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1 Introduction

Studies of higher derivative supergravities in lower than ten dimensions with no known
string theory origin have uses in exploring whether they may provide effective field theo-
ries that may possibly have a consistent UV completion [1]. Matter coupled N = (1, 0), 6D
supergravities [2–4] provide a rich landscape to investigate this question (see, for exam-
ple, [5, 6]). In particular, R-symmetry gauged and remarkably anomaly free such super-
gravities exist [7–10] that are not embedded in string theory, and as such their higher
derivative corrections are of great interest. At the level of two derivatives, such supergrav-
ities have been known for sometime [2–4] and one of their salient features is the occurrence
of quaternionic Kahler sigma models that describe the hypermultiplet scalars. Their higher
derivative extensions, on the other hand, have not been investigated so far, with the ex-
ception of [11], where, however, the hypermultiplet couplings were not considered. One
of the motivations for the current work is to initiate this program. We shall not consider
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R-symmetry gauging and Yang-Mills coupling in this paper but we shall study the higher
derivative couplings of the hypermultiplets as a first step. We will work on-shell.1

One approach to study of higher derivative extension of matter coupled supergravities
is to employ Noether procedure. However, already at the four-derivative level, even with the
assumption that the quaternionic Kahler structure is preserved in the case of N = (1, 0), 6D
supergravity, one finds that an appropriate ansatz contains a large number of terms, and
their variations under supersymmetry gives even larger set of structures that need to vanish.
Furthermore, it is not guaranteed that the quaternionic Kahler structure can be maintained.
One exception is the case of Grassmannian coset Gr(n, 4) = SO(n, 4)/(SO(n) × SO(4)).
It has been proven by Sen [19] that the dimensional reduction of heterotic supergravity
with gauge fields truncated to the Cartan subalgebra must exhibit at string tree level, and
therefore to all orders in α′, a continuous O(d, d + 16;R) global symmetry, related to the
O(d, d+16;Z) T-duality of heterotic strings on a d-torus. See also [20] where the symmetries
of S-matrix elements of massless states were used to explain this symmetry. At the two-
derivative level, and in the bosonic sector, sometime ago Maharana and Schwarz [21] showed
that reduction on T d does give an O(d, d + 16;R) invariant result. In a relatively recent
work, it was shown that the effective action for the bosonic string, as well as the bosonic
sector of the heterotic string at the four-derivative level, in the absence of Yang-Mills fields,
do yield O(d, d;R) invariant action upon reduction on T d [22]. Soon after, the Yang-Mills
were taken into account to obtain O(d, d + 16;R) invariant result [23], where, however,
the fermionic sector was not considered. For an earlier work where only the scalar fields
are kept, see [24]. As for the reduction of Type II string effective actions on K3 in which
only the NS-NS sector fields (gµν , Bµν , ϕ) are kept at the four-derivative level in 6D, see
for example [25]. Another approach to obtaining the higher derivative extended O(d, d)
invariant supergravities, or their bosonic sector thereof, is to employ the α′ extended double
field theories [26–30]. The reduction of double field theory in the bosonic sector has been
carried out in [29], and we shall comment further on this in section 6.

Inclusion of the fermionic sector in the reduction requires that the dimension of the
torus is specified. In this paper we will work out the dimensional reduction of full het-
erotic supergravity to six-dimensions, including its fermionic sector, with its order α′ four-
derivative corrections a la Bergshoeff and de Roo [31], but leaving out the Yang-Mills
multiplets, and consistently truncating to (1, 0) supersymmetry. While the T 4 reduction
gives (1, 1) supergravity multiplet coupled to four (1, 1) vector multiplets, the truncation
sets to zero the vector fields, and appropriate fermions, resulting in (reducible) (1, 0) super-
gravity, consisting of pure (1, 0) supergravity plus a single tensor multiplet, coupled to four
(1, 0) hypermultiplets. As expected, we do find an O(4, 4) invariant result in 6D. More
specifically, the hyperscalars parametrize the coset space SO(4, 4)/(SO(4)+ × SO(4)−). In
arriving at this result, we shall see that there are several terms that naively arise which are

1Four-derivative N = (1, 0) invariants have been constructed off-shell [12–17] but they do not include
hypermultiplets. Moreover, the elimination auxiliary fields gives rise to infinitely many terms whose relation
to Noether procedure construction of higher derivative couplings, or string theory low energy effective action,
is not entirely clear. The role of highly nonlinear field redefinitions is another complicating factor. For an
earlier preliminary work on on-shell 6D higher derivative supergravity see [18].
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invariant only under the SO(4) diagonal subgroup of SO(4)+ × SO(4)−, and that the re-
quired cancellation of all of these terms is nontrivial, requiring elaborate field redefinitions
of hyperscalars and hyperfermions. In the computation of the O(α′) terms in the action
and supertransformations, we work from the outset with the Lorentz Chern-Simons modi-
fied field strength in which the spin connection has bosonic torsion furnished by the 3-form
field strength itself. This approach is shown to simplify the calculations considerably. In
particular the extension of the Lorentz Chern-Simons term modified 3-form field strength
to include a Chern-Simons form built out of the composite connection arises readily.

Given the motivation for the higher derivative extension of supergravities with no
known string origin, the reasons for studying the reduction of heterotic supergravity are
two-folds. Firstly, once we get a handle on the structure of the higher derivative couplings
for the Grassmannian coset Gr(4, 4), we expect that it can be extended readily to Gr(n, 4)
and more to the point, we can deform the theory by R-symmetry gauging in an anomaly free
fashion. Such extensions typically do not follow from string theory. Second, the lessons
learned from the Gr(n, 4) case may be utilized in the direct 6D construction of higher
derivative couplings of the other quaternionic Kahler spaces [32–35]. Such couplings, unlike
the case of Gr(n, 4), are not guaranteed, and they will be treated elsewhere.

The paper is organized as follows. In section 2 we present the heterotic supergravity
action with its four-derivative extension a la Bergshoeff and de Roo. In section 3, we
provide the set up and useful results in working out the dimensional reduction. In section
4 we obtain the reduction at the two-derivative level, and in section 5 we carry out the
reduction at O(α′). In section 6, the field redefinitions as well as the resulting SO(4, 4)
invariant action, and the reduction of the supertransformations at O(α′) are given. In
section 6, the bosonic sector of our results are examined more closely, and are shown to
agree completely with those of [22]. Our results are summarized and future directions are
pointed out in section 7. Our notations and conventions are given in appendix A, the field
redefinitions are described in appendix B, and the 6D action and supertransformations are
summarized in their simplest form in appendix C.

2 Higher derivative heterotic supergravity

The heterotic supergravity multiplet consists of the fields

( eµr, ψµ Bµν , χ, ϕ ) , (2.1)

where the spinors are Majorana-Weyl with chiralities γ11ψµ = ψµ and γ11χ = −χ, and
µ, r = 0, 1, . . . , 9. The Bergshoeff-de Roo extended heterotic supergravity Lagrangian, in
the absence of Yang-Mills multiplets, and in string frame and up to quartic fermion terms,
takes the form [31]

L=L0 +L0,O(α′) +Lα′(R2) , (2.2)

L0 = ee2ϕ
[1

4R(ω)+gµν∂µϕ∂νϕ−
1
12HµνρH

µνρ

− 1
2 ψ̄µγ

µνρDν(ω)ψρ+2χ̄γµνDµ(ω)ψν +2χ̄γµDµ(ω)χ
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− 1
24Hµνρ

(
ψ̄σγ[σγ

µνργτ ]ψ
τ +4ψ̄σγσµνρχ−4χ̄γµνρχ

)
−∂µϕ

(
ψ̄µγνψν +2ψ̄νγµγνχ

)]
, (2.3)

L0,O(α) =α′ ee2ϕ
[
HµνρωLµνρ(Ω−)−HµνρRµν

rs(Ω−)ψ̄rγρψs

+ ψ̄rγνψsΩ−ρrsε−2ϕDµ(Γ)
(
e2ϕHµνρ)

+ 1
4ω

L
µνρ(Ω−)

(
ψ̄σγ[σγ

µνργτ ]ψ
τ +4ψ̄σγσµνρχ−4χ̄γµνρχ

)]
, (2.4)

Lα′(R2) =α′ee2ϕ
[
−1

4Rµνrs(Ω−)Rµνrs(Ω−)−2Rµνrs(Ω−)ψ̄rγνDµ(ω,Ω−)ψs

+ 1
2Rµν

rs(Ω−)ψ̄rs (γργµνψρ+2γµνχ)− ψ̄rsγµDµ(ω,Ω−)ψrs

− 1
12Hµνρψ̄

rsγµνρψrs

]
, (2.5)

where Γ = {} refers to the Christoffel symbol, and

Ω±µrs = ωµrs ±Hµrs , Hµνρ = 3∂[µBνρ] . (2.6)

The spin connection ωµrs is the standard torsion-free one, following from Dµ(ω,Γ)eνr = 0,
sometimes denoted by ωµrs(e). On the other hand, ωLµνρ is the Lorentz Chern-Simons form

ωLµνρ(Ω−) = tr
(

Ω−[µ∂νΩ−ρ] + 2
3Ω−[µΩ−νΩ−ρ]

)
. (2.7)

The Lagrangian L0,O(α) can be absorbed to the H-dependent terms in L0 by letting

Hµνρ = 3∂[µBνρ] → H ′µνρ = 3∂[µBνρ] − 6α′ωLµνρ(Ω
(sc)
− ) , (2.8)

where Ω(sc)
−µrs is the supercovariantized Ω−µrs given as2

Ω(sc)
−µrs = Ω−µrs + Tµrs ,

Tµrs =
(
ψ̄µγ[rψs] + 1

2 ψ̄rγµψs
)
− 3

2 ψ̄[µγrψs] = ψ̄rγµψs . (2.9)

The second term in Lα′(R2) arises from Riem2 term through the fermionic torsion depen-
dence in Ω(sc)

−µrs. Further definitions are

ψrs = 2erµesνD[µ(Ω+)ψν] , (2.10)

Dµ(ω,Ω−)ψrs =
(
∂µ + 1

4ωµpqγ
pq
)
ψrs + Ω−µrpψps + Ω−µspψrp . (2.11)

The covariant derivative Dµ(ω,Ω−)ψrs requires extreme care, due to its unusual form in
which the spinor indices are rotated by torsion free connection ω, while the Lorentz vector

2Supercovariantized objects are usually denoted by hatted symbols. Here we use the unusual notation
(sc) to indicate supercovariantizations instead, because we save the hatting for the 10D objects, when we
consider the dimensional reduction.
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indices are rotated by the torsionful connection Ω−. This asymmetric occurrence of the
spin connection arises because the construction of Lα′(R2) relies on treating Rµνrs(Ω(sc)

− )
as Lorentz algebra valued Yang-Mills curvature [12, 31].

The action of the Lagrangian (2.2) is invariant under the following supersymmetry
transformation rules up to O(α′2), and cubic fermion terms,

δeµ
r = ε̄γrψµ ,

δψµ = Dµ(Ω+)ε− 3
2α
′ ωLµνργ

νρε ,

δBµν = −ε̄γ[µψν] + 2α′
(
Ω−[µ

rsδΩ(sc)
−ν]rs

)
,

δχ = 1
2γ

µε∂µϕ−
1
12Hµνργ

µνρε+ 1
2α
′ ωLµνργ

µνρε ,

δϕ = ε̄χ . (2.12)

The α′ dependent terms in δψµ and δχ can be absorbed into to the definition of H by letting
H → H as in (A.15), but we will work with H = dB and exhibit the α′ dependent terms
explicitly, as we have been doing so far. Furthermore, Ω(sc)

−µrs defined in (2.9) transforms
under supersymmetry as

δΩ(sc)
−µrs = −ε̄γµψrs . (2.13)

3 The set up for dimensional reduction

We shall study the ordinary dimensional reduction on T 4. From here on, we put hats on all
the fields and indices of 10D fields, and decompose the indices as µ̂ = (µ, α) and r̂ = (r, a)
where µ, r = 0, 1, . . . , 5 and α, a = 1, . . . , 4. For further notation and conventions, see
appendix A. As we truncate supersymmetry from (1, 1) to (1, 0), we take the 10D vielbein
to be

êµ̂
r̂ =

(
eµ
r 0

0 Eα
a

)
, (3.1)

where off-diagonal vector components have been set to zero. As a result, the nonvanishing
components of ω̂µ̂r̂ŝ are

ω̂µrs = ωµrs , ω̂µab = Q̃µab , ω̂αra = −EαbP̃rab , (3.2)

where
Q̃µab := E[a|

α∂µEα|b] , P̃µab := E(a|
α∂µEα|b) . (3.3)

The nonvanishing Riemann tensor components are

R̂µνrs(ω̂) = Rµνrs(ω) ,
R̂µνab(ω̂) = Q̃µνab ,

R̂µaνb(ω̂) = −Dµ(Γ)P̃νab − X̃µνab ,

R̂abrs(ω̂) = Q̃rsab ,

R̂ab
cd(ω̂) = −2P̃µ[a

cP̃µb]
d , (3.4)

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
1

where

Q̃µνab := ∂µQ̃νab + Q̃µa
cQ̃νcb − (µ↔ ν) ,

X̃µνab = P̃µa
cP̃νcb ,

Dµ(Γ)P̃νab = ∂µP̃νab − ΓµνρP̃ρab + Q̃µa
cP̃νcb + Q̃µb

cP̃νac . (3.5)

The 10D scalar curvature is

R̂ = R− 2DµP̃
µa
a − P̃µabP̃µab − P̃µaaP̃µbb . (3.6)

We also decompose the 2-form potential as

B̂µ̂ν̂ = (Bµν , Bµα = 0, Bαβ) . (3.7)

Its field strength Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂] has the only non-vanishing components

Ĥµνρ = Hµνρ := 3∂[µBνρ] ,

Ĥµαβ = ∂µBαβ . (3.8)

In order to uncover the parametrization of the coset

Gr(4, 4) = SO(4, 4)
SO(4)+ × SO(4)−

, (3.9)

by scalar fields other than the dilaton, we introduce the SO(4, 4)-valued field

V =
(
Va

α Vaα
V aα V a

α

)
=
(
Ea

α −2EaβBβα
0 Eα

a

)
, (3.10)

which satisfies V T ηV = η, where η =
(

0 1
1 0

)
. This parametrization of the vielbein is in a

triangular gauge, and it is preserved only by the diagonal subgroup of SO(4)+ × SO(4)−.
The associated Maurer-Cartan form is

V ∂µV
−1 =

(
Ea

α∂µEα
b 2EaαEbβ∂µBαβ

0 −Ebα∂µEαa

)
. (3.11)

It is convenient to change the basis such that W = ρTV ρ where ρ = 1√
2

(
1 −1
1 1

)
, diago-

nalizes η as ρT ηρ =
(

1 0
0 −1

)
. In this basis the SO(4)+ × SO(4)− transformations act in a

block diagonal form, and the Maurer-Cartan form is given by

W∂µW
−1 =

(
Q+µab −Pµab
−Pµba Q−µab

)
, (3.12)

where

Q±µab = E[a|
α∂µEα|b] ± EaαEbβ∂µBαβ ,

Pµab = E(a|
α∂µEα|b) − EaαEbβ∂µBαβ . (3.13)
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It follows form these equations that

Q+µab −Q−µab = −2Pµ[ab] . (3.14)

This relation, and (3.13) from which it follows, are both valid in the partially gauged fixed
parametrization of the vielbein given in (3.10). Undoing the gauge fixing,3 the result-
ing Maurer-Cartan form gives Q±µab that are the composite connections associated with
SO(4)±, and Pµab transforms under SO(4)± as

δPµab = Λ+a
cPµ cb + Λ−bcPµac . (3.15)

The equations (3.13) play central role in uncovering the SO(4, 4) symmetry of the dimen-
sionally reduced action, through the use of the relations they imply such as

Ea
α∂µEαb = Q+µab + Pµab , 2EaαEbβ∂µBαβ = −2Pµ[ab] . (3.16)

Other key relations follow from the Maurer-Cartan equation d(WdW−1) + WdW−1 ∧
WdW−1 = 0, which gives

Q+µνab = −2P[µ|a
cP|ν]bc ,

Q−µνab = −2P[µ|
c
aP|ν]cb ,

∂[µ|P|ν]ab +Q+[µ|a
cP|ν]cb +Q−[µ|b

cP|ν]ac = 0 , (3.17)

where

Q+µνab := 2∂[µ|Q+|ν]ab + 2Q+[µ|a
cQ+|ν]cb ,

Q−µνab := 2∂[µ|Q−|ν]ab + 2Q−[µ|a
cQ−|ν]cb . (3.18)

Note also the identities

∂µEα
a +Q+µ

a
bEα

b = Pµb
aEα

b ,

∂µEα
a +Q−µ

a
bEα

b = Pµ
a
bEα

b . (3.19)

Turning to the fermionic fields, we write SO(1,9) gamma matrices γ̂m̂ as

γ̂m = γm ⊗ 1 (m = 0, 1, · · · , 5) ,
γ̂a+5 = γ7 ⊗ γa (a = 1, 2, 3, 4) , (3.20)

where γm and γa are SO(1,5) and SO(4) gamma matrices respectively, and γ7 is the SO(1,5)
chirality matrix. The SO(1,9) chirality matrix is

γ̂11 = γ7 ⊗ γ5 , (3.21)

3The general matrix V satisfying the conditions V T ηV = η can be obtained from V given in (3.10) by
applying a SO(4)+ × SO(4)− transformation which is not in the diagonal SO(4) subgroup.
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where γ5 is the SO(4) chirality matrix. SO(4) gamma matrices and chirality matrix can
be represented as

γa =
(

0 i(σa)AB′
−i(σ̄a)A′B 0

)
(A,B = 1, 2, A′, B′ = 1, 2) ,

γ5 = γ1γ2γ3γ4 =
(
δA

B 0
0 −δA′B′

)
, (3.22)

where
σa = (σ1, σ2, σ3, i) , σ̄a = (σ1, σ2, σ3,−i) . (3.23)

A general 10D spinor has components

ψ̂ =
(
ψA
ψA
′

)
. (3.24)

In dimensional reduction we truncate the spinor fields as

ψ̂µ =
(
ψ̂µA

0

)
, ψ̂α =

(
0
ψ̂A
′

α

)
, χ̂ =

(
χ̂A
0

)
, ε̂ =

(
ε̂A
0

)
. (3.25)

The 10D chirality conditions imply the following 6D chiralities

γ7ψ̂µA = +ψ̂µA , γ7ψ̂
A′
α = −ψ̂A′α , γ7χ̂A = −χ̂A , γ7ε̂A = +ε̂A . (3.26)

The 6D spinor fields are defined as

ψµA = ψ̂µA , ψa
A′ = Ea

αψ̂α
A′ , χA = χ̂A −

1
2(σa)AB′ψaB

′
, εA = ε̂A . (3.27)

In what follows, we will use the notation

Γa := γ7 ⊗ γa , {Γa, γµ} = 0 . (3.28)

The indices A, A′ are raised and lowered as

ψA = εABψB , ψA = ψBεBA , εAB = εAB =
(

0 1
−1 0

)
(3.29)

and similar equations with primed indices A′, B′. The 10D Dirac conjugate is

¯̂
ψ = ψ̂†iγ̂0 =

(
(ψA)†iγ0, (ψA′)†iγ0

)
=
(
ψ̄A, −ψ̄A′

)
, (3.30)

where 6D Dirac conjugates are defined as

ψ̄A = (ψA)†iγ0 , ψ̄A
′ = (ψA′)†iγ0 . (3.31)

The 10D Majorana condition is
ψ̂ = C10

¯̂
ψT , (3.32)

– 8 –
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where C10 is an SO(1, 9) charge conjugation matrix satisfying

C−1
10 γ̂

m̂C10 = −γ̂m̂T , CT10 = −C10 . (3.33)

For the representation of γ̂m̂ in (3.20) C10 can be chosen as

C10 = C6 ⊗ C4 , (3.34)

where C6 and C4 are SO(1, 5) and SO(4) charge conjugation matrices respectively satisfying

C−1
6 γmC6 = −γmT , CT6 = C6 ,

C−1
4 γaC4 = γaT , CT4 = −C4 . (3.35)

The explicit form of C4 is

C4 =
(
−εAB 0

0 −εA′B′
)
, C−1

4 =
(
εAB 0

0 εA′B′

)
. (3.36)

The 10D Majorana condition (3.32) on (3.24) implies 6D symplectic Majorana conditions

ψA = εABC6ψ̄
T
B , ψA

′ = εA
′B′C6ψ̄

T
B′ . (3.37)

In this notation, we have, for example,

Γaψb = −σaψb , Γaε = σ̄aε . (3.38)

Note also the ‘flipping’ property

ψ̄1Γa1...anγµ1...µmψ2 = (−1)n+mψ̄2γ
µm...µ1Γan...a1ψ1 , (3.39)

where ψ1 and ψ2 are any two symplectic Majorana-Weyl spinors in 6D.

4 Dimensional reduction of L0

From the 10D supertransformations (2.12) we obtain the 6D supertransformations at ze-
roth order in α′ as

δ0eµ
m = ε̄γmψµ ,

δ0ψµ = Dµ(Ω+)ε ,
δ0Bµν = −ε̄γ[µψν] ,

δ0χ = 1
2γ

µε∂µϕ−
1
12Hµνργ

µνρε ,

δ0ϕ = ε̄χ ,

Wδ0W
−1 =

(
0 −ε̄Γaψb

−ε̄Γbψa 0

)
,

δ0ψa = −1
2γ

µΓbεPµba , (4.1)

– 9 –
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where we have defined the 6D dilaton ϕ as

ϕ = ϕ̂+ 1
2 lnE , E = detEαa , (4.2)

and the covariant derivative on ε is given by

Dµ(Ω+)ε =
(
∂µ + 1

4Ω+µmnγ
mn + 1

4Q+µabΓab
)
ε . (4.3)

We have suppressed the connection Q+ in the covariant derivative Dµ(Ω+)ε, in accordance
with our notational convention described in appendix A. The supertransformations of the
hyperscalars are obtained by using

δ0Eα
a = ε̄Γaψα , δ0Bαβ = −ε̄Γ[αψβ] . (4.4)

To begin with this gives

Wδ0W
−1 =

(
−2ε̄Γ[aψb] −ε̄Γaψb
−ε̄Γbψa 0

)
. (4.5)

We can add a compensating SO(4)+ transformation δSO(4)+ such thatWδW−1 takes values
only in the coset direction:

W (δ0 + δSO(4)+)W−1 =
(
−2ε̄Γ[aψb] − λ+ab −ε̄Γaψb

−ε̄Γbψa 0

)

=
(

0 −ε̄Γaψb
−ε̄Γbψa 0

)
, (4.6)

where we have chosen the SO(4)+ transformation parameter as λ+ab = −2ε̄Γ[aψb]. In (4.1),
we have denoted this result as Wδ0W

−1 for short. Other fields which transform under
SO(4)+ are fermi fields, for which this compensating transformation is higher order in
fermi fields and can be ignored. Bµν transforms only under SO(4)−. For later convenience,
let us also record the supertransformations

δ0Q−µab = 2Pµc[aε̄Γcψb] ,
δ0Q+µab = 2Pµc[aε̄Γ|b]ψc + 2Dµ(Q+, Q−)(ε̄Γ[bψa])

= 2Pµ[a
cε̄Γb]ψc + 2Dµ(Q+, Q+)(ε̄Γ[bψa]),

δ0Pµab = Dµ(Q+, Q−)(ε̄Γaψb) + 2ε̄Γ[aψc]Pµ
c
b . (4.7)

The covariant derivatives are defined as

Dµ(Q+, Q−)(ε̄Γbψa) = ∂µ(ε̄Γbψa) +Q+µb
c(ε̄Γcψa) +Q−µa

c(ε̄Γbψc) ,
Dµ(Q+, Q+)(ε̄Γbψa) = ∂µ(ε̄Γbψa) +Q+µb

c(ε̄Γcψa) +Q+µa
c(ε̄Γbψc) . (4.8)

δ0Q−µab has the right SO(4)+×SO(4)− index structure. δ0Q+µab has undesirable index
structures in the first line. But it can be written as in the second line, in which the first term
has the right index structure and the second term is a local SO(4)+ transformation. So, if
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we add a compensating SO(4)+ transformation with the same parameter λ+ab as in (4.6)
to the supertransformation so that the second term is cancelled, we obtain the right index
structure. The second term of δ0Pµab has a undesirable index structure but it is also a local
SO(4)+ transformation with the same parameter as for δ0Q+µab. Supertransformations of
the truncated components automatically vanish

δ0 ( êµa , êαm , B̂µα , ψ̂µA
′
, ψ̂αA , χ̂α

A′ ) = 0 , (4.9)

which shows the consistency of the truncation from (1, 1) to (1, 0) supersymmetry.
Using the ingredients described in considerable detail above, it is now straightforward

to perform the dimensional reduction of the two-derivative Lagrangian L0 given in (2.3),
which yields the 6D Lagrangian

L0 = ee2ϕ
[ 1

4R+ gµν∂µϕ∂νϕ−
1
12HµνρH

µνρ − 1
4PµabP

µab

− 1
2 ψ̄µγ

µνρDν(ω)ψρ + 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− 1
2 ψ̄

aγµDµ(ω)ψa − ∂µϕ
(
ψ̄µγνψν + 2ψ̄νγµγνχ

)
+ 1

2Pµab
(
ψ̄νγ

µγνΓaψb + 2χ̄γµΓaψb
)
− 1

24Hµνρ

(
ψ̄σγ[σγ

µνργτ ]ψ
τ

+ 4ψ̄σγσµνρχ− 4χ̄γµνρχ+ ψ̄aγµνρψa
)]
. (4.10)

The definitions of the covariant derivatives occurring above are listed in appendix A. In
obtaining the 6D Lagrangian, we have also used the relations

Dµ(ω, Q̃)ψα = Eα
aDµ(ω, Q̃)ψa + P̃µ

a
bEα

bψa ,

P̃µ
a
a = E−1∂µE, −P̃µabP̃µab = 1

4∂µG
αβ∂µGαβ ,

Gαβ := Eα
aEβa , Pµab = P̃µab − EaαEbβ∂µBαβ . (4.11)

We conclude by emphasizing that the 6D Lagrangian (4.10) and supertransformations (4.1)
are manifestly SO(4, 4) invariant, as well as SO(4)+×SO(4)− symmetric. The lowest order
bosonic field equations are

Eϕ = 1
2R(ω)− 2�ϕ− 2(∂µϕ)(∂µϕ)− 1

6HµνρH
µνρ − 1

2PµabP
µab ,

Eµν = 1
4Rµν(ω)− 1

2 (Dµ(Γ)∂νϕ)− 1
4HµρσHν

ρσ − 1
4PµabPν

ab − 1
4Eϕgµν ,

Bµν = Dρ(Γ)(e2ϕHµνρ) ,
EabP = Dµ(e2ϕPµab) , (4.12)

where Eϕ, Eµν , Bµν , and EabP are dilaton field equation, Einstein equation, B-field equation,
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and hyperscalar field equation respectively. The lowest order fermionic field equations are

Eχ = γµDµ(ω)χ+ 1
2γ

µνDµ(ω)ψν + 1
4γ

µΓaψbPµab + γµχ∂µϕ−
1
2γ

µγνψµ∂νϕ

+ 1
24γ

µνρσψσHµνρ + 1
12γ

µνρχHµνρ ,

Eµψ = γµνρDν(ω)ψρ + 2γµνDν(ω)χ− 1
2γ

νγµΓaψbPνab − γµνρψν∂ρϕ+ 4γµνχ∂νϕ

+ γνψν∂
µϕ− γµψν∂νϕ+ 2γνγµχ∂νϕ+ 1

12γ
[µγρστγ

ν]ψνH
ρστ + 1

6γ
µνρσχHνρσ ,

Ea = γµDµ(ω)ψa + 1
2γ

µγνΓbψµPνba + γµΓbχPµba + γµψa∂µϕ+ 1
12γ

µνρψaHµνρ , (4.13)

where Eχ, Eµψ , and Ea are χ-field equation, gravitino field equation, and hyperino field
equation respectively.

5 Dimensional reduction of O(α′) terms

5.1 Building blocks

We begin by the dimensional reduction of the H-torsionful Lorentz connection

Ω̂±µ̂r̂ŝ = ω̂µ̂r̂ŝ ± Ĥµ̂r̂ŝ , (5.1)

where ω̂ = ω̂(ê) and Ĥ = dB̂. Its dimensional reduction gives the only nonvanishing
components

Ω̂±µrs = ωµrs ±Hµrs ,

Ω̂±µab = Q±µab ,

Ω̂+αra = −EαbPrab ,
Ω̂−αra = −EαbPrba , (5.2)

where ω = ω(e) and H = dB. It follows that the only nonvanishing components of the
10D Riemann tensor for Ω̂− are

R̂µνrs(Ω̂−) = Rµνrs(Ω−) ,
R̂µνab(Ω̂−) = Q−µνab ,

R̂µaνb(Ω̂−) = −Dµ(Γ+)Pνab −Xµνab ,

R̂abrs(Ω̂−) = Q+rsab ,

R̂ab
cd(Ω̂−) = −2Pµ[a

cPµb]
d , (5.3)

where

Dµ(Γ+)Pνab = ∂µPνab − Γ+µν
ρPρab +Q+µa

cPνcb +Q−µb
cPνac ,

Xµνab := Pµa
cPνcb , (5.4)

and Γ±µνρ = Γµνρ±Hµν
ρ. We shall often adhere to the convention in which the dependence

of Q± in covariant derivatives will be suppressed if they act normally on the SO(4)+ ×
SO(4)− indices as above.
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Next, we consider the dimensional reduction of the 10D Lorentz Chern-Simons form

ω̂Lµ̂ν̂ρ̂ = tr
(

Ω̂−[µ̂∂ν̂Ω̂−ρ̂] + 2
3Ω̂−[µ̂Ω̂−ν̂Ω̂−ρ̂]

)
. (5.5)

Its only nonvanishing components are

ω̂Lµνρ = ωLµνρ(Ω−) + ωQµνρ(Q−) ,

ω̂Lµab = 2
3Pνa

c(Dµ(Γ+)P νbc +Xµ
ν
bc

)∣∣∣
[ab]

, (5.6)

where
ωQµνρ(Q−) = tr

(
Q−[µ∂νQ−ρ] + 2

3Q−[µQ−νQ−ρ]

)
. (5.7)

We see that the Chern-Simons form built out of the composite local connection Q−µab
naturally arises as a result of the dimensional reduction.

The building blocks for the fermionic Lagrangian at O(α′) are as follows. Components
of ψ̂m̂n̂ defined in (2.10) decompose in 6D as

ψ̂rs = ψrs := 2D[r(Ω+, Q+)ψs] ,

ψ̂ra = Ea
αDr(Ω+, Q+)ψα + 1

2Pµbaγ
µΓbψr

= Dr(Ω+, Q+, Q−)ψa + Prbaψ
b + 1

2Pµbaγ
µΓbψr ,

ψ̂ab = −Pµc[aγµΓcψb] , (5.8)

and the components of D̂µ̂(ω̂, Ω̂−)ψ̂r̂ in 6D are

D̂µ(ω̂, Ω̂−)ψ̂r = Dµ(ω,Ω−)ψr + 1
4PµabΓ

abψr

D̂µ(ω̂, Ω̂−)ψ̂a = Dµ(ω)ψa + 1
4PµcdΓ

cdψa ,

D̂a(ω̂, Ω̂−)ψ̂r = −1
2Pµ(ab)γ

µΓbψr − Prabψb ,

D̂a(ω̂, Ω̂−)ψ̂b = −1
2γ

µΓcPµ(ca)ψb + Pµabψµ , (5.9)

where
Dµ(ω,Ω−)ψr =

(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µabΓab
)
ψr + Ω−µrsψs . (5.10)

5.2 The bosonic Lagrangian at O(α′)

The first contribution to the bosonic Lagrangian at O(α′) from (2.4) and (2.5) reduces as

− 1
4 êe

2ϕ̂R̂µ̂ν̂m̂n̂(Ω̂−)R̂µ̂ν̂m̂n̂(Ω̂−)

= ee2ϕ
[
−1

4Rµνmn(Ω−)Rµνmn(Ω−)− 1
4Q+µνabQ+

µνab − 1
4Q−µνabQ−

µνab

−
(
Dµ(Γ+)Pνab +Xµνab

)(
Dµ(Γ+)P νab +Xµνab

)
− 1

2YµνY
µν + 1

2ZµνabZ
µνba

]
, (5.11)
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where
Yµν := Pµ

abPνab , Zµνab := PµcaPν
c
b , (5.12)

and the only other contribution to the bosonic Lagrangian at O(α′) from (2.4) and (2.5)
reduces as

êe2ϕ̂Ĥ µ̂ν̂ρ̂ω̂Lµ̂ν̂ρ̂ = ee2ϕ
[
Hµνρ(ωLµνρ + ωQµνρ

)
+Xµνab

(
Dµ(Γ+)Pνab +Xµνab

)
− Zµνab

(
Dµ(Γ+)Pνab +Xµνab

)]
. (5.13)

Combining the two results we get

LB
∣∣∣
O(α′)

= êe2ϕ̂
[
Ĥ µ̂ν̂ρ̂ω̂Lµ̂ν̂ρ̂ −

1
4R̂µ̂ν̂m̂n̂(Ω̂−)R̂µ̂ν̂m̂n̂(Ω̂−)

]
= ee2ϕ

[
Hµνρ(ωLµνρ + ωQµνρ

)
− 1

4Rµνmn(Ω−)Rµνmn(Ω−)− 1
4Q+µνabQ+

µνab

− 1
4Q−µνabQ−

µνab −Dµ(Γ+)PνabDµ(Γ+)P νab − 1
2YµνY

µν + 1
2ZµνabZ

µνba

+ ∆LB

]
, (5.14)

where

∆LB = −PµabDµYab −XabYab ,

Xab := Pµa
cPµcb , Yab := Pµa

cPµbc . (5.15)

Note that Yab transforms as SO(4)+ tensor, and the Q+ connections acting on its indices
have been suppressed. We have separated the terms called ∆LB because they are the
only terms in (5.14) that are not invariant under SO(4)+ × SO(4)−. These terms break
SO(4)+×SO(4)− down to the diagonal SO(4). They will be removed by a field redefinition
which will also produce a SO(4)+ × SO(4)− invariant term −ee2ϕZµνabZ

µνab, as will be
shown in the next subsection.

In obtaining (5.14) we have used the relations

(Xµνab + Zµνab)DµPνab = PµabDµYab , ZµνabXµνab = XabYab . (5.16)

We shall continue by reducing the fermionic Lagrangian at O(α′) as well, and collecting
all such problematic terms that break the SO(4)+ × SO(4)− symmetry. The total of such
terms will be called ∆LF below. At the end we shall find the field redefinitions of the
hyperscalar and hyperfermions which will remove ∆LB + ∆LF completely, and producing
few new terms that are SO(4)+ × SO(4)− invariant.

5.3 The fermionic Lagrangian at O(α′)

In addition to the definitions for the covariant derivatives given in (5.4) and (5.10), in what
follows it is understood that

Dµψa = Dµ(Ω+)ψa =
(
∂µ + 1

4Ω+µrsγ
rs + 1

4Q+µcdΓcd
)
ψa +Q−µa

bψb , (5.17)

DµPνab = Dµ(Γ+)Pνab = ∂µPνab − Γ+µν
ρPρab +Q+µa

cPνcb +Q−µb
cPνac , (5.18)
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where Γ+µν
ρ = Γµνρ + Hµνρ and Γµνρ is the Christoffel symbol. Thus, we suppress the

connections Q± in the covariant derivatives, if their action on the SO(4)+×SO(4)− indices
is the standard one, as explained in appendix A.

Next, we dimensionally reduce the fermionic Lagrangian at O(α′) and in the order they
appear in (2.4) and (2.5). Not all terms that result from the dimensional reduction are
SO(4)+ × SO(4)− invariant. Such terms are invariant only under the diagonal subgroup,
and they are collected as ∆Li, i = 1, . . . , 7 below.

1 =ee2ϕ̂
[
−Ĥ µ̂ν̂ρ̂R̂µ̂ν̂

r̂ŝ(Ω̂−) ¯̂
ψr̂γ̂ρ̂ψ̂ŝ+ ¯̂

ψr̂γ̂ν̂ψ̂ŝΩ̂−ρ̂r̂ŝε−2ϕDµ̂(Γ̂)
(
e2ϕĤ µ̂ν̂ρ̂)]

=ee2ϕ
[
−HµνρRµν

rs(Ω−)ψ̄rγρψs−HµνρQ−µν
abψ̄aγρψb

+
(
ψ̄rγνψsΩ−ρrs+ψ̄aγνψbQ−ρab

)
e−2ϕDµ(Γ)

(
e2ϕHµνρ)+∆L1

]
, (5.19)

2 =ee2ϕ̂
[1

4 ω̂Lµ̂ν̂ρ̂(Ω̂−)
( ¯̂
ψσ̂γ̂[σ̂γ̂

µ̂ν̂ρ̂γ̂τ̂ ]ψ̂
τ̂+4 ¯̂

ψσ̂γ̂
σ̂µ̂ν̂ρ̂χ̂−4 ¯̂χγ̂µ̂ν̂ρ̂χ̂

)]
=ee2ϕ

[1
4
(
ωLµνρ(Ω−)+ωQµνρ(Q−)

)(
ψ̄σγ[σγ

µνργτ ]ψ
τ+4ψ̄σγσµνρχ

−4χ̄γµνρχ+ψ̄aγµνρψa
)
+
(
−1

2 ψ̄νγ
µνρΓabψρ

−2ψ̄νγµνΓabχ−2χ̄γµΓabχ+1
2 ψ̄

dγµΓabψd
)
P σa

cDµPσbc+∆L2

]
, (5.20)

3 =ee2ϕ̂
[
−2R̂µ̂ν̂m̂n̂(Ω̂−) ¯̂

ψm̂γ̂ν̂Dµ̂(ω̂,Ω̂−)ψ̂n̂
]

=ee2ϕ
[
−2Rµνrs(Ω−)ψ̄rγνDµ(ω,Ω−)ψs−2Q−µνabψ̄aγνDµ(ω)ψb

+2ψ̄rΓbψc
(
Q+

rsabPsac
)
+2
(
ψ̄rΓaDµ(ω)ψb−ψ̄bΓaDµ(ω,Ω−)ψr

)
DµPrab

−2ψ̄rγµψν
(
P νabDµPr

ab
)
−2ψ̄bγµψc

(
P νacDµPνa

b
)
+2ψ̄νΓaψbPµabYµν

−2ψ̄νΓaψb
(
PµcbYµνac

)
+2
(
ψ̄νΓaψb

)
YacPν

c
b+∆L3

]
, (5.21)

4 =ee2ϕ̂
[1

2R̂µ̂ν̂
m̂n̂(Ω̂−) ¯̂

ψm̂n̂
(
γ̂ρ̂γ̂µ̂ν̂ψ̂ρ̂+2γ̂µ̂ν̂χ̂

)]
=ee2ϕ

[1
2
(
ψ̄ργµνγρ−2χ̄γµν

)
ψmnRµν

mn(Ω−)+1
2
(
ψ̄ρΓabγρ−2χ̄Γab

)
ψmnQ+

mn
ab

+1
2
(
ψ̄ργµνγρ−2χ̄γµν

)
γσΓcψa

(
PσcbQ−µν

ab)
+
(
ψ̄ργρΓcd−2χ̄Γcd

)
Γeγνψa

(
PµcaYµνde

)
+
(
ψ̄ργµγρΓb+2χ̄γµΓb

)
γνΓaψσ

(
PνacDµPσb

c)
+2
(
ψ̄ργµγρΓb+2χ̄γµΓb

)(
Dνψa

)
DµPνba+∆L4

]
, (5.22)

5 =ee2ϕ̂
[
− ¯̂
ψm̂n̂γ̂µ̂Dµ̂(ω̂,Ω̂−)ψ̂m̂n̂−

1
12Ĥµ̂ν̂ρ̂

¯̂
ψm̂n̂γ̂µ̂ν̂ρ̂ψ̂m̂n̂

]

=ee2ϕ
{
−ψ̄mnγµDµ(ω,Ω−)ψmn−

1
12Hµνρψ̄

mnγµνρψmn
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+
[
− ¯̂
ψabγµDµ(ω)ψ̂ab

]
+
[
−2 ¯̂
ψmaγµDµ(ω,Ω−)ψ̂ma

]
+
[
−4ψ̄mnΓbψ̂naPmba−4 ¯̂

ψabΓcψ̂mbPmca
]
+
[
− 1

12Hµνρ
( ¯̂
ψabγµνρψ̂ab+2 ¯̂

ψmaγµνρψ̄ma
)]}

,

=ee2ϕ
{
−ψ̄mnγµDµ(ω,Ω−)ψmn−

1
12Hµνρψ̄

mnγµνρψmn

+
[1

2 ψ̄
bγµγργνΓcΓd

(
Dρ(ω)ψb

)
(PµcaPνda)

−1
2 ψ̄

aγµγργνΓcΓd(Dρ(ω)ψb)
(
PµcbPνda

)
+1

2 ψ̄
bγµγργνΓcΓdψb(PµcaDρ(Γ)Pνda)−

1
2 ψ̄

aγµγργνΓcΓdψb
(
PµcbDρ(Γ)Pνda

)]
+
[
−2(Dmψ̄a) /D(ω,Ω−)(Dmψa)+ψ̄mγµΓa( /D(ω,Ω−)Dmψ

b)Pµab

−(Dmψ̄a)γµγνΓb(Dµ(ω,Ω−)ψm)Pνba−(Dmψ̄a)γµγνΓbψm(Dµ(Γ)Pνba)

+1
2 ψ̄

mγνγµγρΓbΓc(Dµ(ω,Ω−)ψm)PρcaPνba+
1
2 ψ̄

mγµγνγρΓbΓcψm(PµbaDν(Γ)Pρca)

−2ψ̄aγµ(Dνψb)Zµνab+ψ̄νγµγρΓaψbPρcbYµνac+∆L5

]
+
[
4ψ̄mnΓa

(
Dmψb

)
Pn

ab−2ψ̄νργµΓaΓbψνYρµab

−2ψ̄aγµΓbΓc(Dνψa)Yµνbc+2ψ̄aγµΓdΓc(Dνψb)PµdbPνca

−ψ̄bγµγνΓdΓcΓeψρ
(
YµρdcPνeb−YµνdePρcb

)
+∆L6

]
+
[ 1

24Hµνρψ̄
bΓcΓdγλγµνργτψbYλτcd−

1
24Hµνρψ̄

aΓcΓdγλγµνργτψb
(
PλcbPτda

)
−1

6Hµνρ
(
Dmψ̄a

)
γµνρ

(
Dmψa

)
−1

6Hµνρψ̄
mΓaγσγµνρ

(
Dmψ

b)Pσab
+ 1

24Hµνρψ̄
mγλγµνργτΓcΓdψmYλτcd+∆L7

]}
, (5.23)

where
Yµνab := Pµa

cPνbc . (5.24)

Furthermore, Dµψa and DµPνab are as defined in (5.17) and (5.18) and

Dµ(ω,Ω−)ψrs =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µabΓab
)
ψrs + Ω−µrpψps + Ω−µspψrp ,

Dµ(ω)ψ̂ab =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µcdΓcd
)
ψ̂ab +Q−µa

cψ̂cb +Q−µb
cψ̂ac ,

Dµ(ω,Ω−)ψ̂ra =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µcdΓcd
)
ψ̂ra + Ω−µrsψ̂sa +Q−µa

bψ̂rb . (5.25)

The terms in (5.19) can be absorbed into the CS terms in Hµνρ occurring in L0, if we use su-
percovariant Ω̂− and Q̂−. The first term in (5.21) can be absorbed into the Riem(Ω−)2 term
upon supercovariantization of Ω−. The two 10D terms in (5.23) are reduced together for the
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following reason. The covariant derivative in the first term becomes Dµ(ω,Q,Ω−, Q−) in
6D. When we add the Hµab contributions of the second term to the first term, the covariant
derivative becomesDµ(ω,Q+,Ω−, Q−), asQ in the first term combines withHµab in the sec-
ond term and becomes Q+. Summing all the SO(4)+×SO(4)− breaking terms found above,
while a large number of cancellations occur, we are still left with several terms given by

∆LF = ∆L1 + ∆L2 + ∆L3 + ∆L4 + ∆L5 + ∆L6 + ∆L7

= 2ψ̄νΓaψb
(
Xa

cPνcb
)

+ 2ψ̄νΓaψb
(
Pµa

cDµPνcb
)

+ 2ψ̄νΓ[aψcPν
b]c e−2ϕDµ(Γ)

(
e2ϕPµab

)
− 2ψ̄νΓaψbPνcbe−2ϕDµ

(
e2ϕPµac

)
− 2ψ̄νΓaψbPµacDµPνcb − 2

(
ψ̄νΓaψb

)
XacPν

c
b + 2ψ̄aγµψbYacPµcb

+ 2
(
ψ̄ργ

µγρΓ(aψb) + 2ψ̄(aΓb)γµχ
)(
P νacDµPνb

c)
+
(
− 1

2 ψ̄νγ
µνρΓabψρ − 2ψ̄νγµνΓabχ− 2χ̄γµΓabχ+ 1

2 ψ̄
dγµΓabψd

+ 2ψ̄νγµγνΓ[aψb] − 4ψ̄[aΓb]γµχ+ 2ψ̄νγµγνΓbψa + 4ψ̄aΓbγµχ
)
YacPµ

bc

− 2ψ̄aγµ
(
Dνψb

)
DµPνab + 2

(
ψ̄ργµγρΓb + 2χ̄γµΓb

)(
Dνψ

a)Xµνba

− 2ψ̄bγµ
(
Dνψ

a)Xµνba − ψ̄bγµγνΓaψρ
(
PνacDµPρb

c + Pρb
cDµPνac

)
+
(
ψ̄ργµγρΓb + 2χ̄γµΓb

)
γνΓdψσ

(
PµbcYσνcd

)
+ ψ̄bγµγνΓaψρ

(
− 2PµbcYνρac + Pνa

cXµρbc

)
− 2

(
ψ̄a /D(ω,Ω−)Dµψb

)
Pµab − 2(Dµψ̄a)( /D(ω)ψb)Pµba

− ψ̄bγµγνΓc
(
Dµ(ω,Γ+)ψρ

)
Yνρcb − 2ψ̄a( /D(ω)ψb)Yab

− ψ̄νΓaγµ( /D(ω)ψb)Yµνab − ψ̄νγµρΓaψbHµρ
τYτνab

− 1
6Hµνρ

(
2ψ̄aγµνρ

(
Dσψ

b)P σab + ψ̄bγµνργσΓaψτYστab + ψ̄aγµνρψbYab
)
. (5.26)

6 Field redefinitions and the total Lagrangian

Combining the results for ∆LB and ∆LF given (5.15) and (5.26), respectively, with the
Lagrangian generated by the field redefinitions in L0 described in appendix B, most re-
markably we find that

ee2ϕ(∆LB+∆LF
)
+∆L0

∣∣∣
E→Y E

+δL0
∣∣∣
ψa→ψµY

+δL0
∣∣∣
ψ→Y Dψ

+δL0
∣∣∣
ψ→Y ψ

+δL0
∣∣∣
E→ψνψaPE

= ee2ϕ
[
−ZµνabZµνab+

(
ψ̄νγ

µγνΓaψb+2χ̄γµΓaψb
)
Pµ

c
bYac− ψ̄aγργµΓbψν

(
Pρ

c
aYµνbc

)
−2ψ̄aγµ

(
Dνψb

)
Zµνab

]
. (6.1)

All terms displayed in (5.15) and (5.26), which are only invariant under the diagonal SO(4)
subgroup, have cancelled as a result of the field redefinitions, and a handful new terms
are produced that are invariant under SO(4)+ × SO(4)−. Putting together all the results
described above we obtain

L
∣∣∣
O(α′)

=LB
∣∣∣
O(α′)

+ 1 +···+ 5 +δL0
∣∣∣
E→Y E

+δL0
∣∣∣
ψa→ψµY

+δL0
∣∣∣
ψ→Y Dψ
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+δL0
∣∣∣
ψ→Y ψ

+δL0
∣∣∣
E→ψνψaPE

=α′ee2ϕ
{[
Hµνρ(ωLµνρ(Ω−)+ωQµνρ(Q−)

)
− 1

4Rµνrs(Ω−)Rµνrs(Ω−)− 1
4Q+µνabQ+

µνab

− 1
4Q−µνabQ−

µνab−DµPνabD
µP νab− 1

2YµνY
µν+ 1

2ZµνabZ
µνba−ZµνabZµνab

]
+
[
−HµνρRµν

rs(Ω−)ψ̄rγρψs−HµνρQ−µν
ab ψ̄aγρψb

+
(
ψ̄rγνψsΩ−ρrs+ψ̄aγνψbQ−ρab

)
e−2ϕDµ(Γ)

(
e2ϕHµνρ)]

+
[1

4
(
ωLµνρ(Ω−)+ωQµνρ(Q−)

)(
ψ̄σγ[σγ

µνργτ ]ψ
τ+4ψ̄σγσµνρχ−4χ̄γµνρχ+ψ̄aγµνρψa

)
+ 1

2
(
−ψ̄νγµνρΓabψρ−4ψ̄νγµνΓabχ−4χ̄γµΓabχ+ψ̄dγµΓabψd

)
P σa

cDµPσbc

]
+
[
−2Rµνrs(Ω−)ψ̄rγνDµ(ω,Ω−)ψs−2Q−µνabψ̄aγνDµ(ω)ψb+2ψ̄µΓbψc

(
Q+

µνabPνac
)

+2
(
ψ̄rΓaDµ(ω)ψb−ψ̄bΓaDµ(ω,Ω−)ψr

)
DµPrab−2ψ̄rγµψν

(
P νabDµPr

ab
)

−2ψ̄bγµψc
(
P νacDµPνa

b
)

+2ψ̄νΓaψbPµabYµν−2ψ̄νΓaψb
(
PµcbYµνac

)
+2ψ̄νΓaψb(YacPνcb)

]
+
[1

2
(
ψ̄ργµνγρ−2χ̄γµν

)
ψmnRµν

mn(Ω−)+ 1
2
(
ψ̄ρΓabγρ−2χ̄Γab

)
ψmnQ+

mn
ab

+ 1
2
(
ψ̄ργµνγρ−2χ̄γµν

)
γσΓcψa

(
PσcbQ−µν

ab)+(ψ̄ργρΓcd−2χ̄Γcd
)
Γeγνψa

(
PµcaYµνde

)
+
(
ψ̄ργµγρΓb+2χ̄γµΓb

)
γνΓaψσ

(
PνacDµPσb

c)+2
(
ψ̄ργµγρΓb+2χ̄γµΓb

)(
Dνψa

)
DµPνba

]
−ψ̄mnγµDµ(ω,Ω−)ψmn−

1
12Hµνρψ̄

mnγµνρψmn

+
[1

2 ψ̄
bγµγργνΓcΓd

(
Dρ(ω)ψb

)
(PµcaPνda)−

1
2 ψ̄

aγµγργνΓcΓd(Dρ(ω)ψb)
(
PµcbPνda

)
+ 1

2 ψ̄
bγµΓcdψb(PµcaDνPνda)−

1
2 ψ̄

aγµΓcΓdψb
(
PµcbD

νPνda
)]

+
[
−2(Dmψ̄a) /D(ω,Ω−)(Dmψa)+Pµab ψ̄mγµΓa /D(ω,Ω−)Dmψ

b

−Pνba(Dmψ̄a)γµγνΓbDµ(ω,Ω−)ψm−(Dmψ̄a)ΓbψmDνPνba

+ 1
2Yνρab ψ̄

mγνγµγρΓaΓbDµ(ω,Ω−)ψm+ 1
2 ψ̄

mγµΓbcψm(PµbaDνPνc
a)

−2Zµνab ψ̄aγµDνψb+ψ̄νγµγρΓaψbPρcbYµνac
]

+
[
4Pnab ψ̄mnΓaDmψb−2ψ̄νργµΓaΓbψνYρµab−2Yµνbc ψ̄aγµΓbΓcDνψa

+2ψ̄aγµΓdΓc(Dνψb)PµdbPνca−ψ̄bγµγνΓdΓcΓeψρ
(
YµρdcPνeb−YµνdePρcb

)]
+
[ 1

24Hµνρ ψ̄
bΓcΓdγλγµνργτψbYλτcd−

1
24Hµνρ ψ̄

aΓcΓdγλγµνργτψb
(
PλcbPτda

)
− 1

6Hµνρ
(
Dmψ̄a

)
γµνρ

(
Dmψa

)
− 1

6HµνρPσab ψ̄
mΓaγσγµνρDmψ

b
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+ 1
24HµνρYλτcd ψ̄

mγλγµνργτΓcΓdψm
]

+
[(
ψ̄νγ

µγνΓaψb+2χ̄γµΓaψb
)
Pµ

c
bYac−ψ̄aγργµΓbψν

(
Pρ

c
aYµνbc

)
−2Zµνab ψ̄aγµDνψb

]}
. (6.2)

The term −ee2ϕZµνabZ
µνab and the last four terms arise from the field redefinitions. The

sum of L0 and the O(α′) Lagrangian above can be simplified by the modification of the
3-form field strength by Chern-Simons terms and various supercovariantizations. This is
done in appendix C, where the terms in the total Lagrangian are grouped in a systematic
way according to their structures.

6.1 Supersymmetry transformations at O(α′)

The dimensional reduction of the supersymmetry transformations at lowest order in α′ is
given in (4.1). Here, we shall determine the supersymmetry transformations at O(α′). In
doing so we shall also take into account the field redefinitions discussed in appendix B.

Prior to the field redefinitions, the dimensional reduction up to O(α′) gives the super-
transformations to cubic terms in fermions as

δeµ
r = ε̄γrψµ ,

δψµ = Dµ(Ω+)ε− 3
2α
′[ωLµνρ(Ω−) + ωQµνρ(Q−)

]
γνρε

− α′Pνac
(
DµP

ν
bc +Xµ

ν
bc

)
Γabε ,

δBµν = −ε̄γ[µψν] + 2α′Ω−[µ
rsδ0Ω(sc)

−ν]rs + 2α′Q−[µ
abδ0Q

(sc)
−ν]ab ,

δχ = 1
2γ

µε∂µϕ−
1
12Hµνργ

µνρε+ 1
2α
′[ωLµνρ(Ω−) + ωQµνρ(Q−)

]
γµνρε ,

δϕ = ε̄χ ,

WδW−1 =
(
−2ε̄Γ[aψb] + 4α′P[a

cδPµb]c −ε̄Γaψb + 4α′P[a
cδPµb]c

−ε̄Γbψa + 4α′P[b
cδPµa]c −4α′P[a

cδPµb]c

)
,

δψa = −1
2γ

µΓbεPµba + 2α′Pνac
(
DµP

ν
bc +Xµ

ν
bc

)∣∣∣
[ab]
γµΓbε , (6.3)

where
Ω(sc)
−µrs = Ω−µrs + ψ̄rγµψs , Q

(sc)
−µab = Q−µab + ψ̄aγµψb . (6.4)

For later purposes, let us also record the transformation of Bµν under the SO(4)− trans-
formations:

δΛBµν = 2α′Λab− ∂[µQ−ν]ab . (6.5)

Performing the field redefinition Eαa = E′α
a + δEα

a with δEαa = −2α′Y a
bEα

b, and noting
the formula (B.2) that gives

Q+µab = Q′+µab − 4α′Pµ[a
cYb]c , (6.6)
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we find that

δψµ = Dµ(Ω+, Q
′
+)ε− 3

2α
′[ωLµνρ(Ω−) + ωQµνρ(Q−)

]
γνρε− α′PνacDµP

ν
bcΓabε . (6.7)

In the last two terms Q− and P can be primed since we are interested only at O(α′) terms.
Next, considering the redefinitions ψa specified in appendix B as well, we have the redefined
fields

ψ′a = ψa + 2α′ψbYab + 2α′γνΓbψµYµνab + 4α′PµabDµ(Ω+)ψb , (6.8)

E′α
a = Eα

a + 2α′EαbY ab − 4α′ ψ̄νΓ(aψcPν
b)cEαb . (6.9)

It is noteworthy that the third term in (6.8) supercovariantizes the derivative in the last
term, and the third term in (6.9) supercovariantizes Yab up to quartic fermion terms. It
follows from (6.8) that

δψ′a = −1
2γ

µΓbεPµba − α′γµΓbεPµbcYac − 2α′γµΓbεPνacDµP
ν
bc

+ 2α′Pνac
(
DµP

ν
bc +Xµ

ν
bc

)∣∣∣
[ab]
γµΓbε .

(6.10)

In the last three terms Pµab, and therefore Yab by Xµνbc, can be primed since we are
interested in O(α′) terms. Next, using

P ′µab = Pµab + 2α′DµYab + 2α′(Pµbc − Pµcb)Yac (6.11)

in the first term of (6.10), a number of SO(4)+× SO(4)− symmetry breaking terms cancel
out, and we end up with the O(α′) result invariant under SO(4)+ × SO(4)− given by

δψ′a = −1
2γ

µΓbεP ′µba − α′γµΓbεP ′µcaY ′bc . (6.12)

Turning to the supertransformation of the hyperscalars,

W ′δW
′−1 =

(
E′[a|

αδE′α|b] + E′a
αE′b

βδBαβ −E′(a|
αδE′α|b) + E′a

αE′b
βδBαβ

−E′(a|
αδE′α|b) + E′b

αE′a
βδBαβ E′[a|

αδE′α|b] − E
′
a
αE′b

βδBαβ

)
, (6.13)

where we recall that Bαβ does not undergo any field redefinition. The supertransformation
of (6.9) up to O(α′) yields

δE′αb = Eα
a
(
ε̄Γbψa − 2α′Yac ε̄Γcψb + 4α′ε̄Γ(aψ

cYb)c

+ 4α′Pµ(a
cε̄Γb)Dµψc − 2α′ε̄γµΓ(a|ΓcψνYµνc|b)

)
, (6.14)

while the reduction of the 10D supertransformations gives

δBαβ = E[α
aEβ]

b
(
−ε̄Γaψb−4α′Pµbcε̄ΓaDµψc−4α′Ybcε̄Γaψc+2α′Yµνcbε̄γµΓaΓcψν

)
. (6.15)

Passing over to the primed fields, and up to O(α′), the last two supertransformations take
the form

δE′α
b = E′αa

[
ε̄Γbψ′a − 2α′ε̄Γcψ′bY ′ac + 4α′ε̄γµψνY ′µν [ba] + 4α′ε̄Γ[a|(Dµψ

′
c)P ′µ|b]c

+4α′ε̄Γ[aψ′cY
′b]c + 2α′ε̄γνΓcΓ[a|ψµY ′µν

|b]
c

]
, (6.16)

δBαβ = E′[α
aE′β]

b
[
− ε̄Γaψ′b + 2α′ε̄Γcψ′bYac

]
. (6.17)
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In (6.13) the terms in the upper and lower block on the diagonal can be removed by SO(4)+
and SO(4)− gauge transformations respectively. As for the remaining components in (6.13),
using the results for δE′α and δBαβ in (6.13), we obtain up to O(α′) the supertransformation

W ′
(
δ + δSO(4)+ + δSO(4)−

)
W ′−1 =

(
0 −ε̄Γaψ′b + 2α′ε̄Γcψ′bY ′ac

−ε̄Γbψ′a + 2α′ε̄Γcψ′aY ′b c 0

)
.

(6.18)
The lower right block of (6.13) is

Λ−ab = E′[a|
αδE′α|b] − E

′
a
αE′b

βδBαβ

= −4α′ε̄Γcψ′[bY
′
a]c + 4α′ε̄Γ[aψ

′cY ′b]c + 4α′ε̄Γ[a|(Dµψ
′
c)P ′µ|b]c

− 2α′ε̄γνΓ[a|ΓcψµY ′µν|b]c . (6.19)

The upper left block of (6.13) is

Λ+ab = E′[a|
αδE′α|b] + E′a

αE′b
βδBαβ

= 2ε̄Γ[bψ
′
a] + 4α′ε̄Γ[aψ

′cY ′b]c + 4α′ε̄Γ[a|(Dµψ
′
c)P ′µ|b]c

− 2α′ε̄γνΓ[a|ΓcψµY ′µν|b]c . (6.20)

The compensating SO(4)+ transformation acts on fermions thereby giving higher order in
fermion terms which we are neglecting. As for the compensating SO(4)− transformations,
they act on Bµν but giving rise to quadratic in α′ terms, which we are also neglecting.

6.2 Closer look at the bosonic action

Let us have a closer look at the bosonic part of this Lagrangian, which we denote by
LBos.,O(α′). Noting that

Q+µνab = −2(PµP Tν )[ab] , Q−µνab = −2(P Tµ Pν)[ab] , Zµνab = (P Tµ Pν)ab ,
Yµν = tr(PµP Tν ) , (6.21)

it can be written as

LBos.,O(α′) = ee2ϕ
[
Hµνρ(ωLµνρ(Ω−) + ωQµνρ(Q−)

)
− 1

4Rµνmn(Ω−)Rµνmn(Ω−)

− tr(Dµ(Γ+)PνDµ(Γ+)P νT )− 1
2 tr(PµP Tν ) tr(PµP νT )

− 3
2 tr(PµPµTPνP νT )− 1

2 tr(P Tµ PµP Tν P ν)

+ 3
2 tr(PµP Tν PµP νT )

]
. (6.22)

To compare this result with that of [22], we need to evaluate it on the L0-shell. To
begin with, using the fact that

Rµνρσ(Γ+) = Rµνρσ(Γ)− 2D[µ(Γ)Hν]ρσ − 2Hµρ,νσ , (6.23)
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where Hµν,ρσ := HµντHρσ
τ , we find the following relations

∫
ee2ϕRµνρσ(Γ+)Rµνρσ(Γ+) =

∫
ee2ϕ

[
Rµνρσ(Γ)Rµνρσ(Γ) + 2Rµνρσ(Γ)Hµν,ρσ

− 2Hµν,ρσH
µρ,νσ − 2H2

µνH
2µν − 4H2µν tr(PµP Tν )− 16H2

µνEµν

+
(
− 4H2Eϕ + 8Hµνρ(∂µϕ)Bνρ − 4HµνρD

µBνρ)
]
, (6.24)

−
∫
e e2ϕ tr

(
(Dµ(Γ+)Pν)

(
Dµ(Γ+)P Tν

) )
=
∫
e e2ϕ

[
tr(PµP Tν ) tr(PµP Tν)

− tr
(
PµP

T
ν P

µP Tν
)

+ tr
(
P Tµ P

µP Tν P
ν)− tr

(
P Tµ PνP

TµP ν
)

+ tr
(
PµP Tµ P

νP Tν
)

+
(
4Eµν + Eϕgµν

)
tr(PµP Tν ) + (DνEabP )P νab − 2EabP P νab∂νϕ

]
, (6.25)∫

HµνρωLµνρ(Ω−) =
∫ [

HµνρωLµνρ(ω) +Rµνρσ(Γ)Hµν,ρσ −
2
3Hµν,ρσHµρ,νσ

]
, (6.26)

where H2
µν := HµρσHν

ρσ and the field equations that follow from L0 are given in (4.12).
Using these relations in (6.22) we find the on L0-shell result

LBos.,O(α′) = ee2ϕ
[
Hµνρ(ωLµνρ(ω) + ωQµνρ(Q−)

)
− 1

4Rµνmn(ω)Rµνmn(ω)

+ 1
2RµνρσH

µν,ρσ + 1
2H

2
µνH

2µν − 1
6Hµν,ρσH

µρ,νσ +H2µν tr(PµP Tν )

+ 1
2 tr(PµP Tν ) tr(PµP Tν)− 1

2 tr
(
PµP

T
ν P

µP Tν
)

+ 1
2 tr

(
P Tµ P

µP Tν P
ν)

− 1
2 tr

(
PµP Tµ P

νP Tν
)]
. (6.27)

Comparison of this result with that of [22] requires the introduction of the O(4, 4) matrix

S = ηV TV = ρW−1σ3Wρ−1 , η =
(

0 I
I 0

)
, σ3 =

(
I 0
0 −I

)
. (6.28)

It follows that

∂µS = ρW−1[W∂µW
−1, σ3

]
Wρ−1 = ρW−1

(
0 2Pµ

−2P Tµ 0

)
Wρ−1 . (6.29)

Thus we derive the identities,

tr(∂µS ∂νS) = −4 tr(PµP Tν )− 4 tr(P Tµ Pν) ,
tr(∂µS ∂νS) tr(∂µS ∂νS) = 64 tr(PµP Tν ) tr(PµP νT ) ,

tr(∂µS ∂µS ∂νS ∂νS) = 16 tr(PµPµTPνP νT ) + 16 tr(P Tµ PµP Tν P ν) ,
tr(∂µS ∂νS ∂µS ∂νS) = 32 tr(PµP Tν PµP νT ) ,

tr(S ∂µS ∂µS ∂νS ∂νS) = 16 tr(PµPµTPνP νT )− 16 tr(P Tµ PµP Tν P ν) . (6.30)

– 22 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
1

Using these identities, (6.22) takes the form

LBos.,O(α′) = ee2ϕ
{
Hµνρ(ωLµνρ(ω) + ωQµνρ(Q−)

)
− 1

4Rµνmn(ω)Rµνmn(ω)

+ 1
2RµνρσH

µν,ρσ + 1
2H

2
µνH

2µν − 1
6Hµν,ρσH

µρ,νσ − 1
8H

2µν tr(∂µS∂νS)

+ 1
32

[1
4 tr(∂µS ∂νS) tr(∂µS ∂νS)− 1

2 tr(∂µS ∂νS ∂µS ∂νS)

− tr(S ∂µS ∂µS ∂νS ∂νS)
]}

. (6.31)

Finally, we note that the CS form satisfies

d
[
ωQ(Q+) + ωQ(Q−)

]
= 0 , (6.32)

which implies
ωQ(Q+) = −ωQ(Q−) + dθ , (6.33)

for some 2-form θ. With this relation at hand, we find that our result (6.31) agrees with
that of [22] in their eq. (7.16), upon setting the vector fields equal to zero, and taking into
account the convention differences. Similarly we also find that our results agree with those
of [29].4

7 Conclusions

Motivated by the exploration of higher derivative couplings of quaternionic Kahler sigma
models to N = (1, 0) supergravity in 6D, we have started with heterotic supergravity at
O(α′) [31], and reduced it on T 4 with a consistent N = (1, 0) supersymmetric truncation.
We have found that the manifest rigid GL(4) and composite local SO(4) symmetry gets
enhanced to rigid SO(4, 4) and composite local SO(4)+ × SO(4)−, with the hyperscalars
parametrizing the Grassmannian coset Gr(4, 4). A series of field redefinitions in the hy-
permultiplet sector are found to cancel a large number of terms arising in the reduction of
the action and supersymmetry transformation rule that have only O(4) invariance. These
results generalize the well known work of Maharana and Schwarz [21] who showed how the
O(d, d) invariance emerges in the bosonic action and at the two-derivative level, and the
results of [22, 23] where the O(α′) terms in the bosonic action were dimensionally reduced.
We have also shown that the treatment of the 3-form field strength in heterotic super-
gravity as torsion part of the spin connection, and the modification of its field strength
by Lorentz Chern-Simons form defined in terms of the torsionful spin connection, simplify
the reduction considerably. In the resulting 6D Lagrangian, many H dependent terms are
absorbed into a torsionful spin connection, but there exist terms in which the three form
field strength appears explicitly.

The cancellations of duality symmetry offending terms is expected in view of Sen’s
result based on string field theory [19]. However, the emergence of the duality symmetry

4We thank Carmen Nunez for communications on this comparison.

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
0
8
1

at the field theory level is a nontrivial symmetry enhancement phenomenon, which remains
to be better understood. The requirement that the dimensionally reduced supersymmetry
transformations take an appropriate form may provide a good start for understanding the
field redefinitions in a simpler way. The inclusion of the abelian sector of the Yang-Mills
couplings in heterotic supergravity remains to be carried out, and it is expected to give the
O(20, 4) symmetry in 6D.

One of the motivations for the current work has been the construction of higher
derivative couplings of N = (1, 0) supergravity to hypermultiplets where the hyperscalars
parametrize a noncompact quaternionic Kahler sigma model with negative curvature con-
stant. The Grassmannian coset Gr(n, 4) is one of the Wolf spaces that have this property.
For n = 4 we have shown explicitly here how this coupling emerges from dimensional re-
duction. The complexity of the result shows that a direct construction of these couplings
by means of Noether procedure would be very complicated. Dimensional reduction proves
a relatively simpler approach to this problem. However, there are no compactification
schemes that we know of for obtaining the higher derivative couplings of the other QK
sigma models that are relevant to 6D supergravity couplings. For those cases, apparently
we need to resort to the Noether procedure. The results of the current paper provide a guide
in writing down an ansatz for the all possible four-derivative couplings in this construction.
The consequences of the fact that the structure group in Gr(n, 4) is SO(n)×SO(3)×Sp(1)R,
while in the other Wolf spaces it is either SU(n) × U(1) × Sp(1)R, or G × Sp(1)R where
G is a particular simple group, remains to be investigated. Ultimately, the Yang-Mills
sector is to be included, and R-symmetry is to be gauged, in an anomaly-free fashion. The
investigation of dyonic string solutions in that framework is expected to play role in the
analysis of the consistencies of these theories [10].
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A Notation and conventions

In our conventions the spacetime signature is (− + + . . .+), and the fields of [31] need to
be scaled as follows:

ψµ →
√

2ψµ , ε→
√

2ε, Bµν → −
√

2Bµν , Hµνρ → −(
√

2/3)Hµνρ ,

φ→ exp(−2ϕ/3) , ω → −ω , Ω± → −Ω± . (A.1)
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We frequently use the definitions

Xµνab := Pµa
cPνcb , Yµνab := Pµa

cPνbc , Zµνab := PµcaPν
c
b ,

Xµν := δabXµνab , Yµν := δabYµνab , Yµν = δabZµνab ,

Xab := gµνXµνab , Yab := gµνYµνab , Zab := gµνZµνab . (A.2)

Thus, Yµν[ab] = −1
2Q+µνab and Zµν[ab] = −1

2Q−µνab. The vielbein postulates are

∂µe
m
ν + ωµ

m
neν

n − Γµντeτm = 0 ,
∂µe

m
ν + Ω±µmneνn − Γ∓µντeτm = 0 ,

(A.3)

where

Ω±µrs = ωµrs ±Hµrs , Γρ±µν = Γρµν ±Hµν
ρ , Hµνρ = 3∂[µBνρ] , (A.4)

and Γρµν represents the torsion-free Christoffel symbol. The gamma matrices are covariantly
constant,

Dµ(ω,Γ)γν = 0 , Dµ(Ω±,Γ∓)γν = 0 . (A.5)

The curvatures are defined as

Rµν
mn(ω) ≡ ∂µωνmn − ∂νωµmn + ωµ

mpωνp
n − ωνmpωµpn , (A.6)

Rµν
ρ
σ(Γ) ≡ ∂µΓνσρ − ∂νΓµσρ + Γµτ ρΓνστ − Γντ ρΓµστ . (A.7)

The two curvatures are related by

Rµνρσ(Γ) = Rµνrs(ω)eρreσs , Rµνρσ(Γ±) = Rµνmn(Ω∓)eρmeσn . (A.8)

These identities can be easily derived by considering commutator of covariant derivatives
acting on vielbein, and make use of (A.3). The curvatures of Γ± are related to Γ by

Rµνρσ(Γ±) = Rµνρσ(Γ)∓ 2D[µ(Γ)Hν]ρσ + 2H[µ|ρ
τH|ν]τσ . (A.9)

The curvatures of Γ± are related to each other by

Rµνρσ(Γ+) = Rρσµν(Γ−) . (A.10)

We also have the relation

Dµ(Ω−)Pmab := ∂µPmab + Ω−µmnPnab +Q+µa
cPmcb +Q−µb

cPmac

= em
νDµ(Γ+)Pνab . (A.11)

with Dµ(Γ+)Pνab as defined in (5.18), and

D[µ(Γ+)Pν]ab = −Hµν
ρ Pρab . (A.12)

Finally, our notation for the covariant derivatives is as follows. From section 4 onward, in
covariant derivatives we only indicate the connections that act on the Lorentz spinor and
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vector indices, and suppress the composite local connections Q± that act according to the
SO(4)+ × SO(4)− representations carried by the fields they act on. When we encounter
a term in which this symmetry is broken, we display the composite connections in the
covariant derivatives. For reader’s convenience, we list the definition of variety of covariant
derivatives that arise in the body of the paper:

Dµ(Ω+)ε =
(
∂µ + 1

4Ω+µmnγ
mn + 1

4Q+µabΓab
)
ε ,

D[µ(ω)ψν] =
(
∂[µ| +

1
4ω[µ|rsγ

rs + 1
4Q+[µ|abΓab

)
ψ|ν] ,

Dµ(ω)χ =
(
∂µ + 1

4ωµrsγ
rs + 1

4Q+µabΓab
)
χ ,

Dµ(ω)ψa =
(
∂µ + 1

4ωµrsγ
rs + 1

4Q+µcdΓcd
)
ψa +Q−µa

bψb ,

Dµ(ω,Ω−)ψr =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µabΓab
)
ψr + Ω−µrsψs ,

Dµψa = Dµ(Ω+)ψa =
(
∂µ + 1

4Ω+µrsγ
rs + 1

4Q+µcdΓcd
)
ψa +Q−µa

bψb ,

DµPνab = Dµ(Γ+)Pνab = ∂µPνab − Γ+µν
ρPρab +Q+µa

cPνcb +Q−µb
cPνac ,

Dµ(ω,Ω−)ψrs =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µabΓab
)
ψrs + Ω−µrpψps + Ω−µspψrp . (A.13)

In defining the Chern-Simons modified field strength, in order to adopt the same convention
as [22], we perform the field redefinition

Bµν = B′µν + 3α′θµν , (A.14)

with θ satisfying (6.33). Dropping the prime, this leads to the definition

Hµνρ = 3∂[µBνρ]− 6α′ tr
(

Ω(sc)
−[µ∂νΩ(sc)

−ρ] + 2
3Ω(sc)
−[µΩ(sc)

−ν Ω(sc)
−ρ]

)
− 3α′ωQµνρ(Q−) + 3α′ωQµνρ(Q+) ,

(A.15)
where

Ω(sc)
−µrs = Ω−µrs + ψ̄rγµψs ,

ωQµνρ(Q±) = tr
(
Q±[µ∂νQ±ρ] + 2

3Q±[µQ±νQ±ρ]

)
. (A.16)

Further supercovariantizations that will be used in appendix C are given by

D(sc)
µ ψa = Dµψa + 1

2γ
νΓbψµPνba ,

P
(sc)
µab = Pµab − ψ̄µΓaψb , Q

(sc)
−µνab = −2P[µ

ca(sc)Pν]c
b(sc) ,

Y (sc)
µν = P

(sc)
µab Pν

(sc) ab , Z
(sc)
ab = P (sc)

µca P
µc
b
(sc) , (A.17)

where terms up to quadratic in fermions are to be kept. Note that the dimensional reduction
gives Ω̂(sc)

−µab = Q−µab + ψ̄aγµψb, where Q−µab is supercovariant by itself. In fact, Q+µab is
supercovariant by itself as well.
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B Field redefinitions

Consider the field redefinition Eαa → E′α
a + δEα

a with

δEα
a = Eα

bSb
a , (B.1)

where Sab = Sba. Under this redefinition,

δQ+µab = Pµa
cScb − PµbcSac ,

δQ−µab = Pµ
c
aScb − PµcbSac ,

δPµab = ∂µSab +Q+µa
cScb +Q−µb

cSac

= Dµ(Q+)Sab +
(
Pµb

c − Pµcb
)
Sac . (B.2)

The variation of the zeroth order Lagrangian under this redefinition is

δL0 = ee2ϕ
[(1

8 ψ̄νγ
µνρΓabψρ + 1

2 χ̄γ
µνΓabψν + 1

2 χ̄γ
µΓabχ− 1

8 ψ̄
cγµΓabψc

)
δQ+µab (B.3)

− 1
2 ψ̄

aγµψbδQ−µab + 1
2
(
ψ̄νγ

µγνΓaψb + 2χ̄γµΓaψb
)
δPµab −

1
2P

µabδPµab

]
.

Let us now consider the redefinition

Sab = −2α′ Y ab . (B.4)

It gives rise to

δL0
∣∣∣
E→Y E

= α′ e e2ϕ
[
PµabDµYab +XabY

ab − ZµνabZµνab

−
(1

2 ψ̄νγ
µνρΓabψρ + 2χ̄γµνΓabψν + 2χ̄γµΓabχ

− 1
2 ψ̄

dγµΓabψd
)

(PµacYbc) + 2ψ̄aγµψb
(
Pµ

c
aYbc

)
+
(
− ψ̄νγµγνΓaψb − 2χ̄γµΓaψb

)
(PµbcYac)

−
(
ψ̄νγ

µγνΓaψb + 2χ̄γµΓaψb
)
DµYab

+
(
ψ̄νγ

µγνΓaψb + 2χ̄γµΓaψb
)
Pµ

c
bYac

]
. (B.5)

The term −ee2ϕZµνabZ
µνab and the last two terms are SO(4)+×SO(4)− invariant. The rest

will remove some of the terms that break this symmetry as shown in (6.2). The remaining
symmetry breaking terms will be removed by further field redefinitions discussed below.
Next, let us consider the redefinition

Sab = 4α′ ψ̄νΓ(aψcPν
b)c . (B.6)

In this case only the last term in (B.3) contributes, giving

δL0
∣∣∣
S−terms

= −1
2ee

2ϕ
[
PµabDµ(Q+, Q−)Sab

]
, (B.7)
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where Q+ rotates the first index and Q− rotates the second index on Sab. Integration by
part gives

δL0
∣∣∣
E→ψνψaPE

= 2eψ̄νΓ(aψcPν
b)cDµ

(
e2ϕPµab

)
. (B.8)

Next, we consider the redefinition of the hyperino. The lowest order Lagrangian L0 under
a general variation of the hyperino gives

δL0 = e e2ϕ
[
− 1

2(δψ̄a) /D(ω)ψa −
1
2 ψ̄

a /D(ω)(δψa) (B.9)

− 1
12Hµνρψ̄

aγµνρδψa + 1
2Pµab

(
ψ̄νγ

µγνΓaδψb + 2χ̄γµΓaδψb
)]
.

It follows that the field redefinition

δψa = −2α′ψbYab − 2α′γνΓbψµYµνab − 4α′PµabDµψb , (B.10)

yields the results

δL0
∣∣∣
ψ→ψY

= α′ e e2ϕ
[
2Yab ψ̄a /D(ω)ψb + 1

6Hµνρψ̄
aγµνρψbYab

− (ψ̄νγµγνΓaψb + 2χ̄γµΓaψb)(PµacYbc)
]
, (B.11)

δL0
∣∣∣
ψa→ψµPP

= α′ e e2ϕ
[
Yµνab ψ̄

bγργµΓaDρ(ω,Γ+)ψν + Yµνab ψ̄
µΓbγν /D(ω)ψa

− ψ̄µγνγρΓaψbDρYµνba + 1
6Hµνρψ̄

aγµνργσΓbψτYτσab

+ ψ̄ργ
µγργνΓaΓbψσ(PµacYνσbc) + 2χ̄γµγνΓbΓdψσ(PµbcYνσdc)

− ψ̄µγνγρΓaψbPρbcYµνca + ψ̄aγνρΓbψµHνρ
τYµτab

− ψ̄aγργµΓbψν
(
Pρ

c
aYµνbc

)]
, (B.12)

δL0
∣∣∣
ψ→PDψ

= α′ e e2ϕ
[
2Pµabψ̄a /D(ω,Γ+)Dµψb + 2(ψ̄bγµDνψa)DµPνba

+ 2Pmba(Dmψ̄a) /D(ω)ψb + 1
3Hµνρψ̄

aγµνρ(Dmψ
b)Pmab

− 2ψ̄ργµγρΓb(Dνψa)PµbcPνca − 4χ̄γµΓb(Dνψa)PµbcPνca

+ 2ψ̄aγµ(Dνψb)Xµνab − 2ψ̄aγµ(Dνψb)Zµνab
]
, (B.13)

where Γ refers to the Christoffel symbol which is torsion-free. The last term in (B.12) and
the last term in (B.13) are SO(4)+×SO(4)− invariant. The rest will remove the remaining
symmetry breaking terms, as shown in (6.2). In the above equations we have used the fol-
lowing notations. We have denoted the torsionful connection by Γ± = Γ±H. In (B.12) we
have converted Dρ(Γ, Q−, Q+)Yµνba in which the connection Q− acts on the b and Q+ acts
on a index, to the standard one Dρ(Γ+, Q+, Q+)Yµνba = DρYµνba by adding and subtracting
the required terms. In (B.12) we have also converted Dρ(ω,Γ)ψν where ω rotates the spinor
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index and Γ acts on the vector index of the gravitino, to Dρ(ω,Γ+)ψν , again by adding
and subtracting the required terms. Similarly, in (B.13), we have converted /D(ω)Dµψb

into /D(ω,Γ+)Dµψb, and Dµ(Γ, Q−, Q−)Pνba into Dµ(Γ+, Q+, Q−)Pνba = DµPνba, again by
adding and subtracting appropriate terms.

C The total Lagrangian in 6D

The lowest order in α′ Lagrangian (4.10), which we reproduce here for reader’s convenience,
is given by

L0 = ee2ϕ
[ 1

4R+ gµν∂µϕ∂νϕ−
1
12HµνρH

µνρ − 1
4PµabP

µab

− 1
2 ψ̄µγ

µνρDν(ω)ψρ + 2χ̄γµνDµ(ω)ψν + 2χ̄γµDµ(ω)χ

− 1
2 ψ̄

aγµDµ(ω)ψa − ∂µϕ
(
ψ̄µγνψν + 2ψ̄νγµγνχ

)
+ 1

2Pµab
(
ψ̄νγ

µγνΓaψb + 2χ̄γµΓaψb
)
− 1

24Hµνρ

(
ψ̄σγ[σγ

µνργτ ]ψ
τ

+ 4ψ̄σγσµνρχ− 4χ̄γµνρχ+ ψ̄aγµνρψa
)]
. (C.1)

As for the O(α′) Lagrangian (6.2), it can be simplified by performing some algebra of
Dirac matrices, the replacement H → H in L0, with H defined in (A.15), and the use of
supercovariantizations defined in (A.16) and (A.17). In that context the following relations
are useful:

− 1
12HµνρH

µνρ = − 1
12HµνρH

µνρ + α′Hµνρ(ωLµνρ(Ω−) + 1
2ω

Q
µνρ(Q−)− 1

2ω
Q
µνρ(Q+)

)
− α′HµνρRµν

rs(Ω−) ψ̄rγρψs + α′ψ̄rγνψsΩ−ρrse−2ϕDµ(Γ)
(
e2ϕHµνρ) ,

− 1
4α
′Rµνrs(Ω(sc)

− )Rµνrs(Ω(sc)
− ) = −1

4α
′Rµνrs(Ω−)Rµνrs(Ω−)

− 2α′Rµνrs(Ω−)ψ̄rγνDµ(ω,Ω−)ψs , (C.2)

where H = dB. Carrying out the algebra of Dirac matrices to determine the independent
structures in order to separate the terms that are amenable to the use of the lowest order
field equations, further remarkable simplifications occurs and the total 6D Lagrangian
takes the form

L = L0
∣∣∣
H→H

+ L(R2) + L1 + L2 + L3 + L4 + L5 + L6 , (C.3)

with L0 as given in (4.10), and various parts of the Lagrangian are organized according to
the structures of the terms they consist of as follows:

L(R2) =α′ee2ϕ
[
− 1

4Rµνrs(Ω
(sc)
− )Rµνrs(Ω(sc)

− )− ψ̄rsγµDµ(ω,Ω−)ψrs−
1
12Hµνρψ̄

rsγµνρψrs

+ 1
2Rµν

rs(Ω−)
(
ψ̄ργµνγρ−2χ̄γµν

)
ψrs

]
(C.4)
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L1 =α′ee2ϕ
[
−
(
DµP

(sc)
νab

)
DµP νab(sc)−

3
4Q

(sc)
−µνabQ−

(sc)µνab− 1
2Y

(sc)
µν Y (sc)µν

− 1
2Z

(sc)
ab Z(sc)ab

]
(C.5)

L2 =α′ee2ϕ
[(
− 1

2 ψ̄νγ
µνρΓabψρ−2ψ̄νγµνΓabχ−2χ̄γµΓabχ+ 1

2 ψ̄
dγµΓabψd

)
P σa

cDµPσbc

−2ψ̄ργµψν
(
P νabD

µP ρab
)
−2ψ̄bγµψc

(
P νacDµPνa

b)] (C.6)

L3 =α′ee2ϕ
[
− 1

2 ψ̄σγ
σγµνρΓaψbPµcbYνρca−

1
4 ψ̄µγ

µγνΓcdaψbP ρdbQ+νρac

− 1
2 ψ̄µγ

µγνΓaψb
(
P ρabYνρ−2P ρcbYνρca+3PνcbYca

)
− χ̄γµνγσΓcψaPσcbQ−µνab−2χ̄ΓcdΓbγνψaPµcaYµνdb

+2χ̄γµΓaψbPµcbYac
]

(C.7)

L4 =α′ee2ϕ
[1

2
(
ψ̄ρΓabγρ−2χ̄Γab

)
ψµνQ+

µν
ab+4Pνab ψ̄µνΓaD(sc)

µ ψb

−Y µνψ̄aγµD
(sc)
ν ψa−3Zµν(ab)ψ̄aγµD

(sc)
ν ψb

−Pµc[aP νdb]ψ̄aγµΓcdD(sc)
ν ψb+2ψ̄ργµγρΓb

(
D(sc)
ν ψa

)
DµP νba

]
(C.8)

L5 =α′ee2ϕ
[
−2(D(sc)

m ψ̄a) /D(ω,Ω−)D(sc)
m ψa+4χ̄γµΓa(D(sc)

ν ψb)DµP νab

− 1
2Y ψ̄

a /D
(sc)

ψa+ 1
2Zabψ̄

a /D
(sc)

ψb+ 1
4Q+µνcdψ̄

aγµνΓcd /D(sc)
ψa

− 1
2PµcaPνdbψ̄

aΓdΓcγµν /D(sc)
ψb− 1

2Pµ
c
[aP

µd
b]ψ̄

aΓcd /D
(sc)

ψb

+Pµ
c
(aP

νd
b)ψ̄

aΓcdγµD(sc)
ν ψb+ 1

2Q+
µν
cdψ̄

aγµΓcdD(sc)
ν ψa

+ 9
2Q−

µν
abψ̄

aγµD
(sc)
ν ψb+ 1

2 ψ̄
dγµΓabψdPµacDνPνbc

− 1
2 ψ̄

aγµΓcΓdψbPµcbDνPνda

]
(C.9)

L6 =α′ee2ϕHµνρ

[ 1
12Yλτcd ψ̄

bΓcΓdγλγτγµνρψb−
1
12PλcbPτda ψ̄

aΓcΓdγλγτγµνρψb (C.10)

− 1
6
(
Dσ

(sc)ψ̄
a)γµνρD(sc)

σ ψa

]
+α′ψ̄aγνψbQ−ρ

abe−2ϕDµ(Γ)
(
e2ϕHµνρ) ,

where we have used the relation Dµ(ω,Γ+)γν = −Hµ
ν
ργ

ρ, and the non-standard covariant
derivatives are as defined in (A.13) and

Dµ(ω,Ω−)(Dmψa) =
(
∂µ + 1

4ωµpqγ
pq + 1

4Q+µbcΓbc
)

(Dmψa) ,

+ Ω−µmn(Dnψa) +Q−µa
b(Dmψb) . (C.11)

The structures that arise in the result for Lagrangian are grouped as follows. In the first
term in (C.3), with L0 from (4.10), only the zeroth and first order in α′ that are to be
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kept. In the Lagrangian L(R2), the dependence on the hyperscalars enters only through
the composite connections in the covariant derivatives. The Lagrangian L1 contains the
bosonic four derivative terms built out of hyperscalars. Denoting a generic fermion by ψ,
the terms in L2 schematically are of the form ψ̄ψ (PDP ), where the PDP factor cannot be
written as D(PP ). Thus there is no room for use of equations of motion here. Similarly, L3
contains terms of the form ψ̄ψP 3 with no room for equations of motion. The Lagrangian
L4 contains terms of the form P 2 ψ̄Dψ or (DP )ψ̄Dψ. Terms in which the lowest order in
α′ field equations can arise directly or upon partial integration are collected in L5, and the
Lagrangian L6 has the terms in which H appears explicitly, as opposed to entering through
covariant derivative as torsion. It is worth noting that many simplifications have occurred
by working with the supercovariant derivative of the hyperino D(sc)

µ ψa defined in (A.17).
The supertransformations in terms of the redefined fields, including B′µν given

in (A.14), and with primes dropped, are given by

δeµ
r= ε̄γrψµ ,

δψµ=Dµ(Ω+)ε− 3
2α
′
[
ωLµνρ(Ω−)+ 1

2ω
Q
µνρ(Q−)− 1

2ω
Q
µνρ(Q+)

]
γνρε−α′PνacDµP

ν
bcΓabε ,

δBµν =−ε̄γ[µψν]+2α′Ω−[µ
rsδ0Ω(sc)

−ν]rs+α
′Q−[µ

abδ0Q−ν]ab−α′Q+[µ
abδ0Q+ν]ab ,

δχ= 1
2γ

µε∂µϕ−
1
12Hµνργ

µνρε+ 1
2α
′
[
ωLµνρ(Ω−)+ 1

2ω
Q
µνρ(Q−)− 1

2ω
Q
µνρ(Q+)

]
γµνρε,

δϕ= ε̄χ,

WδW−1 =
(

0 −ε̄Γaψb+2α′ε̄ΓcψbYac

−ε̄Γbψa+2α′ε̄ΓcψaYbc 0

)
.

δψa=−1
2γ

µΓbεPµba−α′γµΓbεPµcaYbc . (C.12)

It is understood that the quartic fermion terms in the action and the cubic fermion terms
in the supertransformations are to be dropped.

We find the commutation relation of these supertransformations as

[δ1, δ2] = δg.c.(ξ) + δL(λ) + δtensor(Λ) + δSO(4)+(Λ+) + δSO(4)−(Λ−) , (C.13)

where

ξµ = ε̄2γ
µε1,

λrs = −ξµΩ−µrs + 6α′ξµ
[
ωLµrs(Ω−) + 1

2ω
Q
µrs(Q−)− 1

2ω
Q
µrs(Q+)

]
,

Λµ = 1
2ξµ − ξ

νBνµ ,

Λ±ab = ξµQ±µab . (C.14)

To find supertransformation which may appear on the right-hand side of (C.13) we need
cubic fermi terms in the supertransformations. In our conventions δL(λ)eµr = −λrseµs.
Note also the transformation rules δBµν = 2∂[µΛν], and those given in (3.15) and (6.5). It
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is easy to check (C.13) for eµr and ϕ. To check (C.13) for Bµν we used

δ0Ω(sc)
−µrs = −ε̄γµψrs , δ0Q

(sc)
−µab = 2Pµc[aε̄Γcψb] (C.15)

and

[δ01, δ02]Ω(sc)
−µrs = −ξνRµνrs(Ω−) ,

[δ01, δ02]Q(sc)
−µab = −ξνQ−µνab . (C.16)

To check (C.13) for W we used

δ1
(
−ε̄2Γaψb + 2α′ε̄2ΓcψbYac

)
− (1↔ 2) = −ξµPµab (C.17)

and found

[δ1, δ2]W−1 = W−1
(

0 −ξ · P
−ξ · P T 0

)

= ξµ∂µW
−1 −W−1

(
ξ ·Q+ 0

0 ξ ·Q−

)
, (C.18)

where we have used (3.12) in the second line. We have not checked (C.13) for fermi fields,
which needs cubic fermi terms in the supertransformations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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