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Abstract

Inference is crucial in modern astronomical research, where hidden astrophysical features and patterns are often
estimated from indirect and noisy measurements. Inferring the posterior of hidden features, conditioned on the
observed measurements, is essential for understanding the uncertainty of results and downstream scientific
interpretations. Traditional approaches for posterior estimation include sampling-based methods and variational
inference (VI). However, sampling-based methods are typically slow for high-dimensional inverse problems, while
VI often lacks estimation accuracy. In this paper, we propose a-deep probabilistic inference, a deep learning
framework that first learns an approximate posterior using a-divergence VI paired with a generative neural
network, and then produces more accurate posterior samples through importance reweighting of the network
samples. It inherits strengths from both sampling and VI methods: it is fast, accurate, and more scalable to high-
dimensional problems than conventional sampling-based approaches. We apply our approach to two high-impact
astronomical inference problems using real data: exoplanet astrometry and black hole feature extraction.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Radio interferometry (1346); Exoplanets (498);

Black holes (162)

Inferring hidden features from indirect, sparse, and noisy
observational data is a fundamental challenge in modern
astronomical research. When tackling these inverse problems, it
is important to consider uncertainty in the inferred solution via
a posterior rather than simply a point estimate (e.g., maximum
a posteriori (MAP)). A full posterior guarantees that all
possible scientific interpretations have been considered. How-
ever, due to the large amount of observational data, the high
dimensionality of features to infer, and the potential multi-
modality of posterior distributions, recovering a full posterior
distribution is often computationally challenging. In this paper
we propose an efficient and flexible approach for full posterior
estimation in inverse problems, and demonstrate the approach
on two applications in astronomical inference.

Traditionally, sampling-based approaches, such as impor-
tance sampling and Markov Chain Monte Carlo (MCMC)
methods, are widely used to solve inference problems in
computational science. Importance sampling first generates
random samples based on a proposal distribution and then
reweights the samples according to their likelihood to
approximate the true posterior; MCMC gradually refines the
samples using a Markov chain transition distribution to create
samples from a posterior distribution. Although these methods
have achieved great success in many Bayesian inference
problems, they typically suffer from the curse of dimensionality
in high-dimensional estimation. Without a good proposal
distribution in importance sampling or a good random
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initialization in MCMC, sampling approaches are often
prohibitively slow to converge (Owen 2013).

To overcome the above limitation, optimization-based
inference approaches, such as variational inference (VI), have
drawn increased attention. Instead of directly sampling the
parameter space, VI methods introduce a parametric density
function (e.g., a Gaussian mixture model), and solve the
inference problem by minimizing a loss (e.g., Kullback-Leibler
(KL) divergence) between the variational density function and
the target posterior distribution. VI methods are drastically
more efficient than sampling-based approaches since their
optimization is gradient based. However, limited by the
modeling capacity of the variational density function and the
choice of divergence loss, traditional VI methods often estimate
overly simplified distributions and sometimes lead to degen-
erated posterior estimation (e.g., mode collapse; Zhang et al.
2018).

In this paper, we propose a new deep learning Bayesian
inference approach, a-deep probabilistic inference (a-DPI), for
fast and accurate posterior estimation. Our proposed approach
consists of two primary steps: (1) we first use a-divergence VI
to optimize a normalizing flow generative model to approx-
imate a posterior; (2) we then use importance sampling to
recover a more accurate distribution. By utilizing current state-
of-the-art deep neural network architectures, o-DPI inherits
advantages from both sampling and optimization methods. This
proposed new deep learning approach not only significantly
improves the computational efficiency and accuracy of high-
dimensional posterior estimation, but also naturally leads to a
metric that can be used for model selection when the
underlying physical model is unknown. We apply our method
to two difficult high-impact astronomical inference problems:
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exoplanet astrometry and black hole feature extraction. In both
cases, «a-DPI achieves improved performance in terms of
estimation efficiency and accuracy when compared with
traditional methods.

1. Results
1.1. Overview of the Method

a-DPI is a two-step algorithm that combines a-divergence
VI, a normalizing flow neural network, and importance
sampling for uncertainty quantification with Bayesian infer-
ence. Using only the observed measurements y, the goal of a-
DPI is to generate samples of the hidden state x that
approximate those from the target posterior p(x|y). For a more
detailed description of the method please see Section 3.

First, a-DPI learns the weights 6 of a normalizing flow
neural network gy(-) that generates samples from a proposal
distribution gy(x). This generative network is optimized using
an a-divergence VI loss:

. 1Y
6" = argmin Dy [qy(¥) | p (x])] ~ arg m;nﬁz

n=1
x [exp[(1 — a)(logp(ylx,) + logp(x,) — loggy(x. )],
(h

where D,[A||B] is the Renyi’s a-divergence of A from B
(Rényi 1961; Van Erven & Harremos 2014), x,, = gy(z,) for
72 € R¥ ~ A0, 1) such that x,, ~ gg(x), and p(y|x,) and p(x,,)
should be differentiable functions to facilitate gradient-based
optimization. In this a-divergence formulation, « is a selected
value between 0 and 1. Optimizing with an a-divergence loss
encourages the learned distribution g4(x) to be similar to p(x|y).
Refer to Section 3.1.1 for a more detailed description of -
divergence and its relation to KL divergence. The resulting
generative network will therefore map samples z, from an
independent and identically distributed Gaussian distribution to
those from the learned proposal distribution g4(x), where gq(x)
approximates the target posterior p(x|y).

Second, a-DPI performs importance sampling to reweight
samples from the learned proposal distribution. In particular,
each sample in the set {x;}, where x;= gy(z;) ~ go(x), is
weighted by

p(ylx)p(x))

2
qp(x)) =

w(xj) =

so that p(x;|y) o< w(x;))gg(x;). By simply resampling from the set
{x;} according to {w(x;)}, a-DPI produces a new set of samples
{x’;} that better captures p(x[y).

A critical building block of «-DPI is the normalizing flow
generative neural network. This class of invertible networks is
widely used in computer vision and machine learning for
density function approximation. Normalizing flow generative
networks are able to capture complex correlations between
parameters in the target posterior. Therefore, unlike simple
distribution models typically used for VI (e.g., Gaussian), these
networks lead to better proposal distributions that in turn lead
to more efficient importance sampling. Additionally, unlike
variational autoencoders (VAEs) that rely on efficient optim-
ization via the Gaussian reparameterization trick, normalizing
flows are bijective and therefore are not restricted to capturing
unimodal distributions. However, note that since a traditional
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normalizing flow architecture will result in a continuous
generative distribution, target distributions with disconnected
modes cannot be captured by a normalizing flow without a
connecting “bridge.”

a-DPI significantly outperforms our previous work for
image reconstruction uncertainty quantification: deep probabil-
istic imaging (DPI Sun & Bouman 2021). In Sun & Bouman
(2021) a single-step KL-divergence VI was used to approx-
imate the target posterior distribution; this formulation would
sometimes result in mode collapse. In contrast, we find that
formulating the inference using a-divergence, which trades off
exploration and exploitation through the o parameter, is far less
susceptible to mode collapse. «-divergence VI has the
disadvantage of generally producing a distribution gy(x) that
samples x’s outside of the target posterior. However, by simply
following a-divergence VI with importance sampling we can
more accurately capture complex multimodal posterior dis-
tributions than KL-divergence VI. In this paper, we denote the
method presented in Sun & Bouman (2021) as KL-DPIL.

1.2. Exoplanet Astrometry and Orbital Fitting with Gemini
Planet Imager

Detection and characterization of exoplanets using direct
imaging is one of the most exciting frontiers in astronomy in
the era of 30 m class optical /infrared telescopes. By capturing
a series of snapshot images of an exoplanet, we can understand
the properties of its planetary system (Yu & Tremaine 2001;
Scharf & Menou 2009; Bate et al. 2010; Maire et al. 2019).
Fitting an exoplanet’s astrometry data allows us to understand
the planet’s formation and evolution, and sometimes even
detect unseen planets (Lacour et al. 2021). A planet’s orbit is
parameterized by eight Keplerian elements (Blunt et al.
2017, 2020): semimajor axis (a), eccentricity (e), inclination
angle (i), argument of periastron of the secondary’s orbit (w),
longitude of ascending node (£2), epoch of periastron passage
(7, defined as a fraction of the orbital period past a reference
epoch), parallax (7), and total mass (My), as illustrated in
Figure 1. In an orbit fitting problem, we estimate the posterior
of these parameters based on the exoplanet astrometry data
relative to the primary star (e.g., R.A. and decl.) from telescope
snapshot images.

We applied a-DPI to a data set from the Gemini Planet
Imager (GPI) to infer the orbital parameters of a planet,
[ Pictoris b (3 Pic b) (Wang et al. 2016). The prior distributions
on (Picb’s orbital parameters, as mentioned in Wang et al.
(2016), are listed in Figure 1. As shown by the exoplanet
astrometry data (right image) in Figure 2, 5 Pic b has an almost
edge-on orbit when observed from the Earth. Due to the limited
observational data, the posterior of @GPicb’s Keplerian
elements is multimodal. Figure 3 shows the posterior samples
from MCMC, KL-DPI, and a-DPI before and after importance
sampling (unless otherwise noted, a-DPI includes the step of
importance sampling). The posterior samples are visualized
using corner plots, which present the marginal distribution of
each Keplerian element and the joint distribution of each pair of
Keplerian elements. As can be seen, KL-DPI neglects
disconnected minor modes in its approximated posterior; this
occurs because the KL loss strongly discourages including any
mass from low posterior probability regions in g4(x), which is
needed to connect disconnected modes in a posterior when
using a normalizing flow model. For this reason, KL-DPI
results in a distribution ¢g(x) that underestimates the
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Figure 1. (Left) Illustration of five of the eight Keplerian elements estimated in this work. The additional three elements not illustrated are the total mass of the

2
exoplanet (M7), the parallax (7), and the eccentricity (e). Eccentricity is defined by semimajor axis (a) and semiminor axis (b) as e = \/ 1 - % . (Right) Definitions of
Keplerian elements and their prior distributions used in exoplanet 3 Pic b astrometry.
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Figure 2. o-DPI applied to exoplanet astrometry. In this example, we infer the orbital parameters of an exoplanet, 5 Pic b, based its snapshot images captured by the
Gemini Planet Imager (GPI). a-DPI first optimizes the normalizing flow weights, 6, to generate diverse trajectory samples that match the observational data. Then it
conducts importance sampling to reweight each trajectory sample to produce an accurate posterior. In the plots, the trajectories with darker colors have higher posterior
likelihoods. In the composite exoplanet astrometry image on the far right the locations of the exoplanet at different times have been circled for clarity.

uncertainty of the planet’s orbit. In contrast, the normalizing
flow learned in «-DPI captures all the posterior modes of the
astrometry data. Although a-DPI includes several samples with
low data likelihood that connect different posterior modes, it
still provides a good proposal distribution that can be used by
importance sampling to efficiently generate more accurate
posterior samples. The final «-DPI approximate posterior
distribution achieves comparable accuracy to the MCMC
sampler, but only takes 1.5 hr of computation on a single
GTX1080 Ti GPU (time of importance sampling step is
negligible compared with normalizing flow training). In
comparison, the MCMC method requires more than 24 hr to
recover the posterior (Blunt et al. 2020).

We also quantitatively investigate the influence of the «
parameter values on both «-DPI’s posterior estimation
precision and computational time. The precision is evaluated
using the maximum mean discrepancy (MMD; Gretton et al.
2012) between the “ground-truth” MCMC posterior, gmc(-),
and the optimized normalizing flow posterior, gqpi( - ),

MMD? [Clmc('), qdpi(')] = Ex,qumc(‘)[K(x, X/)]
+ Ey,y’wqdpi(~)[K(ya )’/)] - ZExmqmc(J,ywqdpi()[K(x7 )’)], (3)
where K(-, -) is a kernel function between two samples. A

smaller MMD indicates that two distributions are more similar
to each other. A radial basis function kernel (Scholkopf 1997)

is used in our MMD calculation. The MMD of normalizing
flow samples before and after importance sampling are both
reported. As demonstrated in Figure 4 (left), the posterior
estimation performs well for o between 0.3 and 0.9, but results
in poor performance when « is either large or small. A large «
leads to the mode collapse problem and additional importance
sampling does not help since a posterior mode has already been
neglected; a small o makes the stochastic loss in Equation (1)
hard to evaluate with a limited batch size, resulting in a
normalizing flow model that fails to converge to an informative
proposal posterior. The computational time of a-DPI is defined
as the training time for the normalizing flow model to reach a
sufficient precision (MMD < 0.1) and stay at this precision for
more than 30 iterations. We find the time spent on the
importance sampling step (Step 2) is negligible compared with
the neural network training, even in the case of a low «a. As
shown in Figure 4 (right), the computational time does not
change significantly given a fixed normalizing flow architecture
and a fixed batch size. The computational time using a smaller
« is a little longer but varies more among different runs. This
again indicates the evaluation of stochastic loss in Equation (1)
is difficult with a small a.

Given an appropriate «, the results of a-DPI agree well with
the posteriors from Wang et al. (2016), indicating an accurate
estimation of the possible orbital configurations for [3Picb,
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Figure 3. Corner plots of posterior samples from (a) MCMC, (b) KL-DPI (equivalent to a-DPI with o = 1.0, see Section 3.1.1) and a-DPI with o = 0.5 before (c;
step 1) and after (d; step 2) importance sampling. The zoomed-in figures present the marginal joint distribution of argument of periastron (w) and epoch of periastron
(7); the presence of disconnected modes is due to the periodicity of both parameters. KL-DPI collapses to a distribution that fails to capture some of the modes in the
posterior. In contrast, a-DPI captures all disconnected modes. Although (c) includes a few “bad” samples that should have low probability, after importance sampling
the resulting posterior in (d) is nearly identical to the MCMC identified posterior. The contours in the corner plots represent the levels of the posterior likelihoods;
points lying outside the posterior contours are the samples whose likelihoods are smaller than a threshold but not negligible.

including the fact it will not transit the star. However, due to its
much faster run time, a-DPI lowers the barrier for obtaining
orbital posteriors for a large number of systems in the future that
have yet to be analyzed fully. For example, Ferrer-Chévez et al.
(2021) was able to explore biases in orbit fitting for short orbital
arcs (spanning ~1% of a planet’s orbit), but chose not to explore
longer orbital arcs because current orbit fitting algorithms were
prohibitively slow. Thus, a-DPI holds significant promise for
handling this inference problem both efficiently and accurately.

Implementation Details. In order to solve for gy(-) using
gradient-based optimization, the forward model that maps
Keplerian elements to astrometry data is implemented in a
differentiable manner. In particular, Kepler’s equation is
approximated via a Gauss—Newton solver with 10 fixed
gradient descent optimization steps. We compare «-DPI
(a=0.5 in the divergence loss) to a normalizing flow based
KL-divergence VI method (denoted as KL-DPI in this paper)
and a parallel-tempered MCMC (PTMCMC) sampler from
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Figure 4. Posterior estimation precision (left) and computational time (right) for a-DPI with different « values ([0.01, 1]). The error bars in both figures are generated
based on five independent runs for each « value. The posterior estimation precision is evaluated using the maximum mean discrepancy (MMD) between the converged
MCMC samples and a-DPI samples, where a smaller MMD indicates higher precision. Steps 1 and 2 represent the samples before and after importance sampling,
respectively. The computational time is defined as the time when the MMD of normalizing flow samples (step 1) drops below 0.1 for 30 consecutive iterations. The
normalizing flow models optimized with 0 < o < 0.2 never achieve sufficient precision (MMD < 0.1) in the allotted time (~3.5 hr), and thus are marked as “not
converged” even if they have converged to a distribution with a larger MMD.
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Figure 5. a-DPI applied to VLBI black hole feature extraction. In this example, we infer the geometric parameters (e.g., diameter, position angle, central emission) of
a super massive black hole based on the data captured by the Event Horizon Telescope (EHT). We conduct experiments using both simulated interferometric data and
real data of M87" captured in 2017. Due to atmospheric turbulence and instrument calibration errors, we fit robust data products referred to as closure quantities. The
right two figures show the measurement data (gray dots with error bars) and the ideal corresponding measurements from posterior samples (purple curves; darker
curves indicating more likely samples) of two closure quantities used to define the data likelihood. Here the capitalized letters within each plot represent the telescopes

used for capturing the corresponding measurements.

ptemcee (Vousden et al. 2016) using 1000 Markov chains with
45,000 iterations in each chain (first 40,000 steps as the burn-
in). Since the MCMC sampler uses a large number of chains
and iterations, we believe it converges to close to the ground-
truth posterior. Therefore, we use the resulting MCMC
posterior in order to evaluate the inference accuracy of a-DPIL.

1.3. Black Hole Feature Extraction with the Event Horizon
Telescope

Very long baseline interferometry (VLBI) has enabled the
reconstruction of high-resolution astronomical images using
sparse data from a multitelescope synthetic aperture. By joining
radio telescopes from across the globe, the Event Horizon
Telescope (EHT) collaboration captured the first picture of a
black hole, M87* (Event Horizon Telescope Collaboration
et al. 2019a). This marked a new era for black hole astronomy,
since scientists can now study black holes by directly observing
their event-horizon scale structure. However, VLBI data for
black hole imaging is typically very sparse and noisy: only
seven telescopes at five geographic sites were used for
collecting the M87* data that led to the first black hole image
—this sparse telescope data was heavily corrupted by atmo-
spheric turbulence and instrumentation calibration errors. In
order to deliver reliable scientific interpretations, it is important
to carefully characterize the uncertainty in features of the black
hole image, including diameter, width, asymmetry, and
position angle.

In this section, we apply our proposed a-DPI algorithm to
both simulated and real EHT M87* data, and fit geometric
models to understand important black hole properties, as shown

in Figure 5. We choose to parameterize the black hole image as
the summation of a crescent (an asymmetric ring with a central
emission disk) and multiple additional elliptical Gaussians, as
illustrated in Figure 6. Elliptical Gaussians are introduced to
account for extended flux in the black hole image. The number
of ellipses to include is unknown a priori when analyzing real
observational data. Therefore, we first attempt models with
different number of Gaussian ellipses (0-3) in our following
experiments, and subsequently select the best geometric model
by comparing the evidence lower bounds (ELBO) of different
models, denoted as m. In particular, by expanding out the
equation of p(y|m) (i.e., the probability of data under a given
model) one can see that, if the true posterior has been well
approximated (i.e., Dgi ~0), the ELBO function identifies
which model best describes the data without overinterpretation:

logp(ylm) = Dxvlgy(x) || p(x]y, m)]
— B[ —logp(ylx, m) — log p(x|m) + log g, (x)]
2 —Byog,m[—logp(ylx, m) — logp(x|m) + logg,(x)]
= ELBO(m).
“4)

Since a-DPI samples often approximate the true posterior well,
we assume that Dy is negligible compared with the ELBO and
choose the preferred model, m by selecting the model with the
largest ELBO value (Penny 2012).

Simulated EHT data is generated using a crescent model
with two elliptical Gaussians. Figure 7 (top) presents the ELBO
when fitting simulated data using models of varying complex-
ity. As expected, the true model—a crescent with two Gaussian
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Figure 6. (Left) Illustration of a black hole geometric model. The model consists of two parts: (1) an asymmetric ring with a central emission disk (the ring and disk
share the same diameter), and (2) multiple Gaussian ellipses (index by k). The azimuthal intensity of the ring follows a sinusoidal function. The flux of the ring, central
disk and Gaussian ellipses are V., V, and V,, respectively, which are neglected in the figure. (Right) Definitions of black hole geometric parameters and their prior

distributions used for simulated and real M87" interferometry data.

ellipses—has the largest ELBO value. The bottom figure in
Figure 7 (bottom; (a)) shows the corner plots of a-DPI
posterior samples assuming a two-ellipse crescent model (cross
correlation between the crescent and ellipses are neglected for
brevity). The ground-truth values (blue lines) successfully lie in
the recovered posterior. More interestingly, since the para-
meters of two Gaussian ellipses are interchangeable, their
marginal posteriors are identical to each other; a-DPI
successfully identifies this predictable symmetry.

We also investigate the posterior distribution of MS87*
geometric features using the real EHT data set (Event Horizon
Telescope Collaboration et al. 2019b) that produced the first
black hole image in 2019.” The top left of Figure 7 presents the
mean reconstructed images obtained from «-DPI samples
under models of increasing complexity, along with the
corresponding computational time and ELBO values.
Figure 7 also presents the uncertainty of estimated black hole
feature parameters, visualized by the corner plots (b) of a-DPI
samples using the model with the largest ELBO (a crescent
with two ellipses). As seen in the corresponding table on the
top right of Figure 7, the recovered posterior of black hole
features aligns well with the sampling-based results first
presented in Event Horizon Telescope Collaboration et al.
(2019c).

In addition to the inference accuracy, we also quantitatively
study a-DPI’s efficiency by comparing its computational time
to a representative nested sampling method (Speagle 2020). In
this section, the computational time is defined as the training
time for a-DPI to converge to the optimal loss or for nested
sampling to reach the stationary state. Figure 7 presents results
obtained using models with increasing complexity, ranging
from 6 to 1024 dimensions. As shown in the top left of
Figure 7, a-DPI scales very well with the dimension of the
model, remaining within the same order of magnitude for
computational time across all models (refer to the computa-
tional time log-plot of Figure 7). As «-DPI is primarily an
optimization-based problem, its computational time directly
depends on the normalizing flow network architecture (depth,

7 This data set is publicly available online at https://eventhorizontelescope.

org/for-astronomers /data.

width, activation function, etc.) instead of the model dimen-
sion. As introduced in Section 3.3, our experiments only need
to use neural network architectures with the same depth (the
number of affine coupling layers) but varying widths (the
number of neurons in each layer) to handle geometric models
with different dimensions. a-DPI’s computational time only
slightly changes as the neural network width proportionally
increases with the model dimension since it can make use of
GPU parallel acceleration. As a comparison, nested sampling
cannot be easily parallelized, so its computational time
increases significantly with the model dimension (Salomone
et al. 2018). Note that since a-DPI is much more computa-
tionally efficient than the baseline sampling methods, it easily
scales up to estimating posteriors of full images with
32 x 32 =1024 parameters (i.e., pixels), which was demon-
strated in Sun & Bouman (2021) using KL-DPI. However, such
a high-dimensional full image uncertainty quantification task is
not easily achievable using current sampling-based methods,
and thus for computational reasons previous methods are
restricted to characterizing images with far fewer pixels
(Broderick et al. 2020). a-DPI’s efficiency will become
increasingly critical in future observations using the next-
generation EHT (ngEHT) where we would like to fit higher-
dimensional geometric models or images to understand higher-
resolution features of black holes (Raymond et al. 2021).
Implementation Details. The observational data in VLBI
black hole observations are the Fourier components of the
astronomical signals, which are referred to as “visibilities” in
radio astronomy (Thompson et al. 2017). In practical observa-
tions, the visibilities are usually contaminated by atmospheric
turbulence, so we define the a-DPI target posterior using two
robust data products derived from visibilities: closure phase
and closure amplitude (Thompson et al. 2017; Chael et al.
2018). Since the exact likelihood of these closure quantities
cannot be explicitly defined, we use Gaussian distributions to
approximate their likelihood in our implementation. This
Gaussian approximation is reasonable with high signal-to-
noise ratio (SNR) measurement data. We use o= 0.9 in the a-
DPI divergence loss for the black hole imaging; this v value is
empirically chosen by finding the lowest a where fewer than
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crescent + crescent + crescent + crescent + fullimage Comparison between the a-DPI

0 ellipse 1 ellipse 2 ellipses 3 ellipses (32x32) estimated M87* parameters (2 Gaussian

ellipses) and the original M87* feature
extraction results (Event Horizon

\ Telescope Collaboration et al. 2019c).
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Figure 7. (Top) Computational times and ELBO values obtained with models of increasing complexity. The computational time of nested sampling grows more than
polynomially as the geometric model dimension increases. In contrast, the computational time of a-DPI stays within the same order of magnitude. Blue arrows on the
sampling method’s computational time indicate that there is evidence that this method has not fully converged in the allotted time. A crescent with two elliptical
Gaussian ellipses is identified as the best model for both synthetic and real M87" data according to the ELBO. This choice correctly identifies the true underlying
model used for generated synthetic data. It also agrees with the model choice selected and presented in Event Horizon Telescope Collaboration et al. (2019c¢) for the
real M87" data (top right table; THEMIS and dynesty are two benchmark EHT feature extraction pipelines). (Bottom) Corner plots visualizing posterior samples of
black hole geometric parameters (a crescent with two elliptical Gaussian ellipses). (a) and (b) figures are the results of synthetic and real M87" data, respectively. In the
synthetic data experiment, the ground-truth values (blue lines) are contained in the recovered posterior. Since the two Gaussian ellipses are interchangeable, in both
synthetic and real data experiment a-DPI correctly identifies that the marginal posteriors of two Gaussian ellipses are identical. The contours in the corner plots
represent the levels of the posterior likelihoods; points lying outside the posterior contours are the samples whose likelihoods are smaller than a threshold but not
negligible.

50% of unique «-DPI samples are rejected by importance Figure 6, we introduce an image prior/regularizer that combines
resampling. In the 32 x 32 image posterior estimation, rather than maximum entropy (Skilling & Bryan 1984) and total squared
using the prior distribution defined for the geometric model in variation (Bouman & Sauer 1993; Kuramochi et al. 2018)
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regularizers; since the observational data is sparse, adding an
image regularizer is necessary to recover an interpretable posterior
that highlights black hole images with desirable low-level image
statistics.

2. Discussion

a-DPI provides a general framework for uncertainty
quantification in Bayesian inference problems. It is broadly
applicable to inference problems in astronomical science: the
only requirement is a differentiable forward model, which is
usually available (e.g., black hole interferometry) or can be
approximated using numerical methods (e.g., exoplanet astro-
metry). a-DPI merges the strengths of both sampling-based and
optimization-based inference methods, resulting in a very
efficient and scalable approach that still maintains posterior
estimation accuracy. By pairing a normalizing generative
model along with an «-divergence VI loss, a-DPI is less
frequently plagued by the mode collapse failures than KL-DPI.
All the above strengths make a-DPI a promising new method
in not only astronomy, but also many other high-dimensional
scientific inference problems, such as seismic tomography (Gao
et al. 2021), inverse material design (Sanchez-Lengeling &
Aspuru-Guzik 2018), and biomedical imaging (Sun &
Bouman 2021).

3. Method Background and Details

In this section, we first describe in detail the two steps of a-
DPIL: (1) a-divergence VI (a-VI) with a normalizing flow
neural network (Section 3.1), and (2) importance sampling
(Section 3.2). Then we describe the implementation details
(Section 3.3), including neural network architectures and
optimization choices made for the two astronomical applica-
tions studied in this work.

3.1. a-divergence Variational Inference (a-VI) with
Normalizing Flow

VI is an approach that solves an optimization problem to
estimate a posterior distribution. In VI, a family of density
functions parameterized by 6, g¢g(x), is defined. Then,
optimization algorithms are used to find the parameters, 0",
that best match the variational density function to the target
posterior distribution, p(x|y). The optimization problem of VI is

0* = afgmeinD[%(X) [Py, )
where D[-||-] is a divergence function that measures the
similarity between two distributions. Two major factors that
influence the performance of VI are the objective divergence

function and the modeling capacity of the variational density
function.

3.1.1. Renyi’s a-divergence

In traditional VI, KL divergence (Kullback & Leibler 1951)
is typically used as the objective loss function:

0* = arg nginDKL[%(X)HP(XU)]
= argmin B g,0[—logp(xly) + loggy(x)]
= argmin Eyq,co [—logp(ylx) — logp(x) + log gy(x)].
(6)
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This KL loss is equivalent to jointly optimizing the MAP loss
(first two terms) along with the entropy of the variational
distribution (last term). Although KL-VI theoretically should
produce an optimized density function that well matches the
true posterior, in practice KL-VI usually leads to zero-forcing
effects. In other words, the variational model tries to avoid
including samples from low-probability regions, often resulting
in underestimating the posterior and thus the uncertainty of
inferred parameters. Zero-forcing effects are especially detri-
mental when estimating posteriors with disconnected modes.

In a-DPI, we alternatively define our VI objective function
using the Renyi’s a-divergence (Li & Turner 2016):

0* = arg mﬂinDa [q5(0) || p(x[¥)]

l1-a
1 p(x1y)
log By, (x
01 og qy( )[( qg(x) ) ]

log Exwo(x)

= arg min
0

=arg mgin 0
a —

x {exp[(1 — @) (logp(ylx) + logp(x) — logg,(x))]1}.
(N

Renyi’s a-divergence is a more general class of similarity
metrics between two distributions gp(x) and p(x|y)—when
a— 1 a-divergence converges to a KL divergence,
Dx1[qe@)||p(x|y)], making a-VI the same as KL-VI, which
only exploits samples from gy(x) to compute the similarity
between distributions; when a — 0 a-divergence converges to
—log (>0 p(x)dx, making «-VI the same as a maximum

likelihood estimation (MLE) of # (Amari et al. 2001), which
needs to explore the full probability space of p(x). The former
case is very efficient in computation but sometimes lacking in
posterior estimation accuracy, while the latter one produces a
very accurate posterior but is computationally slow. By tuning
the o value in D,[gs(x)||p(x|y)], we balance the exploitation
and the exploration in our posterior estimation, so a-DPI can
be both efficient and accurate. In contrast with KL-VI, o-VI
(0 < a< 1) can tolerate a few samples with low likelihood if it
leads to a distribution that better captures multiple modes in the
true posterior. Please refer to the Appendix for more detailed
derivations.

3.1.2. Normalizing Flow

In order to solve the stochastic optimization problem in
Equation (7) efficiently, the variational density function should
be efficient in both sampling (x ~ gg(x)) and evaluating the
likelihood of a sample (i.e., computing log g, (x)). Traditional
VI typically uses a simple family of density functions, such as
those from the exponential family, to facilitate efficient
sampling and evaluation. However, these simple variational
models sacrifice the ability to capture complex multimodal
distributions. To improve inference accuracy, in a-DPI we
propose to use a more flexible neural network based density
function: a normalizing flow network. Normalizing flows are a
class of deep generative models that are widely used in
computer vision and machine learning for complex density
function approximation. They parameterize a probability
density gy(-) in an implicit manner by transforming a simple
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base distribution 7r( - ) using an invertible neural network,
-1
z=g (), ®)

where z ~ 7(z) is an arbitrary sample from the base distribution
(e.g., independent and identically distributed Gaussian), and
X ~ gg(x) is a sample from the approximated distribution gg(x).
According to the “change of variables theorem,”

dgy(x) | . dg, ' (x)
gy(x) = 7(z)| det Lo = m(g, ()| det—— |,
dz dx
)
—1
where det a8 () is the determinant of the neural network

function’s J agobian matrix. Therefore, the probability of a
random sample from gy(x) is easy to evaluate when the
Jacobian matrix is computationally tractable, as is the case with
commonly used normalizing flow forms including NICE (Dinh
et al. 2014), Real-NVP (Dinh et al. 2016), and Glow (Kingma
& Dhariwal 2018). As described in Section 3.3, in this work we
choose to use a Real-NVP generative network to parameterize

qo(x).

3.2. Importance Sampling

Importance sampling is a Monte Carlo technique for
estimating posterior distributions. It first generates random
samples based on a proposal distribution ¢g(x), and then
reweights the samples based on their posterior probabilities
p(x|y), where the weight of each sample x; is w; =
POy PO x)p

q(x)) q(x)
after a-VI to further improve the accuracy of the normalizing
flow approximated posterior.

A normalizing flow, by definition, is a continuous bijective
function. As a result, to capture multiple disconnected modes in
a posterior distribution, a normalizing flow model must include
low-probability samples that connect the modes. Therefore, to
approximate the posterior more accurately, these samples
should be removed from the approximated distribution. Since
the learned normalizing flow distribution gy(x) is already close

to the true posterior after a-VI, w; = pf;(j;)y)
samples x;~ gp(x). In this case, applyjing the importance
reweighting to samples from the normalizing flow distribution
is efficient because very few samples are rejected. The
computational time of importance sampling is negligible
compared with a-VI; however, it produces a cleaner posterior
estimation, as shown in Figure 3.

) n «a-DPI, importance sampling is applied

~ 1 and for most

3.3. Implementation Details

In both exoplanet astrometry and black hole feature
extraction problems, we use a Real-NVP model with 32 affine
coupling layers as the variational density function (Dinh et al.
2016). Each affine coupling layer is composed of a neural
neural network with three fully connected layers, where the
width (the number of neurons) of each fully connected layer is
16 times the dimension of inferred parameters.

The VI optimization problem is solved using an Adam
optimizer (Kingma & Ba 2014). In addition, we apply
simulated annealing training (Huang et al. 2018) to avoid the
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normalizing flow from stopping exploration in early epochs,
and subsequently converging to a poor local minimum. Instead
of directly optimizing the a-divergence in Equation (7), we
define an annealed objective function,

; 1
D(} [%(x)”p(xly)] = arg I'no}n 1 logEX""%(X)

1 1

- log%(x))l}, (10)

where i is the index of the optimization epoch,

x {exp[(l - a)(élogp(ym 4 %logpoo

B; = max {1, Byexp (fi) }, Bo is the initial annealing weight,
and 7 is the decay period. Since the normalizing flow network
used is initialized to an approximately random uniform
distribution, the data likelihood (logp(y|x)) and the prior
likelihood (log p(x)) are typically much larger than the entropy
term (logg,(x)) at the initiation of training. 3; balances the
values of these different terms so that the optimization becomes
more numerically stable and the normalizing flow can
gradually converge from a random uniform distribution to
one that well approximates the posterior. In exoplanet
astrometry, we use an initial annealing weight (o= 10 a
decay period 7= 3000 and in total 20,000 training epochs. In
black hole feature extraction, the initial annealing weight, the
decay period, the total number of epochs are [,= 10,
7=23000, and epoch = 15,000, respectively.
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Facilities: Gemini Planet Imager (GPI), Event Horizon
Telescope (EHT).

Software: astropy (Astropy Collaboration et al. 2013, 2018),
Cloudy (Ferland et al. 2013), Source Extractor (Bertin &
Arnouts 1996) eht-imaging (Chael et al. 2018).

Appendix
More Comparison of KL-DPI and «-DPI

Both KL-DPI and «-DPI losses are approximated as
stochastic forms when we solve for the normalizing flow
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weights:

Dxgy(x) || p(x]y)]
= Equg(x) [710gp(y|x) - logp(x) + log 0 ()C)]

N
~ > [—logp(ylgs(zn) — logp(gy(zn))

n=1

+ log 7 (zn)],

dgy(zn
— log ‘ det%

n

D, [gy,(0)|| p(x|y)] =

x {exp[(1 — a)(logp(y|x) + logp(x) — loggq,(x))]}

N
. log > exp{(1 — a)(logp(yIgy(zn))

n=1

1 10g Equg(x)

~
~

dgy(z,
det £892n) &)

+logp(g(f(zfl)) + 1Og ) — 1Ogﬂ-(zn)}’

Z n

(AL)

where z,~m(-) is an arbitrary sample from the base
distribution, and N is the number of samples used for Monte
Carlo approximation. Denoting the KL loss function of a
particular sample as Ly(z,) = —logp(ylgy(z.)) —logp(gy(z,)) —
dgy(z,)

log ‘ detd—

and the a-divergence are, respectively

‘ + log 7 (z,), the gradient of the KL divergence

N
VDxLgy()|[p&xIN= ) VL(z,)

n=1

1
VD, [gy(x)||p (x| )] =~ ﬁv log

N
X {Z exp[—(1 — Oz)Le(Zn)]}

n=1

N
= Z w,VLo(z,),

n=1

(A2)

where w, = Softmax {[—(1 — a)Ly(z,)]}. The derivative of a-
divergence is a weighted version of the KL divergence’s
derivative gradient such that the samples that lead to a large loss
have significantly less impact on gradient descent optimization
in a-DPI when compared to KL-DPI. As a result, a-DPI allows
the learned normalizing flow generative model to include a few
“bad” samples as long as the resulting distribution gy(x) better
captures the modes in the true posterior distribution.
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