian (2.2) is invariant under the following supersymmetry
transformation rules up to O(a'?), and cubic fermion terms,

6€HT = E’YTQZ)M )
3 17
5wll = DM(Q+)6 - ia/wﬁypfy Pe,
0By = —&vth,) + 20/ (280" 1,

—v]rs

1 1
ox = i’y“eaugo — EHWp'y“”pe + 50/ wﬁ,/pfy“”pe,
dp = €x. (2.12)

The o dependent terms in 09, and dy can be absorbed into to the definition of H by letting

H — H as in (A.15), but we will work with H = dB and exhibit the o dependent terms
(sc)

explicitly, as we have been doing so far. Furthermore, Q- defined in (2.9) transforms

under supersymmetry as

59(78;(25 = —€Yurs - (2.13)

3 The set up for dimensional reduction

We shall study the ordinary dimensional reduction on 7. From here on, we put hats on all
the fields and indices of 10D fields, and decompose the indices as i = (u, ) and 7 = (r,a)
where p,r = 0,1,...,5 and a,a = 1,...,4. For further notation and conventions, see
appendix A. As we truncate supersymmetry from (1, 1) to (1,0), we take the 10D vielbein

to be
o e,/ 0
e = ( g E,f‘) , (3.1)

where off-diagonal vector components have been set to zero. As a result, the nonvanishing
components of w3 are

A~ A~ ~ A bp
Wyprs = Wurs » Wpab = Quabv Wara = —Eo " Prap (32)

where

Quab = Ejo) " OpBayy , Puab = E(q|* 0uEop) - (3-3)

The nonvanishing Riemann tensor components are

O
3
vy
! 8
o

Cﬁub]d7 (34)



where

C~2,u1/ab = a,u@uab + @uacéucb - (M A V) )
X,ul/ab = P,uacpz/cb ’
D#(F)Puab = a,upuab - F,uupppab + Quacpucb + Qubcpl/ac . (35)

The 10D scalar curvature is
R=R—2D,P", — P,g,P" — P P}, . (3.6)

We also decompose the 2-form potential as

A

Bio = (Buys Bua =0, Bag). (3.7)

Its field strength A fop = 38[,13%] has the only non-vanishing components

H,,= Hy,,:= 38[MBl,p] ,

A

Hyng = 0uBag - (3.8)
In order to uncover the parametrization of the coset

SO(4,4)
Gr(4,4) = 3.9
") = 56, xS0 (39)
by scalar fields other than the dilaton, we introduce the SO(4,4)-valued field

Vo Vo E,* —2E,’Bg,
V= = 3.10
( ‘faa ‘raa ) < 0 Eaa > ? ( )

01
which satisfies VInV =5, where n = 1ol This parametrization of the vielbein is in a

triangular gauge, and it is preserved only by the diagonal subgroup of SO(4)4 x SO(4)_.
The associated Maurer-Cartan form is

E20,Ey | 2E,*Ey0,B
VoVt = [ e Ee 25" Fy70uBas | (3.11)

0 | —Bf0.E."
It is convenient to change the basis such that W = p?'Vp where p = % (i 11), diago-
nalizes n as p'np = 0_1) In this basis the SO(4)+ x SO(4)_ transformations act in a

block diagonal form, and the Maurer-Cartan form is given by
wo,w = ( @tuab Pt (3.12)

: _P;Lba Q—p,ab

where

Qpab = Ejo)*0pEayy) £ Ea®Ey" 0y Bag
Puab = E(o)*0uEuy) — Ea®Ey’0,Bag . (3.13)



It follows form these equations that

Q—i—uab - Q—uab = _2Pu[ab] : (3'14)

This relation, and (3.13) from which it follows, are both valid in the partially gauged fixed
parametrization of the vielbein given in (3.10). Undoing the gauge fixing,® the result-
ing Maurer-Cartan form gives Q4,4 that are the composite connections associated with
SO(4)+, and P,q, transforms under SO(4)+ as

5Ppab = A+aCP,u cb T Afbcp,uac . (3'15)

The equations (3.13) play central role in uncovering the SO(4,4) symmetry of the dimen-
sionally reduced action, through the use of the relations they imply such as

EaaauEab = QJr,uab + P,u,abv 2EaaEb68/LBozB = _2Pu[ab} . (316)

Other key relations follow from the Maurer-Cartan equation d(WdW =) + WdW ! A
WdW—! = 0, which gives

Q+,uuab = _2P[ILL‘G,C‘PIU]bC7
Q—pwab = =2 aPlyjen
8[,LL|-P|V]0Lb + Q+[,u|aCP|zx}cb + Q—[;L|bCP|1/]ac =0, (317)

where

Q—l—/u/ab = 28[#\Q+|V]ab + 2Q+[u\acQ+|V]cb )
Q —pwab = 200,/ Q_jyjab + 2Q [ “Q—)cb - (3.18)

Note also the identities

8;1,Eaa + Q+uaon¢b = ,uba Eocb )
a,uEaa + Qf,uabEab = uab Eab . (3'19)

Turning to the fermionic fields, we write SO(1,9) gamma matrices 4 as

ﬁ/mzym@l (mzovla"'a5)7
;5/0,+5 :’Y?®'ya (a = 1727374)7 (320)

where 4 and y* are SO(1,5) and SO(4) gamma matrices respectively, and 77 is the SO(1,5)
chirality matrix. The SO(1,9) chirality matrix is

1 =779®7s, (3.21)

3The general matrix V satisfying the conditions V7V = 15 can be obtained from V given in (3.10) by
applying a SO(4)+ x SO(4)— transformation which is not in the diagonal SO(4) subgroup.



where 75 is the SO(4) chirality matrix. SO(4) gamma matrices and chirality matrix can
be represented as

0 i(Ua)AB/ , ,
S , A, B=1,2 A B =1,2),
v (_i(aa)A B 0 ( )
4B 0
Vs =7t = v (3.22)
0 —54 5
where

ot = ( 1’0'2,0'3’7;), g% = (0’1’0'270'3’ —Z) . (323)

A general 10D spinor has components

)= (;fj) : (3.24)

In dimensional reduction we truncate the spinor fields as

A YA 5 0 . XA . €A
_ 7 = ., = , = ) 3.25
Y ( 0 Ya 0 X 0 =1 (3.25)
The 10D chirality conditions imply the following 6D chiralities

Vihua = +hua, vl =L, vva=-Ra, réa=+éa. (3.26)

The 6D spinor fields are defined as

A~ / ~ / ~ 1 !’ ~
Vua =Vpa, Yo' = E D, xa=%Xa— 5(0’“).43/%3 , €4=¢€a. (3.27)

In what follows, we will use the notation
I =y ®9%, {T*+*}=0. (3.28)

The indices A, A’ are raised and lowered as

01
Pt =By, va=vPepa, P =cap= <_1 0> (3.29)

and similar equations with primed indices A’, B’. The 10D Dirac conjugate is
b =930 = ((wa)'in®, (@N)1n°) = (¢4, —dar) (3.30)
where 6D Dirac conjugates are defined as
o=l 9 = Wa)Tin. (3.31)

The 10D Majorana condition is -
b =Ciod", (3.32)



where Cg is an SO(1,9) charge conjugation matrix satisfying
CioA™Cho = 4™, Clo=—Cho. (3.33)
For the representation of 4™ in (3.20) Cyg can be chosen as
Cio=Cs ® Cy, (3.34)
where Cg and Cy are SO(1,5) and SO(4) charge conjugation matrices respectively satisfying

Cy 'y Cs = =", cf = ¢,
Ci'yCy =7, cl = —cy. (3.35)

The explicit form of Cy is

—€ARB 0 1 AB
C = 1/ 5 C = . 336
4 ( i _6AB) 4 <0 o (3.36)

The 10D Majorana condition (3.32) on (3.24) implies 6D symplectic Majorana conditions
A =ePCgyl, N =P Coih . (3.37)
In this notation, we have, for example,
ral = g%,  T% = g%. (3.38)
Note also the ‘flipping’ property
Py D gt gy — ()P e Dm0y (3.39)

where 11 and 1 are any two symplectic Majorana-Weyl spinors in 6D.

4 Dimensional reduction of L,

From the 10D supertransformations (2.12) we obtain the 6D supertransformations at ze-
roth order in o/ as

506um = g’Ym% )
50¢u = Du(Q+)67
6OB,uz/ = _E’V[pﬂpu} )

1 1
dox = sV e0up — = Hpuwpy""Pe,

2 12
dop = €x,
_ 0 —eluty
WoW 1 = ,
’ (—erbwa 0 )
1
50% = _§7MFb5Puba ) (4'1)



where we have defined the 6D dilaton ¢ as
1
g0=s5+§lnE, E =det E,*, (4.2)

and the covariant derivative on € is given by

1 1
D#(QJr)E = <ay + ZQJr,umn'an + 4Q+,uabrab) €. (4'3)

We have suppressed the connection Q4 in the covariant derivative D, (€24 )e, in accordance
with our notational convention described in appendix A. The supertransformations of the
hyperscalars are obtained by using

doEo" = el "%q 503045 = —EF[ON%] : (4'4)

To begin with this gives

(4.5)

W(SOW_I — <_2€]‘—‘[ad}b] ‘ _Era¢b> )

~a | 0

We can add a compensating SO(4); transformation dgo(4), such that Wé W1 takes values
only in the coset direction:

W (8o + dsoa), )W = <_26F[a¢b] - )‘+ab_€ra¢b)

T

_ 0 —€layp
- (_erb% : ) , (4.6

where we have chosen the SO(4); transformation parameter as Ay qp = —2€l g1y In (4.1),
we have denoted this result as W W ! for short. Other fields which transform under
SO(4)+ are fermi fields, for which this compensating transformation is higher order in
fermi fields and can be ignored. B, transforms only under SO(4)_. For later convenience,
let us also record the supertransformations

00Q —piab = 2P, €1 Yy,
00Q+pab = 2Pucfa€T )0 + 2D (Q+, Q- ) (T p1y))
= 2P, elybe + 2D (Q+, Q1) (L ey,
60Puab = Dpu(Q+, Q) (€Lathp) + 201 P - (4.7)

The covariant derivatives are defined as
DM(Q-H Q—)(a_‘bd}a) = 8u(a_‘bwa) + Q—i—,ubc(grcwa) + Q—uac(grbwc) )
Du(Q—i—a Q—F)(EFbwa) = aﬂ(a—‘bwa) + QJrubc(EFCwa) + Q—i—uac(grbwc) . (4'8)

00Q —iab has the right SO(4)4 xSO(4)_ index structure. doQ b has undesirable index
structures in the first line. But it can be written as in the second line, in which the first term
has the right index structure and the second term is a local SO(4)4 transformation. So, if

~10 -



we add a compensating SO(4)4 transformation with the same parameter Ay, as in (4.6)
to the supertransformation so that the second term is cancelled, we obtain the right index
structure. The second term of 69 P,q, has a undesirable index structure but it is also a local
SO(4)+ transformation with the same parameter as for 0oQ,qp- Supertransformations of
the truncated components automatically vanish

A N

do ( é,uaa e, B;wm IZJ;LA/ y Yaa, )ACOLAI ) =0, (49)

which shows the consistency of the truncation from (1,1) to (1,0) supersymmetry.

Using the ingredients described in considerable detail above, it is now straightforward
to perform the dimensional reduction of the two-derivative Lagrangian Ly given in (2.3),
which yields the 6D Lagrangian

1 1 1
Loy = ee®? |: ZR + 9" 0Oy — — Hyp H'P — ZP/mbP“ab

12
= ST D)y + 20 D)y + 20" D)

- %?ZJGV“DM(W)% — Oup (V"0 + 26,7797 X)

45 P (372 T8 4 2% D) — - Hp (5740 Py

+ Ay TP — AP Y + PP wa)] : (4.10)

The definitions of the covariant derivatives occurring above are listed in appendix A. In
obtaining the 6D Lagrangian, we have also used the relations

Du(wv @)¢a = EaaDu(wa @)T/)a + ﬁuabEab@Z)a )
- . 1
Puaa = EilauEv - uabPuab = ZauGaBauGaB ’
Gup = Fo"Epq, Puab = Puap — E“Ey8,Bag . (4.11)
We conclude by emphasizing that the 6D Lagrangian (4.10) and supertransformations (4.1)

are manifestly SO(4, 4) invariant, as well as SO(4) 4+ x SO(4)_ symmetric. The lowest order
bosonic field equations are

1 1 1
£ = 5 R(w) 200 — 2(0u0)(0"0) — ¢ Huwp H"? — S Py P,
1 1 1 o1 w1
gy,y — ZR,UJ/(W) - 5 (D/—L(F)aljgp) - EH;U'PUHV - Z UabPV - ZEQDgﬂV?
By = DP(T)(€* Hyuy)
EX = D, (e* PHaby | (4.12)

where &, £,,, By, and El%b are dilaton field equation, Einstein equation, B-field equation,

- 11 -



and hyperscalar field equation respectively. The lowest order fermionic field equations are
1 1 1
Ex =" Du(w)x + 57" Dulw)w + Z’V“F“wme +7"X0up = 57 POy
1 - 1
+ ﬂ,y,uup Q;Z)U-FI;wp + ﬁ
1
Ey =" Dy(w)hp + 29" Dy (w)x — iv”v“F“@bmeb — VP Opp + 4" X0

YPXH

1 1
7 00 = AU o + 20V XD + T3V Ve Vo HPT gV xHupe
1 1
Ea =" Dp(W)¥a + 57"V TuPuba + VT XPuba + 1" $alup + 757" Patlp,  (413)

where &, 5{;, and &, are x-field equation, gravitino field equation, and hyperino field
equation respectively.

5 Dimensional reduction of O(a’) terms

5.1 Building blocks
We begin by the dimensional reduction of the H-torsionful Lorentz connection
Quprs = Gprs + Hprs (5.1)

where & = ©(é) and H = dB. Tts dimensional reduction gives the only nonvanishing
components

Qiurs = Wyrs = Hyprs

Qb = Qutpuab

Qtara = —Ea’Prap,

Qara = —Ea’Prpa, (5.2)

where w = w(e) and H = dB. It follows that the only nonvanishing components of the
10D Riemann tensor for Q_ are

Runrs(Q-) = Ryurs(Q),

Ruvab(Q2) = Q_pvan

Ruan(Q-) = —Du(T1)Poap — Xpwab »

Rapy (Q ) = Q+rsab

Rop 4 (Q-) = —2P,1, Py ?, (5.3)

where

DM(F—&-)PVab = a,uPVab - F+,LL1/ pab + Q—&-,u,a veb T Q ub Pl/ac )
X,uzzab = Puacpl/cb ) (5'4)

and I'y,,» = I'),,P+=H,,,°. We shall often adhere to the convention in which the dependence
of @+ in covariant derivatives will be suppressed if they act normally on the SO(4); X
SO(4)_ indices as above.
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Next, we consider the dimensional reduction of the 10D Lorentz Chern-Simons form
A A 2 A A A
~L
Its only nonvanishing components are
a}ﬁyp = wﬁyp(Q*) + wgzlp(@*) )

~ 2 c v v
wﬁab = gPVa (Du(r+)P be T Xu bc)

: 5.6
a (5.6)

where

2
wﬁﬂp(Q—) = tr (Q—[uan—p] + 3Q—[uQ—VQ—p]> : (5.7)

We see that the Chern-Simons form built out of the composite local connection Q_,qp
naturally arises as a result of the dimensional reduction.

The building blocks for the fermionic Lagrangian at O(«') are as follows. Components
of Vs defined in (2.10) decompose in 6D as

72)7"5 = Pps 1= 2D[7’(Q+7 QJr)d}s} )

A 1

wra = EaaDr(Q—l—a Q+)1/Ja + ip,ubafyﬂrbwr

1
= DT’(Q-I—? Q+7 Q—)q/)a + Prbawb + §Puba7urb¢r )

&ab = *Puc[a’VMF%bb} ) (58)
and the components of ﬁﬂ(dj, Q_)v; in 6D are
1

4

PN 1 .
D,u(wa Q*)@Z)a = Du(w)% + ZPuch d¢a )

Du(@, Q) = Dylw, Q) + = Puap D%,

o 1
Da(wv 97)% = _5 u(ab)fyurbwT - Prab¢bv

A

N A 1 B
Da(wa Q—)wb = _§7MF Pu(ca)wb + P'uabw,u ) (59)

where
1

1 a S
Du(wv Q)Y = (au + Zwupq'YPq + ZQ-Hwa b) Yr + Qs (5.10)

5.2 The bosonic Lagrangian at O(a’)

The first contribution to the bosonic Lagrangian at O(«/) from (2.4) and (2.5) reduces as

1
Y, YH + QZH,,abZ“”ba} , (5.11)
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where
Y;U/ = P,uabpuaba Z,Lwab = PucaPVCba (512)

and the only other contribution to the bosonic Lagrangian at O(a/) from (2.4) and (2.5)
reduces as

é€2¢f{ﬂﬁﬁwﬁﬁﬁ = 66280 {H!Wp (wﬁup + w;?l/p) + X;wab (D#(F+)Puab + X/uxab)

= 2 (D) Py + Xy )| - (5.13)
Combining the two results we get
S T A S N
Lp o) ee*? [H“prﬁpﬁ - Zmeﬁ(Q_)Rﬂ”m"(Q_)}
1 1
= 662@ [H#Vﬂ (W£Vp + wfﬁ,p) - ZRuymn(Q_)Ruumn(Q—) - ZQ+/,LUabQ+uVab
_ EQ Q prab D (I-\ )P D,u(l—\ )Puab o 1 yHY 4 1Z Z/U/ba
4 —prab'<d — p\L +)Lvab + 9 7 2 prab
+ Azgl : (5.14)
where
ALp = —PMD, Y, — XYy,
Xap := Pua“Pt ey, Yab := Pua“Plye . (5.15)

Note that Yy, transforms as SO(4)4 tensor, and the Q4 connections acting on its indices
have been suppressed. We have separated the terms called ALp because they are the
only terms in (5.14) that are not invariant under SO(4)4 x SO(4)_. These terms break
SO(4)+ x SO(4)_ down to the diagonal SO(4). They will be removed by a field redefinition
which will also produce a SO(4)4 x SO(4)_ invariant term —ee*?Z,,,, 2, as will be
shown in the next subsection.

In obtaining (5.14) we have used the relations

(X‘wjab + Z;wab)Dupyab — PuabD,uYab ) Zl“’alewab = XabYab . (5.16)

We shall continue by reducing the fermionic Lagrangian at O(a’) as well, and collecting
all such problematic terms that break the SO(4), x SO(4)_ symmetry. The total of such
terms will be called ALr below. At the end we shall find the field redefinitions of the
hyperscalar and hyperfermions which will remove ALp + ALp completely, and producing
few new terms that are SO(4)4 x SO(4)_ invariant.

5.3 The fermionic Lagrangian at O(a’)

In addition to the definitions for the covariant derivatives given in (5.4) and (5.10), in what
follows it is understood that

1 1
D;ﬂ/}a = Du(Qﬁ-)wa = (@L =+ EQ-&-,M“S'YTS + 4Q+,uchCd) wa + Q—uab¢b7 (517)

Dupuab = Du(FJr)Puab = 8uPuab - FJr,ul/pPpab + QJr,uaCPVcb + Q—ubCPI/ac ) (5'18)
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where I'y ,,» = T',,,” + H,,, and T',,,” is the Christoffel symbol. Thus, we suppress the
connections @)+ in the covariant derivatives, if their action on the SO(4)4 x SO(4)_ indices
is the standard one, as explained in appendix A.

Next, we dimensionally reduce the fermionic Lagrangian at O(a’) and in the order they
appear in (2.4) and (2.5). Not all terms that result from the dimensional reduction are
SO(4)4+ x SO(4)_ invariant. Such terms are invariant only under the diagonal subgroup,
and they are collected as AL;, i =1,...,7 below.

D=ee® [~ AP Ry (O )eApihs+daphs Q5™ e 2 Dy (D) (2 HP70)]
:66290 [_HHVpRHVTS(Q—)&Tprs_HquQ—uuab&a’prb
(s Q" +anahsQ ™) e 2 D (T) (62¢H“”P)+M1] : (5.19)

~ 1/\ A :AA ~DD A~ Axn N AGLADH A XAfDH ~
@=ee® LLWLﬂﬁﬁ(Q) (D733 0" + 4047 P7P R —ARAP x)}

1 _ —
et |:4 (wﬁup(Q—)+wSVp(Q—)) (WV[HW”%]1/)T+4%7‘7“””X

— AP YAy wa) + (— %&w"”p Ty,
2T BT P T ) POt D Pt AL, (5.20)
@=ee? [~ 2R (- )0™4” DA (.0 )"
=™ |~ 2R () Dy (w2 J¥s—=2Q ™ Gy DH (W)t
+20, Ty Q4" Puae ) 4297 T Dyu(w)4' 4T Dyu(w,2- )0 ) D" Pray
~20,7thy (P¥ b DuPr™ ) =207 the (PP Dy Pra® ) 420 T PP oy Yy,

— 20 TN (PHY ) +2($ T Yae P Sy + AL, (5.21)

1

2

1 PV mn 1 7.p1ab —1ab mn
=ee §(¢7 Vo= 2XV" ) bmn Ry (Q_)+§(1/JF Yo—2xT JUmn Q@+ a

+§(7/;p7#1/7p_2>27#y) Urc¢a( ach % )
+ (P, T2 TN Ty )% (P 0 Vi)
+ (PP, T 42X T ?) 7 T (Pyae Dy Pob©)

+2 (1P, DO+ 2y#T?) (D”w“)DMPVwA@} : (5.22)
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+ [~ Dy (w)ibap | + [~ 207" Dyy(w,0- Yl

— ~ = ~ 1 < ~ = _
+ [*thmnrbwnapmba*4¢abrc¢mbpmca] + {HHMVP (wabva%bermavawma)] }7

=ee?? { —Q,Z;m”’y“Du (W, Q) Vmn— %Huupl/;mHVWPT/)mn
* BWV“ VAT (Dp(w)e) (Puc® Prda)
_%QZQVN'Y'O’YVPCFd(Dp (w)wb) (Pucbpl/da)
0 T (P Dy(T) Prta) 56797 TT (Pt Dy(T) Prc)
+ [—2(Dm&a>w<w,9_><mea>+z/?wra(zp<w,ﬂ_)meb)Ppab

—(D"™ Y)Yy T (D u(w, 2= )b ) Popa— (D™ )77 T % (D pu(T) Pyt

1- 1-
+§1/1m7”7“7p FbFC(Du(w,Q—)wm)PpcaPyb“+§¢m7“’v”7” LT Y (Pyupa Dy (T) Ppe)
_Q&apyu(Dy¢b)Zuuab‘i‘@zl/’yuVpra¢prCbYuuac+A£5:|
+[4™ D0 (Do) Pa™ = 20" P4 T T, Y
— 20T T DY) Yybet 20"y TT¢ (D" 9?) P Poca
_&bvuvurdrcrewp (Yupdcpueb_Y,uudePpcb)+A£6}

1 - 1 _

+ [24Huypwbrcrd’y/\’)/uupfyTwa)\TCd_MHuupwaFCFd’y/\’Yuupf}/wa (P)\chTda)

1 - 1 _
- 6 Hw/p (qu/)a) v;wp (Dml/)a) - EHuupmea’Yo’yuyp (Dmd]b) Paab

1 _
+24H,Ullp,(vbm’YAVNVp’YTFCFd@Z)mY)\Tcd+A£7} }, (5.23)
where
Y,Lu/ab = PuaCPz/bc- (524)

Furthermore, D1, and D, P, are as defined in (5.17) and (5.18) and

1 1
Du(wa Q—)wrs = (au + ZWMPQPVPQ + 4Q+uabrab) w'rs + Q—urpwps + Q—uspwrp ’

A 1 1 n N N
Du(w)wab = (au + ZwuquPq + 4Q+uchCd> Yap + Q—uacwcb + Qf,ubcwac )

A 1 1 A N o
D#(w’ Q—)wra = <au + Zwupqupq + 4Q+,u0dFCd> ¢ra + Q—Mrswsa + Q—uabwrb . (5'25)

The terms in (5.19) can be absorbed into the CS terms in H,,,, occurring in Ly, if we use su-
percovariant Q_ and Q_. The first term in (5.21) can be absorbed into the Riem(£2_)? term
upon supercovariantization of 2_. The two 10D terms in (5.23) are reduced together for the

~16 —



following reason. The covariant derivative in the first term becomes D, (w,Q,Q—,Q_) in
6D. When we add the H,,,;, contributions of the second term to the first term, the covariant
derivative becomes D, (w, Q+,Q—,Q_), as @ in the first term combines with H 4 in the sec-
ond term and becomes 4. Summing all the SO(4)4 xSO(4)_ breaking terms found above,
while a large number of cancellations occur, we are still left with several terms given by

AL = AL + AL+ AL3+ ALy + ALs + ALg+ AL7
= 20T (X Pyep) + 200" T (P, Dy Pyey)
+ 20T PP 720Dy () (€2 PP o) — 20" T YP P, Cpe ™22 D,y (€29 PP o)
— 2" TP P* Dy Py, — 2(0 TY) Xae P + 20" 9V, Py
+ 2(y "y T 4 2TV by ) (P 0o Dy Pry)
+ ( — %Jw“”” D%, — 20h, Ty — 2Ty + %W'V“F“bwd
+ 24, Yy Ty — 4ploTPy by 4 2h Py TG + 41/7“F”7’“‘x> Yoe B
— 20°9* (DY) Dy Pyap + 2(10P 7" 7,I° + 2X7*T°) (Doh®) X pvba
= 20" (D)) Xypa — VPV TP (Prac DB + Poy® Dy Prac)
+ (VP 7,0 + 23XV T0) 7 T (PpeYorvea)
+ PP TP (= 2P Yo pac + PoaXuphe)
— 2(¢* P (w, Q) D) Py — 2(D* ) (ID(w)8") Puva
— PP T (D (w, T )PP Yo pety — 2004 (D (w0)1") Yap
— YT (D (W)Y") Yyas — VT  Hyp Vet

1 _ _ -
- EHMVP (21#&7“”[) (Dadjb) Poab + wayuyp’yarawﬂ—ya’rab + wa,yuupwbyab> . (526)

6 Field redefinitions and the total Lagrangian

Combining the results for ALp and ALp given (5.15) and (5.26), respectively, with the
Lagrangian generated by the field redefinitions in Ly described in appendix B, most re-
markably we find that

ee® (ALp+ALp)+AL +6L0 OLo| +0Lo| +0Lo|
E—=YFE Pe—YPprY Y=Y Dy =Y E—=y¢  PE
=ce? [_ Zﬂuabzuyab + (&u’}’#’yyrawb + QXV#Fawb) P,quYac - f‘/_}a'yp”y#rbwy (Ppcayﬂubc)
- 21[)“’)/”‘ (Dy¢b) Zuuab} . (6 1)

All terms displayed in (5.15) and (5.26), which are only invariant under the diagonal SO(4)
subgroup, have cancelled as a result of the field redefinitions, and a handful new terms
are produced that are invariant under SO(4)+ x SO(4)_. Putting together all the results
described above we obtain

£ - =ry +®+---+@+550’E_)YE+5LO

O(a’)

Lo \

+
O(a’) P —=PrY Y=Y Dy
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E—y,ye PE
1 1
:a’ee%’{ P (o (00458, (Q0)) = B )R (0) = 1 Q@

1 prab w prab 1 s 1 uvba pvab
EQ—yuabQ— _DupuabD P _§Y}U/Y +§Z,uyabZ —7Z Z

| = HP Ry () Bt — H™P Q™ byt

+ (Pt +an Q™) €2 Dyu(D) (2 HH) |

1 n v 7 v 1% " v

+ {4(wﬁyp(9_)+w,?yp(62—)) (w”vw" PAT + 4oy TP X — AP x it ”wa)

1

5 (= AP, — dah, Ty — AT+ TPy ) P o Dy P

[ 2R Q) D (0,0 ) = 2Q By DP )y 20T ( Q4 P
+2(0" T Dy (w)i =T Dy (0, Q8" ) D" Pray =200, 3t60 (PY s Dy P )
=20l (PP Dy Pra® ) 20 T PP ¥y, = 20" T (P Y ) +20 T8 (Yoo Py %) |
1,- _ 1, - _
+ {2 (¢p’7wj7p - 2X’7m/) d)mn ijmn (Qf) + 5 (¢prab'7p - QXFab) '(Z)mn Q+mnab
1 - S MY n - v
5 (P79 = 20" )Y T 0 (Poab Q™) - (07T = 2XT )T % (P ca V)
+ (VP D+ 2X9 )7 T (Prac Dy Pt ) 42 (P44, 427 T7) (D%“)D,ﬁpyba}
_ 1 _
- '(Z}mn’Y'uD,u (Wa Qf)wmn - EHMprmn,tupwmn
1_b,upucd a 1_a,up1/cd b
+ 51/] Yy r<r (Dp(w)wb)<Puc Pyda)_iw Y rer (Dp(w)w )(P,u,chzxda)
1_bucd a v 1_aucdb v
+§'¢ Y r wb(P,uc D Pzzda)_§¢ Y rer lb (PucbD Pz/da)
+ [~ 2D ) P(w, Q) (Dimntba) + Pruap ™ 1T B(w, Q) Dytf?
= Puba (D™ )79 T Dy, Q- )om — (D" T D” P
1 - 1-
+§Yupabwm7V7u7pFanDu(w7Q—)wm+iwmfyurbcwm(PpbaDVPVca)
_2Z,u1/ab@QV#Dywb+1/_}V7M’Yprawbppcbyuuac}
+ {4Pnablzmnrameb_2qzypvurarb¢yy;)uab_2Yuubc¢a7HFbrch¢a
+21/_}a7ﬂrdrc(Dywb)PudbPzzca_ﬁbvuﬂyurdrcrewp (Yupdcpueb_ypudeppcb)}

1 ; 1 _
| g MV DT st B 8T 50 (P Pra)
1 - 1 _

B 6lep (Dmd]a)’yuyp (Dmd}a) - EHuupPgab¢mF“707“”po¢b
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1
24

+ | (B T+ 23 TGP ) P Yoo — 59 A T (PpaYiune)

+ H;wa/\Tcd&m’}/)\’yul[ﬂ’yq—rcrdlbm]

_2ZHllab"/_}a7#Dywb} } (62)

The term —ee??Z wab 2 @b and the last four terms arise from the field redefinitions. The
sum of Ly and the O(a’) Lagrangian above can be simplified by the modification of the
3-form field strength by Chern-Simons terms and various supercovariantizations. This is
done in appendix C, where the terms in the total Lagrangian are grouped in a systematic
way according to their structures.

6.1 Supersymmetry transformations at O(a’)

The dimensional reduction of the supersymmetry transformations at lowest order in o/ is
given in (4.1). Here, we shall determine the supersymmetry transformations at O(a/). In
doing so we shall also take into account the field redefinitions discussed in appendix B.

Prior to the field redefinitions, the dimensional reduction up to O(a’) gives the super-
transformations to cubic terms in fermions as

de," = ey,

3
Opu = Du(Q)e = S [w, () + Wik, (Q-)]7 e

— ' P (DyP e + X, be) e,
5BNV = —E’y[#wy} + QQIQ_[MTS(S()Q(SC) + 204/Q_mab50Q(_si])ab,

—vlrs

1 1 y 1 v
ox = 57“68}190 o ﬁHuup7u Pet ial [wﬁup(ﬂ—) + WSVP(Q_)]VM Pe,
dp = €x,
Wew ! = <_2€F[a¢b] + o' B, 0Py, | —€F“¢b+4alp[a66pub]c> ,
—Typa + 40 Py0P g, | —4a/ P to Py,

1

6¢a = fi’y‘u'].—‘bﬁpuba + 2a,Pyac(DN«Pl/bC + X,U«Vbc) [ b}’yurbe’ (63)

where
Q(_Sli)rs - Q—,urs + ?/Jr’mws ) Q(—S;Lb = quab + %’Wbb . (6.4)

For later purposes, let us also record the transformation of By, under the SO(4)_ trans-
formations:

5aBuy = 20/ A0,Q_ap - (6.5)

Performing the field redefinition E,% = E/* + 6 FE,* with §E,* = —2a/Y % E,’, and noting
the formula (B.2) that gives

Q—i—uab = Q/Jruab - 4a/P,u[aCYb]ca (66)
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we find that

3 v, (& 124 a
6ty = Du(Q4, Q' )e — 50/ [wﬁyp(Q,) + wg,,p(Q,)]fy Pe —a'Pyu®D, Py D% . (6.7)

In the last two terms _ and P can be primed since we are interested only at O(a') terms.
Next, considering the redefinitions 1, specified in appendix B as well, we have the redefined
fields

W = g + 20/ WY + 20/ T Y e + 40 Py DM Q)00 (6.8)
EL% = By + 20/ E Y — 40/ T %) P,V By . (6.9)

It is noteworthy that the third term in (6.8) supercovariantizes the derivative in the last
term, and the third term in (6.9) supercovariantizes Yy, up to quartic fermion terms. It
follows from (6.8) that

1
oYl = —57”TbePMba — &YT Py Yae — 20/ TPy Dy P

(6.10)
AT e .

+ QO/P,,aC(DuPVbC + Xuybc) o]
al

In the last three terms P,u, and therefore Yy, by X,,p., can be primed since we are
interested in O(a’) terms. Next, using

leb = Puap + 2O/DuYab =+ 20/(Pubc — P,%)Yae (6.11)

in the first term of (6.10), a number of SO(4)+ x SO(4)_ symmetry breaking terms cancel
out, and we end up with the O(’) result invariant under SO(4)4 x SO(4)_ given by

1
S, = —57“Fbep/iba — o/y"T%€P) .Yy, . (6.12)
Turning to the supertransformation of the hyperscalars,

Ei,*SE., + E“E}’6Bag | —E(,"6EL, + E,"E{5Bag

[a e

— By *SElyy + BB, Bag| B, “0E,y; — B BP0 Bag

wWesw'—! = ( ) , (6.13)

where we recall that B,z does not undergo any field redefinition. The supertransformation
of (6.9) up to O(a) yields

SE., = Eaa(zrbwa — 20/ Yoo &Py + 40 €0, Yy
+ 40/ BTy D' — 20/ T (o TU Yy ) (6.14)
while the reduction of the 10D supertransformations gives
§Bap = E[a“Eﬁ]b(—EFawb—4a’P"bCEFaDHwC—40/YbCEFa¢C+20/YWCI,EWFGI‘C¢”> . (6.15)

Passing over to the primed fields, and up to O(a/), the last two supertransformations take
the form

SE'’ = E!, [grbw — 22/ Y™ + dd eyt Y, P+ daler el (D)) Pt
+a/enlg Y e + 2a’ey Terlypr Yy P (6.16)

0Bap = E[,"Bly"| — eath) + 20/ Vo? . (6.17)
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In (6.13) the terms in the upper and lower block on the diagonal can be removed by SO(4)+
and SO(4)_ gauge transformations respectively. As for the remaining components in (6.13),
using the results for 0 E}, and d B, in (6.13), we obtain up to O(«’) the supertransformation

0 | —eTat), + 2/ el Y,
—elyyl, + 20/ el ), Y)°| 0

W'(5 + dso(), + dso() )W = (
(6.18)
The lower right block of (6.13) is
A_ap = Ejy “0E ) — E\“E;P6Bys
= —4aeT Y Yy, + 4o/ e Yy + 4a'€l g (D) P 1y
— 204/E’YVF[a|FC¢MY;:V|b]C . (6.19)
The upper left block of (6.13) is
Ajap = E,*0Eqy + EL*E}P5Bags
= 2eL iy + 40/ €0 Yy + 4/ el (D) Py
— 2a’€’y”F[a‘FCw“YéV|b]C : (6.20)
The compensating SO(4)4 transformation acts on fermions thereby giving higher order in
fermion terms which we are neglecting. As for the compensating SO(4)_ transformations,
they act on By, but giving rise to quadratic in o’ terms, which we are also neglecting.
6.2 Closer look at the bosonic action
Let us have a closer look at the bosonic part of this Lagrangian, which we denote by

‘CBOS.,O(O/) . Noting that

Q—i—;uzab = _Q(P;LP;F)[ab] ) Q—w/ab = _2(PEPV)[ab] ’ Z;u/ab = (ngu)aba
Y, = tr(P,Pl), (6.21)

it can be written as

LBos.0(r) = €2 | H™P (w,5,,(Q-) + ik, ,(Q-)) — iRuumn(Q—)R“”m”(Q—)
— tr(D,(T4)P,D*(T 1) PT) — %tr(PuPyT Ytr(PHPYT)
- gtr(P”P“TPZ,P”T) - %tr(P;f PPT P
+ gtr(PuPyT PP | (6.22)

To compare this result with that of [22], we need to evaluate it on the Ly-shell. To
begin with, using the fact that

Ryvpo(Ty) = Ryuwpo(T) = 2D, (T)Hy)po — 2Hpup o 5 (6.23)
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where H,,, oo := H,-H,;", we find the following relations

/ e€®? Rypo (T4 ) RIP7 (D) = / ee® {R/WPU(F)R“WW(F) + 2Ry po (D) HHP7

— 2H, po H'P¥7 — 2H? H* — AH** tx(P,P}) — 16H.. "

+ (= AH?E, + 8Hyuy(0"0)B" — AH,,,,D'B")] , (6.24)
- /ee% tr((Du(T4)R) (DM 4)PT) ) = /ee%[tr(PuPVT) tr(P*PTY)

— tr(P,P] P*P") + tx(P] P*P P") — tr(P] P,PT"P") + tx(P*P] P'P))

+ (4 + Epgyu) t1(PuPY) + (DuEF )P o — 268 P o] , (6.25)
14 14 2
/H“ pwﬁup(g—) = / [H“ pwﬁup(w) + RWPU(F)HW,W - gHMMpoHMP,W] ) (6.26)

where Hiu := H,oH," and the field equations that follow from Ly are given in (4.12).
Using these relations in (6.22) we find the on Ly-shell result

v 1 vmn
‘CBOS.,O(O/) = 66299 |:HM p(wﬁup(w) + w,ﬁ?yp(Q—)) - ER#an(w)Ru (w)

1 1 1

o Rupo HMP7 - 5 Hy Y — ¢ Huvpo H'7 + H*" tx(P,P;)
1 1 1

+3 tr(P,PL) tr(P*PT") — 5 tr(P, Pl P*PTV) + 3 tr(P] P*P) P

1
-3 tr(P*PTP'P])| . (6.27)

Comparison of this result with that of [22] requires the introduction of the O(4,4) matrix

01 I 0
S=nVIV =pWlosWp! = = : 2
U pPW=osWp, = { ] s=1{, (6.28)
It follows that
-1 1 ~1 -1 0 2B 1
WS = pW  [WOW ", 05]Wp ™" = pW opr o | WP (6.29)
Tt

Thus we derive the identities,

tr(9,S 9,8) = —4tr(P,P}) — 4tr(P] P,),
tr(0,S 8, S) tr(O*S 9" S) = 64 tr(P,PL) tr(P*P"T),
tr(0,S 0"S 9,8 9’ S) = 16tr(P,P*" P,P"") + 16 tr(P P* P} P¥),
tr(0,S 8,S "S 0" S) = 32tr(P,PI P*PT),
tr(S 0,8 9"S 8,8 9 S) = 16 tr(P, P*" P, P"") — 16 tr(P] P*P] P"). (6.30)
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Using these identities, (6.22) takes the form

1
ﬁBos.,o<af>:e€2“"{H“””<wL (@) + 92, (Q-)) ~ 7 Ruwmn (@) R™ ()

wvp Hvp 4
1 uv,po 1 2 2uv 1 np,vo 1 2uv
+ §RNVPUH + EHMVH — éH;u'V’pUH ? — gH tr(aMS&,S)
171 1
+ 32 [4 tr(9,S 0,S) tr(0"S 0"S) — 3 tr(0,S 0,8 0"'S 0”'S)
(S 0,8 DS DS 8"8)} } . (6.31)
Finally, we note that the CS form satisfies
d[wQ(Q+) + wQ(Q—)} =0, (6.32)
which implies
w?(Qy) = —w®(Q-) +do, (6.33)

for some 2-form #. With this relation at hand, we find that our result (6.31) agrees with
that of [22] in their eq. (7.16), upon setting the vector fields equal to zero, and taking into
account the convention differences. Similarly we also find that our results agree with those
of [29].4

7 Conclusions

Motivated by the exploration of higher derivative couplings of quaternionic Kahler sigma
models to N = (1,0) supergravity in 6D, we have started with heterotic supergravity at
O(c’) [31], and reduced it on T* with a consistent N = (1,0) supersymmetric truncation.
We have found that the manifest rigid GL(4) and composite local SO(4) symmetry gets
enhanced to rigid SO(4,4) and composite local SO(4)1 x SO(4)_, with the hyperscalars
parametrizing the Grassmannian coset Gr(4,4). A series of field redefinitions in the hy-
permultiplet sector are found to cancel a large number of terms arising in the reduction of
the action and supersymmetry transformation rule that have only O(4) invariance. These
results generalize the well known work of Maharana and Schwarz [21] who showed how the
O(d,d) invariance emerges in the bosonic action and at the two-derivative level, and the
results of [22, 23] where the O(a/) terms in the bosonic action were dimensionally reduced.
We have also shown that the treatment of the 3-form field strength in heterotic super-
gravity as torsion part of the spin connection, and the modification of its field strength
by Lorentz Chern-Simons form defined in terms of the torsionful spin connection, simplify
the reduction considerably. In the resulting 6D Lagrangian, many H dependent terms are
absorbed into a torsionful spin connection, but there exist terms in which the three form
field strength appears explicitly.

The cancellations of duality symmetry offending terms is expected in view of Sen’s
result based on string field theory [19]. However, the emergence of the duality symmetry

4We thank Carmen Nunez for communications on this comparison.
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at the field theory level is a nontrivial symmetry enhancement phenomenon, which remains
to be better understood. The requirement that the dimensionally reduced supersymmetry
transformations take an appropriate form may provide a good start for understanding the
field redefinitions in a simpler way. The inclusion of the abelian sector of the Yang-Mills
couplings in heterotic supergravity remains to be carried out, and it is expected to give the
0(20,4) symmetry in 6D.

One of the motivations for the current work has been the construction of higher
derivative couplings of N = (1,0) supergravity to hypermultiplets where the hyperscalars
parametrize a noncompact quaternionic Kahler sigma model with negative curvature con-
stant. The Grassmannian coset Gr(n,4) is one of the Wolf spaces that have this property.
For n = 4 we have shown explicitly here how this coupling emerges from dimensional re-
duction. The complexity of the result shows that a direct construction of these couplings
by means of Noether procedure would be very complicated. Dimensional reduction proves
a relatively simpler approach to this problem. However, there are no compactification
schemes that we know of for obtaining the higher derivative couplings of the other QK
sigma models that are relevant to 6D supergravity couplings. For those cases, apparently
we need to resort to the Noether procedure. The results of the current paper provide a guide
in writing down an ansatz for the all possible four-derivative couplings in this construction.
The consequences of the fact that the structure group in Gr(n,4) is SO(n) xSO(3) xSp(1) g,
while in the other Wolf spaces it is either SU(n) x U(1) x Sp(1)g, or G x Sp(1)g where
G is a particular simple group, remains to be investigated. Ultimately, the Yang-Mills
sector is to be included, and R-symmetry is to be gauged, in an anomaly-free fashion. The
investigation of dyonic string solutions in that framework is expected to play role in the
analysis of the consistencies of these theories [10].
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A Notation and conventions

In our conventions the spacetime signature is (— 4+ +...4), and the fields of [31] need to
be scaled as follows:

Yy — V20, e = V2  Bu — —V2B.,, Hu,——(2/3)Hu,,
¢ —exp(—2¢/3), w— —w, Qr — —Qy. (A.1)
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We frequently use the definitions

Xul/ab = P,uaCPI/cb ) Y/uxab = P,uaCPZ/bc ) Z;Wab = P,ucapycb )
X/u/ = 5aquuab s Yw/ = 5abY/u/ab > Y,ul/ = 6apr,Vab s
Kap := gMVXw/ab ) Yoo = ngY,uzzab ) Zagp = gMVZ/U/ab . (Az)
Thus, Y, e = —%Qﬂwab and 2, = —%Q_ uvab- The vielbein postulates are
aue) +w, e, =T e =0,
b e T a
ouey +Qu e, —Txp e =0,
where
Qiprs = Wyrs & Hyrs, T8, =T2 £ HyP | Hyyp = 30,B,,, (A.4)

and I'f, represents the torsion-free Christoffel symbol. The gamma matrices are covariantly
constant,
D,(w,T)y, =0, D,(Q24,T+)y, =0. (A.5)

The curvatures are defined as

mn — mn mn m! n m n
R, (w) = 0pw, ™™ — 0w, 4w Pwup — w,Pwuy” (A.6)

R’ o(T) = 0uT06” — 0T ue” + 1 Toe” — T Tus’ . (A.7)
The two curvatures are related by
Rivps (') = Rurs(w)e, eq” Rivpo(T'+) = Ruvmn(Q5)e, e . (A.8)

These identities can be easily derived by considering commutator of covariant derivatives
acting on vielbein, and make use of (A.3). The curvatures of I'y are related to I" by

Ruvpo(U'+) = Ryuwpo (L) F 2D[u(F)HV]pU + 2H[uIPTH\V]TU : (A.9)
The curvatures of '+ are related to each other by
R,prcr(]:‘—l—) = Rpa,uy(r—) . (Al())
We also have the relation

D,u(Q—)Pmab = aquab + Q—umnpnab + Q+uaCPmcb + Q—ubcpmac
— " Dy(T+) Py (A.11)

with D, (I'})P,qp as defined in (5.18), and
D[u(FJr)Pu]ab = _H,uup Ppab . (A.l?)

Finally, our notation for the covariant derivatives is as follows. From section 4 onward, in
covariant derivatives we only indicate the connections that act on the Lorentz spinor and
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vector indices, and suppress the composite local connections )+ that act according to the
SO(4)4+ x SO(4)_ representations carried by the fields they act on. When we encounter
a term in which this symmetry is broken, we display the composite connections in the
covariant derivatives. For reader’s convenience, we list the definition of variety of covariant
derivatives that arise in the body of the paper:

1 1
DM(Q+)€ = (au + ZQJrumn'an + 4Q+uabrab> €
1 rs L a
D[M(WWV = (8 ] + 7w[,u\rs'7 + 7Q+ u\abr b) w|1/] )

1
Du(w) = <8u+ 4wur57rs+ Q+,uabr )

1
Dﬂ(w) = <8N + 4wl“”5’y + Q"F,LLCdF ) ¢a + Q—,U«aquz)bv
1
Dy (w, Q)b = (au + Zwupﬂpq + 4Q+uabrab) Yr 4+ Qpr*ths

1 1
Du¢a = Du(Q+)wa = (&1 + *Q—O—,urs'yrs + Q—i—uchCd) wa + Q—,uabwby
DuPVab = Du(r—i-) vab = 0, Pyab F-i—;u/ pab + Q-i—ua veb T Q b Puac )

1
Dy(w, Q- )thps = (@L + Zwupq'qu + 4Q+uabr‘ab) Yrs + QP Ups + Q_ Py . (A13)

In defining the Chern-Simons modified field strength, in order to adopt the same convention
as [22], we perform the field redefinition

By, = B, + 30, , (A.14)

with 6 satisfying (6.33). Dropping the prime, this leads to the definition

2
Hywp = 30, B,,) — 60 tr <Q< 9,00 4 Q(SC)Q(SC)Q( )) 30/w?, (Q-) +30/w%,,(Q4) ,

[ o) Tttty pp
(A.15)
where
Q(_S,LCL)TS = qurs + J)r')’,ud)s )
2
(@) =t (Qupdu @y + 5 Qup @y ) (4.16)
Further supercovariantizations that will be used in appendix C are given by
sc) 1 vb
% = D;ﬂ/’a + *’Y r %Puba,
Pt = Puah = ulathy, QU = —2P, )Py ),
sc sc sc) ab (sc sc c (sc
Yo = plgab>py( yab 2 = L) pre,(se) (A.17)

where terms up to quadratic in fermions are to be kept. Note that the dimensional reduction

Ol M)ab = Q—_pab + 1/_Ja’yuz/15, where ()_,,4p is supercovariant by itself. In fact, Q1 qp is

supercovariant by itself as well.

gives €}
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B Field redefinitions

Consider the field redefinition E,* — E.% + 0E,* with
5Eaa = Eabsba )
where S, = Sp,. Under this redefinition,

0Q+pab = Pua’Seb — Pub®Sac
0Q pab = P aSeb — PbSac
0Pt = OuSap + Q1pa“Sev + Q— 1" Sac
= D,(Q+)Sab + (Pup® — Pu%) Sac -

The variation of the zeroth order Lagrangian under this redefinition is

1- 1 1 1-
520 = ce| (GBAM TN, + ST, ST~ GO )6

1- 1/- _ 1
= UV UOQ s + 5 (Do T + 2% T ) 6Py — 5 PHS Py

Let us now consider the redefinition
Sab = 94/ Yab

It gives rise to

0 =o' ee® | P* D, Yo + Xap Y = Zywap 21
E—YFE

1-
= (GBI 4 20T, + 20T
1- _
- 2¢d,7p1-\abwd> (Puacy})c) + 2¢a7u¢b (PuCaY})c)
— i AHAVTE b_27 uFab P .Y
+ (= YT = 22Xy TY° ) (P Yac)
— ("9 T 0" + 2X* T ) D, Yo

+ <$uv“v”F“wb + 227“1“%1’) PHCbYac] -

(B.1)

(B.2)

(B.3)
} .

(B.4)

(B.5)

The term —ee?? Z,,,,, 2% and the last two terms are SO(4)+ x SO(4)_ invariant. The rest
will remove some of the terms that break this symmetry as shown in (6.2). The remaining

symmetry breaking terms will be removed by further field redefinitions discussed below.

Next, let us consider the redefinition
Sap = 4o’ YT peP,V°.
In this case only the last term in (B.3) contributes, giving

6£0’ = —%ee?w [P“abDu(Q+7 Q—)Sab} ,

S—terms
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where @4 rotates the first index and )_ rotates the second index on S . Integration by
part gives

— Tv(a b)e 2¢p pp
5EO’E—>¢V¢QPE 2e" T4, P2 D, (2 PFyy) . (B.8)

Next, we consider the redefinition of the hyperino. The lowest order Lagrangian £y under
a general variation of the hyperino gives

0Ly = ee* [ - %(&Zaw(a))% - %1/7“@(@(5%) (B.9)

1 - 1 - _
- EHHpraVIWpéwa + iplﬂlb (lbu"}/u’)’ura(swb + 2X’)’Mra5¢b)] .
It follows that the field redefinition
§hy = —20/ Y0V — 28/ TOY!Y 0 — 40! Puap DY (B.10)
yields the results

_ 1 -
OLo| =olee® [QYab VD@ + & Hyup "y % Yo

YopY
— (P A"y TUP? 42XV T P°) (PaYoe) | (B.11)

0Lo

o = € Y P T D 07 Yo P D

_ 1 o
— wu'YV’YpFawprY;wba + 6 #l/pwa,},u pvarb¢TY‘raab
B P T (PuacYote) + 2007 TP (PuscYoae)

— AP T Y Py Y en + 0y T  Hoy ™Yt
— P PAPT Y (P Ywbe) | (B.12)
O yspDy o' e €| 2P, P (w, T+ ) D*y° + 2(4** D) Dy Pyva
+ 2Psa (DTGNP + 3 Horgt 4 (D) P
— 20PyHy, T8 (DY) P Preq — AXVHT (DY) Pt Prea
+ 20y (DY) X pap — 20V (D) Zyias | (B.13)

where I' refers to the Christoffel symbol which is torsion-free. The last term in (B.12) and
the last term in (B.13) are SO(4)+ x SO(4)_ invariant. The rest will remove the remaining
symmetry breaking terms, as shown in (6.2). In the above equations we have used the fol-
lowing notations. We have denoted the torsionful connection by I'y =T'+ H. In (B.12) we
have converted D,(I', Q_, Q4+ )Y, b in which the connection @) acts on the b and Q4 acts
on a index, to the standard one D,(I'y, Q+, Q+)Y,uba = DpYpa by adding and subtracting
the required terms. In (B.12) we have also converted D,(w, ")), where w rotates the spinor
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index and I' acts on the vector index of the gravitino, to D,(w,I'})1,, again by adding
and subtracting the required terms. Similarly, in (B.13), we have converted IP(w)DH®
into IP(w,T'1) Dbt and D, (T, Q—, Q) Py, into Dyy(T, Q1+, Q—)Poba = Dy Popa, again by
adding and subtracting appropriate terms.

C The total Lagrangian in 6D

The lowest order in o’ Lagrangian (4.10), which we reproduce here for reader’s convenience,
is given by

1 1 1
'CO = 6624’0 |: ZR + g’w@ugoaz,go - EHMVPHHVP - ZP,u,abPMab

1-

- 5%7‘”@1/(@% + 22X Dy (W), 42Xy Dy (w) x
1 - _ _

= ¥ Du(w)dba = dup (9979 + 2077 x)

1 - _ 1 =
5 Puan (9077 T00 42X TP) = 2 Hop (673167 P

+ dpoy TP — AP + WW“””%)] : (C.1)

As for the O(d/) Lagrangian (6.2), it can be simplified by performing some algebra of
Dirac matrices, the replacement H — H in Ly, with A defined in (A.15), and the use of
supercovariantizations defined in (A.16) and (A.17). In that context the following relations
are useful:

1 1 1
T3 oM = = Huwp ™ + o/ HP (W, (22) + §wffyp(Q,) -3 W,J(Q+))

— &/ H"™P Ry, " () Yrypths + /'y theQ -, e 22 D, (T) (€22 HHP)
1

e R,ul/rs (Q(SC) )R;wrs (Q(SC) )

]' vrs
i — 20/ Ryprs(Q_)RHTS ()

4
— QQ'RMWS(Q,)&TV”D“(W,Q,)d}s, (C.2)

where H = dB. Carrying out the algebra of Dirac matrices to determine the independent
structures in order to separate the terms that are amenable to the use of the lowest order
field equations, further remarkable simplifications occurs and the total 6D Lagrangian

takes the form

E:EO‘H o TR Lo Lo+ Ls+ Lat L5+ Lo, (C.3)
—

with £y as given in (4.10), and various parts of the Lagrangian are organized according to
the structures of the terms they consist of as follows:

sc ]' R
L) = /e | = LRy (O R0 73 D, (0,2 b = 15 it

3 B Q) (991~ 250 Y (C.4)
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L= o' ee <P|: (D PIEZZ))DMP(IJab Q(S;VabQ sc)pvab 2Y,u(iC)Y(SC) uv

_ %zé;c) Z(sc)ab] (C.5)

1- _ 1 -

Lo=aee? [(— STy — 200y T X — 2Xy Ty + 2¢d7“1““bwd) P? 4Dy Pope

= 205 (P oDV PP) = 20 (P D, Puc)| (C.6)
E_/ 2¢ _1_ o,uupachY _}_ nAvTcda pr

3=aee 21/107 Y r ¢ w blvpca 41%7 0 r 1/} de-H/pac
1-
- 577&;1’7”7”1_‘&1/}) (PpabYl/p - 2Ppch1/pca +3PVcb}/;a)
X T Prch@— ™ = 2XT T 4% PPeaY

+ 27T P, Yae (C.7)

La=aec® | (BT, 3XT )5, Q4 oy + AP DD vy
Yoy, DO, — 328 @)y D g,
— pHe, PYAy I DG | 90y TV (DO Y) DHPYy, (C.8)
£ =aec™ | =AD" Dl 0D+ 43T (DS D P o
YTt Zab DO 4 Qg l A TD
;PHCQPydbw“FdFC WP L P P T g
+ P @ Py Tea* D0 + Qﬂ”cdwmrcdD( Vo
¥ gQ_“”ab&aqu£sc>wb + SIS T Pt D P
1

SO T B D P (©9)

1 - 1 -
Lo=a'ee® H,y, [mYmdwbrCdeWW%b — 13 PranPraa 0" TT Iy Ty 740 (C.10)

1 N 7 — v,
- 6 (D?sc)wa),yuupDc(rsc) %} + O/¢a71ﬂ/)bQ—pabe 2QDDN (F) (6290}['u p) )

where we have used the relation D, (w,I';)y” = —H,”,7*, and the non-standard covariant
derivatives are as defined in (A.13) and

1 1
Du(w7 Q*)(mea) = (au + Zwupq’ypq + 4Q+ubcrbc) (mea) )
+ Q—umn(ana) + Q—uab(meb) . (C‘11>

The structures that arise in the result for Lagrangian are grouped as follows. In the first
term in (C.3), with Ly from (4.10), only the zeroth and first order in o/ that are to be
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kept. In the Lagrangian £(R?), the dependence on the hyperscalars enters only through
the composite connections in the covariant derivatives. The Lagrangian £; contains the
bosonic four derivative terms built out of hyperscalars. Denoting a generic fermion by v,
the terms in £y schematically are of the form 11 (PDP), where the PDP factor cannot be
written as D(PP). Thus there is no room for use of equations of motion here. Similarly, £3
contains terms of the form ¥ P3 with no room for equations of motion. The Lagrangian
L4 contains terms of the form P24 D or (DP)yD1). Terms in which the lowest order in
o/ field equations can arise directly or upon partial integration are collected in L5, and the
Lagrangian Lg has the terms in which H appears explicitly, as opposed to entering through
covariant derivative as torsion. It is worth noting that many simplifications have occurred
by working with the supercovariant derivative of the hyperino Dl(fc)wa defined in (A.17).

The supertransformations in terms of the redefined fields, including B/’w given
in (A.14), and with primes dropped, are given by

de " =ey",,
3 1 1
51% = DM(Q-‘F)G_ 50/ [w{:l/p(Q—) + iwfgyp(Q—) - 5(“);621/,0(62-4-)

5B,uz/ = —EVWM +2a/Q—[uT8509(_55])r5 +a/Q—[uab50Q—y]ab _a/Q+[uab50Q+u]ab7

YPe—a! Py Dy Py T % |

1 1 1 1 1
5X = 5’7’“68,190 - EHMV,O’Y'LWPEWL 50/ {wﬁup(g) + 5("}814)(@*) - QWSVP(QJr)} ,y;wp€7
Op=€x,
S 0 | —eTatpy+20/e0 1y Yo
_Erbwa+2algrcwayvbc‘ 0 '
1
Spg = —EW“I‘bGPMba—o/q/“FbePucaY},C. (C.12)

It is understood that the quartic fermion terms in the action and the cubic fermion terms
in the supertransformations are to be dropped.
We find the commutation relation of these supertransformations as

[517 52] = 5g.c. (5) + 5L(>\) + 5tensor(A) + 6SO(4)+(A+) + 580(4)7 (A*) > (013)

where

&t =ente,

1 1
Ars = _gug—pfr‘s + 6a/£M wﬁrs(Q—) + iw/?TS(Q_) - §w/?TS(Q+> ’

1
A,u = §€u - fVBV,u )
A:I:ab = g'uQ:I:uab . (014)

To find supertransformation which may appear on the right-hand side of (C.13) we need
cubic fermi terms in the supertransformations. In our conventions dr(A)e,” = —A"se,°.
Note also the transformation rules § B, = 29|,A,, and those given in (3.15) and (6.5). It
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is easy to check (C.13) for e,,” and ¢. To check (C.13) for By, we used

(509(_52»5 = _€’Yuwrs ) 50Q(_8;zlb = 2P,uc[agrcwb} (C15)
and

[d01, 502]9(50) = —{"Rurs(Q2-),

—urs

[d01, 502]@88;211) = —&"Q_wab - (C.16)
To check (C.13) for W we used
0 (—EQFal/)b + 2a’E2I‘C¢bYaC) — (1 > 2) = _gupuab (017)

and found
_ _ 0 —£-P
01,0 - 1
[ 1 Q]W w <—§PT 0 >

=g Wt —wt (5 f* ¢ %) , (C.18)

where we have used (3.12) in the second line. We have not checked (C.13) for fermi fields,
which needs cubic fermi terms in the supertransformations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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